Testing Autonomous Cars for Feature Interaction Failures using Many-Objective Search

Abdessalem, Raja Ben; Panichella, Annibale; Nejati, Shiva; Briand, Lionel C.; Stifter, Thomas

DOI
10.1145/3238147.3238192

Publication date
2018

Document Version
Peer reviewed version

Published in
Proceedings of the 33rd IEEE/ACM International Conference on Automated Software Engineering

Citation (APA)

Important note
To cite this publication, please use the final published version (if applicable). Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.
ABSTRACT

Complex systems such as autonomous cars are typically built as a composition of features that are independent units of functionality. Features tend to interact and impact one another’s behavior in unknown ways. A challenge is to detect and manage feature interactions, in particular, those that violate system requirements, hence leading to failures. In this paper, we propose a technique to detect feature interaction failures by casting this problem into a search-based test generation problem. We define a set of hybrid test objectives (distance functions) that combine traditional coverage-based heuristics with new heuristics specifically aimed at revealing feature interaction failures. We develop a new search-based test generation algorithm, called FITEST, that is guided by our hybrid test objectives. FITEST extends recently proposed many-objective evolutionary algorithms to reduce the time required to compute fitness values. We evaluate our approach using two versions of an industrial self-driving system. Our results show that our hybrid test objectives are able to identify more than twice as many feature interaction failures as two baseline test objectives used in the software testing literature (i.e., coverage-based and failure-based test objectives). Further, the feedback from domain experts indicates that the detected feature interaction failures represent real faults in their systems that were not previously identified based on analysis of the system features and their requirements.

KEYWORDS
Search-based Software Testing, Many-Objective Optimization, Automotive Systems, Feature Interaction Problem

1 INTRODUCTION

Feature-based development aims to build complex systems consisting of units of functionality known as features. Individual features are typically traceable to specific system requirements and are mostly independent and separate from one another [37, 44, 63]. By closely mirroring requirements, features make it easier for engineers to develop complex systems iteratively and incrementally. Self-driving cars, and in general automotive systems, are among well-known examples of feature-based systems [11, 24, 76]. A self-driving system, for example, may include the following features, each automating an independent driving function: An automated emergency braking (AEB), an adaptive cruise control (ACC) and a traffic sign recognition (TSR).

Although features are typically designed to be independent, they may behave differently when composed with other features. A feature interaction is a situation where one feature impacts the behavior of another feature [17, 25, 44]. For example, in a self-driving system, feature interactions are likely to arise when several features control the same actuators. More specifically, in a self-driving system, both ACC and AEB control the braking actuator. A feature interaction may arise when a braking command issued by AEB to immediately stop the car is overridden by ACC commanding the car to maintain the same speed as that of the front car. Some feature interactions are desirable, and some may result in violations of system safety requirements and are therefore undesired. For example, the above feature interaction between AEB and ACC may lead to an accident, and hence, is undesirable.
The feature interaction problem has been extensively studied in the literature [7, 17, 25, 44]. Some techniques focus on identifying feature interactions at the requirements-level by analysis of formal or semi-formal requirements models [15, 18, 75]. Several techniques detect feature interaction errors in implementations using test cases derived from feature models capturing features and their dependencies [8, 35, 58, 61]. Other approaches devise design and architectural resolution strategies to eliminate at runtime undesired feature interactions identified at the requirements-level [41, 44, 70, 76]. For self-driving systems, however, feature interactions should be identified as early as possible and before the implementation stage since late resolution of undesired interactions can be too expensive and may involve changing hardware components. Further, feature interactions in self-driving systems are numerous, complex, and depend on several factors such as the characteristics of sensors and actuators, car and pedestrian dynamics, weather condition, road traffic and sidewalk objects. Without effective and automated assistance, engineers cannot detect undesired feature interactions within the space of all possible interactions and cannot assess the impact of complex environmental factors on feature interactions.

In this paper, we develop an automated approach to detect undesired feature interactions in self-driving systems at an early stage. Our approach identifies undesired feature interactions based on executable function models of self-driving systems embedded into a realistic simulator capturing the self-driving system hardware and environment. Building function models at an early stage is standard practice in model-based development of control systems and is commonly followed by the automotive and aerospace industry [57, 72, 74]. Function modeling takes place after identification of system requirements and prior to software design and architecture activities. Function models of control systems capture algorithmic behaviors of software components and physical dynamics of hardware components. Similar to the automotive and aerospace industry, the function models and the simulator of the self-driving system used in this paper are specified in the Matlab/Simulink language [1].

In this paper, we cast the problem of detecting undesired feature interactions into a search-based testing problem. Specifically, we aim to generate test inputs that expose undesired feature interactions when applied to executable function models of self-driving systems. Search-based techniques have been successfully applied to simulation-based testing of control systems and self-driving features [3, 13, 14, 23, 53, 54] as well as various other testing problems such as unit testing [38, 55, 69], regression testing [49, 73] and optimizing machine learning components [66].

Contributions. Our contributions are as follows:

First, we define novel hybrid test objectives that determine how far candidate tests are from detecting undesired interactions. Our test objectives combine three different heuristics: (i) A branch coverage heuristic [55] ensuring that the generated test cases exercise all branches of the component(s) integrating features. (ii) A failure-based heuristic based on system safety requirements ensuring that test cases stress the system into breaking its safety requirements. (iii) An unsafe overriding heuristic that aims to exhibit system behaviors where some feature output is overridden by other features such that some system safety requirements may be violated.

Second, we introduce FITEST (Feature Interaction TESTing), a new many-objective test generation algorithm to detect undesired feature interactions. We opt for a many-objective optimization algorithm since test generation in our context is driven by many competing test objectives resulting from the combination of heuristics above. Specifically, FITEST builds on the recently proposed many-objective genetic algorithms [59, 60] that effectively generate test cases satisfying a large number of test objectives. In our work, computing test objectives is expensive. Hence, at each iteration, FITEST dynamically selects the minimum number of test cases closest to satisfying test objectives, thus reducing the total number of fitness computations.

