Microstructure and hardness of SAC305 and SAC305-0.3Ni solder on Cu, high temperature treated Cu, and graphene-coated Cu substrates

Li, Shengli; Liu, Yang; Zhang, Hao; Cai, Hongming; Sun, Fenglian; Zhang, Guo Qi

DOI
10.1016/j.rinp.2018.10.005

Publication date
2018

Document Version
Publisher's PDF, also known as Version of record

Published in
Results in Physics

Citation (APA)

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.
Microstructure and hardness of SAC305 and SAC305-0.3Ni solder on Cu, high temperature treated Cu, and graphene-coated Cu substrates

Shengli Li, Yang Liu, Hao Zhang, Hongming Cai, Fenglian Sun, Guoqi Zhang

A R T I C L E I N F O

Keywords:
Sn-Ag-Cu
Microstructure
Hardness
Graphene
Soldering

A B S T R A C T

In this study, SAC305 and SAC305-0.3Ni solder balls were soldered onto Cu, high temperature treated Cu (H-Cu) and graphene coated Cu (G-Cu) substrates, respectively. The microstructure, the interfacial reaction, and the hardness of the solder joints were investigated. The interfacial intermetallic compound (IMC) is Cu6Sn5 in the solder joints of SAC305/Cu, SAC305/H-Cu, and SAC305/G-Cu. With the addition of 0.3 wt% Ni in the SAC305 solder, the interfacial IMC on Cu, H-Cu, and G-Cu transforms from Cu6Sn5 into (Cu, Ni)6Sn5. The thickness of Cu6Sn5 and (Cu, Ni)6Sn5 is the lowest on G-Cu substrate. Meanwhile, smooth (Cu, Ni)6Sn5 interfacial IMC layers are obtained in SAC305-0.3Ni/H-Cu and SAC305-0.3Ni/G-Cu solder joints. Both the SAC305 and the SAC305-0.3Ni solder bulks have the highest β-Sn content and the lowest concentration of eutectic phases on G-Cu substrate. Consequently, the hardness of the solder bulks on G-Cu is lower than that on the other two kinds of substrates.

I n t r o d u c t i o n

With the rapid development of electronic industry, miniaturization is the dominant trend of electronic devices. As the carrier of electrical, mechanical and thermal interconnection between components and substrate, the performance of the solder joint does not only directly affect the property but also affect long-time reliability of electronic products. For a solder joint, the interfacial reaction and IMC evolution between solder bulk and common substrates are critical issues to the reliability [1–3].

Sn-Ag-Cu (SAC) lead-free solder alloys are considered as promising candidates of Sn-Pb solder [4–6]. A series of publications have reported the researches of SAC solder on the common Cu substrate [7–10]. In order to improve the comprehensive properties of the SAC305 solder joints, a widely-used method is to add some additive elements into SAC305 solder alloy. Wang et al. [11] found that adding nano-SiO2 into Sn3.0Ag0.5Cu solders improved the wettability and refined the microstructure of the SAC305 solder bulk. Chan et al. [12] indicated that the addition of Zn in the SAC solder restrained the growth of the interfacial intermetallic compound (IMC) layer. The lowest growth rate of the IMC was obtained when the concentration of Zn nanoparticles was 0.3 wt%. Gu et al. [13] added Co nanoparticles into SAC305 solder. The growth of the interfacial IMC layer was suppressed and the shear strength was improved due to the increasing Co content. The research by Li et al. [14] illustrated that the growth rate of Cu-Sn IMC decreased when Er element was added into SAC305 solder alloy. Yang et al. [15] discovered that the addition of Ag in the SAC solder alloy hindered the diffusion of the Cu atoms through the interface and suppressed the growth of the interfacial IMC layer.

