
 
 

Delft University of Technology

Präzi: From Package-based to Precise Call-based Dependency Network Analyses

Hejderup, Joseph; Beller, Moritz; Gousios, Georgios

Publication date
2018

Citation (APA)
Hejderup, J., Beller, M., & Gousios, G. (2018). Präzi: From Package-based to Precise Call-based
Dependency Network Analyses.

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.



PRÄZI: From Package-based to Precise Call-based
Dependency Network Analyses

Joseph Hejderup
Delft University of Technology

The Netherlands
j.i.hejderup@tudelft.nl

Moritz Beller
Delft University of Technology

The Netherlands
m.m.beller@tudelft.nl

Georgios Gousios
Delft University of Technology

The Netherlands
g.gousios@tudelft.nl

Abstract—Package-based dependency networks model which
software packages depend on which other packages. Researchers
and practitioners have used them to achieve a great number of
analyses, including automatically warning for security vulnera-
bility, ecosystem health and license compliance issues. However,
traditional package-based dependency networks are in-precise,
severely limiting their use in practice. In this paper, we present
a novel and general approach named PRÄZI to construct call-
based dependency networks beyond a single program, its initial
prototypical implementation RUSTPRÄZI for the Rust library
system CRATES.IO, an evaluation of its soundness and precision,
and two sample applications with it. Our case study on security
vulnerabilities showed that RUSTPRÄZI is three times more
accurate than the current state of the art, package-based analyses.
PRÄZI also opens the door to new applications, e.g., an analysis
on the prolonged use of deprecated methods. It showed that
48% of the studied dependent packages break when a deprecated
function gets removed. Several perils endanger a practical imple-
mentation of PRÄZI, affecting both its soundness and precision.
We discuss and quantify them along the RUSTPRÄZI example,
equipping researchers and practitioners with guidelines on how to
implement PRÄZI. Finally, we also show that there is no principal
objection to make PRÄZI fully sound and precise.

Index Terms—Software tools, Software quality, Software li-
braries, Static analysis, Call-based dependency network analysis

I. INTRODUCTION

In today’s software development, most programs comprise
a growing list of other software they depend on [1]. On-
line Package Repositories (OPRs, see Table I) of modern
programming languages such as Java’s MAVEN CENTRAL
allow the efficient (re-)use and combination of already existing
functionality in one’s own program. While reuse is a core
Software Engineering principle, promising higher development
speed and quality [2], [3], uninhibited reuse from OPRs
bears risks [4]. These became painstakingly obvious to the
JavaScript community in the “leftpad incident”, when the
removal of one package lead to the breaking of hundreds
of thousands of other programs depending on it [5], most
transitively through a chain of other dependencies. As a result,
researchers have analyzed the dependency graphs found in
OPRs from a variety of different viewpoints [4], [6]–[9],
including security vulnerabilities and ecosystem health. On the
practical side, companies are using dependency graphs for an
array of applications: GITHUB and TIDELIFT warn project
owners when they (implicitly) depend on a known vulnerable

Fig. 1: False warning for vector-im/riot-web, #6044.

library [10], [11]; Google’s operation Rosehub supplied pull
requests to over 2,600 GITHUB projects which imported a
vulnerable version of the APACHE COLLECTIONS library,
including the popular SPRING framework, thus fixing the many
more transitive projects depending on it [12]; BLACKDUCK
performs license compliance checking to avoid importing two
dependencies with conflicting licenses [13].

However, these state-of-the-art analyses operating on
package-based dependency networks (PDN) share one short-
coming: they use the readily accessibly dependency specifi-
cation in a project’s metadata (such as MAVEN’s pom.xml)
and might be imprecise, because the actual dependency use
happens at the source code level. Hence, existing PDNs are
sound, but an over-approximation of the real dependency use.
For example, a project might have redundant dependencies
to packages whose functionality is not used anymore, creating
false positive warnings. False positives, are a dominating factor
for the slow adoption of static analysis tools in practice [14],
with developers having to sift through several false positives
just to find one relevant warning [15], [16]. The faulty secu-
rity warning raised by GITHUB’s package-based dependency
checker in Figure 1 exemplifies the confusion false positives
can create.

In this paper, we present an approach to build dependency
analyses not at the package but at the function call level, called
PRÄZI. Call graphs represent the inter-procedural control flow
of source code and thus naturally lend themselves to this objec-
tive. With PRÄZI, we build the call graph of each package and
its transitive dependencies and merge them together, resulting
in a call-based dependency network (CDN). With PRÄZI,
we can improve the state-of-the-art PDN analyses with more



TABLE I: Acronyms used in this paper

Acronym Meaning Definition

CDN Call-based Dependency Network Section III
IR LLVM’s Intermediate Bytecode Representation Section V-B
OPR Online Package Repository Section I
PDN Package-based Dependency Network Section III
UFI Unique Function Identifier Section IV-C

precise CDN analyses. Our technique allows the application
of the above analyses on a finer level. The main advantage of
PRÄZI is that it i) is more precise, avoiding spurious warnings
such as the one in Figure 1 and ii) also opens the door to new
applications on an entire OPR from change impact analyses
(“Which clients break if I as a library maintainer remove this
deprecated method?”) to network health (“What are the most
important methods and are they tested well?”).

In the remainder of this paper, we first describe the generic
PRÄZI approach to produce a CDN comprising the merger of
several packages’ call graphs. PRÄZI is simple to explain but
difficult to implement at scale. We thus present a prototypical
implementation and an evaluation of PRÄZI on Rust and
CRATES.IO. We describe a list of perils of how practical im-
plementation choices can threaten the soundness and precision
of PRÄZI, and quantify the effects of the perils in our Rust
implementation RUSTPRÄZI during its construction process.
While our prototypical implementation is only tailored to
statically dispatched functions, our evaluation of the CDN in
two case studies on the propagation of security vulnerabilities
and deprecated functions shows that it is still useful in practice.
In comparison to traditional coarse-grained package network
based analyses, PRÄZI eliminates false positives. In a case
study with 482 warnings, RUSTPRÄZI reports an accuracy
which is three times higher as compared to a traditional PDN,
despite reporting a lower recall score than a PDN due to non-
static function dispatch.

II. BACKGROUND

In this section, we give background information over call
graphs and the Rust programming language.

A. Call Graphs

A call graph is a reduced control flow graph [17], which
only represents function calls and their relationship within
a single program, be it an executable or a library. We can
produce call graphs from static program artifacts, but there also
exist techniques to infer call graphs from dynamic program
execution traces [18].

Static call graphs are ideally suited to represent static
function calls, but we need more advanced techniques such as
aliasing to precisely deal with dynamic invocations, frequently
occurring in languages such as Java [19]. Dynamic program
analysis can complement static call graph generation, but it
requires running the program with all potential combinations
of inputs to be fully sound.

To circumvent the problem of aliasing, many call graph
generators sacrifice precision for soundness, blowing up the

App 
v1.0

Lib 2
v0.2

Lib 1
v3.2

foo()

main()bar()used()

unused()

«depends on»

«calls»

intern()intern()

OPR
Lib 2
v0.2

Lib 1
v3.2

App 
v1.0

(a) Current state of the art: package-based dependency networks.

App 
v1.0

Lib 2
v0.2

Lib 1
v3.2

foo()

main()bar()used()

unused()

«depends on»

«calls»

intern()intern()

OPR
Lib 2
v0.2

Lib 1
v3.2

App 
v1.0

(b) Our proposal: call-based dependency networks.

Fig. 2: Different granularities of dependency networks.

call graph with lots of possible, but unlikely calls. In contrast,
Feldthaus et al. have advocated the use of unsound, but highly
useful call graphs for JavaScript programs in practice [20].
Reif et al. have invented and shown the practical usability of
two unsound algorithms to create call graphs specifically for
libraries in Java [21]. While our general PRÄZI approach is
unaffected by these issues, we made a similar trade-off for our
RUSTPRÄZI, which uses LLVM’s call graph generator. LLVM
also sacrifices soundness for precision in edge cases.