Third, we evaluate FITEST using two industrial self-driving systems from our partner company IEE [43]. Both systems represent a (partial) self-driving car consisting of four features. The engineers at IEE had developed alternative strategies to resolve the known feature interactions in these two systems. FITEST, however, was able to identify, on average, 5.9 and 7.2 undesired feature interactions in the two systems, respectively. The engineers confirmed that the detected interactions represent real faults that were not a priori known to them. Further, we compared our hybrid test objectives used by FITEST with two baseline test objectives from the software testing literature (namely, coverage-based [38, 55] and failure-based test objectives [4, 13, 20, 23]). Our results show that our hybrid test objectives are able to identify more than twice as many feature interaction failures as the coverage-based and failure-based test objectives.

Structure. Section 2 motivates our work. Section 3 presents our approach. Section 4 describes our evaluation. Section 5 compares with related work. Section 6 concludes the paper.

2 MOTIVATION

Figure 1 shows an overview of a typical function model capturing the software subsystem of a self-driving car. The system under test (SUT) consists of a set of self-driving features and a component capturing the decision algorithm combining feature outputs. SUT receives its inputs from sensors/cameras and sends its outputs to actuators. Both inputs and outputs are sequences of timestamped values. The entire SUT runs iteratively at regular time steps. At every time step, the features receive sensor/camera values issued in that step, and output values are computed and sent to actuators by the end of the step. Each feature controls one or more actuators. Actuators may receive commands from more than one feature at the same time step, and sometimes these commands are conflicting. The integration component has to generate final outputs to actuators after resolving conflicting feature outputs.

As discussed in Section 1, our goal is to identify feature interactions at the requirements-level and in terms of system functional behavior. Hence, we base our analysis on function models specifying algorithmic and control behaviors. Feature interaction failures due to software architecture and design issues are not studied in this paper.

We use a case study system, called SafeDrive, from our partner company IEE. SafeDrive contains the following four self-driving features: Autonomous Cruise Control (ACC), Traffic Sign Recognition

1. The material we used to get the industry feedback is available online [2].
we need techniques that, at early development stages, (1) detect tests the functional behavior of autonomous cars to detect their undesired feature interactions in

depends on the speed and the position of the car, the distance to the car can safely stop” in the resolution strategy for

test whether the

sensors

Cameras

actuators

Figure 1: Overview of a typical function model capturing the software subsystem (SUT) of a self-driving car.

undesired feature interactions. Our technique accounts for the impact of the environment factors on the self-driving system behavior. It, further, ensures that feature interaction resolution strategies devised by engineers satisfy system safety requirements under different environment conditions. We note that in Section 3.3, we will provide a precise formalization of the context upon which we build. The formalism is generic and based on simple assumptions that can be accommodated by many feature-based systems. Hence, in addition to autonomous cars, our work applies to any feature-based system expressible using our formalism.

3 APPROACH

In this section, we present our feature interaction detection technique. As discussed earlier, our technique generates test inputs for function models of self-driving systems, exposing their undesired feature interactions. Section 3.1 describes how we integrate the function models into a high-fidelity, physics-based simulator for self-driving systems. Section 3.2 characterizes the test inputs and outputs for self-driving systems. Section 3.3 introduces our hybrid test objectives. Section 3.4 presents FITEST, our proposed many-objective test generation algorithm that utilizes our test objectives to generate test inputs revealing feature interaction failures.

3.1 Testing Feature-Based Control Systems

Testing Cyber-Physical Systems (CPSs) at early stages is generally performed using simulators. To test the function model in Figure 1, we connect the SUT model to a simulator such that it receives inputs from the sensor and camera models of the simulator and sends its outputs to the actuator models of the simulator (see Figure 2). The sensor, camera and actuator models are within a physical model of a car (or a physical plant according to general CPS terminology) in the simulator. To run the simulator, we specify the initial state of the simulator physical plant and mobile environment objects as well as the static environment properties (e.g., weather condition and road shapes for self-driving systems). The simulator can execute the SUT in a feedback loop with the plant and the environment. For SafeDrive, we use PreScan, a physics-based simulator for self-driving systems [67]. PreScan relies on dynamic Simulink models to compute movements of cars and pedestrians and is able to capture the environment static properties such as the weather condition and the road topology. Some examples of SafeDrive simulations are available online [2].
3.2 Test Inputs and Outputs

The test inputs for a self-driving system are the inputs required to execute the simulation framework in Figure 2. For example, to test SafeDrive, we start by instantiating the simulation framework so that the simulator is able to exercise the behaviors of the PP, AEB, TSR and ACC features. Our simulation framework contains the following objects: (1) An ego car equipped with SafeDrive, (2) a leading car to test both the ACC and the AEB features of the ego car, and (3) a pedestrian that crosses the road starting from an initial position on the sidewalk and is used to exercise PP. The simulation environment, further, includes one traffic sign to test the TSR feature. We only consider a stop sign or a speed limit sign for our case study. This setup is meant to reduce the complexity of simulations and was suggested by the domain experts.

The test inputs of SafeDrive are shown in Figure 3. They include the following variables: (1) The initial position x_0^e, y_0^e and the initial speed v_0^e of the ego car. (2) The initial position x_0^l, y_0^l and the initial speed v_0^l of the leading car. (3) The initial position x_0^p, y_0^p, the initial speed v_0^p and the orientation θ^p of the pedestrian. (4) The position x^s of the traffic sign that varies along the x-axis, but is fixed along the y-axis. (5) The fog degree fg. In our simulator, among different weather-related properties (e.g., snow and rain), the fog level has the largest impact on the object detection capabilities of SafeDrive. Hence, we include the fog level in the test inputs.

All the above variables except for fg are float numbers varying within ranges specified by domain experts. The variable fg is an enumeration specifying ten different degrees of fog. In addition to the domain value ranges, there are often some constraints over test inputs to ensure that simulations start from a valid and meaningful state. Specifically, we have the following two constraints for SafeDrive: (i) The ego car starts behind the leading car with a safety distance gap, denoted sd, and with a speed close to the speed of the leading car. This constraint is specified as follows: $sd - \epsilon \leq x_0^l - x_0^e \leq sd + \epsilon$ and $|v_0^l - v_0^e| \leq \epsilon'$ where ϵ and ϵ' are two small constants, and sd is the safety distance gap between the ego and the leading cars, is determined based on the car speeds. (ii) The traffic sign is located within a sufficiently long distance from the ego car to give enough time to the TSR feature to react (i.e., $|x^s - x_0^e| < c$ where c is constant value). Finally, to simulate the system, we need to specify the duration of the simulation T and the simulation step size δ.

