Beyond Unit-Testing in Search-based Test Case Generation: Challenges and Opportunities

Panichella, Annibale

DOI
10.1109/SBST.2019.00010

Publication date
2019

Published in
2019 IEEE/ACM 12th International Workshop on Search-Based Software Testing (SBST)

Citation (APA)

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.
Abstract—Over the last decades, white-box search-based techniques have been applied to automate the design and the execution of test cases. While most of the research effort has been devoted to unit-level testing, integration-level test case generation requires to solve several open challenges, such as the combinatorial explosion of conditions or pre-condition failures. This paper summarizes these challenges in white-box testing and highlights possible research directions to overcome them.

Index Terms—Test Case Generation, Search-Based Software Testing, Integration Testing, White-box Testing

I. INTRODUCTION

Search algorithms have been widely applied to automate the process of generating and executing unit-level tests. The maturity of the field is proved by surveys (e.g., [14]), large-scale studies (e.g., [9], [10]), and tool competitions (e.g., [15], [16]). Prior studies showed that unit-test generation allows achieving high code coverage [9], [15], [16], detect real-bugs (e.g., [17]) and reduce the cost of debugging (e.g., [8], [18]) compared to manually-written tests. Despite these noteworthy results in unit-testing, existing search-based approaches mostly rely on black-box strategies (e.g., model-driven testing, input/output diversity) when moving toward integration and system-level testing. This is due to technical and research challenges related to white-box testing when integrating single units. In this paper, we discuss the most prominent yet open challenges as well as viable solutions to overcome them.

II. OPEN CHALLENGES

A. Challenge 1: The Path and Condition Explosion Problem

When integrating multiple components, software testers have to decide in which order the classes should be integrated and tested. This problem is also known as integration test order: find the order that reduces the test stub cost. Search algorithms have been applied to solve this problem (e.g., [1]). Generating tests at integration level in a white-box fashion require (i) to solve the integration test order problem; (ii) to generate input data that satisfies the precondition of the first class in the order; (iii) to generate assertions for the output of the last class in the order (oracle problem). Another important step is to decide when to stop testing, i.e., when the integrated classes are adequately tested. Zhenyi and Offutt [3] introduced structural criteria for integration testing, such as all-coupling uses and all-coupling paths. The state of one path executed in a class A can impacts the state of a called class B. Therefore, the number of paths to consider grows (explodes) with the number and size of the classes to integrate. This poses a challenge to the scalability of test case generation.

Direction: focusing on a subset of all-coupling paths.

To overall idea is to focus on specific paths of interests rather than all-coupling paths. For example, let us assume we want to integrate and test the classes A and B, where the former calls some methods of the latter. We may test the case A calls B by satisfying its preconditions, and the case where such pre-conditions are not satisfied. An interesting example is represented by testing Application Programming Interface (API) uses. APIs misuses [4] are commons as clients may invoke the APIs violating its implicit preconditions. Interesting paths then are those where the client class invokes the APIs without verifying whether the data passed to the APIs satisfy or not its implicit precondition. Static analysis would play a relevant role in the identification of these paths of interests.

B. Challenge 2: Integration with DataBases

Databases are commonly used to manage and store data (e.g., medical data) in modern applications. It is very common to have SQL queries within the traditional code. In the example shown in Listing 1, an SQL query is used within Java code to retrieve the credential of a user from an SQL database. First, the connection to the database is established; then a prepared statement is filled with the username and password; finally, the output of the query (variable res) is used within the Java code. Reaching 100% of branch coverage in the example of Listing 1 requires to initialize the database with valid and useful data such as the results of the query execution. However, generating test data for both Java code and SQL databases remains an open problem [2]. On the other hand, recent work focused on testing SQL queries in isolation [5] using search algorithms and with the goal of satisfying structural criteria for query coverage.

Direction: Unifying the coverage criteria for database queries and traditional (e.g., Java) code.

Branch and decision coverage criteria have been defined for both traditional code and database queries. When queries appear within Java code, the corresponding control flow graph (CFG) can be enhanced by including the CFG of the query as well. Then, the search should be guided by combining the coverage heuristics for the Java code (e.g., approach level and branch distance) with the heuristics for query coverage (step level and step distance [5]). To speed the search, in-memory
database engines could be used (as done in [5]) by mocking
the connection to SQL databases, which are slower and more
expensive to set up.