B. Rust

Rust is a relatively new (first stable release 1.0 in 2015 [22])
systems programming language that aims to combine the
speed of C with the memory safety guarantees of a garbage-
collected language such as Java. Among languages that we
could select for analysis, Rust is unique because its package
management system (CARGO) was designed from the ground-
up to be part of the language environment. CARGO not only
manages dependencies, but prescribes a compilation process
and a standardized repository layout that facilitate the creation
of automated, large-scale analyses such as ours. Every Rust
package contains a file called Cargo.toml, which defines
the packages’ dependencies. Moreover, with CRATES.IO, there
is one central place where all Rust packages (so-called “crates”
in Rust terminology) live. CRATES.IO currently hosts 17,624
packages (August 16th 2018).

III. CALL-BASED DEPENDENCY NETWORKS

We distinguish two kinds of dependency networks, shown in
Figure 2: package-based dependency networks (PDNs) similar
to the ones that a dependency resolution tool (e.g., CARGO
or MAVEN) would build in Figure 2a, and fine-grained call-
based dependency networks (CDNs) we advocate in this paper
in Figure 2b.



Figure 2 models an example of an end user application App,
which directly depends on Lib1 and transitively depends on
Lib2. In such a PDN, each node represents a package name
and version. An edge connecting two nodes that one package
imports the other, for example from App 1.0 to Lib1 3.2.

Figure 2b consists of three individual call graphs for App,
Lib1, Lib2. Each such traditional call graph approximates
internal function calls in a single package. Every node rep-
resents a function by its name. The edges approximate the
calling relationship between functions, e.g., from main()
to foo() within App in Figure 2b. However, the function
identifiers bear no version, nor do they have globally unique
identifiers.

To produce a CDN, we merge the two graph representations
in a call-based dependency network:

Definition 1: A call-based dependency network (CDN) is
a directed graph G = 〈V,E〉 where:

1) V is a set of versioned functions. Each v ∈ V is a tuple
〈id,ver〉, where id is a unique function identifier and
ver is a float value depicting the version of the package
in which id resides.

2) E is a set of edges that connect functions. Each
〈v1,v2〉 ∈ E represents a function call from v1 to v2.

Applying the above definitions, the function used()
Figure 2b is a node with the fully qualified identifier
〈Lib2::used, 0.2〉 ∈ V . The dependency between App
and Lib1 would be represented as 〈〈App::foo, 0.1〉,
〈Lib1::bar, 3.2〉〉 ∈ E.

CDNs offer a white-box view of the more coarse-grained
packaged-based dependency networks. In particular, we can
see that unused() is never called. If only unused() was
affected by a vulnerability, we can deduce from Figure 2b that
we should not issue a security warning for App, since it does
not use the affected functionality. In contrast to the CDNs
proposed in this paper, the PDN in Figure 2 by its nature can
not provide such a fine-grained resolution level.

IV. BUILDING CDNS

In this section, we devise a generic technique, PRÄZI, to
systematically analyze a set of packages residing in an OPR
to construct a CDN. We argue that PRÄZI is generic enough to
be applied to any programming environment that features i) a
way of expressing dependency information between packages,
and ii) tooling to generate call graphs for a package. As the
overview in Figure 4 shows, PRÄZI first has to resolve and
retrieve all packages (and their dependencies) to be analyzed.
It then has to generate call graphs for them, unify these to
avoid name clashes and link them together in one giant call
graph, the CDN. In the following sections we present each
step of PRÄZI in detail, along with a set of perils that may
affect the soundness and completeness of the produced CDN.

A. Resolving Dependencies and Retrieving Packages

PRÄZI starts with a pre-defined set of packages for which
a CDN should be built, the seed set. Packages in the seed
set should have dependencies that can be resolved within the

A B

1.*

A B 
v1.1@t1

B 
v1.2@t2

t1

t2

tim
e

(a) Package A depends on B version 1.*.
A B

1.*

A B 
v1.1@t1

B 
v1.2@t2

t1

t2

tim
e

(b) Full dependency resolution tree including time.

Fig. 3: Retroactive dependency resolution.

context of an OPR. The first step for PRÄZI is to resolve all
dependencies in the seed set in a recursive fashion, until it has
calculated the full transitive closure of the packages and their
associated versions it needs to retrieve.

Dependency resolution is complicated by the need to build a
full tree of package versions not only for the present, but also
for the past, and possibly future. Almost all current package
managers allow developers to specify ranges of dependency
versions, often in the semantic versioning format. For example,
any dependency version with a leading 1. fulfills the version
range 1.∗ (e.g. 1.0, 1.8, or 1.20.2). The package manager will
generally choose the latest available version at the time of
its invocation. This complicates the retroactive resolution of
dependency versions.

Suppose that package A depends on version range 1.∗
of package B, as shown in Figure 3a. Package B releases
versions 1.1 at t1 and 1.2 at t2 (t1 < t2) (Figure 3b). If the
dependency resolution happens at t, where t1 < t < t2, then
the dependency manager will select version 1.1. However, if
dependency resolution happens at t > t2, it will select version
1.2, even though A’s dependency specification (1.∗) remained
unchanged. Removal or black-listing of packages, a practice
supported by many OPRs, further complicate retroactive res-
olution.

To deal with this issue, PRÄZI expects the nodes in a
PDN to be timestamped. It resolves dependency constraints
by linking dependents to all versions of their dependencies
that would satisfy the constraints (in the example above, A
would thus depend both on B 1.1 and B 1.2). This creates an
over-approximation of the actual PDN; to resolve the exact
dependencies for package C version v1 released at timestamp
tv1 , PRÄZI removes all nodes, and the corresponding edges,
whose release timestamp tn is tn > tv1 ; it then performs a
breadth-first search of the dependency graph from Cv1

. If it
finds a node (e.g., A) that links to multiple versions of another
node (e.g., B), it must apply an equivalent selection strategy
to that of the actual package manager. Usually, this strategy
is to select the latest of those versions.



After resolving dependencies, PRÄZI must download the
releases of the identified package versions. What this step will
retrieve depends on the call graph generator requirements for
the target programming language. For example, in languages
where the call graph generator can work on intermediate
formats (e.g., Java), binary packages may be sufficient; in most
other languages though, PRÄZI needs to retrieve the source
code of the package.

Peril 1. For the PRÄZI method to be complete, all packages
specified in the seed set must be retrievable at analysis time
along with their metadata. Not all OPRs can guarantee this: for
example, until the leftpad incident, NPM allowed developers
to remove packages.

Peril 2. To generate the PDN, PRÄZI needs the depen-
dency metadata descriptor for each package. Several package
managers, including NPM and CARGO, do not check whether
the dependency metadata are well-formed or do not reference
resources local to the developer’s workstation when new
package versions are uploaded. This may lead to missing
packages in the PDN, and subsequently, our CDN.

Peril 3. Precise runtime dependency resolution complicates
accurate construction of dependency sets, and may affect the
replicability of the PRÄZI process. The version of depended-
on packages may have significantly changed externally without
any changes to the importing package. Thus, two consecutive
builds of the CDN may be different.

B. Generating Call Graphs

After all package dependencies have been resolved and
fetched locally, the PRÄZI technique generates a call graph
for each package version. Depending on the call graph gen-
erator implementation and the programming environment, the
package may need to be built. PRÄZI treats the call graph
generator as a pluggable component. Any implementation that
adheres to the following requirements is suitable for PRÄZI:
i) Function types and their arguments must be fully resolved.
For example, a Rust call graph generator will resolve a call to
function parse(input: &str) in struct Url that resides
in package url as url::Url::parse(input: &str),
where str is the Rust standard string type. ii) The graph
output format is an edge list of function name pairs.