As shown in Figure 2, the simulator outputs are time-stamped vectors specifying (1) SUT outputs, (2) states of the physical plants and (3) states of any mobile environment object. All these outputs are vectors with \mathcal{F} elements where the element at position i specifies the output at time $i \cdot \delta$. For example, Figure 4 illustrates the SUT outputs generated by simulating SafeDrive. Specifically, the SUT outputs in that figure include both the outputs of each feature inside the SUT and the output of the integration component, i.e., the final command vector sent to the actuators.

3.3 Hybrid Test Objectives

Our test objectives aim to guide the test generation process towards test inputs that reveal undesired feature interactions. We first present our formal notation and assumptions and then we introduce our test objectives. Note that since in this paper we are primarily interested in the feature interaction problem, we design our test objectives such that they focus on detecting failures that arise due to feature interactions, but not failures that arise due to an individual feature being faulty.

Notation. We define a feature-based control system \mathcal{F} as a tuple $(f_1, \ldots, f_n, \text{IntC})$ where f_1, \ldots, f_n are features and IntC is an integration component. The system \mathcal{F} controls a set Act of actuators. Each feature f_i controls a set $\text{Act}^{f_i} \subseteq \text{Act}$ of actuators. Since we are interested in identifying feature interaction failures and not failures due to errors inside individual features, our approach does not require any visibility into the internals of features. But, in our work, IntC is a white-box component. The IntC behavior is typically conditional where each condition checks a specific feature interaction situation and resolves potential conflicts that may arise under that condition. We assume \mathcal{F} has a set of safety requirements such that each requirement is related to one feature which is responsible for the satisfaction of that requirement. For example, the second column of Table 1 shows the safety requirements for SafeDrive. The feature responsible for satisfying each requirement is shown in the first column.
Testing Autonomous Cars for Feature Interaction Failures

<table>
<thead>
<tr>
<th>Feature/Requirement</th>
<th>Failure distance functions (FD_1, \ldots, FD_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP</td>
<td>(FD_1(i)) is the distance between the ego car and the pedestrian at step (i).</td>
</tr>
<tr>
<td>AEB</td>
<td>(FD_2(i)) is the distance between the ego car and the leading car at step (i).</td>
</tr>
<tr>
<td>TSR</td>
<td>(FD_3(i)) is the distance between the ego car and time step (i) if a stop sign is detected, and let (u(i) = 0) if there is no stop sign. We define (FD_3(i) = 0) if (u(i) \geq 5\text{km/h}); (FD_3(i) = \frac{1}{u(i)}) if (u(i) \neq 0); and otherwise, (FD_3(i) = 1).</td>
</tr>
<tr>
<td>TSR</td>
<td>(FD_4(i)) is the absolute difference between the safety distance (sd) and (FD_2(i)).</td>
</tr>
<tr>
<td>ACC</td>
<td>(FD_5(i)) selects the output of the feature responsible for the safety requirement at step (i).</td>
</tr>
</tbody>
</table>

As discussed earlier, testing \(F \) is performed by connecting \(F \) to a simulation framework (see Figure 2). A test case for \(F \) is a vector \(X \) of inputs required to execute the simulation framework into which \(F \) is embedded (e.g., Figure 3 shows the test input vector for SafeDrive). The test output of \(F \) includes: (1) a vector \(v_{act}^f \) generated by every feature \(f \) and for every actuator \(act \in Act^f \); (2) a vector \(v_{act}^{IntC} \) generated by \(IntC \) for each actuator \(act \in Act \); and (3) a trajectory vector for the physical plant and every mobile environment object.

Test objectives. A key aspect in search-based software testing [40, 55] is the notion of distance functions \(D(.) \) that measure how far a candidate test \(X \) is from reaching testing targets (e.g., covering branches in white-box testing). Our testing targets aim to reveal undesired feature interactions. An undesired feature interaction is revealed when: (1) Some safety requirement \(r \) is violated such that (2) the integration component \(IntC \) overrides the output of the feature responsible for \(r \). We note that if \(r \) is violated while \(IntC \) selects the output of the feature responsible for \(r \), then the violation is likely to be due to the internals of that feature and not due to feature interactions. Therefore, we define two distance functions, namely **failure distance** and **unsafe overriding distance** to respectively capture the conditions (1) and (2) above. Further, we ensure that the generated tests exercise all branches of \(IntC \). Hence, our third distance corresponds to the well-known **distance** used in coverage-based testing [55]. In the following, we present each distance separately and then we describe how we combine them to build our test objectives.

Coverage distance. First, the generated test cases have to exercise every branch of \(IntC \). Given that \(IntC \) is white-box, we rely on two widely-used heuristics in branch coverage, namely the **approach level** [55] and the normalized **branch distance** [38, 55]. Each branch \(b_i \) in \(IntC \) has its own distance function \(BD_i \) to minimize which is defined according to the two heuristics above. The distance \(BD_i \) is equal to zero iff a candidate test case \(tc \) covers the associated branch \(b_i \).

Unsafe overriding distance: This function distance aims to prioritize behaviors that violate safety requirements due to errors inside \(IntC \) over the behaviors that fail due to errors inside features. At each simulation time step, the \(IntC \) component prioritizes the output of some feature and overrides those of the rest. Recall that for each actuator \(act \), \(IntC \) always generates the \(v_{act}^f \) vector, and for every feature \(f \) that generates an output \(v_{act}^f \) if \(f \) controls \(act \) (i.e., \(act \in Act^f \)). If \(v_{act}^f(i) = v_{act}^{IntC}(i) \), it means at time step \(i \), \(IntC \) prioritizes \(f \) over other features controlling \(act \). Dually, if \(v_{act}^f(i) \neq v_{act}^{IntC}(i) \), it means at time step \(i \), \(IntC \) overrides the command issued by \(f \) for \(act \). For example, in Figure 4, the \(IntC \) component of SafeDrive prioritizes AEB over the other three features to control the braking actuator at time steps 0 and 1.

