Green Open Access added to TU Delft Institutional Repository

‘You share, we take care!’ – Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Experimentally informed micromechanical modelling of cement paste: An approach coupling X-ray computed tomography and statistical nanoindentation

Hongzhi Zhang*, Branko Šavija, Mladenka Luković, Erik Schlangen

Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2628 CN, Delft, the Netherlands

A B S T R A C T

This work proposes a method for numerically investigating the fracture mechanism of cement paste at the microscale based on X-ray computed tomography and nanoindentation. For this purpose, greyscale level-based digital microstructure was generated by X-ray microcomputed tomography with a resolution of 2 μm/voxel length. In addition, statistics-based micromechanical properties (i.e. Young’s modulus and hardness) were derived from the grid nanoindentation test which was set to have an interaction volume the same as the resolution of the digital microstructure. A linear relationship between the two probability density functions of greyscale level and local Young's modulus was assumed and verified by the two-sample Kolmogorov-Smirnov (K-S) statistic. Based on this assumption, the fracture and deformation of a digital cubic volume with a dimension of 100 μm under uniaxial tension was simulated using a lattice fracture model. In addition, the influence of heterogeneity on fracture response was studied. Furthermore, the proposed method was compared with the results obtained from a traditional approach used previously by the authors in which discrete phases (capillary pore, anhydrous cement clinker, outer and inner hydration products) were considered. The two methods show similar crack patterns and stress-strain responses. The proposed method is regarded more promising as it captures also the gradient of material properties (within the discrete phases) in the cement paste.

1. Introduction

Cement paste is the main binding phase in concrete. As such, its mechanical properties are of great importance for the properties of this composite material. Therefore, prediction of concrete performance depends to a large extent on good understanding of cement paste behaviour. For predicting its mechanical properties, it is common to use micromechanical models. Micromechanical modelling of cement paste has generated considerable research interest recently as it provides an insight into the link between the material’s microstructure and its global functional performance. In order to simulate the fracture behaviour of cement paste, the microstructure and micromechanical properties of its constituents need to be characterised.

Cement paste is a multi-phase material comprising several phases, most importantly calcium silicate hydrate (C–S–H), calcium hydroxide (CH), anhydrous cement clinker and pores. Consequently, micromechanical models consider, in general, a multi-phase microstructure. This microstructure can be obtained either by numerical modelling [1-3] or experiments [4-7]. Both of these approaches rely heavily on the theoretical knowledge of the microstructure evolution of the material. Compared with the experiments, numerical cement hydration models have clear advantages in terms of time effort and ease of use. In such models cement clinkers are commonly modelled as spheres [1,2]. This simplification, however, has an influence on the simulated hydration of cement [8]. Cement hydration models that consider realistic particle shapes are still rare [3,9]. Regarding with the elasticity estimation, the simulated microstructure has a strong influence on early-age [10]. Although the microstructure has less influence in the later hydration stage, where phase volume fractions dominate the elasticity, it plays a key role in determining the material strength [11]. On the other hand, X-ray computed tomography (XCT) is becoming a general technique for three-dimensional microstructure characterisation of cement-based materials [7,12-14]. X-ray computed tomography can visualise the spatial distribution of cement phases with different densities by greyscale levels. The phase segmentation can then be performed to identify the spatial distribution of distinct hydration phases. However, phase segmentation is not a standardised technique: many methods exist, and it is difficult, if not impossible, to ascertain which segmentation method produces more accurate results. For example, the identified pore phase volume varies significantly depending on the applied segmentation method. In the literature [15] and [16], XCT images with similar resolution are obtained. However, a tangent-slope method merely depending on the greyscale level histogram results in a lower calculated porosity (8.65% [15]) compared with the one from Ref. [16] using theoretical porosity from Power’s model (30%) as criteria to conduct segmentation. Since this is only the first step in

* Corresponding author.
E-mail addresses: h.zhang-5@tudelft.nl (H. Zhang), b.savija@tudelft.nl (B. Šavija), m.lukovic@tudelft.nl (M. Luković), erik.schlangen@tudelft.nl (E. Schlangen).

https://doi.org/10.1016/j.compositesb.2018.08.102
Received 16 May 2018; Received in revised form 19 July 2018; Accepted 23 August 2018
Available online 27 August 2018
1359-8368/ © 2018 Elsevier Ltd. All rights reserved.
micromechanical modelling, there is uncertainty already in the input. As the models are built up, there are additional sources of uncertainty, and it would be of great use to minimize the subjectivity involved in the thresholding procedure of the multi-phase material structure. To this end, this article tries to address the following question: can we avoid thresholding and use directly the greyscale material structure obtained from X-ray computed tomography as input for the micromechanical modelling of cement paste?