Peril 4. Generating sound call graphs statically is a chal-
lenging problem [23]: Certain language features, such as
dynamic dispatch and reflection do not allow all function
calls that can occur at runtime to be visible with basic static
analysis. Macros and templates generate (or exclude) code at
compile time, which limits a static call graph generator’s abil-
ity to accurately include all possible calls. Advanced program-
ming techniques, such as profile-based optimizations, runtime
code generation or meta-programming, hinder the call graph
generator’s ability to track function applications statically.
Since PRÄZI inherits these limitations, it is important to know
the intended use case upfront. For example, using an otherwise
unsound call graph generator in a security-critical project that
adheres to only using static dispatch, is perfectly sound. The
same implementation might also be fine for projects with lesser

security requirements or to check for performance warnings,
in case a missed warning is acceptable or where the cost of
flooding developers with warnings is perceived as higher than
a rare missed warning. It will not work for projects which
require that all security warnings be found, even at the expense
of a large number of false positives. In such cases, a different
call graph generator should be chosen.

Peril 5. In compiled programming languages, call graph
generators work as part of the compiler or operate directly on
the binary output. This is because the call graph generator
needs the compiler to perform macro expansion and type
resolution prior to resolving function types. In the context of
PRÄZI, this means that all packages under analysis must be
built, provided that there is a build process for the package.
Retroactively building software is known to be difficult [24].
Dependencies on system libraries, custom build environments,
compiler flags, and flaky tests affect the automated buildability
of packages, a-priori limiting the number of package versions
one can analyze.

C. Generating Unique Function Identifiers (UFIs)

To merge the call graphs for each individual package version
into a single CDN, PRÄZI needs to ensure that the con-
tained function signatures are globally unique. Complications
can arise in case one program imports multiple versions of
the same package, packages include similar function names
(e.g. log(x: &str) in languages with flat namespaces,
or duplicate function names when processing function calls
across OPRs. To solve these issues, PRÄZI prepends all
calls, including function names and the types in their ar-
guments, with three attributes: i) OPR name, ii) package
name and iii) package version. For example, the UFI for
the above function parse(input: &str), which can
be found in the CRATES.IO OPR in version 1.6.1 of
the url crate, is io::crates::url::1.6.1::Url::
parse(input: &str).

D. Unifying Call Graphs

The last step of the PRÄZI technique involves merging
together all individual package-level CDNs into a single CDN.
The process consists of aggregating all individual package call
graphs and filtering out duplicate nodes. The end result is the
CDN corresponding to the input seed set.

V. IMPLEMENTING PRÄZI FOR RUST

We chose Rust to showcase the practical feasibility and scal-
ability of PRÄZI for a number of reasons: As a new language,
Rust’s OPR, CRATES.IO, is relatively contained compared to
NPM’s 650,000 packages (see Section II-B). LLVM, Rust’s
standard compiler, can output call graphs as a side-artifact
of compilation. Thus, we can have high confidence in their
correctness.

These facts set Rust apart from almost all legacy languages,
such as C and C++, where building and dependency manage-
ment is usually done at the operating system level. Moreover,
it is hard to define what exactly the OPR of, e.g., Java is,



download packages

repair Cargo.toml

build
LLVM

validate

generate call graph

output bitcode

demangle symbols

retrieve & build packages

+Syn

generate call graphs build unique ids link call graphs

Fig. 4: Our approach to generate a CDN for the CRATES.IO OPR.

as MAVEN CENTRAL also contains build artifacts from Scala,
Groovy, Closure, JRuby and Kotlin. Dynamic dispatch, which
is hard to capture via static call graphs, is common practice
in Java and C. Moreover, with CARGO, Rust has a unified
way to build projects, unlike Java, where projects can use
ANT, MAVEN, or GRADLE. Finally, in contrast to highly
dynamic languages such as JavaScript, Rust as a strongly typed
language lends itself to static analysis, and thus, to building
accurate call graphs. In fact, the Rust language documentation
itself advocates static over dynamic dispatch [25].

A. Resolving Dependencies and Retrieving Packages

CRATES.IO hosts an official up-to-date index of its packages
in a GITHUB repository [26]. We clone a snapshot of the index
at revision b76c5ac (16th February 2018) and populate our
seed set with all its entries. This set constitutes of 79, 724
releases (i.e., package versions) from 13, 991 unique packages.
The complete seed set makes the step of resolving depen-
dencies to fetch missing packages redundant. To download
a specific package from CRATES.IO, we use its dedicated
API [27]. In total, we could download and uncompress 79, 701
package versions from our seed set.

Peril 1. We are missing 23 package versions due to unau-
thorized access and 8 package versions due to malformed tar
archive headers.

Peril 2. Because CRATES.IO does not validate build man-
ifests (i.e., the Cargo.toml file) in released packages in
CRATES.IO, our downloaded set may contain invalid build
manifests. A package with an invalid build manifest is not
compilable, and hence cannot be used as a dependency in
other projects. Using CARGO’s manifest validator tool, we
could identify 477 package versions with invalid manifests.
We further exclude “packages” that are client applications,
excluding 6, 277 non-library package releases. In total, 72, 947
package versions (i.e., 92% of our pre-defined seed set) can
be used to build the Rust CDN.

Peril 3. In RUSTPRÄZI, we have simplified the retroactive
dependency problem and created a network that is only valid

TABLE II: Retroactive dependency changes.

Revision Time point #(Changed) Packages

b76c5ac Feb 16’18 297,757

6e9b751 1 day (Feb 17’18) 429 (0.1%)
76a24f9 1 week (Feb 23’18) 8,484 (2.9%)
eb7b311 1 month (Mar 16’18) 55,651 (23.0%)
a4bc79d 3 months (May 11’18) 82,960 (38.0%)
75f1ff7 6 months (Aug 3’18) 97,509 (48.7%)

for one point in time, at revision b76c5ac. We now want
to quantify how different the PDN looks when we build it
a day, a week, a month, 3 months and 6 months later. We
construct the new PDNs by keeping the source code from
b76c5ac, and only updating the CRATES.IO index to the
new timestamps. This ensures that the code will not change,
but will fetch new dependencies, if available. From Table II,
we can observe that CRATES.IO is very volatile: even within
one month, a quarter of the dependencies have resolved to a
different version. Thus, if having an accurate complete history
is a concern for a practical implementation of PRÄZI, it seems
vital to follow the general approach outlined in Section IV-A.

B. Generating Call Graphs

To generate call graphs, we use the LLVM call graph gen-
erator, version 4.0.0, which works by analyzing a program’s
LLVM Intermediate Bytecode Representation (IR).

Peril 4. Not being Rust-specific, LLVM may miss Rust-
specific calling conventions, leading to a potentially incom-
plete Rust CDN. To evaluate its shortcomings, we consider
all possible ways [25] to define or call a function in Rust
(Table III). We then construct examples that exercise a spe-
cific function call or definition, and generate the call graph
representing these cases. After inspecting the generated call
graph, we document the support of each feature in Table III.
Overall, we can identify that the LLVM call graph generator is
not able to infer non-static dispatch calls or macro invocations.



TABLE III: LLVM call graphs and Rust call mechanisms.

Call Mechanism Support

Standard function definition [28] 3
Generic function definition [28] 7
External function definition (e.g., FFI) [28] 3
Standard method call (e.g., Foo::m();) [29] 3
Standard method call with receiver (e.g., Foo.m();) [30] 3
Statically dispatched method call (+/- receiver) [31] 3
Dynamically dispatched method call (+/- receiver) [31] 7
Macros (e.g., print!("hello");) [32] 7

TABLE IV: Round-by-round build statistics.

