Electronic Structure and Site Occupancy of Lanthanides Doped (Sr, Ca)$_3$(Y, Lu)$_2$Ge$_3$O$_{12}$ Garnets: A Spectroscopic and First-Principles Study

Hongde Luoa, Lixin Ningb, Yuanyuan Dongb, Adrie J.J Bosa, Pieter Dorenbosa

a Delft University of Technology, Faculty of Applied Sciences, Department of Radiation Science and Technology (FAME-RST), Mekelweg 15, 2629JB Delft, The Netherlands
E-mail: h.luo@tudelft.nl

b Department of Physics, Anhui Normal University, Wuhu, Anhui 241000, China

Abstract:
Photoluminescence excitation (PLE) and emission spectra (PL) of undoped (Sr, Ca)$_3$(Y, Lu)$_2$Ge$_3$O$_{12}$ as well as Eu$^{3+}$ and Ce$^{3+}$ doped samples have been investigated. The PL spectra show that Eu$^{3+}$ enters into both dodecahedral (Ca, Sr) and octahedral (Y, Lu) sites. Ce$^{3+}$ gives two broad excitation bands in the range of 200 to 450 nm. First principle calculations for Ce$^{3+}$ on both dodecahedral and octahedral sites provide sets of 5d excited level energies that are consistent with the experimental results. Then the vacuum referred binding energy diagrams for (Sr, Ca)$_3$(Y, Lu)$_2$Ge$_3$O$_{12}$ have been constructed with the lanthanide dopant energy levels by utilizing spectroscopic data. The Ce$^{3+}$ 5d excited states are calculated by first principle calculations. Thermoluminescence (TL) glow curves of (Ce$^{3+}$, Sm$^{3+}$) co-doped (Sr, Ca)$_3$(Y, Lu)$_2$Ge$_3$O$_{12}$ samples show a good agreement with the prediction of lanthanide trapping depths derived from the energy level diagram. Finally, the energy level diagram is used to explain the low thermal quenching temperature of Ce$^{3+}$ and the absence of afterglow in (Sr, Ca)$_3$(Y, Lu)$_2$Ge$_3$O$_{12}$.
1. Introduction

The spectroscopic properties of lanthanide doped phosphors depend not only on the energy differences between 4f and 5d states but also on the location of these states relative to the electronic states of the host, i.e. the conduction band (CB) and the valence band (VB)\(^1\).

Lanthanide energy levels are of great interest both for an application and for a theoretical point of view. Thermal quenching of 5d-4f emission occurs when the electron in the 5d excited state like in Ce\(^{3+}\) or Eu\(^{2+}\) transfers to the conduction band\(^2\). This is not beneficial to LED phosphors since such thermal ionization will dramatically reduce the efficiency of the phosphors at the LED working temperature\(^3\) (~150°C). On the other hand, afterglow phosphors need a relatively low thermal quenching temperature to spontaneously ionize sunlight excited 5d electrons to the conduction band to be captured by the traps\(^6\).\(^8\).

The lanthanide trap depths can be predicted and analyzed by locating the ground state 4f levels relative to the host bands\(^9\). When divalent lanthanide 4f ground state levels are close to the CB the corresponding trivalent ions may act as electron trapping centers. Bos \textit{et al} confirmed this hypothesis by studying the thermoluminescence of YPO\(_4\):Ce\(^{3+}\),Ln\(^{3+}\) (Ln= Pr, Nd, Sm, Dy, Ho, Er, Tm and Yb) samples and found that for each lanthanide co-dopant there is a different trap depth\(^10\). The trap depth in this case is the distance between divalent lanthanide ground state 4f levels and the bottom of the CB.

The trivalent lanthanide 4f ground state levels can be close above the VB, which means that these ions may act as hole trapping centers. Chakrabarti\(^11\) \textit{et al} reported that samarium acts as a recombination centre and cerium the trapping centre that capture holes after UV irradiation in MgS:Ce\(^{3+}\),Sm\(^{3+}\). Recently, Luo\(^12\) \textit{et al} systematically studied the hole trapping and hole release processes in GdAlO\(_3\):Ln\(^{3+}\), RE\(^{3+}\) (Ln=Sm, Eu and Yb, RE= Ce, Pr and Tb), and found that RE co-dopants act as the hole trapping centres where the trap depth relates to the distance between trivalent lanthanide 4f lowest states to the top of the VB.

Initially (Sr, Ca)\(_2\)(Y, Lu)\(_2\)Ge\(_3\)O\(_{12}\) garnets doped with Ce\(^{3+}\) as luminescence center and other trivalent lanthanides as electron trapping center were selected for study with the aim to develop persistent luminescence phosphors. Ce\(^{3+}\) in garnet compounds emit in the green to red and have strong absorption of day light\(^13\)-\(^15\). However, the materials turn out not to be good persistent luminescence phosphors. To explain this we determined the electronic structure providing the location of the lanthanide levels within the band gap.

The materials share a normal garnet structure A\(_3\)B\(_2\)C\(_3\)O\(_{12}\) (cation occupy 24 c, 16 a, and 24 d), where A, B and C denote dodecahedral (point symmetry 222), octahedral (point symmetry 3) and tetrahedral (point symmetry 4) coordination, respectively\(^16\)-\(^17\). The crystal chemistry of garnets is detailed discussed by S. Geller, which covers more than hundreds of garnet compounds\(^18\). However, few reports are found for this family of garnets. Uhlich \textit{et al} reported that the Eu\(^{3+}\) enters the octahedral Y site with an O\(^{2-}\)-Eu\(^{3+}\) charge transfer band at ~240 nm\(^19\). Kalaji \textit{et al} studied the room temperature spectroscopy of Ce\(^{3+}\) doped (Sr, Ca)\(_2\)(Y, Lu)\(_2\)Ge\(_3\)O\(_{12}\) garnets and concluded that Ce\(^{3+}\) enters the dodecahedral site instead of the octahedral one\(^20\).
Kaminskii et al. mentioned that in the two-cation garnets the RE$^{3+}$ dopant mainly enters the dodecahedral site and in some cases it can also enter the octahedral site\cite{21}.

Obviously, something is still not fully clear in this type of materials. For instance, what is the site occupancy of Eu$^{3+}$ and Ce$^{3+}$ in (Sr, Ca)$_3$(Y, Lu)$_2$Ge$_3$O$_{12}$ garnets? Secondly, where are the Ce$^{3+}$ ground states and the 5d excited states in (Sr, Ca)$_3$(Y, Lu)$_2$Ge$_3$O$_{12}$:Ce$^{3+}$ with respect to the host valence and conduction bands? Thirdly, how does the bandgap change by replacing the Sr or Y by the smaller Ca or Lu ions and how does this influence the Ce$^{3+}$ 5d bands and Eu$^{3+}$ charge transfer energy?