Another important aspect for the micromechanical modelling of cement paste are the micromechanical properties of local hydration phases. These micromechanical properties can be measured by statistical nanoindentation [17–20] or calculated using molecular dynamics simulations [21,22]. At the moment, it is difficult to directly use the data from these simulations as the real crystalline structures in cement paste are more complex compared with the ideal situation. Furthermore, the input mechanical properties are resolution-dependent for the discrete micromechanics models [23]. This is because the material components and their relative amounts within the voxel (3-dimensional pixel) vary with the resolution. In the statistical nanoindentation test, a large number of indentation tests are performed in a grid without prior knowledge of the microstructure of the probed microvolume - generally termed the interaction volume [17]. The micromechanical properties (stiffness and hardness) of individual phases (anhydrous cement clinkers, low- and high-density hydration products) are extracted by analysing the histograms with statistical methods such as the deconvolution method [17,24,25]. These values are widely used as input to perform micromechanical simulations [15,16,18,26–30]. However, it should be noted that the scatter in the results is big and it is debated in literature whether this method can be used at all for heterogeneous materials like cement paste [24,25,31–33]. A reason for this is that, although the tip-radius is very small (in case of the typically used Berkovich tip), it is almost impossible to probe a single phase; in fact, a composite made up of different phases is probed by indenting the material with a diamond tip [25]. Furthermore, when dealing with cement paste, which is a 3D heterogeneous material, the indentation outcome is always influenced by the underlying material, which can be stiffer and harder or just the opposite [33]. On the other hand, a question always arising is how many phases should be considered in the modelling as it is still debated whether two clearly distinct phases with distinct mass densities exist [18,34–37]. Therefore, the following question is addressed: can we avoid deconvolution or averaging and use directly the micromechanical properties obtained from nanoindentation as input for the micromechanical modelling of cement paste?

This work proposes a new method for micromechanical simulations of cement paste based on a combination of statistical nanoindentation and XCT technique without the need for explicit identification of distinct phases. The material structure of cement paste was characterised by XCT and corresponding histogram of grey scale distribution. The probability density function (PDF) of micromechanical properties (i.e. histogram of micromechanical properties) was quantified using statistical nanoindentation. Without image segmentation or histogram deconvolution, micromechanical properties were directly correlated with the greyscale level by a linear equation. The linear relationship assumption was further verified by two-sample Kolmogorov-Smirnov (K–S) statistics. The influence of heterogeneity on fracture and deformation behaviour was studied by randomizing the “realistic” microstructure. Furthermore, the newly developed approach has been compared to the method considering distinct phases, previously used by the authors. Strengths and drawbacks of both methods are compared and discussed.

2. Experimental

2.1. Materials

The tested material was a standard grade OPC CEM I 42.5 N paste with 0.4 water-to-cement ratio. First, cement was mechanically mixed with deionized water and cast into a PVA cylinder mould (diameter 24 mm, height 39 mm). After 28 days hydration, the sample was demoulded and cut into discs with thickness of 2 mm using a diamond saw. Solvent exchange method using isopropanol was used to stop hydration of cement paste [38]. The middle portion of the slices was cut out to prepare the specimens for nanoindentation test.
2.2. XCT scanning

For acquiring greyscale based digital material structure, a small cement paste prism with cubic cross-section of 500 μm × 500 μm and length of 2 mm was produced by grinding, polishing and micro-dicing, and scanned by a Micro CT-Scanner (Phoenix Nanotom, Boston, MA, USA). The readers are referred to [23,39] for more details about the specimen preparation procedure. Fig. 1a shows the small prism fixed in a special holder that can be clamped by the rotatable stage of the CT-scanner. The X-ray source tube was set as 120 kev/60 μA during scanning. 2800 images with an exposure of 6 s were acquired on a digital GE DXR detector (3072 × 2400 pixels). The voxel resolution under these conditions was 2 × 2 × 2 μm³/voxel. Reconstructed slices were carried out with Phoenix Datos|x software and a 3D stack of 8-bit cross-section images were generated in the end. A cubic region of interest (ROI) with a length of 200 μm was extracted from the specimen for the statistical analysis (See Fig. 1b). To diminish the influence of beam hardening in the XCT experiment, the middle region of the specimen was chosen and analysed.

2.3. Nanoindentation

Prior to nanoindentation, the samples were ground and polished to achieve a smooth surface. For purpose of grinding, sandpapers (180, 240, 400, 600 and 800 and 1200 grit) were used in order and each sandpaper was used for 5 min-10 min. Instead of water, ethanol was used as a cooling liquid to prevent further hydration of residual cement clinkers. After grinding, samples were polished with diamond paste (6 μm, 3 μm, 1 μm, and 0.25 μm) on a lapping table in order and soaked into an ultrasonic bath to remove any residue between each polishing step. Sample preparation was performed just prior to testing to avoid carbonation of the tested surface.

An Agilent Nano Indenter G200 (Keysight, Santa Rosa, CA, USA) with a diamond Berkovich tip was used for nanoindentation tests. Quartz standard was indented before the test to ensure accuracy. Three specimens in total were tested. The indentation depth was 700 nm. For each specimen, a series of 25 × 20 indents were performed on a tightly spaced grid, with spacing of 20 μm between indents. This makes 1500 indents in total covering an area of 0.6 mm². The Continuous Stiffness Method (CSM) developed by Oliver and Pharr [40] was used. This method consists of superimposing a small oscillation on the primary loading signal and analysing the response of the system by means of a frequency-specific amplifier. As a consequence, it enables a continuous measure of contact stiffness as a function of indentation depth and not just at the point of initial unloading. Therefore, hardness and indentation modulus are obtained as a continuous function of surface penetration depth.