Build Round #Releases #Packages Time (hrs)

CRATES.IO 72,947 12,307 —

1. Rustc stable 40,366 (55%) 9,376 (76%) 33.8
2. Rustc nightly +4,972 (+7%) +976 (+8%) +13.5
3. Cargo.toml fixes +2,644 (+4%) +244 (+2%) +5.8
4. Native dependencies +1,862 (+3%) +235 (+2%) +16.5

Σ 49,844 (69%) 10,831 (88%) 69.6

Furthermore, it is only able to infer generic function definitions
if instantiations of it exist.

To generate the LLVM IR of the Rust packages, we need to
compile our set of 72, 947 package versions. Compiling such
a large set of packages is a challenging task because many
environmental factors influence it. It is also an important step
because compile failures affect the completeness of the Rust
CDN.

We perform the build step in several compilation rounds to
achieve maximum completeness. We first use a stable version
of the compiler, and then iteratively analyze compilation logs
to tackle the common failure reasons. The compilation itself
ran for almost three days in parallel using a build server
with an Intel Xeon E5-2690 v4 CPU with 14 hyper-threaded
cores clocked at 2.6GHz, 128GB RAM and seven 2TB SSDs
formatted with ZFS in RAIDZ-1 (RAID-5 equivalent) mode,
on Ubuntu 16.04.3 LTS.

Table IV shows the number of successful compilations along
with the total time for each compilation round. In the first
round, we successfully compile 51% of our set using the
rustc stable 1.22.1 (2017-11-22) compiler. Un-
fortunately, a Rust package’s build manifest does not specify
the compatible compiler versions; a package may use unstable
features from a nightly compiler release, which are not back-
wards compatible with the stable compiler. By swapping the
stable compiler version for the nightly version rustc 1.24.
0-nightly (2017-12-06), we compile an additional
4, 972 package version releases. Analysis of the remaining
compilation errors reveals that a large number of builds fail
due to missing path-based dependencies. These dependencies
are incorrectly pointing the download source of a dependency
to a local directory instead of CRATES.IO. To resolve this, we
use CARGO’s internal dependency source rewrite feature in
and compile 2, 644 additional package versions. Finally, we
observe that several package releases are using native library

TABLE V: Build failure reasons for package versions that did
not build after installing native dependencies.

Failure reason #Builds

Compile error w. error code 13,509 (58%)
Compile error wo. error code, of which 7,272 (31%)

. . . code parsing errors 1,486

. . . conditional compilation errors 1,058

. . . dependency resolution errors 719

. . . type checking errors 278

. . . other errors 3,711
Custom build script failure 2,127 (9%)
Missing system dependencies 137 (< 1%)
Miscellaneous errors 18 (< 1%)

Σ 23,063

dependencies which are not installed on Ubuntu 16.04; with
them installed, we compile an extra 1, 862 package releases.

Peril 5. Despite our best efforts, we could not compile
23, 063 (31%) package releases. To understand why they fail
to compile, we analyze the compiler errors and classify them
into five categories in Table V. The majority seem to relate to
actual programming faults in the packages, in particular the
Rust type checker (e.g., E0277, E0599, E0425), syntactical
errors and invalid specifications for conditional compilation.
A common reason for these error messages is the improper
use of Traits. Overall, we can compile 69% of total releases
and at least one release for 88% of packages, roughly double
the ratio of previous attempts [33].

C. Generating Unique Function Identifiers

For each constructed call graph in our set of packages,
we parse the function names to append it with OPR and
package-specific information. The Rust compiler mangles
function identifiers in source code to flat C++ namespace-
like representations [34]. To construct a UFI from a Rust-
mangled identifier, we prepend namespaces in the identifier
with appropriate package names and versions, and also with an
OPR-qualifier (i.e., CRATES.IO). Due to nested type structures
in functions, portions of an identifier can have nested names-
paces which complicates the UFI construction. To untangle
the nested namespaces in an identifier, we develop a parser
that produces syntax tree representations from Rust-mangled
function names. With a syntax tree, in a simplified way, we
can access and prepend individual namespaces in an identifier.

The Rust mangled function identifiers share some similari-
ties with Rust syntax. To build the parser, we use the parser
combinator framework, syn [35] for parsing Rust source code.
To validate our parser implementation, we create a corpus
containing all function identifiers from our set of constructed
call graphs, and then attempt to parse each identifier into a
syntax tree. The constructed corpus consists of 111, 876, 036
function identifiers. In the first attempt, we use the default Rust
parser to process our corpus. In total, 6, 030, 730 identifiers
generate a parse error. After adding support for brackets (i.e.,
<...>), we reduce the parse errors to 4 million errors. After
inspecting the error logs, we identify that the parser fails



for namespaces that contain Impl structures and anonymous
closures. After resolving these cases, we reduce the parse error
rate to 0.24%. Therefore, we are able to annotate multiple
namespaces with package information in a single identifier
with high confidence.

D. Unifying Call Graphs

To generate a single CDN, we merge nodes with the
same UFI (from different call graphs) into a single node.
Without merging nodes, a naı̈ve concatenation of all in-
dividual call graphs resulted in a graph with 60, 410, 714
nodes and 178, 308, 144 edges. After merging nodes on the
function name, we reduced the graph to 7, 034, 536 nodes and
19, 511, 485 edges, merging on average 8.6 nodes onto a single
node. In total, 6,983,046 function nodes have an origin in
CRATES.IO. The 51,490 remaining nodes are standard library
functions from core, std, or packages which not hosted on
CRATES.IO. Overall, we have a definition for 6,882,760 nodes,
97.8% of all nodes, i.e., we could expand their internal call
flow similar to io::crates::Lib2::used in Figure 4.
This high percentage demonstrates the internal completeness
of the buildable part of CRATES.IO and that merging nodes,
core to PRÄZI, is useful and occurs often.

E. Evaluation of the Rust CDN

One purpose of the Rust CDN (and PRÄZI at large) is to
present a more precise view of the dependency relationships
between software components in comparison to a traditional
PDN. Since both networks operate on a different abstraction
level, we cannot directly compare them. We can, however,
reverse-engineer a new, possibly more accurate PDN called
P̂CDN ⊂ PDN by “uplifting” the CDN. Only then can we
compare it to the original PDN. We construct P̂CDN by
including a package dependency 〈A,B〉 in P̂CDN’s edge set
if there is at least one call from a function in package A to
one in B in the CDN. This, of course, sacrifices precision in
the CDN and thus is an absolute lower bound for possible
improvements.

As a caveat, the PRÄZI perils may result in missing calls
across packages in the CDN, which in turn makes the P̂CDN
miss dependency relationships. Therefore, our evaluation fo-
cuses on quantifying the differences between PDN and P̂CDN
and qualitatively exploring their causes. To make the compar-
ison fair, we remove from the PDN all packages that could
not be compiled because those could never appear in the
P̂CDN. We then extract the subset of dependency links present
in the PDN, but absent in the P̂CDN. For each dependency,
we determine through manual code inspection whether it is
correctly or incorrectly absent in the P̂CDN.

The P̂CDN contains 42, 827 nodes and 110, 762 edges. The
PDN contains the same number of nodes but has 129, 535
edges. A set difference on the edges of the two networks
shows that 18, 042 edges (i.e., 14%) are not in the P̂CDN.
Qualitative evaluation of all 18,042 different edges is practi-
cally infeasible, as it relies on manual work. Instead, we select
a statistically representative subset of its edges using Cochran’s

TABLE VI: Manual inspection and classification of 381 differ-
ent dependency relationships between the PDN and the P̂CDN.