For an actuator \(act \) and at time step \(i \), we say \(IntC \) **unsafely overrides** \(f \) if the command at \(v_{act}^f(i) \) is less safe than the command at \(v_{act}^{IntC}(i) \) for act. We say a command \(c \) is less safe than a command \(c' \) for an actuator \(act \), when \(act \) executing \(c \) is more likely to break some requirement compared to \(act \) executing \(c' \). For example, in the SafeDrive system, a mild and late braking more likely leads to violating one of the requirements in Table 1 compared to a firm and early.
braking. Dually, the requirements in Table 1 are more likely to fail when we accelerate faster than when we accelerate more slowly.

Note that test cases that violate safety requirements without \(\text{IntC} \) unsafely overriding any feature do not fail due to faults in \(\text{IntC}\). This is because, for such test cases, either \(\text{IntC} \) does not override any decision of any individual feature or its decision to override a feature does not increase the likelihood of violating a safety requirement. Hence, such test cases fail due to a fault in a feature. For \(\text{IntC}\) to be faulty, it is necessary that \(v_{\text{act}} \) unsafely overrides \(v_{f_0} \) in some simulation time step. For each feature \(f \), we define an unsafe overriding distance \(\text{UOD}_{f} \) such that \(\text{UOD}_{f} = 0 \) if \(\text{IntC} \) unsafely overrides the output of \(f \) at least once during the simulation, and otherwise, \(\text{UOD}_{f} > 0 \). Such a distance guides the search towards generating tests that cause \(\text{IntC} \) to unsafely override \(f \).

To compute \(\text{UOD}_{f} \), we define \(\text{UOD}_{f}^{\text{act}} \) for each actuator \(\text{act} \) controlled by \(f \). For actuators where higher force values are safer (e.g., braking), \(\text{IntC} \) unsafely overrides \(f \) when \(v_{\text{act}}(i) > v_{f}(i) \) (i.e., when, at step \(i \), \(f \) orders to brake more strongly than \(\text{IntC}\)). We use the traditional branch distance for the greater-than condition [47] to translate this condition into a distance function. That is, for such actuators, we define \(\text{UOD}_{f}^{\text{act}} \) at each simulation step \(i \), as follows:

\[
\text{UOD}_{f}^{\text{act}}(i) = \begin{cases}
 v_{\text{act}}(i) - v_{f}(i), & \text{if } v_{\text{act}}(i) < v_{f}(i) \\
 0, & \text{otherwise}
\end{cases}
\]

Dually, for actuators that lower force values are safer (e.g., acceleration), \(\text{IntC} \) unsafely overrides \(f \) when \(v_{\text{act}}(i) > v_{f}(i) \) (i.e., when the accelerating command of \(f \) is less than that of \(\text{IntC} \) at step \(i \)). Following the traditional branch distance for the less-than condition [47], we define \(\text{UOD}_{f}^{\text{act}} \) for this kind of actuators as follows:

\[
\text{UOD}_{f}^{\text{act}}(i) = \begin{cases}
 v_{f}(i) - v_{\text{act}}(i), & \text{if } v_{\text{act}}(i) < v_{f}(i) \\
 0, & \text{otherwise}
\end{cases}
\]

We compute \(\text{UOD}_{f}(i) = \sum_{\text{act} \in \text{Act}} \text{UOD}_{f}^{\text{act}}(i) \) where each \(\text{UOD}_{f}^{\text{act}} \) is defined as either one of the above equations depending on the type of \(\text{act} \). The \(\text{UOD}_{f} \) function is our unsafe overriding distance function. Specifically, \(\text{UOD}_{f}(i) = 0 \) implies that \(\text{IntC} \) unsafely overrides the output of \(f \) at step \(i \). Similarly, a small or large value of \(\text{UOD}_{f}(i) \) indicates that a test case is, respectively, close to or far from causing \(\text{IntC} \) to unsafely override \(f \) at step \(i \).

Combined distances. We now describe how we combine the three distance functions to obtain our final hybrid test objectives for detecting undesired feature interactions. Note that coverage distance, failure distance and unsafe overriding distance have different units of measure (e.g., km/h, meters) and different ranges. Thus, we first normalize these distances before combining them into one single hybrid function. To this aim, we rely on the well-known rational function \(\omega_1(x) = x/(x + 1) \) since prior studies [9] have empirically shown that, compared to other normalization functions, it provides better guidance to the search for minimization problems (e.g., distance functions in our case). In the following, we denote the normalized forms of the functions above as \(\text{FD}, \text{UOD} \) and \(\text{BD} \), respectively.

To maximize the likelihood of detecting undesired feature interactions, we aim to execute every branch of \(\text{IntC} \) such that while executing that branch, \(\text{IntC} \) unsafe overrides every feature \(f \), and further, its outputs violate every safety requirement related to \(f \). Therefore, for every branch \(j \) of \(\text{IntC} \), every safety requirement \(l \) of \(F \), and every simulation step \(i \), we define a hybrid distance \(\Omega_{j,l}(i) \) as follows:

\[
\Omega_{j,l}(i) = \begin{cases}
 \text{BD}_{j}(i) + \text{UOD}_{\max} \text{max}(l(i)) & \text{if } j \text{ is not covered (} \text{BD}_{j}(i) > 0) \\
 \text{UOD}_{\max} \text{max}(l(i)) + \text{FD}_{\max} & \text{if } j \text{ is covered, but } f \text{ is not unsafe overridden (} \text{BD}_{j}(i) = 0 \land \text{UOD}_{j}(i) > 0) \\
 \text{BD}_{j}(i) & \text{otherwise (} \text{BD}_{j}(i) = 0 \land \text{UOD}_{j}(i) = 0)
\end{cases}
\]

where \(f \) is the feature responsible for the requirement \(l \), while \(\text{BD}_{\max} = 1 \) and \(\text{UOD}_{\max} = 1 \), indicating the maximum value of the normalized functions.