The other way to improve the properties of the interfacial IMC layer is to modify the surface layer of the substrates or to use different types of substrates. Sn–Ag–Zn–In lead-free solder balls were soldered onto Ni substrate by Xu et al. [16]. Ni substrate had impacts on the microstructure of the solder bulk as well as the thickness of the interfacial IMC layer. Zou et al. [17] reported that the morphology of IMC layer transformed from the scallop layer into planar layer on Ag substrate. The tensile strength of the SAC/Ag3Sn interface was lower than that of Ag/Ag3Sn. Zhang et al. [18] demonstrated that the thickness of the interfacial IMC layer increased significantly by adding 0.5 wt% Ni into Cu substrate. Wang et al. [19] studied the thickness of Ni3Sn4 layer on the interfacial reaction between Sn-Bi alloy and Ni substrates. The thickness of the IMC layer was improved significantly when Ni content was up to 5%.

As introduced above, adding additive elements into solder alloy and modifying the constituent of substrates are effective methods to improve the reliability of solder joints. In this research, high temperature treatment and graphene-coating process were conducted to Cu substrate. The microstructure, IMC, and the hardness of SAC305 and...
SAC305-0.3Ni solder alloys were melted into solder balls with the diameter of 1.6 mm. SAC305 and SAC305-0.3Ni solder balls were soldered onto Cu, H-Cu and G-Cu substrates under 260 °C for 60 s on a heating platform. In order to obtain G-Cu substrate, Cu substrate was heated up to 1000 °C in a heating furnace with the gases of Ar (300 sccm) and H2 (50 sccm) for 30 min. Next, the gases of CH4 (5 sccm), Ar (500 sccm), and H2 (50 sccm) were injected into the furnace for 8 min. In the end, the Cu substrate was cooled naturally with the gases of Ar (300 sccm) and H2 (50 sccm). The experimental procedure of H-Cu substrate was similar to the preparation of G-Cu substrate. Firstly, Cu substrate was heated up to 1000 °C in the heating furnace with the gases of Ar (300 sccm) and H2 (50 sccm) for 30 min. Secondly, the gases of Ar (500 sccm) and H2 (50 sccm) were injected into the furnace for 8 min. Finally, the Cu substrate was cooled with the gases of Ar (300 sccm) and H2 (50 sccm).

The morphology and the constituent of the solder bulks and the interfacial IMC layer in the solder joints were investigated by FEI scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS). The average thickness of the interfacial IMC layers of six specimens was measured by the AutoCAD software. The hardness of the solder bulks was characterized by SHIMADZU DUH-211S nanoindentation test and the hardness of the solder bulks was an average value of nine samples. Here, the loading speed was 4.9 mN/s, and the test force was 20 mN.

Results and discussion

Interfacial IMC of the solder alloy

Fig. 1 shows the cross-sectional morphology and EDS results of the interfacial IMC in the solder joints on Cu, H-Cu and G-Cu substrates. The interfacial IMC between SAC305 and three kinds of substrates are Cu₆Sn₅ according to the EDS results in Fig. 1(d), (e) and (f). As shown in Fig. 1(a), it is clear that the Cu₆Sn₅ layer has typical scallop morphology at the interface. As shown in Fig. 1(b), the thickness and the roughness of Cu₆Sn₅ solder layer on H-Cu substrate are thicker and smoother than that on Cu substrate. It is suggested that the structure of Cu substrate transforms from polycrystalline structure into single crystal structure after high temperature treatment. This phenomenon was approved by Tian et al. [20]. Their study indicated that the single crystal structure of Cu substrate affected the roughness of Cu₆Sn₅ layer. Meanwhile, the orientation of Cu₆Sn₅ grains was regular. Compared with SAC305/Cu and SAC305/H-Cu solder joints in Fig. 1(a) and (b), the thickness of Cu₆Sn₅ solder layer in the SAC305/G-Cu solder joint in Fig. 1(c) is lower than that of the other kinds of substrates. The growth of IMC layer in the SAC305/G-Cu solder joint is suppressed. As demonstrated by Chen et al. [21], the excellent protection performance of graphene-coated layer on G-Cu substrate prevented the surface of metal from oxidation. In addition, Ko et al. [22] indicated that interfacial reactions and IMC growth was suppressed by graphene layer of Cu substrate. Therefore, the graphene-coated layer is also considered as a barrier to the interfacial diffusion. The growth of the interfacial IMC layers could be suppressed by this graphene layer.