The nanoindentation measurements encompass mechanical properties of the local (indented) material microstructure but also the microstructure around the indent, generally with the length scale around
Fig. 4. Comparison of distributions of Young’s modulus and greyscale level with normalized axis: (a) histogram of two distributions; (b) cumulative probability of two distributions.

Fig. 5. A sketch of the interval conversion.

Fig. 6. Comparison of distributions of hardness and greyscale level with normalized axis: (a) histogram of two distributions; (b) cumulative probability of two distributions.
3–5 \(h_{\text{max}} \), where \(h_{\text{max}} \) is the maximum indentation depth \([41,42]\). This ratio between the indentation depth and interaction length (and volume) has been proposed in the literature \([43–45]\), where correlation of micromechanical and chemical properties measured by nanoindentation and WDS measurements (wavelength dispersive spectroscopy) was performed. In order to compare the results from nanoindentation and CT scan, it was necessary to make the interaction volume the same as the voxel size in CT scan. Therefore, the average \(E \) modulus and hardness were determined in the displacement range between 400 nm and 660 nm. For the calculation, Poisson’s ratio of the indented material was taken as 0.18 in the CSM method.

2.4. Experimental results and assumptions

As shown in Fig. 2a, the XCT provides visualization of the attenuation coefficients of material by greyscale level. Therefore, greyscale level of each individual voxel is determined by the attenuation coefficient of that voxel. It has been shown in the literature that the...
ment paste at this scale. Note that this does not mean that this is a
shown in Fig. 2b, which is expected statistically representative for ce-
there is a linear relationship between the greyscale level and the ma-
grey scale value can be correlated to the density and atomic number of
Simulated micromechanical properties of Portland cement paste (w/c = 0.4),
Table 1
Simulated stress-strain curve of cement paste under uniaxial tension
Fig. 11. Lattice system under uniaxial tension.
Fig. 12. Simulated stress-strain curve of cement paste under uniaxial tension test (points for which crack patterns are displayed are marked).
Table 1
Simulated micromechanical properties of Portland cement paste (w/c = 0.4), corresponding with Fig. 12.
<table>
<thead>
<tr>
<th>Young's modulus (GPa)</th>
<th>Tensile strength (MPa)</th>
<th>Strain at peak load (%)</th>
<th>Fracture energy (J/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.53</td>
<td>20.01</td>
<td>0.08</td>
<td>5.89</td>
</tr>
</tbody>
</table>
representative volume element (RVE) of cement paste. If an RVE exist
depends on the process that is being considered, for fracture of soft-
Similar to the greyscale level, there is a relation between density
With respect to bone material, elastic modulus can be linked to the CT
obtained from XCT, and micromechanical properties of cement paste.
For cement-based materials, no published data was
found defining this relationship because of the complex material
structure. As the main aim of this study is to show the possibility of
using a continuous model for micromechanical modelling of cement
paste, a simple linear relationship between the greyscale level and
elastic modulus was assumed. Nevertheless, this relationship has to be
validated before it can be used as input for the modelling. The dis-
tribution of the local Young's modulus and hardness are plotted in Fig. 3
with a bin size of 1 GPa from 0 to 120 GPa. To test this approach, a two-
sample Kolmogorov-Smirnov (K–S) test was performed. The K–S test is
a non-parametric test, which quantifies the distance between the cu-
mulative distribution functions of two samples [57,58]. The null hy-
thesis of K–S test generally sets as that the samples are drawn from the
same distribution. For two given one-dimensional PDFs, the K–S
statistic is:
\[D_{n,m} = \sup |F_{1,n}(x) - F_{2,m}(x)| \]
where \(F_{1,n} \) and \(F_{2,m} \) are the empirical distribution functions of the first
and second sample respectively, and \(\sup \) is the supremum function. The null hypothesis is rejected at level \(\alpha \) if
\[D_{n,m} > c(\alpha) \sqrt{\frac{n + m}{nm}} \]
where \(n \) and \(m \) are the sizes of first and second sample respectively. In general, the value of \(c(\alpha) \) is given by Ref. [59]:
\[c(\alpha) = \sqrt{\frac{1}{2} \ln \left(\frac{\alpha}{2} \right)} \]
As shown in Fig. 4a, the two PDFs are linearly normalized to the
range of 0–1 with a bin size of 0.01 and their cumulative probability
functions are plotted in Fig. 4b. Commonly, with respect to a porous
material, its stiffness approaches zero before its porosity equals 1 and a
critical porosity (< 100%) always exists to represent the porosity
leading to the zero stiffness [60]. In the XCT scan, voxels with porosity
higher than the critical value \(T_g \) can be detected (i.e. the air voxel with
100% porosity has a greyscale level equals 0.). However, a micro
volume with zero stiffness cannot be tested by nanoindentation. Fur-
thermore, a gap between the zero indentation modulus and minimum de-
dected modulus between 1 and 2 GPa with a probability of 0.3% is also
observed in the PDF of elastic modulus. Therefore, to make these two
distributions comparable, voxels having undetectable indentation
modulus have to be eliminated from the PDF of greyscale level. For this
purpose, a greyscale level (at the left tail) having the same probability
as the detectable sti-
ness was chosen as the threshold value (\(T_g = 42 \)).
Voxels having greyscale level lower than the threshold were then re-
moved from the probability distribution measurements. This makes the
initial greyscale level have the same probability as the minimum de-
tected indentation modulus. Note that the probability of the minimum
detected indentation modulus might change with the selected bin size.
A bin size of 1 GPa was adopted herein.
In this case, \(D_{n,m} \) is regarded as the maximum distance between the
two cumulative probability curves which is calculated as 0.0348, and the \(c(\alpha) \) is equal to 0.0351 with respect to a common level of \(\alpha = 0.05 \)
with \(m = 1500 \) and \(n = 125000 \) from Eq. (3). Therefore, it is concluded
from the K–S test that the null hypothesis cannot be rejected indicating
that the two samples are supposed to be drawn from the same

