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A B S T R A C T

Operational nearshore current forecasts based on numerical model simulations are gaining popularity as a
measure to increase the safety of swimmers. Applying remotely-sensed bathymetry in these model simulations is
often proposed in order to cope with rapidly changing nearshore bathymetry. Errors in the remotely-sensed
bathymetry may negatively affect performance of the hydrodynamic model. Hence, this study aims to deter-
mine the sensitivity of modelled nearshore currents (with a strong focus on rip currents) to errors in remotely-
sensed bathymetries.

The errors in the remotely-sensed bathymetries (depth inversion algorithm applied to video stream) were
quantified with a length scale-aware validation technique, providing useful insights in the contribution of pattern
and amplitude errors to the total error throughout the analysis domain and over a range of bathymetric length
scales. Subsequently, simulations with a nearshore hydrodynamic model were performed, using both in-situ and
remotely-sensed bathymetries as an input. A comparison of predicted rip currents on either bathymetry yielded
performance statistics for operational current forecasts on remotely-sensed bathymetries, taking the model with
in-situ bathymetry as a reference. Linking these performance statistics back to the quantified errors in the
remotely-sensed bathymetry finally revealed the relation between errors in flow and bathymetry.

Of all rip currents generated on an in-situ bathymetry, 55% were reproduced on the remotely-sensed ba-
thymetry, showing that models predicting nearshore currents on remotely-sensed bathymetry have predictive
value. Positive rip current predictions were promoted significantly by accurate reproduction of the pattern and
amplitude of nearshore bars at length scales between 200 and 400 m. In contrast to the length-scale aware
validation technique applied here, commonly used domain-wide bulk error metrics lack important information
about spatial variations in the quality of remotely-sensed bathymetry.
1. Introduction

Operational prediction of nearshore currents by numerical models is
an important method for mitigation of risks related to swimmer safety
(Alvarez-Ellacuria et al., 2010; Voulgaris et al., 2011; Austin et al., 2012;
Kim et al., 2013; Sembiring et al., 2015). The nearshore currents pre-
dicted by these models are strongly dependent on bathymetric vari-
ability, which is most clearly illustrated by field observations of rip cell
circulations related to complex sand bar patterns (MacMahan et al.,
2005; Austin et al., 2010; Winter et al., 2014). In turn, these sand bar
patterns are affected by nearshore hydrodynamics, as waves and currents
reshape the bed continuously. Consequently, sand bar patterns that cause
rip cell circulations may change drastically on timescales of days to
gineering, Faculty of Civil Engineer
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weeks (e.g. Holman et al., 2006; Price and Ruessink, 2011). In order to
reliably predict nearshore hydrodynamics for swimmer safety purposes,
operational numerical models should be provided with updated bed
levels frequently. This is virtually impossible to achieve with
labour-intensive in-situ bed level measurement techniques (e.g. a
single-beam echo sounder mounted on a personal watercraft, see Mac-
Mahan, 2001). Alternatively, nearshore bathymetry can be estimated
operationally using remote sensing techniques. The technical feasibility
of coupling remotely-sensed bathymetry to nearshore hydrodynamic
predictions was presented by Radermacher et al. (2014) and Sembiring
et al. (2015), successfully demonstrating the potential of this combina-
tion. While they report the accuracy of the resulting simulated flow fields
at their respective field sites, they do not address the coupling between
ing and Geoscience, Delft University of Technology, Stevinweg 1, 2628CN Delft, The
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errors in the remotely-sensed bathymetry and the simulated flow fields.
The aim of the present research is to determine the sensitivity of simu-
lated rip current occurrence and location to errors in remotely-sensed
bathymetries. Only geometrically defined rips related to nearshore
sandbar patterns are considered. Other types of rip currents (a.o. head-
land rips, transient rips) are excluded here.

Over the last decades, a wide range of depth inversion algorithms has
been developed, which aim to fit a local water depth to remotely-sensed
wave parameters based on physical relations. For instance, these algo-
rithms may employ wave fields observed with video or radar to estimate
water depth through the linear dispersion relation (a.o. Bell, 1999;
Holman et al., 2013) or model-data assimilation of video-observed wave
breaking patterns (a.o. Aarninkhof et al., 2005; Van Dongeren et al.,
2008). Although these remote sensing techniques are capable of
providing nearshore bathymetry estimates at short time intervals, it is
unclear how errors in the resulting bathymetry estimates translate to
errors in the resulting flow predictions and whether the bathymetric
estimates are sufficiently accurate to be applied in the prediction of
nearshore hydrodynamics.

In order to be a significant contribution to recreational safety, an
operational hydrodynamic model should adequately predict spatio-
temporally varying nearshore current patterns. Primarily, this concerns
correct prediction of rip current occurrence and location. Remotely-
sensed bathymetries applied in these model simulations should be of
sufficient quality to support this aim. Traditionally, the accuracy of
remotely-sensed bathymetry with respect to in-situ techniques is assessed
from bulk error metrics, such as the root-mean-squared error (RMSE),
bias and correlation, or from difference maps (Plant et al., 2007; Senet
et al., 2008; Van Dongeren et al., 2008; Holman et al., 2013; Rutten et al.,
2017). Previous attempts to assess the quality of hydrodynamic pre-
dictions on remotely-sensed bathymetry by Radermacher et al. (2014)
and Sembiring et al. (2015) demonstrated the difficulty of linking
bathymetric errors to hydrodynamic errors purely based on bulk
point-wise error metrics. Nearshore currents do not just depend on the
local water depth, but are influenced by bathymetric features that span a
range of length scales (Wilson et al., 2013; Plant et al., 2009). Therefore,
it is expected that the ability of a depth inversion algorithm to resolve
spatial bathymetric patterns is strongly linked to the accuracy of near-
shore current predictions on the remotely-sensed bathymetry.