The objective of this study is to systematically reveal the lanthanide levels in (Sr, Ca)$_3$(Y, Lu)$_2$Ge$_3$O$_{12}$ garnets to answer the above questions. First-principles calculations and the empirical chemical shift model are combined to determine the electronic structure and construct the energy level diagrams showing the lanthanide levels within the band gap\cite{9}. The electronic structures of (Sr, Ca)$_3$(Y, Lu)$_2$Ge$_3$O$_{12}$ host lattices are calculated by using the hybrid density functional theory (DFT) method. The 4f$_1$ and 5d$_1$ energy levels of Ce$^{3+}$ are calculated by a wave function-based multi-reference approach. The low-temperature VUV photoluminescence excitation and emission spectra for the undoped (Sr, Ca)$_3$(Y, Lu)$_2$Ge$_3$O$_{12}$ host lattices and the photoluminescence for Ce$^{3+}$ or Eu$^{3+}$ doped samples are presented. The experimental results for Ce$^{3+}$ doped samples are used to compare with theoretical calculations to identify the Ce$^{3+}$ site occupancy and the 5d levels. Low-temperature thermoluminescence measurements are carried out for (Ce$^{3+}$, Sm$^{3+}$) co-doped samples to locate the Sm$^{2+}$ ground state. Results are used to construct the energy level diagram of (Sr, Ca)$_3$(Y, Lu)$_2$Ge$_3$O$_{12}$ showing the locations of the lanthanide states within the band gap.
2. Experimental and theoretical methods

2.1. Experimental Details
All starting materials were purchased from Sigma-Aldrich and used without further treatment. The appropriate stoichiometric mixture of GeO$_2$ (99.99%), SrCO$_3$ (99.99%), CaCO$_3$ (99.99%) and rare earth oxides with the purity of 5N (99.999%) were weighed according to the chemical formula and milled homogeneously with the help of acetone. Then the powders were synthesized at 1300 °C for 12 hours in a corundum crucible in an atmosphere of N$_2$. After cooling down, the as-prepared materials were grinded again and synthesized at 1300 °C for another 12 hours in the same atmosphere. Finally, the obtained compounds were cooled down to room temperature.

All powders were checked with a PANalytical XPert PRO X-ray diffraction system with Co Kα ($\lambda = 0.178901$ nm) X-ray tube (45 kV, 40 mA). The photoluminescence excitation (PLE) and photoluminescence emission (PL) measurement were measured with a set-up that consists of an UV/VIS branch with a 500W Hamamatsu CW Xe lamp and Gemini 180 monochromator and a VUV/UV branch using a deuterium lamp with an ARC VM502 vacuum monochromator. The Perkin Elmer MP-1913 photomultiplier was exploited as a detector connected at the exit slit of a Princeton Acton SP2300 monochromator. The sample was placed in an evacuated sample chamber.

Low temperature thermoluminescence (LTTL) measurements (90-450 K) were recorded with a sample chamber operating under vacuum (P = 10^{-7} mbar), a 90Sr/90Y beta irradiation source having a dose rate of ~ 0.4 mGy s$^{-1}$ and a Perkin-Elmer channel PM tube (MP-1393). Liquid nitrogen was used as a cooling medium. A 490 nm bandpass filter (490FS10-50) was placed between the sample and PMT during the measurements to select only Ce$^{3+}$ emission. The peak intensities were corrected for mass differences.

2.2. Computational Details
The Ce-doped Sr$_3$Y$_2$Ge$_3$O$_{12}$ and Ca$_3$Y$_2$Ge$_3$O$_{12}$ crystals were modeled by using a unit cell containing 160 atoms, in which one of the 16 Y atoms, or one of the 24 Sr or Ca atoms was replaced by a Ce. The lattice parameters and atomic coordinates of the doped unit cell were optimized by periodic DFT calculations using a hybrid exchange-correlation functional in the PBE0 scheme, as implemented in the VASP code22,23. The excess charge of Ce$^{3+}$ on the Sr$^{2+}$ or Ca$^{2+}$ site was compensated by introducing a uniform background charge density, and the spurious Coulomb interaction in charged supercells is expected to be small due to the large size of the supercells24. The electrons of Ce (5s25p64f15d16s2), Ca (3s23p64s2), Sr (4s24p64s2), Y (4s24p64d15s2), Ge (4s24p6) and O (2s22p4) were treated as valence electrons, and their interactions with the respective cores were described by the projected augmented wave (PAW) method25. The geometry optimizations were performed until the total energies and the Hellmann–Feynman forces on the atoms converged to 10^{-6} eV and 0.01 eV Å$^{-1}$, respectively. Due to the large size of the systems and the high computational cost of hybrid DFT with plane wave basis, only one k-point (Γ point) was used to sample the Brillouin zone, with a cutoff energy of 530 eV for the plane wave basis.

The 4f1 and 5d1 energy levels of Ce$^{3+}$ were computed with a wave function-based embedded cluster approach. On the basis of the atomic structures optimized by hybrid DFT, the
Ce-centered clusters were constructed, each comprising the central Ce$^{3+}$, the oxygen ions in the first coordination shell, and the closest Ge$^{4+}$ ions in the second coordination shell. Their immediate surroundings within a sphere of radius 10.0 Å were represented by several hundreds of *ab initio* model potentials (AIMPs)26 and the remainder of the surroundings were simulated by tens of thousands of point charges at lattice sites, which are generated with Lepetit’s method27. Wave function-based CASSCF/CASPT2 calculations with the spin-orbit effect were then carried out to obtain the 4f1 and 5d1 energy levels of Ce$^{3+}$ by using the program MOLCAS28. In the CASSCF calculations, a [4f, 5d, 6s] complete active space was adopted, and in the CASPT2 calculations, the dynamic correlation effects of the Ce$^{3+}$ 5s, 5p, 4f, 5d electrons and the O2 2s, 2p electrons were considered. Further details about the basis sets can be found in Refs. 29-31.
3. Results
3.1 X-Ray diffraction and photoluminescence spectroscopy of (Sr, Ca):(Y, Lu):Ge3O12

XRD patterns of synthesized (Sr, Ca):(Y, Lu):Ge3O12 phosphors are shown in Figure 1. All samples are of single phase and match very well with the Sr3Y2Ge3O12 reference card (No. 1408217) due to their same crystal structure (space group: Ia-3d). A slight shift of the XRD peaks can be observed in Figure 1b due to different lattice parameters among the as-prepared materials.