Each hybrid distance function \(\Omega_{j,l}(i) \) is defined for each simulation step \(i \). Corresponding to each hybrid distance function, we define a test objective \(\Omega_{j,l} \) for the entire simulation time interval as follows: \(\Omega_{j,l} = \min\{\Omega_{j,l}(i) \mid 0 \leq i \leq L \} \). Given a test case \(tc \), each test objective \(\Omega_{j,l}(tc) \) always yields a value in \([0, 3] \). \(\Omega_{j,l}(tc) > 2 \) indicates that \(tc \) has not covered branch \(j \); \(2 \geq \Omega_{j,l}(tc) > 1 \) indicates that \(tc \) has covered branch \(j \), but has not caused \(\text{IntC} \) to unsafe override some feature \(f \) related to requirement \(l \); \(1 \geq \Omega_{j,l}(tc) > 0 \) indicates that \(tc \) has covered branch \(j \), and has caused \(\text{IntC} \) to unsafely override some feature \(f \) related to requirement \(l \), but has not violated requirement \(l \); and finally, \(\Omega_{j,l}(tc) = 0 \) when \(tc \) has covered branch \(j \), has caused \(\text{IntC} \) to unsafe override some feature \(f \) related to \(l \) and has violated requirement \(l \).

3.4 Search Algorithm

When testing a system we do not know a priori which safety requirements may be violated. Neither do we know in which branches of \(\text{IntC} \) the violations may be detected. Therefore, we search for any violation of system safety requirements that may arise when exercising any branch of \(\text{IntC} \). This leads to \(k \times n \) test objectives where \(k \) is the number of branches of \(\text{IntC} \) and \(n \) is the number of safety requirements. More formally, given a feature-based control system \(F \) under test, our test generation problem can be formulated as follows:

Definition. Let \(\Omega = \{\Omega_{1,1}, \ldots, \Omega_{k,n}\} \) be the set of test objectives for \(F \), where \(k \) is the number of branches of \(\text{IntC} \) and \(n \) is the number of safety requirements of \(F \). Find a test suite that covers as many objectives \(\Omega_{i,j} \) as possible.

Our problem is many-objective as we attempt to optimize a relatively large number of test objectives. As a consequence, we have to consider many-objective optimization algorithms, which are a class of search algorithms suitably defined for problems with more than three objectives. Various many-objective metaheuristics have been proposed in the literature, such as NSGA-III [33], Hype [12]. These algorithms are designed to produce different alternative trade-offs that can be made among the search objectives [48].

Recently, Panichella et al. [59, 60] argued that the purpose of test case generation is to find test cases that separately cover individual test objectives rather than finding solutions capturing well-distributed and diverse trade-offs among the search objectives. Hence, they introduced a new search algorithm, namely MOSA [59], that (i) rewards test cases that cover at least one objective over those that yield a low value on several objectives without covering any; (ii) focuses the search on the yet uncovered objectives; and
of randomly generated tests without any diversity mechanism, and
the size of the population is an input parameter of the algorithm.

Genetic recombination. Since our test inputs (i.e., X) are vec-
tors of float values (see Figure 3), we use two widely-used genetic
operators proposed for real number solution encodings: the sim-
ulated binary crossover [30] (SBX) and the gaussian mutation [32].

Prior studies [32, 42] show that, for numerical vectors, these op-
erators outperform the more classical ones. In contrast, MOSA uses the
classical single-point crossover and uniform mutation implemented in
EvoSuite [38] to handle different types of test data, e.g., strings,
Java objects, etc.

Correction operator. Recall from Section 3.2 that our test in-
puts are characterized by constraints. Hence, genetic operators may
yield invalid tests (e.g., a test input where the leading car is behind
the ego car). To modify and correct such cases, FITEST applies cor-
rection operators (line 9 in Algorithm 1). For example, in
SafeDrive, if after applying genetic operators, the leading car position (x^d_0)
and speed (v^d_0), and the traffic sign position (x^s) violate any of
the constraints described in Section 3.2, we discard their values
and randomly select new values for these variables within ranges
enforced by the ego car position (x^e_0) and speed (v^e_0).

Archive. Similar to MOSA, every time new tests are generated and
evaluated (either at the beginning or during the search), FITEST uses the
GET-COVERED-OBJECTIVE routine to identify newly cov-
ered objectives and the test cases covering them. These objectives
are removed from the set of test objectives (line 6, 13) to not be
used by the environmental selection in the subsequent iterations.
Further, test cases covering the removed test objectives are put in an
archive [59, 60, 64] (i.e., A). The archive at the end contains the
FITEST results. Each test case in the archive covers one of the test
objectives being satisfied during the search. Note that some test
objectives may not be covered within the search time or they may
be infeasible (unreachable).

Environmental selection. In FITEST, at each iteration, a new
population with a size not necessarily the same as the previous pop-
ulation size is formed (line 15 in Algorithm 1) by selecting, for each
uncovered test objective $\Omega_{i,j}$, the test case in $P \cup Q$ that is closest
to covering that objective (preference criterion [59]). The popula-
tion size at each iteration is lower than the number of objectives. It can
even be less than the number of test objectives because a single test
case may be selected as the closest (fittest) test for multiple objec-
tives. Further, the population size is likely to decrease over iterations
since, at each iteration, test objectives are covered and excluded
from the environmental selection in the subsequent iterations.

The population size represents the main difference between
FITEST and similar search-based test generation algorithms. In
classical many-objective search algorithms, the environment selec-
tion chooses a fixed number N of tests (i.e., to maintain a constant
population size) from offsprings and their parents (i.e., from $P \cup Q$)
using the Pareto optimality [31, 34] (i.e., selecting solutions that are
non-dominated by any other solutions in $P \cup Q$). In MOSA,
the population size is kept constant as well but the selection is
performed by first selecting the test cases in the first front F_0 built
using the preference criterion; then, if the size of F_0 is less than
N, MOSA uses the Pareto optimality criterion to select enough test
cases such that in total N test cases are selected.
In contrast, FITEST minimizes the number of test cases generated at each search iteration by evolving only test cases that are closest to satisfying uncovered objectives, i.e., those in \(F_i \). This helps reducing the search computation time compared to existing many-objective search algorithms that typically maintain and evolve a fixed number of solutions at each iteration. This is particularly important in the context of our work, since running each test case is expensive.

4 EVALUATION

In this section, we evaluate our approach to detecting undesired feature interactions using real-world automotive systems.