Here, the performance of a video-based depth inversion algorithm is
studied with a pattern-aware validation technique applied to the result-
ing bed topography maps (section 3.1). Subsequently, wave-driven
nearshore currents are simulated with a validated numerical model on
the remotely-sensed bathymetries and on traditionally obtained vessel-
based bathymetries. A comparison of simulated flow patterns on both
types of bathymetries, focused on rip currents, yields performance sta-
tistics of nearshore current predictions on remotely-sensed bathymetries
(section 3.2). Finally, these current prediction performance statistics are
linked to the bathymetric error statistics from section 3.1, which high-
light the relation between bathymetric variability and nearshore flows
(section 3.3). First, the methodology outlined above will be elaborated
upon in section 2, along with a description of the study site.

2. Methodology

2.1. Field site and instrumental setup

In order to assess the accuracy of nearshore currents simulated on a
video-derived bathymetry, data were obtained at the Sand Motor, a
mega-scale beach nourishment in the Netherlands (Stive et al., 2013).
The large scientific attention for this coastal engineering pilot project has
yielded extensive field datasets (De Zeeuw et al., 2017), which have been
employed here for comparison to video-derived bathymetry estimates
and hydrodynamic model simulations. The Sand Motor was constructed
in 2011 as a 17.5 Mm3 sandy peninsula and is intended to nourish the
adjacent coastline throughout the coming decades by natural alongshore
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sediment transport. It is situated within the Delfland coastal cell, an
18 km stretch of coastline between the harbor breakwaters of Rotterdam
and The Hague. At approximately two-monthly intervals, the bathymetry
was surveyed (see Fig. 1, panel A) with high accuracy using a single-beam
echo sounder and RTK-DGPS mounted on a personal watercraft for the
sub-aqueous part of the measurement domain and on an all-terrain
vehicle for the sub-aerial part (details provided in De Schipper et al.,
2016). The original bed elevation data were subsampled to a 25 � 25 m
resolution (Plant et al., 2002) and subsequently linearly interpolated to a
20 m � 10 m grid (alongshore x cross-shore resolution). As a result, only
bathymetric features at scales larger than 25 m are considered in this
study. This matches conditions at the Dutch North Sea coast, where
subtidal sandbar variability typically occurs at scales larger than 50 m
(e.g. De Schipper et al., 2013; Winter et al., 2014; Sembiring et al., 2014).
All surveys used in this study are presented in Fig. 2.

An extensive set of field observations was collected in fall 2014
during the Mega Perturbation Experiment (abbreviated to MegaPEX),
comprising a.o. nearshore pressure and velocity measurements with four
acoustic doppler current profilers (ADCPs) over a four-week period
(Fig. 1, panel C). This type of instrument has been successfully applied
before for observations of nearshore current dynamics, a.o. by Brown
et al. (2015). The ADCPs were deployed on the nearshore bars and at the
seaward end of an oblique rip channel. They sampled the vertical current
profile in bins of 0.5 m as well as the pressure. Depth-averaged flow
velocities were calculated by averaging over all sub-aqueous bins (i.e.
bins that are submerged more than 99% of the time within a temporal
window of 10 min). If no sub-aqueous bins were found at a particular
point in time, no depth averaged flow velocity was computed for that
time. In order to remove short-term fluctuations from the timeseries, the
velocity timeseries were low-pass filtered with a cut-off period of 10 min.
Further details of the ADCPs are provided in Table 1, where h denotes the
average water depth, zbbc is the vertical level of the bottom bin center and
tav is the internal averaging duration of the instrument. Additionally,
pressure sensors were deployed at 6 m water depth just north and south
of the Sand Motor.

2.2. Remotely-sensed bathymetry

A tower is located at the most elevated point of the Sand Motor, with
8 cameras covering an approximately 230� horizontal view angle (part of
the Argus network, see Holman and Stanley, 2007). The depth inversion
algorithm applied to the 2 Hz video stream is named cBathy (detailed
description can be found in Holman et al., 2013). cBathy applies
cross-spectral analysis to the video intensity timeseries in order to
determine dominant pairs of frequency and wave number within a
sliding spatial analysis window (Plant et al., 2008) and subsequently
inverts the linear dispersion relation to make an estimate of the water
depth. Timeseries of water depth estimates on a 20 � 10 m analysis grid
(alongshore x cross-shore spacing) are then fed into a Kalman filter
(Kalman, 1960) in order to reduce noise and make the depth estimates
more robust. Applications of the cBathy algorithm to Argus imagery at
various field sites and under a range of environmental conditions have
demonstrated its capability to resolve nearshore bathymetry with a bulk
root-mean-squared error of approximately 50 cm (Holman et al., 2013;
Wengrove et al., 2013; Radermacher et al., 2014; Sembiring et al., 2015;
Bergsma et al., 2016; Rutten et al., 2017). Depth estimates were obtained
every four hours during daytime since installation of the camera tower in
2013, with the exception of several periods of down-time (Fig. 1, panel
A). For this study, cBathy's Kalman filter was initiated on 13 June 2013
and fed with 4-hourly bathymetry estimates. In addition to the algorithm
presented by Holman et al. (2013), an outlier removal routine was added
here to prevent several site-specific error sources (mainly ships sailing
through the camera view) from fouling the remotely-sensed bathymetry.
Depth estimates falling outside a 1.5 m envelope around the nearest
groundtruth survey or the previous filtered bathymetry estimate were
rejected. The process error calibration parameter was set to a value of