Figure 1. (a) XRD patterns of the as-prepared samples of Sr3Y2Ge3O12, Sr3Lu2Ge3O12, Ca3Y2Ge3O12 and Ca3Lu2Ge3O12. (b) Detailed XRD patterns in the range from 30 to 40°.

Figure 2 shows the low temperature VUV excitation and emission spectra of (Sr, Ca):(Y, Lu):Ge3O12 host lattices. The host excitation maximum of Sr3Y2Ge3O12 and Sr3Lu2Ge3O12 are both reached at 5.9 eV (210 nm) indicating that they have the same bandgap. The reason is that Sr3Y2Ge3O12 and Sr3Lu2Ge3O12 samples have very close lattice parameters, which can be observed from Figure 1(b) that the XRD peak positions for these two samples are at almost the same position. For the Ca3Y2Ge3O12 and Ca3Lu2Ge3O12, the exciton creation energy is 6.1 eV (200 nm). The emission from 300 to 400 nm of (Sr, Ca):(Y, Lu):Ge3O12 host lattices shown in Figure 1b are all from a sort of charge transfer emission like host exciton or defect trapped exciton emission. However, the precise origin is unknown.

Figure 3 shows the photoluminescence excitation and emission spectra of Eu3+ single doped Sr3Y2Ge3O12. There are two different excitation bands at 280 nm (hereafter referred as the charge transfer band CT) and 235 nm (hereafter referred as the near defect exciton band NDE) when monitored at 610 nm and 597 nm emission, respectively. The reasons for assignments will become clear in the discussion section. Typical Eu3+ line emission with different 5D0-7F1 and 5D0-7F2 relative intensity is found with different excitation energy. The 5D0-7F2 hypersensitive forced electronic-dipole transition is dominating when excited by 280 nm UV irradiation. This indicates that the Eu3+ ions are at a non-inversion symmetry site32. On the other hand, the 5D0-7F1 magnetic-dipole transition is dominating when excited by 235 nm UV light, indicating the Eu3+ ions at an inversion symmetry site32.
Figure 2. (a) PLE and (b) PL spectra of Sr$_3$Y$_2$Ge$_3$O$_{12}$, Sr$_3$Lu$_2$Ge$_3$O$_{12}$, Ca$_3$Y$_2$Ge$_3$O$_{12}$ and Ca$_3$Lu$_2$Ge$_3$O$_{12}$ host lattices. The spectra were measured by deuterium lamp excitation. The excitation spectra were recorded at the emission bands maximum and the emission spectra were excited at the excitation maxima, which are shown in the figure legend. All measurements were performed at 10 K.

Figure 3. Site selective excitation (a) and emission (b) spectra of Sr$_3$Y$_2$Ge$_3$O$_{12}$:0.01Eu$^{3+}$. All measurements were performed at RT.

Figures S1, S2 and S3 show the two excitation and emission spectra for the other three garnet compounds. They also indicate that the Eu$^{3+}$ dopants are at two different sites. Table 1 lists the wavelength maxima of the CT and NDE bands. We observe that the CT band shifts to higher energy from Sr$_3$Y$_2$Ge$_3$O$_{12}$ to Ca$_3$Lu$_2$Ge$_3$O$_{12}$ while the NDE band stays at almost the same position.

<table>
<thead>
<tr>
<th></th>
<th>CT-band</th>
<th>NDE-band</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sr$_3$Y$_2$Ge3O${12}$:Eu$^{3+}$</td>
<td>280 (4.43 eV)</td>
<td>235 (5.27 eV)</td>
</tr>
<tr>
<td>Sr$_3$Lu$_2$Ge3O${12}$:Eu$^{3+}$</td>
<td>265 (4.68 eV)</td>
<td>232 (5.34 eV)</td>
</tr>
</tbody>
</table>
Figure 4 and 5 show the PLE and PL spectra of Ce3+ single doped (Sr, Ca)\textsubscript{3}(Y, Lu):Ge\textsubscript{3}O\textsubscript{12} phosphors recorded at 10 K. The PLE and PL spectra of Sr\textsubscript{3}Y\textsubscript{2}Ge\textsubscript{3}O\textsubscript{12}:Ce3+ measured at room temperature is displayed in Figure S4, and it does not show much difference to the low temperature spectra.

The excitation spectra were recorded at the emission peak maxima, and the emission spectra were excited at the Band A peak maxima. All the measurements were carried out at 10 K.

Figure 5. (a) PLE spectrum of Sr\textsubscript{3}Y\textsubscript{2}Ge\textsubscript{3}O\textsubscript{12}:0.01Ce3+ monitored at 425 nm. (b) PL spectra of Sr\textsubscript{3}Y\textsubscript{2}Ge\textsubscript{3}O\textsubscript{12}:0.01Ce3+, Sr\textsubscript{3}Lu\textsubscript{2}Ge\textsubscript{3}O\textsubscript{12}:0.01Ce3+, Ca\textsubscript{3}Y\textsubscript{2}Ge\textsubscript{3}O\textsubscript{12}:0.01Ce3+ and Ca\textsubscript{3}Lu\textsubscript{2}Ge\textsubscript{3}O\textsubscript{12}:0.01Ce3+ excited by 300 nm UV irradiation. All the measurements were carried out at 10 K.

The excitation spectra in Figure 4 ranging from 250 to 500 nm are composed of two bands: one intense band in the blue range (420-435 nm, Band A) and one weak band in the UV range (300-315 nm, Band B). A broad emission band centered at ~500 nm can be observed for all
the samples when excited at Band A maxima, and it is composed of the two unresolved Ce$^{3+}$ 5d1-F$^5/2$ and 5d1-F$^7/2$ emission bands. When excited by 300 nm UV irradiation, a new band centered at ~ 425 nm appears for all samples shown in Figure 5(b). A representative excitation spectrum of Sr$_3$Y$_2$Ge$_3$O$_{12}$:Ce$^{3+}$ monitored at 425 nm emission is shown in Figure 5(a). It seems that Ce$^{3+}$ occupies two different sites.

Figure 6. Temperature dependence of Ca$_3$Y$_2$Ge$_3$O$_{12}$:0.01Ce$^{3+}$. The excitation monometer was set as 425 nm. The solid curve through the data is a fitted curve. The measurement was carried out by a liquid helium cryostat.

