Laboratory Oerol
Designerly Ways of Knowing in the TU Delft Landscape Architecture elective project On Site, 2018
van der Velde, Rene

Publication date
2018

Document Version
Final published version

Published in
Aeolis_Gap the Border

Citation (APA)

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.
INTRODUCTION

Discussion on the synergies between scientific and artistic endeavours has been a recurring topic in academia, but has gathered new momentum since the turn of the millennium in response to among other things the urgency of global challenges such as climate change. The incapacity of nations and their various political systems to adequately address problems such as global warming has also been hampered by reservations and autonomy on the one hand, and artistic creativity and scientific integrity on the other, but have also been hampered by the fundamental differences between both realms. By extension, viable methodologies to bring both realms together, which might uphold disciplinary independence and integrity, have to date been lacking.

Dr. René van der Velde – Course co-ordinator Oerol_On Site 2018
Reflection: Design
Landscape Architecture elective project On Site, 2018

Laboratory Oerol:

128

have also been hampered by reservations and autonomy on the other, but have also been hampered by the fundamental differences between both realms. By extension, viable methodologies to bring both realms together, which might uphold disciplinary independence and integrity, have to date been lacking.

INTRODUCTION

Discussion on the synergies between scientific and artistic endeavours has been a recurring topic in academia, but has gathered new momentum since the turn of the millennium in response to among other things the urgency of global challenges such as climate change. The incapacity of nations and their various political systems to adequately address problems such as global warming has also been hampered by reservations and autonomy on the one hand, and artistic creativity and scientific integrity on the other, but have also been hampered by the fundamental differences between both realms. By extension, viable methodologies to bring both realms together, which might uphold disciplinary independence and integrity, have to date been lacking.

Dr. René van der Velde – Course co-ordinator Oerol_On Site 2018
Reflection: Design
Landscape Architecture elective project On Site, 2018

Laboratory Oerol:

128

have also been hampered by reservations and autonomy on the other, but have also been hampered by the fundamental differences between both realms. By extension, viable methodologies to bring both realms together, which might uphold disciplinary independence and integrity, have to date been lacking.

INTRODUCTION

Discussion on the synergies between scientific and artistic endeavours has been a recurring topic in academia, but has gathered new momentum since the turn of the millennium in response to among other things the urgency of global challenges such as climate change. The incapacity of nations and their various political systems to adequately address problems such as global warming has also been hampered by reservations and autonomy on the other, but have also been hampered by the fundamental differences between both realms. By extension, viable methodologies to bring both realms together, which might uphold disciplinary independence and integrity, have to date been lacking.

Dr. René van der Velde – Course co-ordinator Oerol_On Site 2018
Reflection: Design
Landscape Architecture elective project On Site, 2018

Laboratory Oerol:
engineering, is that it engages with an NWo funded research project entitled ‘Shorescape’ run by researchers from the Delft University of Technology and the University of Twente. This project addresses the problematique of sea-level rise caused by climate change by calling for the study, conceptualization and trialling of ways to foster wind-blown sand transport on the one hand and sand accretion/harvesting in lieu of strengthening the dune system as flood-barrier infrastructure. Specific to this project is the focus on the role of built environment features on landward sand dynamics (with an associated attention to the cultural-historical, recreational and ecological futures of dune landscapes). These built environment features range from large seaside towns and resorts to beach pavilions and subsidiary recreational infrastructures such as roads, paths and硬scapes, furniture, walls and fences. All these elements influence the aeolian (wind-driven) sediment transport towards the dunes, but at the moment little is known about the interaction between wind-driven sediment transport, built environment features and long-term dune development. To this end, Delft (group landscape architecture) and Twente (group coastal morphology) have joined forces to investigate and contribute to knowledge in this area. As such, the project was envisaged to incorporate a number of field trialling components for the project.