Fig. 1. Overview of available field data and extent of numerical model domain: timeline of available in-situ bathymetry surveys, periods with cBathy coverage
and MegaPEX experiment (panel A), position of the Sand Motor and the model domain (area covered by bathymetric data) along the Delfland coast with colours
representing water depth and grey shading representing the dry land (panel B) and nearshore field setup with ADCP stations, depth contours and Argus camera
tower (panel C). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 2. Overview of the six in-situ surveyed ba-
thymetries that are used in this study. The first two
surveys were captured just before and after a severe
storm (peak Hs 5 m). The locations of bars and rip
channels remain fairly stable, while the exact shape
and orientation of bathymetric features varies
throughout the analysis period. All bed levels in this
study are presented relative to the Dutch vertical
datum NAP (approximate mean sea level).

Table 1
ADCP properties.

Station Type h [m] zbbc [m] tav [s]

A4 Nortek Aquadopp profiler 1 MHz 2.16 �1.18 1
R1 Nortek Aquadopp profiler 2 MHz 2.59 �1.27 15
R2 Nortek Aquadopp profiler 1 MHz 1.80 �1.15 1
B2 Nortek Aquadopp profiler 2 MHz 1.79 �1.26 20
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10�4 day�1. This was found to yield the most accurate bathymetry esti-
mates when compared to in-situ surveyed bed levels. It was verified that
this parameter choice can cope with natural site morphodynamics by
comparing cBathy results to a pre and post-storm groundtruth survey.

The present study emphasises the importance of local bathymetric
68
patterns when studying nearshore currents. Advanced, pattern-aware
comparison and verification methods for spatial parameter fields have
been proposed by many authors, mostly within the field of meteorology.
An extensive overview is presented by Gilleland et al. (2009). Not all
methods perform equally well if the spatial parameter field consists of
nearshore bed levels along a curved coastline. Scale separation methods,
which assess bandpass-filtered parameter fields to perform a
scale-selective comparison (e.g. Briggs and Levine, 1997), have the
theoretical advantage of quantifying length scales of bathymetric pat-
terns, but fail to separate variability due to nearshore bar patterns from
variability related to the cross-shore beach profile. This is considered
impractical here, as variability due to the cross-shore beach profile is
irrelevant for this study of nearshore circulation patterns. The same holds
for feature-based methods, which detect and compare physically relevant
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features by setting parameter value thresholds (e.g. Ebert and McBride,
2000).

Here, a neighborhood method is employed, which is comparable to
the method presented by Bosboom and Reniers (2014). The quality of the
remotely-sensed bathymetry with respect to the in-situ bathymetry is
determined by computing several error metrics within a circular sliding
window of diameter L. This approach acknowledges both the spatially
coherent structure of the bathymetry (by calculating bulk metrics over all
points within a distance L of each other) and the spatial variability in
bathymetric features encountered along a beach (by applying a sliding
window over the 20 � 10 m cBathy grid). Before the error metrics are
computed, the average beach slope is removed by fitting a least squares
plane to the windowed in-situ bathymetry and subtracting that from both
bathymetries. The error metrics were then computed as follows: let zi be
the in-situ bathymetry and zr the remotely-sensed bathymetry within the
same spatial window of n data points and z'

i and z'
r their respective

counterparts after subtracting the average slope. The error metrics
computed in the sliding window are (Fig. 3 and Equation (1a) through
(1d)): (1) the correlation � , (2) the bias b, (3) the ratio of standard de-
viations b� and (4) the root-mean-squared error � .

� …
1
n

P n
k…1

�
z0

i;k � z0
i

��
z0

r;k � z0
r

�

� i � r
(1a)

b … zr � zi (1b)

b� …
� r

� i
(1c)

� …

���������������������������������
1
n

X

k…1

n

ðzr;k � zi;kÞ
2

s

(1d)

Here, n is the number of data points inside the circular sliding win-
dow, subscripts i and r indicate in-situ or remotely-sensed quantities
respectively, the overbar denotes window-averaged quantities and �
denotes the standard deviation of bed levels z0 within the window.