Figure 6 shows the thermal quenching curve of Ca$_3$Y$_2$Ge$_3$O$_{12}$:0.01Ce$^{3+}$ from 50 to 350 K. The quenching temperature ($T_{0.5}$) where intensity has reduced by 50% is at ~265 K. The activation energy for thermal quenching can be derived from

\[
I(T) = \frac{I(0)}{1 + Ce^{(-E/kT)}}
\]

Where \(I(T) \) and \(I(0) \) is the intensity at temperature T and 50 K, \(k \) is the Boltzmann constant. A fit through the data in Figure 6, as indicated by the solid curve provides \(E = 0.27 \) eV, which is indicative for the energy difference between the 5d1 state and the bottom of the CB.
3.2 Thermoluminescence glow curves of (Sr, Ca)\textsubscript{3}(Y, Lu)\textsubscript{2}Ge\textsubscript{3}O\textsubscript{12}:Ce3+,Sm3+

Figure 7. Low temperature thermoluminescence (LTTL) glow curves of (a) Sr\textsubscript{3}Y\textsubscript{2}Ge\textsubscript{3}O\textsubscript{12}:0.01Ce3+,0.01Sm3+, (b) Sr\textsubscript{3}Lu\textsubscript{2}Ge\textsubscript{3}O\textsubscript{12}:0.01Ce3+,0.01Sm3+, (c) Ca\textsubscript{3}Y\textsubscript{2}Ge\textsubscript{3}O\textsubscript{12}:0.01Ce3+,0.01Sm3+ and (d) Ca\textsubscript{3}Lu\textsubscript{2}Ge\textsubscript{3}O\textsubscript{12}:0.01Ce3+,0.01Sm3+. All measurements were carried out with the low-temperature TL setup from 90 to 450 K after 1600 s irradiation by its β source. The heating rate was 1 K/s for all TL-recordings. The TL glow curves were measured with a 490 nm bandpass filter (490FS10-50) to transmit the 5d-4f Ce3+ emission (at ~ 500 nm).

In Figure 7 the calibrated LTTL glow curves from Ce3+ 5d-4f emission in (Ce3+, Sm3+) co-doped (Sr, Ca)\textsubscript{3}(Y, Lu)\textsubscript{2}Ge\textsubscript{3}O\textsubscript{12} are shown. Several co-doping combinations of (Ce3+, Sm3+), (Ce3+, Eu3+), (Ce3+, Tm3+) and (Ce3+, Yb3+) were tried but only the (Ce3+, Sm3+) combination gives TL within this measurement range. The temperature T\textsubscript{m} where TL is maximum depends on the host lattice and ranges from 160 K for Sr\textsubscript{3}Lu\textsubscript{2}Ge\textsubscript{3}O\textsubscript{12}: Ce3+, Sm3+ to 200 K for Ca\textsubscript{3}Y\textsubscript{2}Ge\textsubscript{3}O\textsubscript{12}: Ce3+, Sm3+.

The trap depth E of the Sm3+ trapping centre in (Ce3+, Sm3+) co-doped (Sr, Ca)\textsubscript{3}(Y, Lu)\textsubscript{2}Ge\textsubscript{3}O\textsubscript{12} were determined using the T\textsubscript{m} from Figure 7 and employing14

\[
\frac{\beta E}{kT_m^2} = s \exp\left(-\frac{E}{kT_m}\right)
\]

where \(\beta = 1\) K s\(^{-1}\) is the heating rate, \(k\) is the Boltzmann constant, and \(s\) is the frequency factor14. The frequency factor \(s\), which is related to the host lattice vibrational mode, is estimated using the most intense vibrational energy for trigonal GeO\textsubscript{2} (P\textsubscript{3}21) of 444 cm\(^{-1}\) (1.3x1013s\(^{-1}\))15-36, where Ge has the same coordination number as in (Sr, Ca)\textsubscript{3}(Y, Lu)\textsubscript{2}Ge\textsubscript{3}O\textsubscript{12} (for both CN=4). We assumed a similar value for our samples due to a similar [GeO\textsubscript{4}]4- group present. The estimated trap depth values can be found in Figure 7.
3.3 First Principle Calculations

The atomic structures of the representative pure Sr$_3$Y$_2$Ge$_3$O$_{12}$ and Ca$_3$Y$_2$Ge$_3$O$_{12}$ unit cells were optimized using hybrid DFT with the standard PBE0 functional containing 25% HF exchange. The calculated lattice constants were compared with the experimental ones reported in literatures (Table S1$^{37-38}$).

On the basis of the optimized atomic structures, the band gaps were calculated by using the same DFT functional with a modified PBE0 hybrid functional. The percentage of HF exchange was changed until optimal correspondences with the experimental values are obtained, with 32% HF exchange$^{39-40}$. The modified PBE0 functional gives band gap values of 6.33 eV for Sr$_3$Y$_2$Ge$_3$O$_{12}$ and 6.53 eV for Ca$_3$Y$_2$Ge$_3$O$_{12}$, to be compared with the experimental values (6.37 for Sr$_3$Y$_2$Ge$_3$O$_{12}$ and 6.60 eV for Ca$_3$Y$_2$Ge$_3$O$_{12}$). Those experimental values are from the exciton creation peaks in Figure 2. To account for the exciton binding energy, a mobility band gap of 1.08*E$_{ex}$ was assumed9.

Figure 8 shows the total and orbital-projected densities of states (DOSs) for the Sr$_3$Y$_2$Ge$_3$O$_{12}$ and Ca$_3$Y$_2$Ge$_3$O$_{12}$ unit cells. The Fermi levels at the top of the valence band are set at 0 eV. The VB of both samples are formed primarily by O 2p orbitals. The bottom of the conduction band for both compounds is composed of discrete peaks, for which an enlarged view is shown in the insets. The CB edge state is constituted by a small peak at 6.33 eV for Sr$_3$Y$_2$Ge$_3$O$_{12}$ and 6.53 eV for Ca$_3$Y$_2$Ge$_3$O$_{12}$, which is mainly derived from s-character states of Ge and O atoms and d-character states of Y and Sr/Ca atoms. The other discrete peaks have additional contributions from p-character states of O and Ge atoms. Above these, the conduction band consists mainly of Y d, Sr/Ca d, and O p states.

![Figure 8](image_url)

Figure 8. Total and orbital-projected DOSs for the (a) Sr$_3$Y$_2$Ge$_3$O$_{12}$ and (b) Ca$_3$Y$_2$Ge$_3$O$_{12}$ unit cells calculated by DFT with the PBE0 hybrid functional containing 32% HF exchange and a 2×2×2 k-point grid to sample the Brillouin zone. The enlarged views of the DOS for the edge of conduction bands are shown in the inset.
Relative to the DOS at the energy of the deeper Y 4s states (below ~40 eV) in Sr$_3$Y$_2$Ge$_3$O$_{12}$, we observe that, the valence band of Ca$_3$Y$_2$Ge$_3$O$_{12}$ moves downward by 0.13 eV, while the conduction band moves upward by 0.07 eV, giving rise to a 0.2 eV larger band gap.