Categorization #Samples

i) Dependencies absent in P̂CDN (and should be) 133 (35%)
. . . dependency not declared 73
. . . invoked in modules but not exported in the library 53
. . . invoked in test code but not part of the library 7

ii) Dependencies absent in P̂CDN (but should not be) 248 (65%)
ii.1) Call graph generator 114 (46%)

. . . call inside a generic function 72

. . . dynamic function call 12

. . . missing generic definition 8

. . . C method invocations 22
ii.2) Type-only dependencies 50 (20%)

. . . imported Trait or Struct, no function call 50
ii.3) Preprocessor 84 (34%)

. . . part of functions with conditional compilation 58

. . . use of macro functionality 26

Σ 381

sample size formula [36]. Selecting from a homogeneous set
of edges, at a 95% confidence level with a confidence level
interval of 5%, we need a sample of n = 381 edges that
the first author investigated. In Table VI, we break down the
results into dependencies that i) should be and are absent in
the P̂CDN and ii) should be present in it, but are not.

Our qualitative evaluation shows that our Rust CDN can
identify several cases (35%) where a regular PDN would
definitely lead to false positives reported to developers. At
the same time, there is a substantial amount of dependencies
that the P̂CDN seems to fail to capture. While 65% sounds
discouraging for RUSTPRÄZI at first, in the following, we will
characterize and explain them in detail, and show that none
are a theoretical limitation of PRÄZI.

Of the missing dependency links, almost half are due to
shortcomings in the LLVM call graph generator. They come
as no surprise, as we found out that we can only claim
soundness for static dispatch (see Section V-B). Plugging
a better call graph generator in, switching to a language
with better generators (such as Java), or not using these
language features thus resolves the problem, which is not
inherent to PRÄZI. The remaining cases represent possible
future improvements to PRÄZI. A fifth of the missing cases are
data-type only dependencies that a call graph cannot capture,
e.g., importing a struct of another package. This suggests going
beyond call graphs for PRÄZI. Another third of the missing
dependencies are due to conditional compilation: a function is
only compiled-in if the appropriate feature toggles are on. We
mitigate this issue when, we rerun the call graph generation
process for every possible feature toggle combination. We
have thus shown that none of the missing cases is a principal
shortcoming of PRÄZI.

To verify the generalizability of this evaluation, the first two
authors conducted an inter-rater reliability study. We cross-
validated 20 randomly selected pairs of dependencies. After
an independent assessment and comparison of the results,



both raters agreed that 19 ratings of the main rater were
correct (p0 = 19

20 = 0.95). The naı̈ve likelihood of a
random agreement is pc = 0.5. This gives us a Cohen’s κ
of p0−pc

1−pc
= 0.95−0.5

1−0.5 = 0.9 [37], which signifies (almost)
perfect agreement [38], increasing trust in the correctness and
generalizability of the manual inspection.

VI. CASE STUDIES

To demonstrate the effectiveness of our approach, we
present two cases studies, namely security vulnerability prop-
agation and function deprecation.

A. Security Vulnerability Propagation

Perhaps the most common application of dependency net-
works is the study of the spread of security vulnerabili-
ties [4], [7], [39]. Companies, such as BLACKDUCK [13],
TIDELIFT [11], and GITHUB help projects identify whether
they are affected by publicly disclosed vulnerabilities in their
dependencies.

With our first case study, we aim to assess whether the call-
based representation of an OPR could yield higher precision
in the security vulnerability propagation case and how severe
its soundness issues would be in such a real-world test. We
compute how nine security advisories from Rust’s security
advisory database, RUSTSEC [40], affect other packages,
using both our Rust CDN and PDN. Table VII presents
a detailed overview of the advisories we examined along
with the number of affected package versions per network.
From the initial set of nine advisories, we could not analyze
the security-framework advisory because it is macOS-
specific, sodiumoxide because its vulnerable versions gen-
erate build failures, and the openssl advisory because it
is related to configuration rather than vulnerable code. From
the six remaining ones, we skip cookie because it does not
have any callers and smallvec, whose vulnerability is in a
generic function, which the current version of the Rust CDN
cannot cover due to limitations in the call graph generator (see
Section V-E).

By construction, our Rust CDN is precise, but could miss
function calls to dependent packages, while the Rust PDN is
sound, but overapproximates the number of used packages (see
Section V-E). To compute the accuracy of the two networks,
we need to establish a ground truth: for each security advisory,
we collect the direct dependents of the vulnerable package;
then, we manually investigate whether there exists a function
call from a dependent to any function of the vulnerable
package. We compare the Rust PDN and the Rust CDN
(converted to a P̂CDN, as in Section V-E) against the ground
truth and create a confusion matrix:
i) True Positive (TP) means correctly flagging a package as
vulnerable when a vulnerable function call exists.
ii) False Positive (FP) means falsely flagging a package
as vulnerable when there is no invocation of a vulnerable
function.
iii) False Negative (FN) means flagging a package as not vul-
nerable when there is at least one evident call of a vulnerable

function.
iv) All remaining cases are True Negatives (TN).
Finally, we use the standard binary classification metrics
precision, recall, and accuracy to compare their performance.

From the results in Table VII we observe that the P̂CDN
reports a much lower number of affected package versions,
on average, 83% fewer affected packages than the PDN. By
analyzing the direct dependencies of the vulnerable packages,
we establish that a high percentage of these affected packages
are in fact false positives in the PDN. This score would be
even more in the advantage of our P̂CDN were we to look at
the full transitive closure (which we have not done because
of the high manual workload associated with it). Although
our P̂CDN has a lower recall score than a PDN, our P̂CDN
has an accuracy which is three times higher than the state-of-
the-art PDN, signifying that CDNs yields very high precision
benefits over traditional PDNs, even in real case scenarios with
suboptimal tools (see Section V).

B. Deprecation Impact Analysis

As packages evolve, their public API changes to accom-
modate improved functionality. As a consequence, functions
can become obsolete. Several programming languages, have a
special mechanism to annotate obsolete functions, either in the
API documentation (e.g., in Python) or as a language feature
(e.g., in Java). While annotating functions as deprecated is a
common practice among developers, cleaning up deprecated
code is a far more challenging task. In a qualitative study,
Sawant et al. report that API producers are “wary about
removing deprecated features from their API” and “mostly
have no preset protocol for removal” [41]. The reason is that
developers cannot know the impact of such cleanups.

By linking dependent functions together, PRÄZI enables
us to perform change impact analysis at the OPR level.
Using an PRÄZI CDN, developers can estimate the impact
of removing deprecated functions, both to direct API clients
and transitively. To demonstrate this, we calculate the impact
of function deprecation within CRATES.IO.

In Rust, deprecated functions can be annotated with a
#[deprecated] attribute: the Rust compiler will fail com-
pilation if a program links to a deprecated function (unless a
#[allow(deprecated)] is specified). To find deprecated
functions, we extract function signatures prepended with a
#[deprecated] attribute. In total, we find 721 deprecated
function signatures from 190 package versions in 43 unique
packages. We only consider deprecated functions and their
callers, i.e., functions who call the deprecated functions di-
rectly. Among the 190 package versions, only 42 package
versions have callers, reducing our search space to 43 dep-
recated functions. Then, we manually match the deprecated
function to its UFI in the Rust CDN. We are able to find
a UFI for 24 deprecated functions; the remaining ones are
missing due to the reasons identified in Table VI. We perform a
propagation analysis (similar to Section VI-A) for the 24 cases.
In total, 13 of 24 deprecated functions have calling functions
in other packages and together affect 163 package versions,



TABLE VII: Results for the security advisory propagation analysis.