The example shown in Fig. 3 treats a spatial window with a relatively
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good performance of the depth inversion algorithm. The patterns are
matching fairly well (� … 0:93), while the remotely-sensed bathymetry
slightly underestimates the amplitude of bathymetric variability
(b� … 0:96). The bias is close to 0 and the RMSE is 0.27 cm.
2.3. Numerical model

The present study relates bed level deviations in the remotely-sensed
bathymetry to their impact on the nearshore flow field. To this end,
nearshore currents were simulated on remotely-sensed as well as in-situ
surveyed bathymetries with the Delft3D modeling suite, which has been
used successfully for nearshore current simulation in previous studies
(Elias et al., 2000; Reniers et al., 2007, 2009, 2010). Setup and validation
of the model are discussed in more detail in A. The root-mean-squared
error of modelled versus observed flow velocities is in the order of
10 cm/s. As the model is validated by comparing modelled flow veloc-
ities and water levels to quantities measured in the field, the model
described in the appendix is intended to closely match conditions
occurring at the Delfland coast. For the simulations discussed in section
3.2, a more synthetic version of this model is applied by removing the
tidal water level modulations and associated currents, as this study aims
to isolate the relation between nearshore bathymetry and wave-driven
currents. The wave conditions at the offshore boundary were held con-
stant at Hm0 … 1:5 m, Tp … 6 s and a directional spreading of 25�

throughout all simulations, while the off-shore wave angle varied be-
tween simulations. The significant wave height of 1.5 m was chosen to
make sure that sufficient wave energy dissipates on the subtidal bar,
accounting for the generation of rip currents. The chosen wave height
represents an upper limit of the wave energy that can be expected on a
bright summer day at the Dutch coastline.

As studying the response of nearshore currents to nearshore ba-
thymetry in a swimmer safety context is naturally focused on the gen-
eration of rip currents, simulated nearshore flow fields were subjected to
a rip current detection algorithm. Concentrated patches of strong off-
shore velocities (> 0:2 m/s) were identified as rip currents (see Fig. 4
for an example). Rip current detection was performed on fields of the
Generalised Lagrangian Mean flow velocity (Groeneweg and Klopman,
Fig. 3. Demonstration of the pattern-aware
bathymetry validation method. The loca-
tion and size of the analysis window are
indicated in the leftmost panel, along with
the remotely-sensed bathymetry. The top
panels show the remotely-sensed and in-situ
measured bathymetries within the analysis
window, including the least-squares fitted
plane of the in-situ measured bathymetry.
The bottom panels show the residual ba-
thymetries z0

r and z0
i. Values of the four

error metrics are stated between the bottom
panels.



Fig. 4. Example of rip current detection on computed flow
field. Shading represents off-shore velocity in m/s. Four
detected rip current patches have been marked in blue. The
thick black line marks the 0 m bed level contour. (For
interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this
article.)
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1998), which is resolved directly from the shallow water equations in
Delft3D (Reniers et al., 2009). Following automated detection using the
velocity threshold value stated above, manual quality control was per-
formed to alleviate the discrete behavior of the rip current detection
method around the velocity threshold value. The similarity of flow pat-
terns in both simulations of a simulation pair was checked around every
detected rip current. In some cases, a particular rip current was only
detected in one of the two simulations, although the two simulations had
visually similar flow patterns and similar off-shore velocity magnitudes.
This is a result of the offshore directed flow velocity being just above and
below the threshold value in the two simulations respectively. The
resulting discrete behavior is considered undesirable. Therefore, auto-
matic rip current detection in these cases was overruled by classifying
both flow patterns as a rip current. Attempts to automate this correction
through quantification of flow field similarity were not successful.

Subsequently, the rip current detection algorithm was applied to
model simulations on six pairs of remotely-sensed and in-situ surveyed
bathymetries. Each bathymetry was subjected to waves under five
different off-shore angles of incidence, ranging from �30 to þ30� with
respect to shore-normal at 15� intervals, constituting a total of 30 pairs of
model simulations. Detected rip currents were compared between the
two simulations of every pair, resulting in statistics regarding positive,
false negative and false positive rip current predictions on the remotely-
sensed bathymetry. For a pair of rip currents to be classified as a positive
prediction, the centroids of the detected patches had to be closer than
70
0.75 times the sum of the alongshore patch dimensions. This criterion
was found to match best with visual inspections of the similarity of
simulated flow fields. The sensitivity of the results to this criterion is very
small, as only 3% of all detected rip current pairs in this study are situated
around the threshold value (i.e., only 3% of rip current pairs have a
relative separation distance of the rip current patches between 0.5 and
1.25). A rip current predicted on the in-situ bathymetry, but not on the
remotely-sensed bathymetry was counted as a false negative, while the
opposite case was counted as a false positive.

3. Results

3.1. Pattern-aware validation of remotely-sensed bathymetry

Six pairs of in-situ surveyed and remotely-sensed bathymetries were
subjected to the pattern-aware validation technique introduced in section
2.2. Results are treated here for the 4 September 2014 bathymetry pair as
an example (see Fig. 5).

At the scale of the entire Sand Motor, the error metrics reveal a strong
divide between the southern and northern (left and right respectively in
the figure) half of the nourishment on the one hand and between the
nearshore and the off-shore part of the domain on the other hand. These
large-scale trends are complemented with local, small-scale variations.
The correlation � (panel C) is close to 1 along the southern edge of the
Sand Motor, while it tends to 0 or even becomes negative along the
Fig. 5. Bathymetric validation at 4 September 2014
with a window size L of 320 m. Panels A and B show
the in-situ and remotely-sensed bathymetries, while
panels C through F show the four error metrics
defined in Equation (1). Bed level contours at 2 m
intervals were added to aid interpretation of the error
metrics. Camera view boundaries are indicated as
white lines.