The Ce$^{3+}$ 4f \rightarrow 5d$_{1,5}$ transition energies were calculated by wave-function-based CASSCF/CASPT2 functions with spin-orbit coupling. The relative intensity of the 5d-4f transitions are calculated by RASSI–SO wave functions and the energies at the spin-orbit level41. Calculations were performed for Ce on the dodecahedral Sr and Ca site and for Ce on the octahedral Y site. The results are listed in Table 2, and a comparison with experimental data from Figure 4(a) and 5(a) are shown in Figure 9. For Ce$^{3+}$ in octahedral and dodecahedral sites, the two sets of calculated energy levels are quite different both for 4f and 5d level energies.

Table 2. Calculated energy levels of 4f and 5d configurations for the Ce$^{3+}$ in Sr$_3$Y$_2$Ge$_3$O$_{12}$ and Ca$_3$Y$_2$Ge$_3$O$_{12}$ at different sites. All the units are wavenumber (cm$^{-1}$).

<table>
<thead>
<tr>
<th></th>
<th>Sr$_3$Y$_2$Ge3O${12}$</th>
<th>Ca$_3$Y$_2$Ge3O${12}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ce$_{Sr}$ 5d\rightarrow4f intensities</td>
<td>Ce$_{Y}$ 5d\rightarrow4f intensities</td>
</tr>
<tr>
<td>4f$_1$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4f$_2$</td>
<td>124</td>
<td>1151</td>
</tr>
<tr>
<td>4f$_3$</td>
<td>881</td>
<td>1276</td>
</tr>
<tr>
<td>4f$_4$</td>
<td>2263</td>
<td>2378</td>
</tr>
<tr>
<td>4f$_5$</td>
<td>2380</td>
<td>3558</td>
</tr>
<tr>
<td>4f$_6$</td>
<td>2866</td>
<td>3669</td>
</tr>
<tr>
<td>4f$_7$</td>
<td>3668</td>
<td>4293</td>
</tr>
<tr>
<td>5d$_1$</td>
<td>26423</td>
<td>1.00</td>
</tr>
<tr>
<td>5d$_2$</td>
<td>33791</td>
<td>0.09</td>
</tr>
<tr>
<td>5d$_3$</td>
<td>43869</td>
<td>1.07</td>
</tr>
<tr>
<td>5d$_4$</td>
<td>48218</td>
<td>0.11</td>
</tr>
<tr>
<td>5d$_5$</td>
<td>51756</td>
<td>0.28</td>
</tr>
</tbody>
</table>

![Graphs](image-url)
Figure 9. Schematic representation of the calculated energies of the 4f-5d transitions of Ce$^{3+}$ on the octahedral (Y) and the dodecahedral site (Sr/Ca) sites for Sr$_3$Y$_2$Ge$_3$O$_{12}$ and Ca$_3$Y$_2$Ge$_3$O$_{12}$. (a) PLE spectrum of Sr$_3$Y$_2$Ge$_3$O$_{12}$:0.01Ce$^{3+}$ monitored at 500 nm. (b) Calculated Ce$^{3+}$ 5d levels for Sr$_3$Y$_2$Ge$_3$O$_{12}$:0.01Ce$^{3+}$ at the Y site. (c) PLE spectrum of Sr$_3$Y$_2$Ge$_3$O$_{12}$:0.01Ce$^{3+}$ monitored at 425 nm. (d) Calculated Ce$^{3+}$ 5d levels for Sr$_3$Y$_2$Ge$_3$O$_{12}$:0.01Ce$^{3+}$ at the Sr site. (e) PLE spectrum of Ca$_3$Y$_2$Ge$_3$O$_{12}$:0.01Ce$^{3+}$ monitored at 490 nm. (f) Calculated Ce$^{3+}$ 5d levels for Ca$_3$Y$_2$Ge$_3$O$_{12}$:0.01Ce$^{3+}$ at the Y site. (g) Calculated Ce$^{3+}$ 5d levels for Ca$_3$Y$_2$Ge$_3$O$_{12}$:0.01Ce$^{3+}$ at the Ca site.
4. Discussion
We will first deal with the question raised in the introduction regarding the site occupancy followed by the questions regarding location of the lanthanide levels with respect to the host bands and how that changes with type of host garnet.

4.1 Eu$^{3+}$ charge transfer band and the site occupancy
The Eu$^{3+}$ charge transfer (CT) energy defines the energy to transfer an electron from the top of the valence band to Eu$^{3+}$ which then becomes divalent42. Therefore, the Eu$^{3+}$ CT energy provides the location of the Eu$^{2+}$ ground state above the VB43. The vacuum referred electron binding energy in the Eu$^{2+}$ ground state appears within the chemical shift model always near -4 eV in oxides39,40. This means that the Eu$^{3+}$ CT energy gives direct information about the position of the VB maximum. The first principle calculation showed that the VB of Ca$_3$Y$_2$Ge$_2$O$_{12}$ moves downward by 0.13 eV with respect to that of Sr$_3$Y$_2$Ge$_2$O$_{12}$ if aligned by the Y 4s states. This calculation is consistent with Table 1 where the excitation bands in column 2 shifts towards about 0.1-0.2 eV higher energy when Sr is replaced by the smaller Ca or Y by the smaller Lu. Therefore, we assign the 280 nm band in Figure 3 as the CT band, and the same for Figure S1, S2 and S3. The excitation band in column three of Table 1 that remains at almost the same position is assigned to a near defect exciton (NDE) band.

For Eu$^{3+}$ we found evidence in Figure 3 and S1-S3 for emission from a site with and without inversion symmetry. In (Sr, Ca)$_2$(Y, Lu)$_2$Ge$_2$O$_{12}$ host lattice, the dodecahedral site is the non-inversion site (due to the 222 point symmetry) while the octahedral site is the site with the inversion symmetry (due to the 3 point symmetry). This explains the difference relative intensity of $^5D_0^o_-^F_1$ and $^5D_0^o_-^F_2$ transition. On the other hand, when the trivalent Eu$^{3+}$ enters into the dodecahedral site, intrinsic charge compensation is needed. The extra positive charge introduced by Eu$^{3+}$ may generate defects like interstitial oxygen or cation vacancies (V$_{Sr}$ or V$_{Y}$) that will change the Sr (Ca)-O bond length and the polyhedral shape surrounding Sr (Ca), leading to a non-inversion symmetry environment.