grey scale value can be correlated to the density and atomic number of
the material [46]. For a constant applied voltage of the X-ray tube, there
is a linear relationship between the greyscale level and the ma-
terial density [47]. By virtue of this relationship, X-ray tomography can be
used to measure local density variations within the material given
proper calibration [48–50]. However, due to the complex material
structure of cement paste, purely analytical solution mapping the at-
tenusation to physical density has not been achieved to date. Still,
greyscale level map can be assumed to represent the density distribu-
tion [6,7,15]. In this case, the reconstructed image is coded on 8-bit
(0–255) greyscale level. Value 0 is black corresponding to minimum
density. Value 255 is white corresponding to maximum density. A
greyscale level histogram of a volume with
200 µm × 200 µm × 200 µm (100 voxel × 100 voxel × 100 voxel) is
shown in Fig. 2b, which is expected statistically representative for ce-
ment paste at this scale. Note that this does not mean that this is a

Fig. 13 (c) Tensile strength
Fig. 13 (b) Young's modulus
Fracture energy
Fig. 13 (a) Young's modulus
Fig. 13 (d) Fracture energy

114
distribution with a 95% confidence level. Therefore, for a specific greyscale level \(g \) of one voxel, its local Young's modulus can be addressed as:

\[
E_{\text{local}} = \text{Min}(F(x)) + (\text{Max}(F(x)) - \text{Min}(F(x))) \frac{g - T_g}{(255 - T_g)}
\]

(4)

where \(T_g \) is the greyscale that corresponds to the voxel having modulus equals to zero and equals 42 in this case. \(\text{Min}(F(x)) \) and \(\text{Max}(F(x)) \) are the minimum and maximum values that can be derived from Young's modulus histogram, and equal to 1 GPa and 120 GPa respectively. This procedure is schematically shown in Fig. 5.

Another parameter that obtained by nanoindentation is the micro-hardness which can be further linked to the ultimate tensile strength of the probed micro volume. The ratio between micro hardness and tensile strength varies between 3 to 183 for different materials [61]. For cement paste, this ratio is found to be around 12 by the authors [39]. In this study, micro-cubes of cement paste were created and split using a nanoindenter. Tensile strength of individual phases in the material was then determined through inverse analysis. Since hardness of cement phases is known, a ratio between hardness and tensile strength was then obtained. The PDF of measured hardness is plotted against the greyscale level as shown in Fig. 6a. The two-sample K–S statistics as described above shows a maximum distance: \(D = 0.4392 \) (Fig. 6b), which is greater than the critical value \(c(\alpha) \) (0.0351) at the significance level: \(\alpha = 0.05 \). This indicates that the microhardness cannot be correlated with the greyscale level through a linear relation. In order to determine the microhardness, an empirical model in a form of power exponent \(H_{\text{local}} = aE_{\text{local}}^b \) is proposed to correlate the hardness with its corresponding Young's modulus and shows a good fit with a determination coefficient (R²) of 0.90 (Fig. 7). Therefore, the local tensile strength can be determined as:

\[
F_{\text{local}} = \frac{aE_{\text{local}}^b}{12}
\]

(5)

where \(a \) and \(b \) are the empirical constants fitted from the experimental results. In this case, \(a = 0.004288 \) and \(b = 1.626 \). Relationships developed in this section are used in the micromechanical model as further described.

3. Modelling approach

For micromechanical modelling, a lattice-type model was used.
particular external displacement. The beam element with the highest
labatory tests and in practice [64–66]. In this model, the material is
discretised as a set of lattice beam elements. A set of linear analyses is
then performed by calculating the response of the lattice mesh for a
particular external displacement. The beam element with the highest
stress-to-strength ratio is identified and removed from the lattice net-
work. In each of the analysis steps, a single beam element is removed
from the mesh, which represents the creation of a small crack, and
causing a decrease in stiffness of the system. The analysis is repeated,
with an updated mesh, until a pre-determined failure criterion is
achieved. In addition, the material heterogeneity can be easily con-
sidered by overlaying a material structure to the lattice mesh. In the
current study, the digitalized greyscale level based material structure
was used. The modelling details are as follows:

First, a volume of cube with length of 100 μm (50 voxels) was
randomly extracted from the greyscale images obtained by XCT (Fig. 8).
The red colour represents the material with highest density, while blue
denotes the lowest density. For each voxel, its corresponding Young's
modulus and tensile strength were assigned according to its greyscale
level (as described in section 2.4). For the simulations at this scale local
brittle behaviour (a linear elastic, purely brittle constitutive law at
beam level) is assumed. For the lattice modelling also a multi-scale
modelling approach is developed and then local softening is used at
higher scale levels [23,67].