Table 2
Rip current prediction performance over 30 simulation pairs.

Prediction Occurrences

Positive 29
False negative 24
False Positive 3
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northern edge and in the off-shore corners of the domain.This mismatch
of bathymetric patterns on the northern side can be confirmed by
comparing panels A and B of Fig. 5. In the off-shore corners, the bed is
almost featureless, which allows residual noise in the remotely-sensed
bathymetry to dominate the correlation.

The spatial variation in the bias b (panel D) largely confirms that the
cBathy algorithm tends to underestimate the water depth at deeper wa-
ters, while it overestimates the water depth near the shoreline (also
found by Holman et al., 2013; Bergsma et al., 2016; Rutten et al., 2017),
although the windowed calculation reveals important local differences.
Especially the sharply delineated patches of high bias in the off-shore part
show that the bias at deep water differs between individual camera
views. This suggests that the deep water bias can partly be explained by
inadequate or outdated geo-referencing of several cameras at the Sand
Motor Argus station, a problem commonly encountered at operational
camera stations.

Standard deviation ratio b� (panel E) tends to be large in the off-shore
part of the domain, while it is close to 1 in the nearshore. In the off-shore
areas, as was mentioned before, residual noise in the remotely-sensed
bathymetry leads to a relatively high standard deviation compared to
the featureless in-situ bathymetry. The fact that b� is close to 1 in the
nearshore areas indicates that cBathy is generally well-capable of
reproducing bathymetric variability there.

Finally, the root-mean squared error (RMSE) � (panel F) contains
strong spatial variations. This goes to show that the bulk, domain-wide
RMSE, which is often reported in depth inversion validation studies
(0.58 m in this case), is not a very representative indicator of the per-
formance of a depth inversion algorithm for the entire field site. Per-
formance may differ strongly between particular zones in the field of
view of a camera station. The windowed calculation of � already gives
more insight and can be regarded as an aggregated error metric that
reflects the combined effect of the three other parameters (Murphy and
Epstein, 1989).

A synoptic overview of these four error metrics throughout all six
bathymetry pairs can be constructed by cross-shore averaging of the error
metrics over the nearshore part of the profile (between the �1 m and
�5 m bed level contours, see Fig. 6). Pattern-aware validation of all ba-
thymetry pairs yields similar results regarding the large-scale contra-
dictions in performance between the southern and northern side. At
smaller scales, temporal evolution of the bathymetric quality can be
observed. Especially the deterioration of � , b and � around y … 1000 m
from the April 2014 survey onwards is remarkable. This is related to the
development from a rather featureless or cluttered bathymetry before
that date to a bathymetry with well-defined bar patterns in that area. As
the remotely-sensed bathymetry fails to reproduce clear bar patterns
along the northern edge of the nourishment, its skill to reproduce the in-
situ bathymetric patterns there (reflected by � ) decreases sharply in April
2014.

3.2. Nearshore current simulations

Thirty nearshore hydrodynamic model pairs with varying bathyme-
tries and off-shore wave angles were simulated. The resulting flow fields
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were subjected to the rip current detection algorithm (section 2.3). Rip
currents detected in pairs of model simulations were classified as posi-
tives, false negatives and false positives. The statistics over all model
simulations are presented in Table 2. Out of 53 rip currents predicted on
the in-situ bathymetry, 55% were positively predicted on the remotely-
sensed bathymetry, while 45% of the rip currents generated on an in-
situ bathymetry were missed in simulations with remotely-sensed ba-
thymetry. Out of 32 rip currents predicted on the remotely-sensed ba-
thymetry, 9% were found to be false positive predictions that did not
occur on the associated in-situ bathymetry.

It is remarkable that the number of false positives is far lower than the
number of false negatives. This difference may be related to errors in the
remotely-sensed bathymetry and is addressed in more detail in section 4.
The map with the locations of all 56 detected rip currents throughout all
simulation pairs (Fig. 7) indicates that rip current formation is con-
strained to several rip-bar configurations in the underlying bathymetries.
Most false negatives are situated along the northern edge of the nour-
ishment, while most positives can be found around the most seaward
point of the Sand Motor.

3.3. Relating bathymetric errors to � ow errors

In the previous section, performance statistics of simulated rip cur-
rents on remotely-sensed bathymetry were presented. The source of the
input bathymetry (in-situ or cBathy) was varied between the two simu-
lations in a simulation pair. Therefore, it is expected that observed dif-
ferences between simulated flow fields and detected rip currents can
(partly) be explained based on the pattern-aware bathymetry error
metrics that were presented in section 3.1. For every detected rip current,
the associated bathymetry errors at the center point of the rip current
patch were extracted (in case of a positive rip current prediction, the
mean location of the two patch centroids from both simulations was
used). The bathymetric analysis length scale L was varied between 80 m
and 400 m in steps of 40 m. The resulting parameters (� , b, b� and � ) were
transformed in order to make their relation to bathymetric performance
monotonous, i.e. a low parameter value means good performance and a
high parameter value means bad performance, or vice versa. Parameters
� and � naturally possess this property. The absolute value was taken of b,
while b� was transformed to jb� � 1j. Subsequently, parameters were
normalised to have zero mean and a standard deviation of 1. Normalised
equivalents of the bathymetric error metrics are indicated with subscript
n. Good performance is indicated by high � n, low bn, low b� n and low � n.