Delft University of Technology Installation

The Delft project was structured into an initial 5 week period including orientation, desk study, literature study, site visitation and concept development, followed by a second 5-week period including design elaboration, construction and project management (Fig. 1). The orientation phase included a workshop to introduce students to dune formation in which students made built rudimentary prototypes to play with accretion or erosion/transport of sand. Hessian screens were used successfully in accretion and were taken into the design process. A second part of the orientation phase was literature study on the topics of Garden, Place, Land Art, and Curation. In the desk study phase student teams analysed the development of the island landscape(s) as a series of four interacting layers: abiotic aspects such as geology, wind and water and their effects on the geomorphology and topography of the island; biotic-ecological aspects; cultural aspects such as agricultural and forestry practices and measures; and urban-tourism aspects such as infrastructure, settlements, holiday houses, beach shacks and recreation infrastructures. Input was also generated in this stage on the problematique of climate change and coastal dune systems in relation to the natural and cultural history of the island. The outcomes of these four chapters were collated in a 4-part ‘framing document’ that informed subsequent phases.

PROCESS & RESULTS

The Delft project was structured into an initial 5 week period including orientation, desk study, literature study, site visitation and concept development, followed by a second 5-week period including design elaboration, construction and project management (Fig. 1). The orientation phase included a workshop to introduce students to dune formation in which students made built rudimentary prototypes to play with accretion or erosion/transport of sand. Hessian screens were used successfully in accretion and were taken into the design process. A second part of the orientation phase was literature study on the topics of Garden, Place, Land Art, and Curation. In the desk study phase student teams analysed the development of the island landscape(s) as a series of four interacting layers: abiotic aspects such as geology, wind and water and their effects on the geomorphology and topography of the island; biotic-ecological aspects; cultural aspects such as agricultural and forestry practices and measures; and urban-tourism aspects such as infrastructure, settlements, holiday houses, beach shacks and recreation infrastructures. Input was also generated in this stage on the problematique of climate change and coastal dune systems in relation to the natural and cultural history of the island. The outcomes of these four chapters were collated in a 4-part ‘framing document’ that informed subsequent phases.

Delft University of Technology Installation

The Delft project was structured into an initial 5 week period including orientation, desk study, literature study, site visitation and concept development, followed by a second 5-week period including design elaboration, construction and project management (Fig. 1). The orientation phase included a workshop to introduce students to dune formation in which students made built rudimentary prototypes to play with accretion or erosion/transport of sand. Hessian screens were used successfully in accretion and were taken into the design process. A second part of the orientation phase was literature study on the topics of Garden, Place, Land Art, and Curation. In the desk study phase student teams analysed the development of the island landscape(s) as a series of four interacting layers: abiotic aspects such as geology, wind and water and their effects on the geomorphology and topography of the island; biotic-ecological aspects; cultural aspects such as agricultural and forestry practices and measures; and urban-tourism aspects such as infrastructure, settlements, holiday houses, beach shacks and recreation infrastructures. Input was also generated in this stage on the problematique of climate change and coastal dune systems in relation to the natural and cultural history of the island. The outcomes of these four chapters were collated in a 4-part ‘framing document’ that informed subsequent phases.

Figure 1. Didactic structure Oerol On-Site elective 2018

PROCESS & RESULTS

The Delft project was structured into an initial 5 week period including orientation, desk study, literature study, site visitation and concept development, followed by a second 5-week period including design elaboration, construction and project management (Fig. 1). The orientation phase included a workshop to introduce students to dune formation in which students made built rudimentary prototypes to play with accretion or erosion/transport of sand. Hessian screens were used successfully in accretion and were taken into the design process. A second part of the orientation phase was literature study on the topics of Garden, Place, Land Art, and Curation. In the desk study phase student teams analysed the development of the island landscape(s) as a series of four interacting layers: abiotic aspects such as geology, wind and water and their effects on the geomorphology and topography of the island; biotic-ecological aspects; cultural aspects such as agricultural and forestry practices and measures; and urban-tourism aspects such as infrastructure, settlements, holiday houses, beach shacks and recreation infrastructures. Input was also generated in this stage on the problematique of climate change and coastal dune systems in relation to the natural and cultural history of the island. The outcomes of these four chapters were collated in a 4-part ‘framing document’ that informed subsequent phases.