Package Function #Packages #Cases Precision Recall Accuracy
PDN P̂CDN (Weight) PDN P̂CDN PDN P̂CDN PDN P̂CDN

base64 encode_config_buf 257 51 128 0.25 1 1 0.68 0.25 0.92
cookie parse_inner, max_age 0 0 0 - - - - - -
hyper Headers::set 21 3 2 1.00 1 1 0.5 1 0.5
smallvec insert_many 1,581 0 325 - - - - - -
tar unpack_in 502 31 61 0.62 1 1 0.71 0.62 0.82
untrusted skip_and_get_input 5,655 564 291 0.25 1 1 0.43 0.25 0.86

Σ (or weighted average) 8,016 649 482 0.30 1 1 0.53 0.30 0.87

both directly and indirectly. This amounts to 163
42,827 = 0.38%

of the P̂CDN.
Table VIII shows an overview of the results. In its first

column, we show which deprecated functions belong to which
package version in an encoded format. For example, the
platform_{window/display} represents the two func-
tions platform_window and platform_display. We
observe for the dependent P̂CDN sub-graph of each respective
package version that, on average 48% of dependents call
directly or indirectly the deprecated functions. In other words,
almost half of their callers break if the deprecated function is
removed. This form of information can aid library maintainers
with vital information about whether it is already safe to re-
move a deprecated function, particularly when a large number
of transitive consumers are calling it potentially unknowingly,
due to a transitive call chain.

VII. IMPLICATIONS

While researchers and practitioners widely use PDNs meta-
information for various decision making tasks, e.g. related
to updates [7] or security [39], it seems that their precision
is a largely overlooked aspect. Indicatively, in the case of
CRATES.IO, 35% of the dependency links included in a
dependency network extracted from metadata should not be
there. The work we present in this paper uncovers several
implications in the way that both researchers and practitioners
use PDNs, which we briefly present below.

A. Implications for Researchers

Our study showed that the generation of sound, yet precise
call graphs remains an important research problem for the
feature-richness of modern languages. The quality of a PRÄZI
CDN is directly dependent on the quality of the call graph
generator. In the Rust case, a Rust-specific call graph generator
needs to be developed as a plug-in to the compiler in order
to i) accommodate for features such as macros that are only

TABLE VIII: All called deprecated functions.

Function Package P̂CDN #Affected by Dep. Fn.s

OwnedKVList::{new/id/root} slog:::1.7.1 93 63
platform_{window/display} winit::0.7.6 91 50
platform_{window/display} winit::0.9.0 31 16
platform_{window/display} winit::0.8.3 44 14
platform_{window/display} winit::0.6.4 36 12
get_formats_list, get_name cpal::0.4.6 16 8

Σ 13 6 311 163

visible during compilation, and ii) be always up to date with
the latest language features.

We also demonstrated the volatility and fast-paced nature of
dependency resolution in OPRs by comparing timed snapshots
of CRATES.IO. It seems crucial to include this aspect in future
studies on OPRs.

Finally, we showed the granularity and precision that PRÄZI
offers opens the door to many new analyses not possible
before, for example change impact analysis across an OPR.
There are several strands of research opportunities to improve
PRÄZI internally (which we list in Section V-E) or externally,
e.g., by applying it to a different programming language.

B. Implications for Practitioners

With PRÄZI, we have described and implemented a tech-
nique that can reduce the number of false positive in a wide
array of current applications that suffer from bad precision.
Practitioners could improve our prototypical RUSTPRÄZI im-
plementation to make it sound in all cases relevant to them.

Due to the large number of broken packages on CRATES.IO,
builders of OPRs should consider validating packages before
publishing them, similar to CPAN [42] or CRAN [43]. More-
over, to make the entire build chain setup of packages more
reproducible, builders of OPRs should perhaps have similar
goals to what Debian wants to achieve [44].

Many IDEs support a “remove unused imports” analy-
sis. PRÄZI allows the development of a “remove unused
library” feature, cleaning and optimizing the dependency set
of projects.

C. Threats to Validity

In the case of security, it is important for PRÄZI to guarantee
that no false negatives exist, i.e., that the analysis is fully
sound. The PRÄZI technique is only susceptible to this threat
insofar as the used call graph generator is sound, which lies
outside the scope of this paper. Our initial Rust implementation
guarantees soundness for statically dispatched method calls,
but is only “soundy” otherwise [45]. If Rust programmers
avoid dynamic dispatch, our prototype is sound by con-
struction (we have specified and measured the exceptions
in Table VI). Moreover, security warnings only serve as an
example application for meta-warnings attached to a program.
Similarly, bug, performance, deprecation, or other advisories
exist, e.g., in addition to RUSTSEC’s security advisories,
similar such advisories exist for performance and semantical



bugs [46], [47]. Conceivably, achieving a very high precision
for such advisories while missing rare cases is an excellent
trade off for many developers. In fact, as Livshits et al. argue,
sacrificing soundness for precision is not just a common trade-
off for static analysis tools, even for vulnerability detection
programs such as Fortify [48], but it is actually necessary for
practical use [45].

VIII. RELATED WORK

In this section, we briefly present previous PDN-based
analyses and compare them to our work.

The aftermath of the leftpad incident has led to a surge
of studies around OPRs. Researchers have constructed de-
pendency networks of OPRs to trace the impact of security
problems [4], [7], [39], to study the evolution of language
ecosystems [4], [5], [49], [50], or to recommend update paths
for projects [6]. In the area of security, notably, Kikas et al. [4]
have shown there exist packages that can break up to 30% of
packages in both NPM and RUBYGEMS. Moreover, Kula et
al. [7] and Decan et al. [39] also indicate a large percentage of
affected packages. However, our security case study has shown
that these studies may grossly overapproximate the risk.

To the best of our knowledge, ours is the first attempt to
construct a dependency network on a function call level. The
closest to our work is an initial vulnerability study by Zapata et
al. [51] where the authors manually established that 73.3% of
60 JavaScript projects marked as vulnerable by a dependency
checker are not. The results are on similar lines as ours, saying
vulnerable functions in many cases are not called.

IX. FUTURE WORK

PRÄZI is a novel technique that is first to apply lightweight
static analysis on whole OPRs. While it is comprehensive and
can already provide valuable insights, our evaluation (Sec-
tion V-E) showed that it is not complete. In this section, we
present how PRÄZI can be improved and practically exploited.

First, the buildability of an OPR plays a crucial role
in the completeness of the PRÄZI CDN; researchers could
setup several build environments (operating system, compilers,
compile flags) to generate a maximally complete call graph.
PRÄZI can also be combined with product line research to
help mitigate the issues arising from conditional compilation.

The soundness and completeness of the PRÄZI CDN can
be significantly improved through language-specific call graph
generators. In several mainstream languages, e.g. Java, pre-
cise call graph generators with few constraints exist, such
as Soot [52] and Wala [53]. For the purposes of PRÄZI,
researchers could work on enriching the static with dynamic
call graphs obtained from running a project’s tests.

To make a full PRÄZI implementation practically useful, the
size of the generated CDN must be tamed to cope with OPRs
the size of MAVEN or NPM. One way to do this would be to
“compress” the CDN with the realization that only a small part
of a library changes between versions; therefore, the existing
“identical” nodes (and their subtrees) could be annotated with
a version range and only a possibly small part of new nodes

would need to be created. A PRÄZI-specific database would
be able to aggressively compress the CDN graph by exploiting
its structural and temporal properties: its edges are immutable,
it only grows by appending nodes and edges, while the degree
distributions for nodes follow power laws.

Apart from our two case studies, CDNs enable a rich set
of applications that researchers can work on. A potentially
interesting question would be to explore the application of
change impact analysis for aspects other than deprecation,
e.g.: “If I change the semantics of this function, who will
have to be notified?” Researchers can also investigate issues
such as dependency health and quality, by coupling the CDN
information with analytics from the projects source code
repository. Furthermore, when we annotate function nodes
with file and license information, the CDN could be used to
study module-level licensing incompatibilities.