Then a cell was defined within each voxel, as shown in Fig. 9. The
nodes were then randomly positioned in each cell. A parameter is de-
defined as the ratio between length of cell and voxel size to represent the
randomness of the mesh. If the cell length -to-voxel ratio is equal to 0,
there is no randomness, a node is then placed exactly in the centre of
the voxel, and a regular mesh is created. If, on the other hand, the ratio
is equal to 1, a node can be placed anywhere in the voxel, and a fully
random mesh is created. Note that as the simulated crack shape is af-
fected to a certain extent by the orientation of lattice elements, the
simulated fracture behaviour of materials are somewhat affected by the
choice of randomness [68]. In order to avoid large variations in length of
elements and introduce geometry disorder of material texture, a
randomness of 0.5 is generally adopted in the literature [39,63].

Delauyn triangulation was then performed on a set of nodes as
described by Yip et al. [69], see Fig. 9. The mesh configuration that is
chosen results in a Poisson's ratio of about 0.18 for the global perfor-
ance, which is realistic for cementitious materials [70].

Elasticity modulus of beam element was ascribed as the harmonic
average of the two connected voxels, while the tensile strength was
assigned as the lower value of the two [71,72]. The elements con-
necting to the voxels with greyscale level lower than T_g (determined in
section 2.4) were removed from the mesh as these voxels have un-
detectable indentation modulus. These removed elements represent the
pre-existing defects in the system (see section 2.4). The distributions
of input local mechanical properties are presented in Fig. 10.

After mapping micromechanical properties on the lattice mesh, a
computational uniaxial tensile test was performed. Nodal displacement
was imposed at one side while the deformation of nodes at the opposite
side was completely restrained, see Fig. 11.

Table 2 Simulated micromechanical properties of randomized material structure.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young's modulus</td>
<td>30.08 GPa</td>
</tr>
<tr>
<td>Tensile strength</td>
<td>64.99 MPa</td>
</tr>
<tr>
<td>Strain at peak load (%)</td>
<td>0.3</td>
</tr>
<tr>
<td>Fracture energy (J/m²)</td>
<td>20.45</td>
</tr>
</tbody>
</table>

Fig. 14. Comparison of simulated stress-strain diagrams for realistic micro-
structure and randomized microstructure (points for which crack patterns are
displayed are marked).

4. Numerical results and discussion

4.1. Results of proposed method

Fig. 12 shows simulated stress-strain curve from where Young's
modulus (E), tensile strength (f_t) and fracture energy (G_f) can be cal-
culated. The Young's modulus can be computed from the initial slope of
the curve, while tensile strength corresponds to the peak point. Fracture
energy was calculated from the post-peak part of the stress-strain curve as
(Fig. 12):

$$G_f = \int_{u_1}^{u_2} \sigma \, du$$ \hspace{1cm} (6)

where σ is the stress and u the displacement; u_1 corresponds to the
displacement at peak load; u_2 denotes displacement at failure state and
is regarded as 1 μm in this study. Note that the calculated fracture en-
ergy would be somewhat different if a different “cut-off” displacement
was selected, but the main purpose of this work was to compare the
fracture energy between different specimens. Herein, the simulated
micromechanical properties are listed in Table 1. Such high strength of
cement paste at microscale was recently experimentally measured by
the authors [73]. In this work, 100 × 100 × 100 μm³ cubes are pro-
duced and split using a wedge tip mounted on the nanoindenter. For
cement paste with w/c = 0.4 (prepared in the same way and using the
same materials as that used in the present study), the nominal splitting
strength was found to be 18.72 MPa on average with a standard de-
viation of 3.85 MPa. The tensile strength at this scale is almost one
order of magnitude larger than the value of laboratory centimetre sized
samples. This is mainly attributed to the fact that the micro sized spe-
cimens are free from air voids or defects larger than the sample size
which significantly decreases the macroscopic strength [74]. This trend
has been shown by a material structure informed multi-scale fracture
modelling [23]. Similar trend was observed in other quasi-brittle ma-
terials, e.g. nuclear graphite both experimentally [75] and numerically
[67]. The value of Young's modulus obtained in the simulation (28.53 GPa) is in between the results reported by Lukovic et al. (around
33 GPa) [33] and Zhang et al. (25.4 GPa) [39], and close to the elastic
resonance measurements (around 25 GPa) [76]. The difference between
the results reported in the literature could be explained by the het-
erogeneity nature of such material which introduces the fluctuation of
its micromechanical properties.