4.1 Research Questions

The goal of our study is to assess how effectively our hybrid test objectives (hereafter referred to as Hybrid) guide the search toward revealing feature interaction failures. As described in Section 3.3, Hybrid builds on three distance functions: (1) coverage, (2) failure and (3) unsafe overriding. Among these, coverage distance is a well-known heuristic that has been extensively used in white-box testing [38, 39, 55]. For example, Fraser and Arcuri [39] showed that pure coverage-based distance can be used to generate unit tests capable of detecting real faults. Variations of the failure distance have also been used in different contexts to generate tests revealing requirements violations [4, 13, 20]. Therefore, we want to assess whether Hybrid provides any benefits compared to pure coverage-based and failure-based objectives. In particular, we formulate the following research questions:

RQ. Does Hybrid reveal more feature interaction failures compared to coverage-based and failure-based test objectives?

Coverage based-objectives, hereafter referred to as Cov, correspond to the BD functions described in Section 3.3 and are computed as the sum of the approach level [56] and the normalized branch distance [56]. Therefore, Cov aims to execute as many branches of IntC as possible.

Failure-based test objectives, hereafter referred to as Fail, aim to generate test cases that execute as many branches of IntC as possible while violating as many system safety requirements as possible when executing each branch. Thus, Fail is defined by combining branch distance BD and failure distance FD functions described in Section 3.3. More precisely, for each branch \(j \) of IntC and every safety requirement \(l \) of \(F \), a failure-based test objective is defined as

\[
\text{Min}(\text{Fail}_{j,l}(i)) = \begin{cases} \text{BD}_j(i) + \text{FD}_{\text{max}} & \text{if } j \text{ is not covered} \\ \text{FD}_l(i) & \text{otherwise} \end{cases}
\]

where

\[
\text{Fail}_{j,l}(i) = \frac{\text{BD}_j(i)}{\text{BD}_l(i)} \times \frac{\text{FD}_{\text{max}}}{\text{FD}_l(i)}
\]

In this paper, we focus our empirical evaluation on comparing Hybrid with alternative test objectives, but we do not compare FITEST with alternative many-objective search algorithms because, as discussed in Section 3.4, our changes to MOSA are primarily motivated by the practical needs of (1) using genetic operators for numerical vectors (often called real-coded operators [32, 42]) and (2) lowering the running time of our algorithm by reducing the number of (expensive) fitness computations at each generation. In our preliminary experiments, running MOSA with its default population size of 50 [59] required more than 24 hours for only 10 generations. Further, previous studies showed that MOSA, which is the algorithm underlying FITEST, outperforms other search-based algorithms in unit testing, such as random search [26], whole suite search [26, 59], and other many-objective evolutionary algorithms [60].

4.2 Case Study Systems

We evaluate our approach by applying it to two case study systems developed by IEE. Both systems contain the four self-driving features introduced in Section 2. However since engineers had developed two alternative sets of rules to prioritize these features and to resolve their undesired interactions, they developed two different function models for the integration component (i.e., IntC). Due to confidentiality reasons, we do not share the details of the IntC models used in these two systems. Both systems are developed in Matlab/Simulink and can be integrated into PreScan, the simulator used in this paper. We refer to these systems as SafeDrive1 and SafeDrive2.

4.3 Experimental Settings

For the genetic operators used in FITEST, we use the parameter values suggested in the literature [21, 29, 34]: We use the simulated binary crossover (SBX) with a crossover probability 0.60, as the recommended interval is [0.45, 0.95] [21, 29]. The gaussian mutation changes the test inputs by adding a random value selected from a normal distribution \(\mathcal{G}(\mu, \sigma) \) with mean \(\mu = 0 \) and variance \(\sigma^2 = 1.0 \).

As the guidelines suggest [34], the mutation probability is set to 1/\(l \) where \(l \) is the length of test inputs (chromosomes). In FITEST, we do not need to manually set the population size since, as described in Section 3.4, it is dynamically updated at each generation. The search stops when all the objectives are covered or when the timeout of 12 hours is reached. We set a timeout of 12 hours because as we will discuss in Section 4.4, the search results start to stabilize and reach a plateau within this time budget. Further, according to domain experts, longer search time budgets are not practical.

To account for the randomness of the search algorithm, FITEST was executed 20 times on each case study system and with each of the three test objectives. The total duration of the experiment was 20 (repetitions) \(\times (2 \text{ systems}) \times 3 \text{ (test objectives)} \times 12 \text{ (hours)} = 1440 \text{ hours} \) (60 days). All experiments were executed on the same machine with a 2.5 GHz Intel Core i7-4870HQ CPU and 16 GB DDR3 memory.

We use the number of feature interaction failures that each of the test objectives in our study can reveal as our evaluation metric. We compute this metric by automatically checking test cases generated by each test objective to determine whether or not they reveal a feature interaction failure. A test case reveals a feature interaction failure if: (1) it violates some system safety requirement in Table 1 when it is applied to a system consisting of multiple features, but (2) it does not violate that same safety requirement when it is applied to the feature responsible for the satisfaction of that requirement. Specifically, a test case \(tc \) reveals a feature interaction if \(\text{FD}_i(tc) = 0 \) for some safety requirement \(i \) when \(tc \) is applied to SafeDrive1 or SafeDrive2, but \(\text{FD}_i(tc) > 0 \) when \(tc \) is applied to the feature responsible for requirement \(i \).

4.4 Results

In this section, we answer our research question by comparing Hybrid, Fail and Cov test objectives. Specifically, we run FITEST
with Hybrid, Fail and Cov as test objectives separately and repeat each run for 20 times. Figures 5(a) and (b) compare the number of feature interaction failures identified over different runs of FITTEST with Hybrid, Fail and Cov applied to SafeDrive1 and SaveDrive2, respectively. We show the results at every one-hour interval from 0 to 12h. As shown in the two figures, the average number of feature interaction failures computed using Hybrid is always larger than those identified by Fail and Cov. Specifically, after 12h, on average, Hybrid is able to find 5.9 and 7.2 feature interaction failures for SafeDrive1 and SaveDrive2, respectively. In contrast, Fail uncovers, on average, 2.1 and 2.8 feature interaction failures for SafeDrive1 and SaveDrive2, respectively; and Cov only uncovers, on average, 0.4 and 1.8 feature interaction failures for SafeDrive1 and SaveDrive2, respectively. Further, after executing the algorithms for 10h, the results obtained by the three test objective alternatives reach a plateau.