Normalised bathymetric error metrics can now be compared for
positive and false negative rip current predictions (Fig. 8). False positives
are omitted here due to the low number of observations (3). Bootstrapped
Fig. 6. Nearshore-averaged error metrics for all six
bathymetry pairs as a function of alongshore distance.



Fig. 7. Overview of all detected rip currents throughout all
pairs of simulations. Depth contours of the 22 April 2014
bathymetry are shown as a reference. Markers are slightly
transparent to show overlapping rip currents.

Fig. 8. Normalised bathymetric error metrics for positive and false negative
rip current predictions with L … 320 m. Bootstrapped mean values and 95%
confidence intervals are presented for every parameter. Non-overlapping
confidence intervals indicate discriminative power of the associated error
metric, which holds for � n, b� n and � n.

Fig. 9. Relative distance � as a function of analysis length scale L for all
bathymetric error metrics, indicating their discriminative strength.
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mean parameter values and associated 95% confidence intervals per class
(positive or false negative) were obtained from 104 realisations. The
relative distance � between the two class averages was computed
through dividing the absolute distance by half the sum of the confidence
intervals of the two classes. The case 0 < � < 1 corresponds with over-
lapping confidence intervals of the two classes and therefore insignificant
discriminative power of the associated bathymetric error metric. The
case � > 1 corresponds with non-overlapping confidence intervals and
significant discriminative power.

The value of � has been computed for every error metric over a range
of bathymetric length scales L (Fig. 9). The bathymetric correlation �
significantly differentiates between positives and false negatives for L
between 200 and 400 m, the maximum value occurring at L … 320 m.
Within this range of length scales, positive rip current predictions are
associated with significantly better correlated remotely-sensed bathym-
etry than false negatives. The ratio of standard deviations b� has signifi-
cant discriminative power between L … 240 m and L … 360 m, the
maximum value again occurring at L … 320 m. For positive rip current
predictions, b� is significantly closer to unity (i.e. equal standard de-
viations and therefore equal levels of bathymetric variability) than for
false negatives. The bathymetric root-mean-squared error � significantly
differentiates between classes for 320 < L < 400 m, but has less
discriminative strength than � and b� . The bias b of the remotely-sensed
bathymetry does not have a significant influence on rip current predic-
tion performance, as � b remains below unity for all tested length scales.
The sharp decline of � for b� above L … 320 m is remarkable, since the
discriminative power of � and � still remains significant. As L increases
towards 400 m, the positive rip current predictions around the most
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seaward point of the nourishment start being associated with low
bathymetric skill along the northern edge. Analogously, negative pre-
dictions along the northern edge start being associated with high
bathymetric skill around the most seaward point. This effect, which
clutters the relations between flow performance and bathymetric skill,
appears to start at smaller L for b� than for � and � due to differences in the
spatio-temporal evolution of these parameters.

Additionally, three flow-related parameters are examined for their
discriminative strength. These parameters, being the maximum cross-
shore flow velocity found in a rip current patch U, the off-shore wave
angle with respect to the local shoreline orientation � and the mean
alongshore flow velocity in a rip current patch V, are derived directly
from the hydrodynamic simulations and therefore do not depend on L.
Neither of the three selected parameters significantly differentiates be-
tween positives and false negatives, as � remains below unity in each
case.

4. Discussion

The results presented in section 3 show that an operational rip current
prediction system with updated remotely-sensed bathymetry performs
best if the remotely-sensed bathymetry correlates well with the
groundtruth bathymetry and if the amount of variability in both ba-
thymetries is comparable. These relations are significant at bathymetric
length scale approximately between 200 and 400 m. It implies that
adequate reproduction of the pattern (related to � ) and amplitude
(related to b� ) of large nearshore sand bars by the depth inversion algo-
rithm is most important for skilful rip current prediction. The relevant
range of length scales derived here is of the same order as the scales
reported by Plant et al. (2007) and Wilson et al. (2013) as the most
important scales regarding cross-shore current generation. Relating
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length scale dependence of nearshore currents to a shallow water Rey-
nolds number, as presented by Wilson et al. (2013), is only viable in a
weakly alongshore varying regime. The presence of pronounced bathy-
metric variability and associated rip currents in this study hampers that
approach.

False positive rip current predictions were only found in three cases,
whereas false negatives are more abundant in the dataset. Because three
data points are not enough to infer statistically significant relations,
determining the factors promoting false positive rip current predictions
based on the model simulations is difficult. However, this result may be
expected based on the facts that (1) cBathy tends to overestimate near-
shore water depth (e.g. Rutten et al., 2017) and (2) cBathy typically
smoothens real-world bar patterns but hardly ever exaggerates bar pat-
terns or generates non-existent bars. A positive bias of water depth in the
nearshore and removal of breaker bars will promote the probability of
underestimating wave breaking on the sub-tidal bar and thereby reduces
bathymetric rip current forcing, leading to false negatives rather than
false positives.