X. CONCLUSION

We presented a generic approach, PRÄZI, to construct fine-
grained dependency networks at the function call level. With
PRÄZI, we implemented RUSTPRÄZI, a precise call-based
dependency network of Rust’s CRATES.IO package repository
to demonstrate improvements over state-of-the-art package-
based dependency networks (PDNs). After building all releases
of CRATES.IO packages, RUSTPRÄZI is able to represent 69%
of CRATES.IO. In our evaluation, we qualitatively analyzed
381 cases to understand how accurately RUSTPRÄZI repre-
sents dependency relationships of CRATES.IO. In 35% of the
cases, a PDN overapproximates the dependency relationships.
Despite the fact that we encountered a number of soundness
issues in the remaining cases, we showed that none of them is a
fundamental limitation of the PRÄZI technique. Moreover, our
two case studies demonstrated the usefulness of the generated
CDN even with these issues. In a case study of security
propagation, we have shown that RUSTPRÄZI is three times
more accurate than a state-of-the art dependency network,
showing that the function-level granularity reduces the number
of false positives. In our second case study, we investigate the
propagation of deprecated functions and quantify the overall
dependence on such functions in CRATES.IO.

This paper makes the following contributions:
i) A novel technique, PRÄZI, to create precise, call-based

dependency networks.
ii) An open source Rust implementation, RUSTPRÄZI of the

general PRÄZI technique to show its practical feasibility.
iii) An evaluation of RUSTPRÄZI and quantification of its

shortcomings.
iv) Two case studies on security and deprecation warnings,

that demonstrate PRÄZI’s usefulness.
v) Derivative datasets including the CDN, its evaluation, and

the case study data is available as a replication package. 1

1https://DrNXs1ALFzzQth4r.github.io

https://DrNXs1ALFzzQth4r.github.io


REFERENCES

[1] I. J. Mojica, B. Adams, M. Nagappan, S. Dienst, T. Berger, and A. E.
Hassan, “A large-scale empirical study on software reuse in mobile
apps,” IEEE software, vol. 31, no. 2, pp. 78–86, 2014.

[2] W. B. Frakes and K. Kang, “Software reuse research: Status and future,”
IEEE transactions on Software Engineering, vol. 31, no. 7, pp. 529–536,
2005.

[3] V. R. Basili, L. C. Briand, and W. L. Melo, “How reuse influences
productivity in object-oriented systems,” Communications of the ACM,
vol. 39, no. 10, pp. 104–116, 1996.

[4] R. Kikas, G. Gousios, M. Dumas, and D. Pfahl, “Structure and evolution
of package dependency networks,” in Proceedings of the 14th Interna-
tional Conference on Mining Software Repositories. IEEE Press, 2017,
pp. 102–112.

[5] R. Abdalkareem, O. Nourry, S. Wehaibi, S. Mujahid, and E. Shihab,
“Why do developers use trivial packages? an empirical case study on
npm,” in Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering. ACM, 2017, pp. 385–395.

[6] R. G. Kula, C. De Roover, D. M. German, T. Ishio, and K. Inoue,
“Modeling library dependencies and updates in large software repository
universes,” arXiv preprint arXiv:1709.04626, 2017.

[7] R. G. Kula, D. M. German, A. Ouni, T. Ishio, and K. Inoue, “Do develop-
ers update their library dependencies?” Empirical Software Engineering,
vol. 23, no. 1, pp. 384–417, 2018.

[8] J. Cox, E. Bouwers, M. van Eekelen, and J. Visser, “Measuring de-
pendency freshness in software systems,” in Proceedings of the 37th
International Conference on Software Engineering-Volume 2. IEEE
Press, 2015, pp. 109–118.

[9] E. Constantinou and T. Mens, “An empirical comparison of developer
retention in the RubyGems and NPM software ecosystems,” Innovations
in Systems and Software Engineering, vol. 13, no. 2-3, pp. 101–115,
2017.

[10] M. Han, “Introducing security alerts on GitHub,” 2017, https://github.
com/blog/2470-introducing-security-alerts-on-github. Accessed January
26, 2018.

[11] I. Tidelift, “Tidelift,” 2017, . Accessed August 10, 2018.
[12] I. Justine Tunney, Google, “Operation rosehub, Google open source

blog,” 2017, . Accessed August 10, 2018.
[13] I. Black Duck Software, “Open source license compliance,” 2017, .

Accessed August 10, 2018.
[14] M. Beller, R. Bholanath, S. McIntosh, and A. Zaidman, “Analyzing the

state of static analysis: A large-scale evaluation in open source software,”
in Proceedings of the 23rd IEEE International Conference on Software
Analysis, Evolution, and Reengineering. IEEE, 2016, pp. 470–481.

[15] S. Heckman and L. Williams, “On establishing a benchmark for eval-
uating static analysis alert prioritization and classification techniques,”
in Proceedings of the Second ACM-IEEE international symposium on
Empirical software engineering and measurement. ACM, 2008, pp.
41–50.

[16] ——, “A systematic literature review of actionable alert identification
techniques for automated static code analysis,” Information and Software
Technology, vol. 53, no. 4, pp. 363–387, 2011.

[17] B. G. Ryder, “Constructing the call graph of a program,” IEEE Trans-
actions on Software Engineering, no. 3, pp. 216–226, 1979.

[18] S. L. Graham, P. B. Kessler, and M. K. Mckusick, “Gprof: A call graph
execution profiler,” in ACM Sigplan Notices, vol. 17, no. 6. ACM,
1982, pp. 120–126.

[19] V. Sundaresan, L. Hendren, C. Razafimahefa, R. Vallée-Rai, P. Lam,
E. Gagnon, and C. Godin, Practical virtual method call resolution for
Java. ACM, 2000, vol. 35, no. 10.

[20] A. Feldthaus, M. Schäfer, M. Sridharan, J. Dolby, and F. Tip, “Efficient
construction of approximate call graphs for JavaScript IDE services,” in
Software Engineering (ICSE), 2013 35th International Conference on.
IEEE, 2013, pp. 752–761.

[21] M. Reif, M. Eichberg, B. Hermann, J. Lerch, and M. Mezini, “Call
graph construction for Java libraries,” in Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering. ACM, 2016, pp. 474–486.

[22] T. R. C. Team, “The Rust programming language blog,” 2015, https:
//blog.rust-lang.org/2015/05/15/Rust-1.0.html.

[23] G. C. Murphy, D. Notkin, W. G. Griswold, and E. S. Lan, “An empirical
study of static call graph extractors,” ACM Transactions on Software

Engineering and Methodology (TOSEM), vol. 7, no. 2, pp. 158–191,
1998.

[24] M. Sulı́r and J. Porubän, “A quantitative study of Java software build-
ability,” in Proceedings of the 7th International Workshop on Evaluation
and Usability of Programming Languages and Tools. ACM, 2016, pp.
17–25.

[25] R. L. Documentation, “The Rust programming language,” 2018, https:
//doc.rust-lang.org/book/first-edition/trait-objects.html.

[26] “Crates index,” 2018, https://github.com/rust-lang/crates.io-index.
[27] “Crates api,” 2018, https://crates.io/api/v1/crates/.
[28] “Functions,” 2018. [Online]. Available: https://doc.rust-lang.org/stable/

reference/items/functions.html
[29] “Call expressions,” 2018. [Online]. Available: https://doc.rust-lang.org/

stable/reference/expressions/call-expr.html
[30] “Method-call expressions,” 2018. [Online]. Available: https://doc.

rust-lang.org/stable/reference/expressions/method-call-expr.html
[31] “Types: Trait objects,” 2018. [Online]. Available: https://doc.rust-lang.

org/stable/reference/types.html#trait-objects
[32] “Macros,” 2018. [Online]. Available: https://doc.rust-lang.org/stable/

reference/macros.html
[33] M. Tufano, F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia,

and D. Poshyvanyk, “There and back again: Can you compile that
snapshot?” Journal of Software: Evolution and Process, vol. 29, no. 4,
2017.