Delft University of Technology Installation

The Delft project was structured into an initial 5 week period including orientation, desk study, literature study, site visitation and concept development, followed by a second 5-week period including design elaboration, construction and project management (Fig. 1). The orientation phase included a workshop to introduce students to dune formation in which students made built rudimentary prototypes to play with accretion or erosion/transport of sand. Hessian screens were used successfully in accretion and were taken into the design process. A second part of the orientation phase was literature study on the topics of Garden, Place, Land Art, and Curation. In the desk study phase student teams analysed the development of the island landscape(s) as a series of four interacting layers: abiotic aspects such as geology, wind and water and their effects on the geomorphology and topography of the island; biotic-ecological aspects; cultural aspects such as agricultural and forestry practices and measures; and urban-tourism aspects such as infrastructure, settlements, holiday houses, beach shacks and recreation infrastructures. Input was also generated in this stage on the problematique of climate change and coastal dune systems in relation to the natural and cultural history of the island. The outcomes of these four chapters were collated in a 4-part ‘framing document’ that informed subsequent phases.

Delft University of Technology Installation

The Delft project was structured into an initial 5 week period including orientation, desk study, literature study, site visitation and concept development, followed by a second 5-week period including design elaboration, construction and project management (Fig. 1). The orientation phase included a workshop to introduce students to dune formation in which students made built rudimentary prototypes to play with accretion or erosion/transport of sand. Hessian screens were used successfully in accretion and were taken into the design process. A second part of the orientation phase was literature study on the topics of Garden, Place, Land Art, and Curation. In the desk study phase student teams analysed the development of the island landscape(s) as a series of four interacting layers: abiotic aspects such as geology, wind and water and their effects on the geomorphology and topography of the island; biotic-ecological aspects; cultural aspects such as agricultural and forestry practices and measures; and urban-tourism aspects such as infrastructure, settlements, holiday houses, beach shacks and recreation infrastructures. Input was also generated in this stage on the problematique of climate change and coastal dune systems in relation to the natural and cultural history of the island. The outcomes of these four chapters were collated in a 4-part ‘framing document’ that informed subsequent phases.

Figure 1. Didactic structure Oerol On-Site elective 2018

PROCESS & RESULTS

The Delft project was structured into an initial 5 week period including orientation, desk study, literature study, site visitation and concept development, followed by a second 5-week period including design elaboration, construction and project management (Fig. 1). The orientation phase included a workshop to introduce students to dune formation in which students made built rudimentary prototypes to play with accretion or erosion/transport of sand. Hessian screens were used successfully in accretion and were taken into the design process. A second part of the orientation phase was literature study on the topics of Garden, Place, Land Art, and Curation. In the desk study phase student teams analysed the development of the island landscape(s) as a series of four interacting layers: abiotic aspects such as geology, wind and water and their effects on the geomorphology and topography of the island; biotic-ecological aspects; cultural aspects such as agricultural and forestry practices and measures; and urban-tourism aspects such as infrastructure, settlements, holiday houses, beach shacks and recreation infrastructures. Input was also generated in this stage on the problematique of climate change and coastal dune systems in relation to the natural and cultural history of the island. The outcomes of these four chapters were collated in a 4-part ‘framing document’ that informed subsequent phases.

