How to optimize the spatial resolution of GRACE data for studying mass anomaly trends of the Greenland and Antarctic Ice Sheets? (PPT)

Ditmar, Pavel; Engels, Olga; Klees, Roland

Publication date
2018

Document Version
Final published version

Citation (APA)

Important note
To cite this publication, please use the final published version (if applicable). Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.
How to optimize the spatial resolution of GRACE data for studying mass anomaly trends of the Greenland and Antarctic Ice Sheets?

P. Ditmar, O. Engels, and R. Klees

Department of Geoscience and Remote Sensing
Delft University of Technology (Delft, The Netherlands)
Research questions

• How to obtain unbiased high-quality high-resolution estimates of mass trends within the ice sheets from GRACE data?
• How robust are the obtained estimates?
Primary input data

- **GRACE gravity field solutions:**
 - ITSG-Grace2016 (90x90)
 - (Degree-1, C_{20}): Y.Sun et al (2016)

- **Time interval:** 2003 – 2012
Mascon approach

- Synthesized gravity disturbances:
 - \(h = 500 \text{ km} \)
 - Point-to-point separation: \(1^\circ \)
 - Buffer width: 300 km
 - Inspired by: Forsberg & Reeh (2007)
- Parameterization:
 - Many small equal-size homogeneous patches inside Greenland
 - 9 homogeneous patches around Greenland
- Inversion:
 - bounded above (trend < 10 cm/yr)
Major problem with high-accuracy data:
- Model (discretization) errors: actual mass anomalies are not constant within patches (J.Ran)

-> Dynamic patch approach: Let us average multiple estimates obtained with slightly different parametrizations
Parametrizations of the dynamic patch approach: a few examples

A set of ~100 alternative parametrizations is typically considered
Result of the dynamic patch approach (patch sizes 150 : 0.5 : 200)

EWH trend

(C) Wikipedia
Validation data

Height trend

- ICESat-based height trends:
 - Resolution: 20x20 km
 - Courtesy: B. Gunter

Correlation coefficients between ICESat-based and GRACE-based trends are estimated.
Dynamic patch approach: dependence on the patch size

150:0.5:200

Corr: 47.4%

250:0.5:300

Corr: 48.7%

350:0.5:400

Corr: 44.6%
Dynamic patch approach: dependence on the data area

- 300 km
- 500 km
- 700 km
Dynamic patch approach: dependence on the data area (cont’d)

Corr: 47.4%

Corr: 44.8%

Corr: 42.1%
Dynamic patch approach: dependence on the upper bound

- Less than 10 cm/yr: Corr: 47.4%
- Less than 30 cm/yr: Corr: 43.5%
- Unlimited: Corr: 0.1%

ICESat-RACMO

GRACE(DMT2)-ICESat-RACMO

(cm/yr EWH)
Conclusions

• Dynamic patch approach is a powerful tool to obtain high-resolution estimates of mass trends within the ice sheets from GRACE data.

• The obtained estimates show a noticeable sensitivity to the considered range of patch sizes and the chosen data area.

• Setting a reasonable upper limit of trend estimates is critical (particularly, when patch sizes are small).
Future outlook

- Usage of state-of-the-art GRACE/GRACE-Follow-On data
- Further refinement of data processing strategy (incl. refinement of geographical constraints)
- Further validation of the obtained results
- Application to other geographical areas
Acknowledgements

We thank:

- **Institute or Geodesy (TU Graz)** for the development of GRACE monthly solutions
- **Y. Sun** for an estimation of degree-1 and \(C_{20}\) coefficients
- **A et al** for an estimation of the GIA signal (which was converted into the spherical harmonic domain by Y. Sun)
- **J. Ran** for defining the geometry of patches outside Greenland
- **B. Gunter** for the GrIS elevation change rates estimated from ICESat data