4.2 Ce$^{3+}$ 4f-5d excited levels and site occupancy
Kalaji et al20 attribute the excitation bands in the UV and blue regions as shown in Figure 4 to the transitions from the $^2F_{5/2}$ ground state to the lowest two 5d excited states from Ce$^{3+}$ assumed to be located at the dodecahedral site. This was motivated by the observation that replacing Y$^{3+}$ with Lu$^{3+}$ barely affects the excitation spectrum and only slightly blue shifts the emission20. The one-site occupancy hypothesis cannot explain the extra emission band centred at ~425 nm when excited by 300 nm UV light (Figure 5). We attribute the 300 nm excitation band and the blue emission bands to a second Ce$^{3+}$ site. In order to confirm this, the theoretical Ce$^{3+}$ 5d excited states were calculated to analyse the Ce$^{3+}$ site occupancy and excitation spectra.

Table 2 compiles the calculated Ce$^{3+}$ 5d energies at the two different sites and Figure 9 visualizes it. From the correspondence between experiment and calculations we attribute the lowest broad energy excitation band (Band A) observed experimentally to the triplet 4f$_{1} \rightarrow$ 5d$_{1,3}$ transitions of Ce$^{3+}$ located at the octahedral site. The three 4f$ \rightarrow$ 5d transitions merge
into one single broad excitation band. The crystal field splitting between the 5d_1 and 5d_3 level for Ce^{3+} at this site are calculated as about 34100 cm^{-1} (4.22 eV) and 35050 cm^{-1} (4.34 eV) for Sr_3Y_2Ge_3O_{12} and Ca_3Y_2Ge_3O_{12}. We note that discrepancies exist between the calculated and experimental 4f \rightarrow 5d_{1,3} transitions of Ce^{3+}, which could be due to errors in the calculated local structure of Ce^{3+} at the Y^{3+} site of Sr_3Y_2Ge_3O_{12}.

The weak higher energy excitation band (Band B) in Figure 4 cannot be assigned to the doublet e-band for Ce^{3+} on an octahedral site which is predicted at much higher energy according to the calculation (Table 2). Next to band B, Figure 5a reveals two other excitation bands when monitoring emission at 425 nm in Sr_3Y_2Ge_3O_{12}:Ce^{3+}. Based on the agreement with the calculated energies for the 4f-5d bands for Ce on the dodecahedral site in Figure 9c and 9d all three excitation bands and the ~425nm emission band are attributed to Ce^{3+} on the dodecahedral site. The calculated data explain why the Ce^{3+} 4f \rightarrow 5d_{4,5} transitions for Ce^{3+} on both sites are not experimentally observed because excitation energies are higher than the bandgap energy.

In Figure 4, the 5d_1 band for Ce in the octahedral site blue shifts from 435 nm to 425 nm while the 5d_2 band for Ce in the dodecahedral site red shifts from 300 nm to 310 nm for Sr_3Y_2Ge_3O_{12}:Ce^{3+} and Ca_3Y_2Ge_3O_{12}:Ce^{3+}. Applying the empirical crystal field splitting equation \(E_{cfs} = \beta_{\text{poly}} R^{-2} \), where \(\beta_{\text{poly}} \) refers to the type of polyhedron that surrounds Ce^{3+} and R means the average bond length of Ce^{3+} to the nearby bonded anions (O^{2-} here)\(^{44}\). We know that for a certain polyhedron type, the shorter the bond length the larger the crystal field splitting will be. Table S2 shows that the bond length of Y-O in Ca_3Y_2Ge_3O_{12} (2.3330 Å) is longer than that in Sr_3Y_2Ge_3O_{12} (2.2494 Å). This suggests that the Ce^{3+} CFS at the octahedral site in Ca_3Y_2Ge_3O_{12} will be smaller than in Sr_3Y_2Ge_3O_{12}, leading the blue shift of the A band. The Ca (Ce)-O average bond length in Ca_3Y_2Ge_3O_{12} (2.5150 Å) is shorter than of Sr (Ce)-O (2.6174 Å), and apparently a stronger CFS leads to the red shift of the B band.

4.3 Energy level diagrams of (Sr, Ca)_3(Y, Lu)_2Ge_3O_{12}

We intend to construct a diagram where the binding energy of an electron in lanthanide defect states and in the host valence band and conduction band states can be compared with respect to one and the same energy reference. Usually, like in XPS and UPS studies and in ab initio and full principle calculations\(^{45-46}\), energies are referred to the top of the valence band which is then set as the zero of energy like in Figure 8 of this work. However, with such approach one cannot relate the binding energies in different compounds, like the four garnets of this work, to a common reference of energy. There are only a few solutions to this problem. In the field of semi-conductor science the valence band offset at the hetero-junction of two compounds can be determined\(^{47,48}\). In the field of electro-chemistry, valence band energies can be related to the standard hydrogen potential\(^{49-50}\). In the field of luminescence science, the chemical shift model, was developed in 2012 to construct a vacuum referred binding energy (VRBE) diagram that makes it possible to compare the binding at the VB maximum in different compounds with respect to a same reference energy. VRBE is defined as the energy needed to bring an electron from a level in the diagram to the vacuum outside the sample. The
energy at rest in vacuum or vacuum level is then defined as energy zero. Further details about the VRBE diagram can be found in Refs. 1 and 9.

Figure 10. VRBE diagram of \((\text{Sr, Ca})_3(\text{Y, Lu})_2\text{Ge}_3\text{O}_{12}\) and \(\text{Y}_3\text{Al}_5\text{O}_{12}\) with location of \(\text{Ce}^{3+}\), \(\text{Eu}^{2+}\), and \(\text{Sm}^{2+}\) levels.