The deformed specimen in the final failure state is presented in
Fig. 13a. The red elements represent material with relatively high
modulus and strength, which can be regarded as the stiff inclusion in
the structure (possibly anhydrous cement clinkers). It is clear that a
main crack disturbed by the stiff inclusion forms through the middle part of the volume. Similar behaviour was reported by Lukovic et al. [77]. Furthermore, crack branching and trapping are also observed. In order to have a clear look of the crack distribution and formation progress, the fracture patterns at certain failure stage are presented following. As shown in Fig. 13b, the distributed microcracks tend to initiate in the vicinity of the pre-existing defects where stress concentrations occur. After a certain level, the distributed microcracks start localizing and nucleating and failure of the specimens follows (Fig. 13c). At the final stage (Fig. 13d), a main crack perpendicular to the loading direction is finally formed, leading to the failure of the test specimen.

4.2. Influence of heterogeneity

In order to investigate the influence of heterogeneity on the micromechanical performance of material structure, micromechanical properties presented in Fig. 10 were randomly distributed to the same lattice mesh, which means that each value of modulus/stiffness is simply randomly assigned to a lattice element in the mesh. This way, the connectivity of phases is neglected. Note that elements having no strength/stiffness are kept at the same locations. In this way, a randomized microstructure was formed and its fracture performance under uniaxial tension was computed and compared with the results considering the “realistic” microstructure. The simulated stress-strain curve and its corresponding micromechanical properties are presented in Fig. 14 and Table 2. It is observed that the two cases have similar stiffness with difference in a range of 5%, because the input micromechanical properties have the same PDF. Unlike the elastic modulus of composite materials that is influenced by the properties of material components and their relative amounts, the (fracture) strength is governed by the weakest link in the system. Furthermore, the connectivity of weak phases (or pores) is present in the “real” system but is lost in the “random” system. As presented in Fig. 15, a completely different fracture pattern is observed. The main crack leading to the final failure shifts to the upper side. More distributed micro cracks are formed.
before the localization and nucleation happen in the randomized microstructure. Therefore, as expected, the randomized microstructure has significantly higher strength, enables more deformation when reaches the peak load, and releases more fracture energy. Furthermore, it is worth mentioning that a sharper decrease occurs after reaching the peak load for the randomized microstructure, which is mainly attributed to the larger amount of pre-peak micro cracks compared to the “realistic” microstructure. On the other hand, for the “realistic” microstructure, localized cracks develop around the “stiff inclusions” (mainly anhydrous clinker particles) after the initial cracking stage [33]. These cracks tend to interconnect more easily, but make more tortuous crack patterns, which enable more stable post-peak behaviour.

4.3. Comparison with method considering discrete phases

For comparison, the method considering discrete phases (4-phase method) was performed on the same material structure. The input micromechanical properties of individual phases and their relative volume amount were derived from the statistical nanoindentation as shown in Fig. 16. This was achieved by a statistical deconvolution method consisting of fitting the experimental cumulative distribution of the measured modulus as described in Ref. [78]. It is assumed in this method that the distribution of each parameter is a combination of several Gaussian distributions, each corresponding to a different phase.

Table 3
Micromechanical properties of distinct solid phases determined by the deconvolution method and Eq. (5).

<table>
<thead>
<tr>
<th>Phase name</th>
<th>Young’s modulus (GPa)</th>
<th>Tensile strength (MPa)</th>
<th>Relative amount (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outer hydration product</td>
<td>23.82</td>
<td>61.94</td>
<td>68.51</td>
</tr>
<tr>
<td>Inner hydration products</td>
<td>42.06</td>
<td>156.13</td>
<td>23.99</td>
</tr>
<tr>
<td>Anhydrous cement clinkers</td>
<td>90.30</td>
<td>540.78</td>
<td>7.5</td>
</tr>
</tbody>
</table>

Table 4
Local mechanical properties of lattice elements.

<table>
<thead>
<tr>
<th>Element type</th>
<th>Young’s modulus (GPa)</th>
<th>Tensile strength (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-A</td>
<td>90.30</td>
<td>540.78</td>
</tr>
<tr>
<td>A-I</td>
<td>57.89</td>
<td>156.13</td>
</tr>
<tr>
<td>A-O</td>
<td>37.70</td>
<td>61.94</td>
</tr>
<tr>
<td>I-I</td>
<td>42.06</td>
<td>156.13</td>
</tr>
<tr>
<td>I-O</td>
<td>30.42</td>
<td>61.94</td>
</tr>
<tr>
<td>O-O</td>
<td>23.82</td>
<td>61.94</td>
</tr>
</tbody>
</table>

Fig. 16. Experimental and theoretical probability density function plots of Young’s modulus from statistical indentation.

Fig. 17. Schematic view of threshold value determination.

Fig. 18. 4-phase microstructure segmented from greyscale level based microstructure in Fig. 6.

Fig. 19. Lattice discretization of 4-phase microstructure.
Three phases, namely outer hydration products (Phase 1), inner hydration products (Phase 2) and anhydrous cement clinkers (Phase 3) were determined and listed in Table 3. It is important to notice that these hydration products are averages overall all types of hydrates (including Portlandite, Ettringite, and Calcium Silicate Hydrates (C—S—H) of different mass densities) and small capillary pores. Although it is still under debate whether 3 phases should be distinguished from the statistical nanoindentation and what they indeed represent, again, the purpose of adopting this deconvolution method is to compare with the method using a continuous material structure proposed in this work. The distinction of two types of hydration products, inner and outer hydration products, is adopted here for simplification.