[34] rust lang/rust, “The rust linkage model and symbol
names.” [Online]. Available: https://github.com/rust-lang/rust/blob/
0cf0691ea1879a84d09d53a19e0f0b06827cf95a/src/librustc codegen
utils/symbol names.rs

[35] “Syn,” 2018, https://github.com/dtolnay/syn.
[36] W. G. Cochran, Sampling techniques. John Wiley & Sons, 2007.
[37] J. Cohen, “A coefficient of agreement for nominal scales,” Educational

and psychological measurement, vol. 20, no. 1, pp. 37–46, 1960.
[38] J. R. Landis and G. G. Koch, “The measurement of observer agreement

for categorical data,” biometrics, pp. 159–174, 1977.
[39] A. Decan, T. Mens, and E. Constantinou, “On the impact of security vul-

nerabilities in the npm package dependency network,” in International
Conference on Mining Software Repositories, 2018.

[40] “Rustsec advisory database,” 2018, https://github.com/RustSec/
advisory-db.

[41] A. A. Sawant, M. Aniche, A. van Deursen, and A. Bacchelli,
“Understanding developers’ needs on deprecation as a language feature,”
in Proceedings of the 40th International Conference on Software
Engineering, ser. ICSE ’18. New York, NY, USA: ACM, 2018, pp. 561–
571. [Online]. Available: http://doi.acm.org/10.1145/3180155.3180170

[42] “Comprehensive perl archive network,” 2018. [Online]. Available:
https://www.cpan.org/

[43] “Comprehensive r archive network,” 2018. [Online]. Available:
https://cran.r-project.org/

[44] “Debian: Reproducible builds,” 2018. [Online]. Available: https:
//wiki.debian.org/ReproducibleBuilds

[45] B. Livshits, M. Sridharan, Y. Smaragdakis, O. Lhoták, J. N. Amaral, B.-
Y. E. Chang, S. Z. Guyer, U. P. Khedker, A. Møller, and D. Vardoulakis,
“In defense of soundiness: a manifesto,” Communications of the ACM,
vol. 58, no. 2, pp. 44–46, 2015.

[46] “Rust performamnce warning,” 2018. [Online]. Available: https:
//github.com/servo/servo/issues/17399

[47] “Rust semantical bug,” 2018. [Online]. Available: https://github.com/
crossbeam-rs/crossbeam-epoch/pull/53

[48] V. B. Livshits and M. S. Lam, “Finding security vulnerabilities in
Java applications with static analysis.” in USENIX Security Symposium,
vol. 14, 2005, pp. 18–18.

[49] E. Wittern, P. Suter, and S. Rajagopalan, “A look at the dynamics of the
JavaScript package ecosystem,” in Mining Software Repositories (MSR),
2016 IEEE/ACM 13th Working Conference on. IEEE, 2016, pp. 351–
361.

[50] A. Decan, T. Mens, and P. Grosjean, “An empirical comparison
of dependency network evolution in seven software packaging
ecosystems,” Empirical Software Engineering, Feb 2018. [Online].
Available: https://doi.org/10.1007/s10664-017-9589-y

[51] R. E. Zapata, R. G. Kula, B. Chinthanet, T. Ishio, K. Matsumoto, and
A. Ihara, “Towards smoother library migrations: A look at vulnerable
dependency migrations at function level for NPM JavaScript packages,”
in Proceedings of the 34th IEEE International Conference on Software
Maintenance and Evolution, 0 (to appear).

https://web.archive.org/web/20180125150220/https://github.com/blog/2470-introducing-security-alerts-on-github
https://web.archive.org/web/20180125150220/https://github.com/blog/2470-introducing-security-alerts-on-github
https://tidelift.com
https://opensource.googleblog.com/2017/03/operation-rosehub.html
https://www.blackducksoftware.com/solutions/open-source-license-compliance
http://web.archive.org/web/20180416152826/https://blog.rust-lang.org/2015/05/15/Rust-1.0.html
http://web.archive.org/web/20180416152826/https://blog.rust-lang.org/2015/05/15/Rust-1.0.html
http://web.archive.org/web/20180416152826/https://doc.rust-lang.org/book/first-edition/trait-objects.html
http://web.archive.org/web/20180416152826/https://doc.rust-lang.org/book/first-edition/trait-objects.html
https://web.archive.org/web/20180224105846/https://github.com/rust-lang/crates.io-index
https://crates.io/api/v1/crates/
https://doc.rust-lang.org/stable/reference/items/functions.html
https://doc.rust-lang.org/stable/reference/items/functions.html
https://doc.rust-lang.org/stable/reference/expressions/call-expr.html
https://doc.rust-lang.org/stable/reference/expressions/call-expr.html
https://doc.rust-lang.org/stable/reference/expressions/method-call-expr.html
https://doc.rust-lang.org/stable/reference/expressions/method-call-expr.html
https://doc.rust-lang.org/stable/reference/types.html#trait-objects
https://doc.rust-lang.org/stable/reference/types.html#trait-objects
https://doc.rust-lang.org/stable/reference/macros.html
https://doc.rust-lang.org/stable/reference/macros.html
https://github.com/rust-lang/rust/blob/0cf0691ea1879a84d09d53a19e0f0b06827cf95a/src/librustc_codegen_utils/symbol_names.rs
https://github.com/rust-lang/rust/blob/0cf0691ea1879a84d09d53a19e0f0b06827cf95a/src/librustc_codegen_utils/symbol_names.rs
https://github.com/rust-lang/rust/blob/0cf0691ea1879a84d09d53a19e0f0b06827cf95a/src/librustc_codegen_utils/symbol_names.rs
https://web.archive.org/web/20180518114838/https://github.com/dtolnay/syn
https://web.archive.org/web/20180414132438/https://github.com/RustSec/advisory-db
https://web.archive.org/web/20180414132438/https://github.com/RustSec/advisory-db
http://doi.acm.org/10.1145/3180155.3180170
https://www.cpan.org/
https://cran.r-project.org/
https://wiki.debian.org/ReproducibleBuilds
https://wiki.debian.org/ReproducibleBuilds
https://github.com/servo/servo/issues/17399
https://github.com/servo/servo/issues/17399
https://github.com/crossbeam-rs/crossbeam-epoch/pull/53
https://github.com/crossbeam-rs/crossbeam-epoch/pull/53
https://doi.org/10.1007/s10664-017-9589-y


[52] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan,
“Soot: A Java bytecode optimization framework,” in CASCON First
Decade High Impact Papers. IBM Corp., 2010, pp. 214–224.

[53] “Wala,” 2018. [Online]. Available: http://wala.sourceforge.net/wiki/
index.php/Main Page

http://wala.sourceforge.net/wiki/index.php/Main_Page
http://wala.sourceforge.net/wiki/index.php/Main_Page

	Introduction
	Background
	Call Graphs
	Rust

	Call-based Dependency Networks
	Building CDNs
	Resolving Dependencies and Retrieving Packages
	Generating Call Graphs
	Generating Unique Function Identifiers (UFIs)
	Unifying Call Graphs

	Implementing Präzi for Rust
	Resolving Dependencies and Retrieving Packages
	Generating Call Graphs
	Generating Unique Function Identifiers
	Unifying Call Graphs
	Evaluation of the Rust CDN

	Case Studies
	Security Vulnerability Propagation
	Deprecation Impact Analysis

	Implications
	Implications for Researchers
	Implications for Practitioners
	Threats to Validity

	Related Work
	Future Work
	Conclusion
	References