The interfacial morphology and EDS results of SAC305-0.3Ni/Cu, SAC305-0.3Ni/H-Cu and SAC305-0.3Ni/G-Cu solder joints are shown in Fig. 2. As shown in Fig. 2(a), (b) and (c), the interfacial IMC transforms from Cu₆Sn₅ into (Cu, Ni)₆Sn₅ on all the three kinds of substrates with the addition of 0.3 wt% Ni in the solder alloy. This transformation is approved by the EDS results in Fig. 2(d), (e) and (f). As shown in Fig. 2(a), the IMC layer in the SAC305-0.3Ni/Cu solder joint is tiny (Cu, Ni)₆Sn₅ grains, among which there are many gaps. Compared with the Cu₆Sn₅ layer in Fig. 1(a), the thickness of the (Cu, Ni)₆Sn₅ interfacial IMC layer on Cu substrate is higher than that of the SAC305 solder layer on Cu substrate. As shown in Fig. 2(b), the solder joint of SAC305-0.3Ni/H-Cu has smoother and thinner IMC layer than that on Cu substrate. Compared with the (Cu, Ni)₆Sn₅ IMC layers on Cu and H-Cu substrates in Fig. 2(a) and (b), the thickness and the roughness of (Cu, Ni)₆Sn₅ layer in the SAC305-0.3Ni solder joints are lower on G-Cu substrate as shown in Fig. 2(c). This can be attributed to the graphene-coated layer on G-Cu substrate, which restrains the growth of the interfacial IMC. As shown in Fig. 1(c) and Fig. 2(c), smoother and thicker
(Cu, Ni)$_6$Sn$_5$ IMC layer in SAC305-0.3Ni solder joints is obtained when comparing with that in the solder joints of SAC305/G-Cu.

Fig. 3 shows the thickness of the interfacial IMC layers of SAC305 and SAC305-0.3Ni on Cu, H-Cu and G-Cu substrates, respectively. As shown in Fig. 3, the thickness of Cu$_6$Sn$_5$ solder layer in the SAC305/Cu solder joint is approximately 3.2 μm. With the addition of 0.3 wt% Ni in the SAC305 solder alloy, the interfacial IMC transforms from Cu$_6$Sn$_5$ into (Cu, Ni)$_6$Sn$_5$. Meanwhile, the thickness of the IMC layer of SAC305-0.3Ni solder on Cu substrate significantly increases to 6.31 μm. With the addition of 0.3 wt% Ni in the solder alloy, the thickness of the interfacial IMC layer rises from 2.84 μm to 4.16 μm on H-Cu substrate and the thickness of the interfacial IMC layer ranges from 1.7 μm to 3.0 μm on G-Cu substrate. As the (Cu, Ni)$_6$Sn$_5$ has more nucleation sites than Cu$_6$Sn$_5$, the (Cu, Ni)$_6$Sn$_5$ IMC layers are thicker than the Cu$_6$Sn$_5$ IMC layers. This phenomenon illustrates that the addition of 0.3 wt% Ni in the solder alloy increases the thickness of the IMC layers in the solder joints of SAC305-0.3Ni/Cu, SAC305-0.3Ni/H-Cu and SAC305-0.3Ni/G-Cu.

As shown in Fig. 3, compared with the thickness of Cu$_6$Sn$_5$ layer in the SAC305/Cu solder joint, it is clear that the thickness of Cu$_6$Sn$_5$ layer in the SAC305/H-Cu solder joint is thinner. This phenomenon is attributed to the changes of the crystal structure on H-Cu substrate after high temperature treatment. Meanwhile, the thickness of the interfacial IMC layer in the solder joint of SAC305/G-Cu is lower than that of SAC305 IMC layers on Cu and H-Cu substrates. On one hand, the crystal structure of Cu substrate transforms during the graphene-coating process. On the other hand, the coated-graphene layer on G-Cu substrate works as a diffusion barrier at the interface of the solder joint. Therefore, the growth of the interfacial IMC layer is suppressed significantly.