The elastic moduli of distinct phases (Table 3) determined in the current work are somewhat different from those reported results in the literature [17–19]. This is because the current results are derived from a different indentation depth, which results in a different interaction volume. The next step is related with segmentation phases from the greyscale level based microstructure. For this purpose, the global threshold method was applied. The cumulative distribution of greyscale level was used to determine the threshold value (see Fig. 17). In the current work, the upper threshold value of capillary pore (P) was determined by the tangent-slope method [4,15,39] in which greyscale value at inflection point in the cumulative distribution curve is used. This point represents the critical point where a small increment in the threshold value will cause a sharp increase in the segmented volume fraction of pores. The threshold of the rest phases were set to meet their relative amount determined by statistical nanoindentation. The determined relative amount is 0.0949, 0.6184, 0.2128 and 0.0740 for capillary pores (P), outer hydration products (O), inner hydration products (I) and anhydrous cement clinkers (A) respectively. The four intervals are then formed, and the voxel’s phase can be labelled according to the interval its greyscale level falls in. The segmented material structure and its corresponding lattice mesh are presented in Fig. 18 and Fig. 19 respectively. Note that elements connecting the voxel labelled as pore were eliminated from the mesh. Therefore, six types of elements with different mechanical properties were generated (Table 4).

As shown in Fig. 20, the simulated stress-strain curve of the 4-phase composite is compared with the results from greyscale level based microstructure. Although similar stress-strain response is found for the two methods, the 4-phase composite has a somewhat lower stiffness but higher strength and fracture energy (Table 5). The lower stiffness is mainly attributed to the higher porosity included in the material [74], while the higher strength is because of the big difference between assigned mechanical properties. For example, the anhydrous cement particle works as the stiff inclusion in the matrix, forcing the crack to propagate around it. This results in a more tortuous and overlapped crack pattern. Thus, a more stable crack propagation and higher strength can be expected [39]. The higher porosity in the 4-phase method reduces the number of elements in the lattice system, which makes the main crack forms with less cracked elements, as more pre-existing defects can be localized or nucleated to form to the main crack. Fig. 21 shows the cracked 4-phase composite at final stage and the crack patterns at certain deformation levels. Although it is observed that the crack patterns at pre-peak stage are different for these two methods because of the difference in the pre-existing defects spatial distribution, the final crack patterns at final stage are almost identical to each other. This indicates that, on one hand, the pre-peak crack propagation is mainly governed by pre-existing defects, one the hand the stiff inclusions have more influence on the post-peak crack propagation and localization. This is in accordance with expectations: the pre-peak phase is characterised by microcrack growth, which is influenced by the defects, while the post peak phase is characterised by bridging and branching, which are influenced by the inclusions.

4.4. General discussion

As shown in the comparison, a similar fracture pattern and stress-strain response is found in between the 4-phase method and greyscale level based method. It is difficult to determine which method gives more satisfactory results on the micromechanical modelling, but the proposed approach is more generic and direct. It requires less processing steps (no need for deconvolution or averaging of properties, which might introduce errors) and can be always applied once the link is made between the greyscale value and the micromechanical properties. As the intrinsic heterogeneity of cement paste is directly implemented from the XCT scanning, no additional assumptions need to be made with regard to distribution of local micromechanical properties. The 4-phase method distinguishes four homogeneous phases with distinct material properties (no gradients are considered due to deconvolution and averaging); in reality, none of the phases considered is completely homogeneous, and a gradient of material properties in each of the phases might exist. This is probably captured better with the current model. With respect to the application, the grey-scale based method requires less prior knowledge, as no processing of the XCT images and the measured micromechanical properties is required. Therefore, the greyscale level based method shows advantages in micromechanical modelling of a composite material with limited knowledge on the microstructure and micromechanical properties of its constituents. However, it should be noted that the local micromechanical properties should be the representative of the XCT resolution. This is because, with resolution variation, different amounts of capillary porosity or defects may be included in a voxel thereby introducing different micromechanical properties of the voxel. Therefore, when this method is applied, the interaction volume probed by the nanoindenter must be kept the same as the image voxel size. It is worth mentioning that this issue should also be considered when using the 4-phase method. Furthermore, it is possible to improve the spatial resolution of current microstructure to 0.5 μm by XCT scanning without changing the scanned size of the specimen [39], or to 50 nm resolution with different setting [79,80]. But, again, the corresponding micromechanical

Fig. 20. Comparison of simulated stress-strain diagrams for greyscale level based microstructure and 4-phase microstructure (points for which crack patterns are displayed are marked).

Fig. 21. Shows the cracked 4-phase composite at final stage and the crack patterns at certain deformation levels. Although it is observed that the crack patterns at pre-peak stage are different for these two methods because of the difference in the pre-existing defects spatial distribution, the final crack patterns at final stage are almost identical to each other. This indicates that, on one hand, the pre-peak crack propagation is mainly governed by pre-existing defects, one the hand the stiff inclusions have more influence on the post-peak crack propagation and localization. This is in accordance with expectations: the pre-peak phase is characterised by microcrack growth, which is influenced by the defects, while the post peak phase is characterised by bridging and branching, which are influenced by the inclusions.