Delft University of Technology Installation

The Delft project was structured into an initial 5 week period including orientation, desk study, literature study, site visitation and concept development, followed by a second 5-week period including design elaboration, construction and project management (Fig. 1). The orientation phase included a workshop to introduce students to dune formation in which students made built rudimentary prototypes to play with accretion or erosion/transport of sand. Hessian screens were used successfully in accretion and were taken into the design process. A second part of the orientation phase was literature study on the topics of Garden, Place, Land Art, and Curation. In the desk study phase student teams analysed the development of the island landscape(s) as a series of four interacting layers: abiotic aspects such as geology, wind and water and their effects on the geomorphology and topography of the island; biotic-ecological aspects; cultural aspects such as agricultural and forestry practices and measures; and urban-tourism aspects such as infrastructure, settlements, holiday houses, beach shacks and recreation infrastructures. Input was also generated in this stage on the problematique of climate change and coastal dune systems in relation to the natural and cultural history of the island. The outcomes of these four chapters were collated in a 4-part ‘framing document’ that informed subsequent phases.

Figure 1. Didactic structure Oerol On-Site elective 2018

PROCESS & RESULTS

The Delft project was structured into an initial 5 week period including orientation, desk study, literature study, site visitation and concept development, followed by a second 5-week period including design elaboration, construction and project management (Fig. 1). The orientation phase included a workshop to introduce students to dune formation in which students made built rudimentary prototypes to play with accretion or erosion/transport of sand. Hessian screens were used successfully in accretion and were taken into the design process. A second part of the orientation phase was literature study on the topics of Garden, Place, Land Art, and Curation. In the desk study phase student teams analysed the development of the island landscape(s) as a series of four interacting layers: abiotic aspects such as geology, wind and water and their effects on the geomorphology and topography of the island; biotic-ecological aspects; cultural aspects such as agricultural and forestry practices and measures; and urban-tourism aspects such as infrastructure, settlements, holiday houses, beach shacks and recreation infrastructures. Input was also generated in this stage on the problematique of climate change and coastal dune systems in relation to the natural and cultural history of the island. The outcomes of these four chapters were collated in a 4-part ‘framing document’ that informed subsequent phases.
formed the basis for fieldwork analysis to be carried out in the next phase. At this stage the groups were re-shuffled into four new groups (design teams), each with an expert on one of the four chapters. These groups then brainstormed first ideas and prepared a prototype installation to be installed on site during the field trip.

During a field excursion, students explored a transect of the island including the site location, followed by an individual interpretation of the site using cartography, collages, photographs, drawings, paintings, animation and film and text. First concepts were then tested in trial installations, in which each of the installations is ‘enacted’ using the rest of the student group. Results from these various steps were then synthesized into a project brief. Four concepts were developed presented at the end of this stage, and a winner chosen for further development.

Gap the Border

The chosen concept entitled ‘Gap the Border’ starts as a symbolic representation of the stitching together of the two former islands De Schelling and Wexalia into Terschelling at the end of the middle ages; the waterway between the islands being located on the same place as the project. The stitch is ‘woven’ as a route from the foredunes to the ocean, and includes at the same time a gap down the centre which forms a route for festival visitors to move through the installation and symbolically walk the historic divide between the two islands. The height and extent of the installation forms an architectonic space in which the visitor can ‘enter’ and exit, and creating a particular kinaesthetic spatial experience. In terms of materials, the installation is constructed of hessian panels strung at different heights between wooden poles, conjuring up images of sails of bygone ships in the passage. As a sand accretion installation, the hessian panels were laid out in different angles to funnel or capture sand. The installation also connects the foredunes to the seaward sediment transport zone, setting up a movement of sand from this zone to the dunes which usually wouldn’t happen as the dominant winds on Terschelling results in a parallel sediment transport along the beach.

DISCUSSION / CONCLUSIONS

In terms of discussion of design vs engineering (from the perspective of landscape architecture), there has been a critical impact of site and island context on the design concept. Site readings - particularly the morphological development of the island over a long period - has inputted to the development of an historically-informed scheme. The scale of the installation is also derivative of its context, and the intention to create a form which has the scale of the island and its (island) context, and the spatial and experiential aspects of a landscape installation.

In relation to the broader discussion of the synergy of science and art, the project can be seen as an example of ‘designerly ways of knowing’ which breach both realms. These include the incorporation of characteristics of the site and its (island) context, and the spatial and experiential aspects of a landscape installation.

REFERENCES