Note that every run of FITTEST with Hybrid, Fail and Cov achieved 100% branch coverage on the function model of the integration component (i.e., IntC) for both SafeDrive1 and SafeDrive2. Hence, Fail and Cov, despite being able to exercise all branches of IntC, perform poorly in terms of the number of feature interaction failures that they can reveal. Further, we note that, among the Hybrid, Fail and Cov test objectives, only Cov was fully achieved by the generated test suites, while the Hybrid and Fail test objectives were only partially achieved. This is expected since, as discussed in Section 3.4, Hybrid and Fail search for violations of every safety requirement at every branch of IntC. Some of these test objectives may be infeasible (uncoverable) because not all safety requirements may be violated at every branch of IntC. However, we cannot know a priori which objectives are infeasible, and hence, we include all of them in our search.

We compare the results in Figure 5 using a statistical test. Following existing guidelines [10], we use the non-parametric pairwise Wilcoxon rank sum test [27] and the Vargha-Delaney’s A_{12} effect size [71]. Table 2 reports the results of the statistical tests obtained when comparing the number of feature interaction failures uncovered by Hybrid, Fail and Cov over time for SafeDrive1 and SafeDrive2. As shown in the table, the p-values related to the results produced when the search time ranges between 3h and 12h are all lower than 0.05 and the A_{12} statistics show large effect sizes. Hence, the number of feature interaction failures obtained by Hybrid is significantly higher (with a large effect size) than those obtained by Fail and Cov.

Table 2: Statistical test results comparing the number of feature interaction failures found by Hybrid, Fail and Cov over time for SafeDrive1 and SafeDrive2 systems (see Figure 5).

<table>
<thead>
<tr>
<th>SafeDrive1</th>
<th>Hybrid vs. Cov</th>
<th>p-value</th>
<th>A_{12}</th>
<th>Hybrid vs. Fail</th>
<th>p-value</th>
<th>A_{12}</th>
<th>Hybrid vs. Cov</th>
<th>p-value</th>
<th>A_{12}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1h</td>
<td>NA</td>
<td>0.5 (N)</td>
<td>0.33</td>
<td>NA</td>
<td>0.5 (N)</td>
<td>0.33</td>
<td>NA</td>
<td>0.5 (N)</td>
<td>0.33</td>
</tr>
<tr>
<td>2h</td>
<td>0.463</td>
<td>0.51 (N)</td>
<td>0.33</td>
<td>0.463</td>
<td>0.51 (N)</td>
<td>0.33</td>
<td>0.463</td>
<td>0.51 (N)</td>
<td>0.33</td>
</tr>
<tr>
<td>3h</td>
<td>8.83e-6</td>
<td>0.89 (L)</td>
<td>0.003</td>
<td>5.16e-5</td>
<td>0.86 (L)</td>
<td>0.003</td>
<td>5.16e-5</td>
<td>0.86 (L)</td>
<td>0.003</td>
</tr>
<tr>
<td>4h</td>
<td>7.02e-8</td>
<td>0.98 (L)</td>
<td>1.97e-7</td>
<td>4.68e-6</td>
<td>0.91 (L)</td>
<td>1.97e-7</td>
<td>4.68e-6</td>
<td>0.91 (L)</td>
<td>1.97e-7</td>
</tr>
<tr>
<td>5h</td>
<td>3.68e-8</td>
<td>0.99 (L)</td>
<td>9.97e-8</td>
<td>4.71e-7</td>
<td>0.95 (L)</td>
<td>9.97e-8</td>
<td>4.71e-7</td>
<td>0.95 (L)</td>
<td>9.97e-8</td>
</tr>
<tr>
<td>6h</td>
<td>3.22e-8</td>
<td>1 (L)</td>
<td>7.14e-8</td>
<td>1.43e-7</td>
<td>0.98 (L)</td>
<td>7.14e-8</td>
<td>1.43e-7</td>
<td>0.98 (L)</td>
<td>7.14e-8</td>
</tr>
<tr>
<td>7h</td>
<td>3.32e-8</td>
<td>1 (L)</td>
<td>5.52e-8</td>
<td>1.02e-7</td>
<td>0.98 (L)</td>
<td>5.52e-8</td>
<td>1.02e-7</td>
<td>0.98 (L)</td>
<td>5.52e-8</td>
</tr>
<tr>
<td>8h</td>
<td>3.52e-8</td>
<td>1 (L)</td>
<td>5.40e-8</td>
<td>7.78e-8</td>
<td>0.99 (L)</td>
<td>5.40e-8</td>
<td>7.78e-8</td>
<td>0.99 (L)</td>
<td>5.40e-8</td>
</tr>
<tr>
<td>9h</td>
<td>2.9e-8</td>
<td>1 (L)</td>
<td>5.54e-8</td>
<td>4.3e-8</td>
<td>1 (L)</td>
<td>5.54e-8</td>
<td>4.3e-8</td>
<td>1 (L)</td>
<td>5.54e-8</td>
</tr>
<tr>
<td>10h</td>
<td>2.84e-8</td>
<td>1 (L)</td>
<td>5.58e-8</td>
<td>4.16e-8</td>
<td>1 (L)</td>
<td>5.58e-8</td>
<td>4.16e-8</td>
<td>1 (L)</td>
<td>5.58e-8</td>
</tr>
<tr>
<td>11h</td>
<td>2.9e-8</td>
<td>1 (L)</td>
<td>5.58e-8</td>
<td>4.4e-8</td>
<td>1 (L)</td>
<td>5.58e-8</td>
<td>4.4e-8</td>
<td>1 (L)</td>
<td>5.58e-8</td>
</tr>
<tr>
<td>12h</td>
<td>2.9e-8</td>
<td>1 (L)</td>
<td>5.58e-8</td>
<td>4.23e-8</td>
<td>1 (L)</td>
<td>5.58e-8</td>
<td>4.23e-8</td>
<td>1 (L)</td>
<td>5.58e-8</td>
</tr>
</tbody>
</table>

The answer to RQ is that our proposed test objectives (Hybrid) reveals significantly more feature interaction failures compared to coverage-based and failure-based test objectives. In particular, on average, Hybrid identifies more than twice as many feature interaction failures as the coverage-based and failure-based test objectives.