Microstructure of the solder bulks in the solder joints

Fig. 4 shows the microstructure of the solder bulks in the solder joints of SAC305/Cu, SAC305/H-Cu and SAC305/G-Cu. As shown in Fig. 4(a) and (d), the microstructure of the solder bulk in the SAC305/Cu solder joint consists of two parts, the β-Sn phase and the eutectic phase. As presented in Fig. 4(b), the grain shape of the β-Sn phase in the SAC305/H-Cu solder joint is longer than that on Cu substrate. Meanwhile, the β-Sn grains present regular orientation in the solder bulk on H-Cu substrate. As H-Cu substrate transforms to single crystal structure during the high temperature treatment, the growth of the β-Sn phase is affected by the crystal orientation of the substrate. As shown in Fig. 4(c), compared with the microstructure of the solder bulk on Cu and H-Cu substrates, the microstructure of the SAC305 solder bulk has higher β-Sn content and lower concentration of eutectic phases on G-Cu substrate. Meanwhile, the growth of the β-Sn grains does not grow along any orientation as that on H-Cu substrate.

Fig. 5 shows the microstructure of the SAC305-0.3Ni solder bulks on Cu, H-Cu and G-Cu substrates. As shown in Fig. 5, the microstructure of the SAC305-0.3Ni solder bulks on Cu, H-Cu and G-Cu substrates is composed of the β-Sn phase and the eutectic phase. As shown in Fig. 4(a) and Fig. 5(a), the grain size of β-Sn slightly decreases with the addition of 0.3 wt% Ni, but the area of β-Sn has limited change. Meanwhile, a small quantity of IMC phases in the solder bulk is found in the SAC305-0.3Ni/Cu solder joint. As shown in Fig. 5(b), with the addition of Ni in the SAC305 solder alloy, the microstructure of the
Fig. 4. Microstructure of the solder bulks by SEM: (a) SAC305 on Cu, (b) SAC305 on H-Cu, (c) SAC305 on G-Cu, (d) EDS of β-Sn.

Fig. 5. Microstructure of the solder bulks by SEM: (a) SAC305-0.3Ni on Cu, (b) SAC305-0.3Ni on H-Cu, (c) SAC305-0.3Ni on G-Cu, (d) EDS of β-Sn.
SAC305-0.3Ni solder bulk on Cu substrate has higher β-Sn content and lower concentration of eutectic phase than that in the SAC305/H-Cu solder joint. The number of IMC phases increases due to the addition of Ni. Compared with the microstructure of the solder bulk in the SAC305/G-Cu solder joint in Fig. 4(c), the eutectic area of the SAC305-0.3Ni solder bulks decreases obviously and the grain size of β-Sn phase is smaller, as shown in Fig. 5(c). This is attributed to the fact that the addition of 0.3 wt% Ni in the solder alloy makes Cu₆Sn₅ in the eutectic phase and the supression of the eutectic phase. Therefore, the hardness of the solder bulk decreases.

Conclusion
1. Scallop-like Cu₆Sn₅ appears in the interfacial IMC of SAC305 on Cu, H-Cu and G-Cu substrates. Smooth IMC layers are obtained on G-Cu substrate. The thickness of the IMC layer on G-Cu substrate is lower than that on the other two kinds of substrates.
2. The interfacial IMC in the solder joints of SAC305-0.3Ni/Cu, SAC305-0.3Ni/H-Cu, and SAC305-0.3Ni/G-Cu is (Cu, Ni)₆Sn₅. Smooth IMC layers are obtained on H-Cu and G-Cu substrates. The thickness of the IMC on G-Cu is the lowest in all the three kinds of substrates.
3. Compared with the solder bulks of SAC305 on Cu, H-Cu, and G-Cu substrates, SAC305-0.3Ni has more refined β-Sn grains and lower concentration of eutectic phase. The hardness of SAC305-0.3Ni is slightly lower than that of SAC305 on the three kinds of substrates.
4. For both SAC305 and SAC305-0.3Ni, the solder bulks on G-Cu substrate have higher β-Sn content and lower concentration of eutectic phase than that on the other two kinds of substrates. The hardness of the solder bulks on G-Cu is the lowest.

Acknowledgement
This work is supported by National Natural Science Foundation of China (No. 51604090), Natural Science Foundation of Heilongjiang Province (No. E2017050), and University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (UNPYSCT-2015042).

References