The numerical model simulations in the framework of this study were
performed with a constant off-shore significant wave height of 1.5 m and
a constant water level equal to mean sea level. This combination of pa-
rameters was observed to induce differential wave breaking all along the
sub-tidal bar (i.e. wave breaking at the bar crest, but no wave breaking in
the rip channel), thereby promoting rip current generation in areas with
sufficient alongshore bathymetric variability. This choice is justified by
the fact that the added value of updated remotely-sensed bathymetry is
primarily created by the ability to detect spatio-temporal variability in
nearshore bar patterns. Whether or not rip currents are generated over a
certain bathymetric pattern is mostly governed by spatial gradients in
wave energy dissipation and therefore by the ratio of the wave height at
the bar crest over the local water depth, Hb=hb. As the bar crest height
varies along the coastline, progressively decreasing the off-shore wave
height or increasing the (tidal) surface elevation in the numerical model
simulations would lead to less and less alongshore sections with wave
breaking at the sub-tidal bar. Ignoring potential dependencies between
bar crest height and alongshore bathymetric variability, there is no
reason to believe that a lower wave height would alter the relative per-
formance statistics presented in Table 2. However, regarding the re-
lations between bathymetric quality and rip current prediction identified
in Fig. 9, it is expected that the importance of bathymetric bias would
strongly increase if the off-shore wave height is lowered. The breaker
parameter for a biased bathymetry is actually Hb=ðhb þ bÞ, which be-
comes very sensitive to the exact value of b if the breaker parameter at the
bar crest is in the critical range between wave breaking and no wave
breaking.

Generally, operational nearshore current prediction with video-
derived bathymetry is thought to be a valuable tool for beach safety
management. The present study showed that the tool has predictive value
(55% positive predictions at the Sand Motor), although the exact per-
centage of positive predictions cannot be directly translated to other field
sites. Errors in the remotely-sensed bathymetry were found to vary
strongly throughout the camera domain, possibly depending on camera
graze angles, geo-referencing and wave incidence angles. The Sand
Motor camera station has a rather complex geometry, with a strongly
curved coastline and a large area of interest. Hence, rip current predic-
tion performance is likely to be higher along a straight coastline.
Nevertheless, in day-to-day beach safety management, numerically
generated rip current predictions should always be regarded as one out of
multiple information sources for lifeguards (their own experience and
visual observations being other very important sources).

An important aspect of determining the merits of remotely-sensed
bathymetry for rip current prediction is the trade-off between using
outdated, but more accurate in-situ surveyed bathymetries or up-to-date
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but error-prone remotely-sensed bathymetries. The mobility of nearshore
sand bar patterns plays a central role in this respect, as it determines the
rate at which an outdated in-situ survey loses its power to predict the
actual bathymetry. The trade-off between these two sources of bathym-
etry has not been addressed here, as it is outside of the scope of the
present study. Recognising that an optimal prediction of up-to-date
nearshore bathymetry would rely on assimilation of outdated in-situ
data and up-to-date remotely-sensed data, insight in the relative accu-
racy of both data sources under increasing age of the in-situ data would
help to determine the optimal assimilation scheme.

5. Conclusions

The present study has assessed the sensitivity of operational rip cur-
rent forecasts to video-derived bathymetry estimates. It was found that
rip currents predicted on remotely sensed bathymetry have predictive
value. Of all rip currents generated on an in-situ bathymetry, 55% were
reproduced on the remotely-sensed bathymetry. The system is prone to
false negative predictions, meaning that 45% of rip currents generated on
the groundtruth bathymetry are not reproduced on the remotely sensed
bathymetry. In contrast, false positive predictions are rare, meaning that
only 9% of rip currents predicted on the remotely sensed bathymetry do
not occur on the in-situ bathymetry. This fact can be applied when using
operational rip current forecasts in daily beach management, as rip
currents predicted on remotely sensed bathymetry will have a very high
probability of occurring in reality.

Errors in the remotely sensed bathymetry were found to exhibit
strong spatial variability due to dependence of depth inversion perfor-
mance on the water depth and on camera-specific error sources (quality
of the camera geo-referencing, camera resolution in real-world co-
ordinates and alongshore differences in coastline orientation and wave
incidence). Generally, depth estimates in the offshore part of the camera
domain are characterised by a negative bias and a relatively high noise
level, while nearshore depth estimates have a positive bias but contain
realistic bar patterns (in the absence of afore-mentioned camera-specific
errors sources).

The performance of rip current prediction on remotely sensed ba-
thymetry was found to depend on the ability of the depth inversion al-
gorithm to reproduce patterns and amplitudes of nearshore bars. Positive
rip current predictions were promoted significantly by accurate repro-
duction of the pattern and amplitude of nearshore bars at length scales
between 200 and 400 m. The angle of wave incidence, cross-shore rip
current intensity and strength of the alongshore flow velocity did not
significantly influence rip current prediction performance.