Figure 10 shows stacked VRBE diagrams for \((\text{Sr, Ca})_3(\text{Y, Lu})_2\text{Ge}_3\text{O}_{12}\) with location of \(\text{Ce}^{3+}\), \(\text{Eu}^{2+}\), and \(\text{Sm}^{2+}\) levels. The detailed VRBE diagrams with all lanthanide impurity levels are shown in Figure S5 in the Supporting Information. The data used to construct the diagrams are listed in Table 3. We adopted a value of 6.73 eV for the so-called U-parameter in the chemical shift model for all four garnet compounds in this work. This translates to a VRBE value of -3.98 eV for \(\text{Eu}^{3+}\), -2.73 eV for \(\text{Sm}^{3+}\), and -5.42 eV for \(\text{Ce}^{3+}\)\(^{51,52}\). The charge transfer energy of \(\text{Eu}^{3+}\) in \((\text{Sr, Ca})_3(\text{Y, Lu})_2\text{Ge}_3\text{O}_{12}\) as was shown in Table 1 then provides the energy at the top of the VB. The decrease of the charge transfer energy of \(\text{Eu}^{3+}\) implies that the valence band energy moves upward. The bandgap energy was obtained from Figure 2 by adding 8% to the exciton banding energy in order to account for the electron hole binding energy in the exciton. The VRBE in the 5d states of \(\text{Ce}^{3+}\) was obtained by adding the calculated 5d energies in Table 2 for octahedral \(\text{Ce}^{3+}\) to the ground state energies. The VRBE in the \(\text{Ce}^{3+}\) 5d levels for \(\text{Sr}_3\text{Lu}_2\text{Ge}_3\text{O}_{12}\) and \(\text{Ca}_3\text{Lu}_2\text{Ge}_3\text{O}_{12}\) are the same as in \(\text{Sr}_3\text{Y}_2\text{Ge}_3\text{O}_{12}\) and \(\text{Ca}_3\text{Y}_2\text{Ge}_3\text{O}_{12}\), respectively, due to similar excitation spectra. The \(\text{Y}_3\text{Al}_5\text{O}_{12}\) VRBE diagram is added for comparison and the data comes from Ref.53.

Inspecting the VRBE for the valence band and the conduction band of \((\text{Sr, Ca})_3(\text{Y, Lu})_2\text{Ge}_3\text{O}_{12}\), Figure 10 shows that the VB maxima go downwards while the CB minima go slightly upward except for \(\text{Sr}_3\text{Lu}_2\text{Ge}_3\text{O}_{12}\) with decreasing the unit cell volume. The binding energies of the electrons in anions usually increase when the bond length to the coordinating ions decreases, which is a manifestation of the Madelung field. For \((\text{Sr, Ca})_3(\text{Y, Lu})_2\text{Ge}_3\text{O}_{12}\), the top of the VB is composed of O 2p orbitals. Therefore, on replacing Sr or Y by smaller Ca or Lu the bond length with O anions decreases and that promotes stronger O 2p shell electron binding energy as observed in Figure 10. The VRBE scheme is consistent with the calculated
data where it was found that the VB moves downward by 0.13 eV from Sr$_3$Y$_2$Ge$_3$O$_{12}$ to Ca$_3$Y$_2$Ge$_3$O$_{12}$ as compared to the energy of deep Y 4s orbitals (below -40 eV).

The CB bottoms in the (Sr, Ca)$_3$(Y, Lu)$_2$Ge$_3$O$_{12}$ garnets are on average at ~0.45 eV higher energy than in Y$_3$Al$_5$O$_{12}$. The VRBE scheme shows that the energy between the Ce$^{3+}$ 5d$_1$ level and the CB in (Sr, Ca)$_3$(Y, Lu)$_2$Ge$_3$O$_{12}$ is ~0.5 eV lower than in Y$_3$Al$_5$O$_{12}$:Ce$^{3+}$. It is well established, and particularly so for Y$_3$Al$_5$O$_{12}$ by Ueda et al., that the quenching of Ce$^{3+}$ 5d-4f emission is caused by thermal ionization of the 5d electron to the conduction band. Ueda et al. and Weber et al. reported that the thermal quenching temperature (T$_0.5$) is 643 K and 650 K, respectively24,55. The quenching temperature T$_{0.5}$ ~265 K for Ca$_3$Y$_2$Ge$_3$O$_{12}$:Ce$^{3+}$ in Figure 6 and corresponding 0.27 eV activation energy (ΔE) is ~0.5 eV lower than in Y$_3$Al$_5$O$_{12}$:Ce$^{3+}$ (0.77 eV). This is consistent with the VRBE diagram showing that the Ce$^{3+}$ 5d$_1$ in Ca$_3$Y$_2$Ge$_3$O$_{12}$ is 0.55 eV lower than in Y$_3$Al$_5$O$_{12}$ value. The low lying conduction band in the germanium based garnets is then the reason for the lower thermal quenching temperature of (Sr, Ca)$_3$(Y, Lu)$_2$Ge$_3$O$_{12}$:Ce$^{3+}$ as compared to the aluminate based garnet Y$_3$Al$_5$O$_{12}$:Ce$^{3+}$.

Table 3 The parameters to construct the VRBE diagram of (Sr,Ca)$_3$(Y,Lu)$_2$Ge$_3$O$_{12}$ and Y$_3$Al$_5$O$_{12}$. The units for all the parameters are eV.

<table>
<thead>
<tr>
<th>Compound</th>
<th>E^{ex}</th>
<th>E^{CT}</th>
<th>E_V</th>
<th>E_C</th>
<th>$E_{Sm^{2+}}$</th>
<th>$E_{Ce^{3+}}$ (GS)</th>
<th>$E_{Ce^{3+}}$ (5d$_1$)</th>
<th>$E_{Ce^{3+}}$ (5d$_2$)</th>
<th>$E_{Ce^{3+}}$ (5d$_3$)</th>
<th>$E_{Ce^{3+}}$ (5d$_4$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sr$_3$Y$_2$Ge3O${12}$</td>
<td>6.37</td>
<td>4.43</td>
<td>-8.43</td>
<td>-2.06</td>
<td>-2.73</td>
<td>-5.42</td>
<td>-2.54</td>
<td>-2.46</td>
<td>-2.33</td>
<td>1.69</td>
</tr>
<tr>
<td>Sr$_3$Lu$_2$Ge3O${12}$</td>
<td>6.37</td>
<td>4.68</td>
<td>-8.68</td>
<td>-2.31</td>
<td>-2.73</td>
<td>-5.42</td>
<td>-2.54</td>
<td>-2.46</td>
<td>-2.33</td>
<td>1.69</td>
</tr>
<tr>
<td>Ca$_3$Y$_2$Ge3O${12}$</td>
<td>6.59</td>
<td>4.77</td>
<td>-8.77</td>
<td>-2.07</td>
<td>-2.73</td>
<td>-5.42</td>
<td>-2.62</td>
<td>-2.54</td>
<td>-2.37</td>
<td>1.71</td>
</tr>
<tr>
<td>Ca$_3$Lu$_2$Ge3O${12}$</td>
<td>6.59</td>
<td>4.86</td>
<td>-8.86</td>
<td>-2.16</td>
<td>-2.73</td>
<td>-5.42</td>
<td>-2.62</td>
<td>-2.54</td>
<td>-2.37</td>
<td>1.71</td>
</tr>
<tr>
<td>Y$_3$Al5O${12}$</td>
<td>7.10</td>
<td>5.42</td>
<td>-9.38</td>
<td>-1.71</td>
<td>-2.73</td>
<td>-5.42</td>
<td>-2.71</td>
<td>-1.77</td>
<td>-0.67</td>
<td>0.08</td>
</tr>
</tbody>
</table>