Feedback from domain experts. We conclude this section by summarizing the qualitative feedback of the domain experts from IEE with whom we have been collaborating on the research presented in this paper. During two meetings, we presented to our domain experts four test scenarios revealing different feature interaction failures. The four test scenarios were selected randomly among the ones detected by our approach. Each test scenario tc was presented by showing: (1) a video simulation of tc generated by PreScan based on one of our case study systems (SafeDrive1 or SafeDrive2) and violating one of the safety requirements in Table 1 and (2) a video simulation of tc generated by PreScan based on running only the feature related to the violated requirement. Note that since tc reveals a feature interaction failure, the latter simulation videos (i.e., the ones based on running individual features) do not exhibit any requirements violation. After presenting the simulations, we discussed with our domain experts each failure, its root causes and whether or how it can be addressed by modifying the current feature interaction resolution rules implemented in IntC. We drew the following conclusions from our discussions: (1) Our domain experts agreed with us that the four failures were due to interactions between the features and were not caused by faults in individual features, (2) they confirmed that the failures were not previously known to them and (3) they identified ways to modify or extend the integration component (IntC) to avoid the failures.
The simulations and the detailed failure descriptions used in our meetings are available online [2].

5 RELATED WORK
In this section, we discuss and compare with different strands of related research in the areas of testing autonomous cars, and testing and model checking feature-based systems.

Testing autonomous cars. Search-based approaches have been used for black-box testing of driver-assistance features [13, 14, 22, 23]. Bühlter and Wegener use a single-objective search algorithm to test a vehicle-to-vehicle braking assistance [23] and an autonomous parking feature [22]. Ben Abdessalem et. al. rely on multi-objective search [13] and learnable evolutionary algorithms [14] to generate test cases violating safety requirements of self-driving systems. Recently, Tian et. al. [68] proposed a notion of neuron coverage and used it to guide the generation of tests for neural networks used in autonomous cars. None of these approaches study the feature interaction problem in autonomous cars. We advance the research on testing autonomous cars by devising test objectives that specifically detect feature interaction failures. Our test objectives combine existing software testing heuristics (i.e., branch-coverage [38, 55, 69] and failure-based [4, 13, 20, 23]) with our proposed unsafe overriding heuristic. Further, we tailor existing many-objective search algorithms [59, 60] to detect feature interaction failures in our context.

Feature interactions in software product lines. In the context of software product lines (SPL), testing approaches are proposed to ensure product implementations satisfy their feature specifications [50, 58, 61]. These approaches largely follow a model-based testing paradigm [6]. For example, they use combinatorial testing to drive test cases and oracles from feature models to verify individual products [58, 61]. Our work, in contrast, is model testing [19]. Specifically, we take advantage of the availability of executable function models and test executable function models of the system and its environment. Further, in contrast to the SPL testing work, our approach does not need descriptions of features and their dependencies to be provided.

Some SPL approaches are proposed to automatically derive feature dependencies specifying valid feature combinations [7, 36, 46]. For example, interactions between observable feature behaviors (i.e., external feature interactions [7]) have been identified by static analysis of software code [36, 46]. In contrast, our approach detects feature interactions prior to any software coding. It dynamically detects undesired feature interactions by testing function models capturing the SUT and its environment.

Feature interaction detection via model checking. Several approaches are proposed to detect feature interactions by model checking requirements or design artifacts against formal specifications [8, 11, 45, 62, 65]. For example, Apel et. al. [8] verify features described in a formal feature-oriented language against temporal logic properties [28]. Arora et. al. verify features defined as state machines against live sequence charts specifications. Dominguez et. al. [45] verify features captured as StateFlows, and Sobotka and J. Novak [65] specify features in timed automata [5]. Similar to our work, these approaches verify early requirements and design models against system requirements. However, our work differs with this line of research in the following ways: First, most of these approaches identify pairwise feature interactions only. We can, however, identify feature interactions between an arbitrary number of features. Second, these techniques model system features only. However, to analyze autonomous cars, we have to capture, in addition to features, system’s sensors and actuators, and the system environment. Third, in contrast to these approaches, our approach does not require additional formal modeling. We take advantage of the availability of function models, which are developed anyway in the CPS domain, to test the system in its environment. Fourth, our function models use numerical and continuous Matlab/Simulink computations to capture dynamics of cars and pedestrians. These models are not, in general, amenable to model checking due to scalability and incompatibility issues [3, 52, 54]. Therefore, as suggested in the recent research on testing CPS models [3, 52, 54, 78], instead of model checking, we rely on simulation-based testing guided by meta-heuristics to analyze our function models.

Feature interaction resolution. Several approaches are proposed to devise resolution strategies to eliminate undesired feature interactions, for example, by proposing specific feature-oriented architectures [44, 70], by statically prioritizing features [41, 77] or using runtime resolution mechanisms [16, 76]. These techniques are complementary to our approach. They can be used to develop the integration component (IntC) to resolve undesired feature interactions, but our approach is still necessary to test the system behavior and to determine if the proposed resolution strategy can eliminate undesired behaviors under different environment conditions.

6 CONCLUSION
We presented a technique for detecting feature interaction failures in the context of autonomous cars. Our technique is based on analyzing executable function models typically developed in the cyber physical domain to specify system behaviors at early development stages. Our contributions over prior work include: (1) casting the problem of detecting undesired feature interactions into a search-based testing problem, (2) defining a test guidance that combines existing search-based test objectives with new heuristics specifically aimed at revealing feature interaction failures, (3) tailoring existing many-objective search algorithms [59, 60] to automatically reveal feature interaction failures in a scalable way, and (4) evaluating our approach using two versions of an industrial self-driving system and demonstrating significant improvement in feature interaction failure identification compared to baseline search-based testing approaches. Finally, we note that our research was motivated and carried out in the context of a partnership with IEE. The feedback from domain experts from IEE indicates that the detected feature interaction failures represent real faults in their systems that were not previously identified based on analysis of the system features and their requirements.

In future, we plan to devise strategies to use feature interaction failures to localize faults and help engineers effectively debug and refine their feature interaction resolution strategies.

ACKNOWLEDGMENTS
We gratefully acknowledge the funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 694277) and from IEE S.A. Luxembourg.
REFERENCES