The results presented here imply that spatio-temporal maps of the
pattern and amplitude errors of remotely-sensed bathymetry can be used
to predict the performance of nearshore circulations simulated on that
bathymetry. In contrast, domain-wide bulk error metrics lack important
information about spatial variations in the quality of remotely-sensed
bathymetry.
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Appendix A. Numerical model

Appendix A.1. Numerical model setup

A hydrodynamic model of the Sand Motor was constructed with the modeling suite Delft3D (Lesser et al., 2004), which numerically integrates the
shallow water equations. Forcing of the flow by waves was taken into account by solving the wave action balance with the SWAN model (Booij et al.,
1999). The main model domain (flow and waves) covers an area of 9.4 � 4.0 km (alongshore x cross-shore) and has a curvi-linear grid that follows the
coastline orientation. The spatial extent of the grid is equal to the shaded area in panel B of Fig. 1. The wave model was nested in a coarse, rectangular
model grid with a larger alongshore extent to account for realistic boundary conditions along the lateral boundaries of the detailed model. A grid
resolution of 5 m was adopted in the nearshore area in order to accurately represent wave breaking and forcing of wave-driven currents. The time step
for numerical integration was 6 s.

Tidal currents were forced by varying water levels imposed at the off-shore model boundary. Water level data were obtained from pressure sensors at
6 m water depth, which have been corrected for changes in atmospheric pressure and low-pass filtered with a cut-off period of 15 min. A tidal water
level gradient was superimposed in alongshore direction, based on gradients predicted by the continental shelf model and nested coastal strip model
(Sembiring et al., 2015), which propagate the astronomical tide from the edge of the European continental shelf to the Dutch coast. This approach was
shown to yield accurate tidal currents in the shallow coastal waters around the Sand Motor (Radermacher et al., 2017). Neumann boundary conditions
were imposed at the lateral boundaries of the flow model. Friction was specified with the Chzy formulation and a friction coefficient of 50 m1/2/s.
Horizontal Large Eddy Simulation (HLES, Uittenbogaard and Van Vossen, 2003) was applied for turbulence closure, providing spatially and temporally
varying turbulent viscosities with an averaging duration of 30 min and a background viscosity of 0.01 m2=s.

Parametric boundary conditions for the largest wave grid were obtained from a nearshore waverider buoy at 11 m depth just north of the Sand
Motor. Wave conditions were corrected for shoaling and refraction and shifted in time to represent conditions at the off-shore model boundary. Depth-
induced wave breaking was accounted for by a combination of the wave energy dissipation formulation by Roelvink (1993) and a roller energy balance
(Svendsen, 1984) with breaker parameter � … 0:8 and roller slope � … 0:1.

This model setup is very similar to the approach of Reniers et al. (2007, 2009, 2010), who successfully demonstrated the capability of the Delft3D
suite to model nearshore current dynamics.

Appendix A.2. Comparison to � eld observations

Calculated wave and flow parameters are now compared to quantities observed in the field over a 6-day period in early October 2014 (Fig. A.10).
Over this period, the wave energy was relatively high and the wave height peaked twice at approximately 1.5 m. This gave rise to distinct wave-driven
currents in the nearshore, which makes it a relevant period for model-data comparison in the light of operational forecasts of potentially hazardous
currents.
74
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Fig. A.10. Comparison of measured (red) and computed (black) flow and wave quantities. The panels show the depth-averaged alongshore velocity component
(panel A, positive in flood direction), depth-averaged cross-shore velocity component (panels B-E, positive offshore), water level (panel F) and significant wave
height (panel G) at various measurement stations. Shaded periods in panels B and E are analysed in more detail.

Alongshore currents observed in the field (panel A of Fig. A.10) are mostly dominated by the semi-diurnal tidal currents, with positive currents
corresponding to flood flow in northeastern direction. Around the second wave energy peak at 7 October, which had more oblique southwesterly waves
than the first peak, alongshore wave-driven currents can be seen to dominate the alongshore velocity signal. The numerical model is well-capable of
resolving alongshore currents, with very similar performance across all ADCP stations.

Cross-shore currents (panels B-E) exhibit more variability between different stations. During calm conditions, separation of the tidal flow and
creation of large-scale tidal eddies causes slight tidal modulations of the cross-shore flow velocity (see Radermacher et al., 2017, for a more elaborate
analysis of tidal currents around the Sand Motor). The two wave energy peaks drive more intense cross-shore currents. The maximum wave height is
similar during both peaks, but the first peak is observed to drive less intense cross-shore currents as it coincides with high water. This leads to less
intense wave breaking on the subtidal bars and consequently to weaker forcing of nearshore circulations (e.g. Brander, 1999). The modelled cross-shore
currents are in reasonable agreement with the field observations, especially in the second half of the comparison period. The overall root-mean-squared
error is in the order of 10 cm/s for all stations (Fig. A.10). If only periods with high wave energy (Hs;obs > 1 m) are considered, the RMSE of modelled
cross-shore flow velocities is higher (14, 20, 18 and 33 cm/s for stations A4, R1, R2 and B2 respectively). Differences between computed and observed
currents are in part attributed to schematisations in the modeling approach, but may also result from slight spatial shifts of modelled flow patterns. The
latter is illustrated by a comparison of computed flow fields around ADCP locations A4 and B2 during two events with strong cross-shore currents
(Fig. A.11).
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Fig. A.11. Computed flow fields and observed local
flow velocities at A4 and B2 during two events with
strong cross-shore currents. While the model does not
match the ADCP observations locally, a spatial shift of
the computed flow pattern can explain the differ-
ences. Scaling of model and ADCP current vectors is
different for optimal visibility.
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