For the TL-studies on Ce-Sm, Ce-Eu, Ce-Tm, and Ce-Yb co-doped samples, only the one with (Ce$^{3+}$, Sm$^{3+}$) co-doping showed a TL signal in the range of 90 to 450 K, see Figure 7. The VRBE diagram of Figure 10 and Figure S5 predict that of all the lanthanides only the ground state of divalent Sm, Eu and Yb will be below the CB. This indicates that the corresponding trivalent ions may act as electron traps and since the ground state of Ce$^{3+}$ is above the valence band it will act as a hole trapping center. The trap depths from the VRBE diagrams listed in Table 3 for Sm$^{2+}$ are 0.67, 0.42, 0.66 and 0.57 eV for (Ce$^{3+}$, Sm$^{3+}$) co-doped Sr$_3$Y$_2$Ge$_3$O$_{12}$, Sr$_3$Lu$_2$Ge$_3$O$_{12}$, Ca$_3$Y$_2$Ge$_3$O$_{12}$ and Ca$_3$Lu$_2$Ge$_3$O$_{12}$, respectively. These values are close to the trap depths derived from the thermoluminescence glow curves in Figure 7, which are 0.51, 0.44, 0.54 and 0.53 eV, respectively. This confirms that Sm$^{3+}$ co-dopant acts as the electron trapping center and since the TL glow is from Ce who acts as the hole trapping and the recombination center. The same phenomenon is also reported in lanthanides co-doped YPO$_2$:Ce$^{3+}$, GdAlO$_3$:Ce$^{3+}$ and Y$_3$Al$_5$O$_{12}$:Ce$^{3+}$, and Y$_3$Al$_5$O$_{12}$:Ce$^{3+}$. In these cases, Ce$^{3+}$ acts as the recombination center as well as the hole trapping center while the lanthanide co-dopants act as electron trapping centers.

The trap depth of Yb$^{2+}$ is always 0.81 eV deeper than that of Sm$^{2+}$, and for the four garnet compounds has an average value of ~1.43 eV (Figure S5). Adopting the frequency factor of
and a heating rate of 1K/s, the TL peak maximum temperature calculated with Eq. (2), is \(\sim 503 \text{ K} \). Figure 6 shows that at this TL temperature the Ce\(^{3+}\) emission is totally quenched. For Eu\(^{3+}\) co-doped samples, the Eu\(^{2+}\) trap depths are even 0.3 eV deeper than for Yb\(^{2+}\) this is the reason of the absence of TL glow peaks for (Ce\(^{3+}\), Yb\(^{3+}\)) and (Ce\(^{3+}\), Eu\(^{3+}\)) co-doping combinations.

5. Conclusion
Photoluminescence spectroscopy and first principle calculations were simultaneously performed in this research. Eu\(^{3+}\) and Ce\(^{3+}\) are found located at both dodecahedral and octahedral sites from the photoluminescence spectroscopy. Calculated data on 4f-5d transition energies for Ce\(^{3+}\) on both sites are consistent with the photoluminescence experimental results. The studied germanium based garnets are found to have \(\sim 1 \text{ eV}\) smaller bandgap than the yttrium aluminate garnet. The VRBE schemes reveal that the conduction bands of the studied germanium based garnets are at \(\sim 0.5 \text{ eV}\) lower energy and the valence bands at \(\sim 0.5 \text{ eV}\) higher energy than the yttrium aluminate garnet. A clear trend is observed that the valence band goes downwards with decreasing the unit cell volume. The lower lying conduction band causes a lower quenching temperature for the Ce\(^{3+}\) emission. Only Sm\(^{3+}\) as co-dopant provides a TL glow and other co-dopant lanthanides either cannot trap an electron or trap the electron too deep so that the recombination luminescence on Ce\(^{3+}\) will be quenched. The experimental spectroscopic results, the first principle calculations and the vacuum referred binding energies derived from the chemical shift model all provide a mutually consistent interpretation of the electron, luminescent, and trapping properties of the studied germanium based garnets. The combination of the experiments, first-principle calculations and the semi-empirical chemical shift model can be used as an alternative method to screen the luminescence materials for certain application (for instance, LED phosphors, afterglow, etc.) and to understand the luminescence mechanisms.

6. Acknowledgements:
This research is supported by the Dutch Technology Foundation (STW), which is the applied science division of NWO, and the Technology program of the Ministry of Economic Affairs. L. N. acknowledges support from the National Natural Science Foundation of China (Grant Nos. 11574003, 11174005).

7. Supporting Information:
Including PLE and PL spectra of Eu\(^{3+}\) single doped Sr\(_2\)Lu\(_2\)Ge\(_3\)O\(_{12}\), Ca\(_3\)Y\(_2\)Ge\(_3\)O\(_{12}\) and Ca\(_3\)Lu\(_2\)Ge\(_3\)O\(_{12}\), room temperature photoluminescence spectroscopy of Sr\(_2\)Y\(_2\)Ge\(_3\)O\(_{12}\); 0.01Ce\(^{3+}\), the low temperature (10K) PLE spectra of Ce\(^{3+}\) single doped (Sr, Ca\(_3\))(Y, Lu\(_2\))Ge\(_3\)O\(_{12}\) excited at 300 nm, comparison of the experimental and calculated lattice parameters and band gap, the lattice parameters for (Sr, Ca\(_3\))Y\(_2\)Ge\(_3\)O\(_{12}\) and Y\(_3\)Al\(_5\)O\(_{12}\) host lattices, the detail VRBE diagram of (Sr, Ca\(_3\))(Y, Lu\(_2\))Ge\(_3\)O\(_{12}\).
Reference
19. Uhlich, D.; Plewa, J.; Jüstel, T., Phase Formation and Characterization of Sr3Y2Ge3O12,
56. Krumpel, A. H.; Bos, A. J. J.; Bessière, A.; van der Kolk, E.; Dorenbos, P., Controlled Electron and Hole Trapping in YPO4:Ce3+,Ln3+ and LuPO4:Ce3+,Ln3+ (Ln=Sm, Dy, Ho, Er, Tm). *Phys. Rev. B.*, 2009, 80, 085103-085113.