Table 5
Simulated micromechanical properties of 4-phase composite microstructure.

<table>
<thead>
<tr>
<th>Young's modulus (GPa)</th>
<th>Tensile strength (MPa)</th>
<th>Strain at peak load (%)</th>
<th>Fracture energy (J/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.61</td>
<td>22.64</td>
<td>0.12</td>
<td>8.28</td>
</tr>
</tbody>
</table>

As shown in the comparison, a similar fracture pattern and stress-strain response is found in between the 4-phase method and greyscale level based method. It is difficult to determine which method gives more satisfactory results on the micromechanical modelling, but the proposed approach is more generic and direct. It requires less processing steps (no need for deconvolution or averaging of properties, which might introduce errors) and can be always applied once the link is made between the greyscale value and the micromechanical properties. As the intrinsic heterogeneity of cement paste is directly implemented from the XCT scanning, no additional assumptions need to be made with regard to distribution of local micromechanical properties. The 4-phase method distinguishes four homogeneous phases with distinct material properties (no gradients are considered due to deconvolution and averaging); in reality, none of the phases considered is completely homogeneous, and a gradient of material properties in each of the phases might exist. This is probably captured better with the current model. With respect to the application, the grey-scale based method requires less prior knowledge, as no processing of the XCT images and the measured micromechanical properties is required. Therefore, the greyscale level based method shows advantages in micromechanical modelling of a composite material with limited knowledge on the microstructure and micromechanical properties of its constituents. However, it should be noted that the local micromechanical properties should be the representative of the XCT resolution. This is because, with resolution variation, different amounts of capillary porosity or defects may be included in a voxel thereby introducing different micromechanical properties of the voxel. Therefore, when this method is applied, the interaction volume probed by the nanoindenter must be kept the same as the image voxel size. It is worth mentioning that this issue should also be considered when using the 4-phase method. Furthermore, it is possible to improve the spatial resolution of current microstructure to 0.5 μm by XCT scanning without changing the scanned size of the specimen [39], or to 50 nm resolution with different setting [79,80]. But, again, the corresponding micromechanical
properties should be determined from a smaller interaction volume. This can be achieved by deriving data from a shallower depth of nanoindentation test or using other techniques such as atomic force microscopy [81]. Furthermore, current limitations of the proposed method should be addressed. As we focus on the feasibility of the proposed continuous method, the relationship between the greyscale level and local mechanical properties was determined by assumption and statistical analysis. Although a validation procedure was carried out to prove the correctness of the assumption, a physical explanation is still lacking. Therefore, a throughout understanding of the relationship between the greyscale level and local mechanical properties is expected to be gained in the future to achieve the automatic assignment of local micromechanical properties from CT data for the micromechanical modelling.

5. Conclusions

In this work, a new approach for micromechanical modelling of cement paste is proposed. Without the need for explicit identification of distinct phases, the intrinsic heterogeneity of cement paste is directly implemented using original greyscale images obtained by XCT. The PDFs (i.e., histograms) of nanoindentation measurements (both Young’s modulus and microhardness) and greyscale value were normalized linearly and tested by a two-sample K-S statistics, showing that a strong linear relationship exists between Young’s modulus and grey-scale level, while microhardness has a weak linear correlation with grayscale value. An empirical model in a form of power exponent was therefore proposed to correlate the hardness with its corresponding Young’s modulus and showed a good fit. The micromechanical properties (E modulus and micro hardness) were then mapped to the voxels according to their greyscale level.

The deformation and fracture of a greyscale level based microstructure was simulated using a discrete lattice model. The influence of material heterogeneity and phase distribution on the mechanical performance is studied by comparing a “realistic” and a “randomized” microstructure. Although similar elastic moduli are obtained, much higher strength and more distributed micro cracks are observed in the “randomized” microstructure. Therefore, the distribution of heterogeneous phases in a composite quasi-brittle material like cement paste is critical when it comes to the overall mechanical behaviour. Phase connectivity plays an important role in the process of crack propagation and growth. If the phases are clustered in stiff and strong particles and
weak interfaces, it will lead to a much lower strength of the composite than in the case the same properties are randomly distributed over the sample. This leads to strong limitations when use of RVE and homogenization are considered for composites with crack localization.

The fracture behaviour of greyscale level based microstructure is also compared with the method considering discrete phases. The comparison shows that the strength of material obtained by the method considering discrete phases is higher compared to the method of greyscale level based microstructure. This might be attributed to the additional processing steps that are applied in the method considering discrete phases: deconvolution and averaging. Errors and biases might occur in any of these steps.

The proposed method is promising, because it captures the gradient of material properties in cement paste that is more realistic. However, a physical understanding behind the relationship between the CT data and local micromechanical properties is still not sufficiently understood and deserves further study. It is expected that, in the future, the fracture behaviour of different types of binders at the microscale possibly can be studied based only on XCT and the reliable link between the greyscale value obtained by XCT and micromechanical properties measured by nanoindentation as proposed in this study.

Acknowledgments

This work is supported in part by the scholarship from China Scholarship Council (CSC) [grant number 201506120067]. The authors would also like to acknowledge the help of Mr. Arjan Thijssen with the XCT experiment.

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.compositesb.2018.08.102.

References