Listing 1. SQL query within Java code

```java
protected boolean login(String username, String password) {
    ...
    PreparedStatement stmt =
        connection.prepareStatement("SELECT * "+
            "FROM User where userId=? AND pswd=?");
    stmt.setString(1, username);
    stmt.setString(2, password);
    stmt.executeQuery();
    ResultSet res = stmt.getResultSet();
    if (res != null) {...}
}
```

C. Challenge 3: External Files with Content

Data can also be stored in external files, e.g., XML or JSON
files. EvoSuite uses functional mocks when the class under test
contains environmental calls to read/write files [7]. In these
cases, calls to external files can be replaced with virtual calls
that mimic the behavior of the environment [7]. However, the
class under test might need files with specific content to satisfy
some branch conditions. In these cases, a simple mocking does
not help to cover the CUT [8].

Direction: Inferring the content of external files from the
constants in the source code.

XML and JSON files are characterized by a well-established
and documented open standards. Generating files with XML
(or JSON) format can be viewed as a grammar inference problem
where the grammar rules are related to the standard format
while the terminals (strings) can be potentially extracted from
the source code of the CUT through static analysis. Indeed,
strings appearing in the source code should be likely contained
in the external files (constant seeding). However, the generated
files must be well formatted, and this represents a critical
constraint to the file generation problem. Rather than creating
external files, more advanced functional mocking should be
used to virtualize not only file system calls but also the content
of such files.

D. Challenge 4: Resource Usage

Integration-level tests are usually more expensive to run than
unit-level tests. Therefore, an important angle to consider is
to generate test cases that consume fewer resources (CPU,
memory and energy usage) at the same level of code coverage.
Early attempts to reduce the resource usage of generated
unit-tests have been discussed and investigated in the related
literature [9], [10]. However, new follow-up studies are needed
as search-algorithms in test case generation have become more
sophisticated and more effective in the last decade [9], [10].
We also need further studies in the context of integration-level
test generation where the problem of efficient resource usage
is more critical.

Direction: using performance testing techniques within the
search process.

Prediction methods and risk analysis techniques have been
used in unit (e.g., [19] and performance testing (e.g., [13]).
They represent viable solutions for test case generation tools
where direct measurements are infeasible due to their massive
overhead.

III. CONCLUSION

Noteworthy progress has been made in search-based unit
test generation research. However, moving from unit-level to
integration-level test generation requires to solve several open
research and technical challenges. In this paper, we discuss
some of the most critical challenges and highlights possible
research directions to address such challenges.

REFERENCES

order strategies,” IEEE Transactions on Software Engineering, vol. 29,
[2] A. Arcuri. “RESTful API Automated Test Case Generation with Evo-
Master.” ACM Transactions on Software Engineering and Methodology
(TOSEM) vol. 28, issue 1, 2019, pp. 1–37.
Software Testing, Verification and Reliability, vol. 8, issue 3, 1998,
pp. 133–154.
In Proceedings of the 40th International Conference on Software Engi-
neering (ICSE), 218, pp. 1220–1230.
tions”. Proceedings of the international symposium on Software testing
and analysis, 2007.
unit test generation.” IEEE international conference on software testing,
verification and validation (ICST), 2017.
[9] A. Panichella et al. “A large scale empirical comparison of state-of-
the-art search-based test case generators.” Information and Software
unit test suite generation”. Information and Software Technology, vol.
data generation,” The 9th International Conference on Genetic
Evolutionary Computation (GECCO), 2007.
generation problem.” Software: Practice and Experience, vol. 42, issue
via Performance Risk Analysis,” in Proceedings of the 36th International
Conference on Software Engineering (ICSE), 2014.
Software testing, Verification and reliability, vol. 4, issue 2, 2004,
pp. 105–156.
IEEE/ACM 11th International Workshop on Search-Based Software
Testing (SBST), 2018.
fifth round.” IEEE/ACM 10th International Workshop on Search-Based
Software Testing (SBST), 2017.
Finding real faults in a financial application.” The 39th International
Conference on Software Engineering: Software Engineering in Practice
performance: An empirical investigation.” The 38th International Con-