Modeling of brittle failure based on a Hoek & Brown yield criterion
parametric studies and constitutive validation

Marinelli, F; Zalamea, N.; Vilhar, Gregor; Brasile, S.; Cammarata, G.; Brinkgreve, Ronald

Publication date
2019

Document Version
Final published version

Published in

Citation (APA)

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.
Modeling of brittle failure based on a Hoek & Brown yield criterion: parametric studies and constitutive validation

Marinelli, F.
Plaxis bv, a Bentley Systems company, Delft, Netherlands

Zalamea, N.
Université Grenoble Alpes, 3SR, F-38000, Grenoble, France

Vilhar, G., Brasile, S., Cammarata, G. and Brinkgreve, R.
Plaxis bv, a Bentley Systems company, Delft, Netherlands

ABSTRACT: Hoek & Brown (HB) failure criteria have been employed over the past decades in common engineering applications due to their extended capability to capture the non-linear yielding of different types of rocks. Often implemented within a perfect plastic framework, this constitutive approach is here enhanced by introducing a softening rule to simulate the post-peak behaviour of rocks in the brittle regime. For this purpose, the degradation of the material properties has been expressed as a function of an internal variable (i.e., the cumulated value of deviatoric plastic strains) which allows one to simulate the rock failure resulting from dilating shearing. Furthermore, to accurately describe the non-linear dilatancy after the peak, the same hyperbolic trend has been applied also to the material properties governing the expression of the plastic potential. The performance of these constitutive equations has been inspected through parametric analyses to emphasize the role of the softening parameters at material point level, as well as to study the strain localization potential of the Hoek & Brown model with Softening (HBS). As a further validation, the shear band angles predicted with the theory have been compared by performing the same tests with finite element code PLAXIS 2D, thus confirming the model capability to simulate failure mechanisms within a strain localization regime.

1. INTRODUCTION

To describe the influence of joints, fractures and discontinuities on the mechanical behaviour of rock masses, the approach proposed by Hoek & Brown (HB) has been successfully employed over the past decades in common engineering applications, thus enabling their mechanical characterization within a continuum framework (Hoek, 1983; Hoek, 1990; Hoek and Brown, 1997; Martin et al., 1999; Hoek et al., 2002 and Eberhardt, 2012). The main advantage of this constitutive approach is to provide a useful link between the theoretical framework of the elasto-plastic theory and the geological practice commonly used for the qualitative assessment of rock mass properties (e.g., the GSI system detailed by Marinos et al., 2005; Cai et al., 2004; Cai et al., 2007, and Cai, 2010).

Although efficiently employed to solve practical problems (Carranza-Torres and Fairhurst, 1999; Zhao and Cai, 2010 and Cai, 2011), the HB approach has been mainly used within a perfect plastic framework, thus preventing further mechanisms of failure resulting from material softening, which can potentially compromise the behaviour of geo-engineering structures. To overcome this limitation, several formulations have been recently proposed (Alejano et al., 2010; Zou et al., 2016 and Lin et al., 2018) which consider the HB yielding with a piece-wise linear decrease of the material strength. Along these lines, the goal of this study is to define a different decay of the post-peak response by introducing a hyperbolic decrease of the material properties (Barnichon, 1998; Collin, 2002) to guarantee a smoother transition between the peak stress and the corresponding residual behaviour. Furthermore, the same hyperbolic expression has been used to model a non-linear dilatancy (i.e., the formulation proposed by El Moustapha, 2014), thus obtaining a more accurate trend of volumetric strain in the brittle regime. After calibrating the model parameters to simulate the mechanical behaviour of a porous rock (i.e., Rothbach sandstone), the performance of the selected constitutive equations has been inspected through parametric analyses with emphasis on the parameters which govern the rate of softening and the rate of dilation, respectively. Furthermore, to investigate the capability of the implemented model, the strain localization theory (Rudnicki and Rice, 1975) has been employed to study possible failure mechanisms through the formation of potential shear bands. The theoretical results have been validated with numerical solutions obtained by solving...
the same stress paths as an Initial Boundary Value Problem (IBVP) by using PLAXIS 2D, thus confirming the predicted values of the band angle with the numerical solution computed with FE analyses.

2. CONSTITUTIVE FORMULATION: A HOEK & BROWN MODEL WITH SOFTENING (HBS)

The elasto-plastic characteristics of the Hoek & Brown model with softening (HBS) have been defined according to the yield surface proposed by Jiang and Zhao, 2015 which represents a generalization of the Hoek & Brown criterion through the invariants associated with the stress tensor:

\[f = \frac{q^{1/a}}{\sigma_c^{(1/a-1)}} + A(\theta) \frac{q}{3} m_b - m_b p - s \sigma_{ci}. \]

(1)

Where \(p, q \) and \(\theta \) represent the mean stress (i.e., \(p = (\sigma_{xx} + \sigma_{yy} + \sigma_{zz})/3 \)), the stress deviator (i.e., \(q = \sqrt{1.5(s_{ij}^2)} \) and \(s_{ij} = \sigma_{ij} - \rho \delta_{ij} \) is the deviator component of \(\sigma_{ij} \) and \(\delta_{ij} \) represents the Kronecker’s symbol) and the Lode angle (i.e., \(\cos(3\theta) = \sqrt{6}tr(s^2)/tr(s^2)^{3/2} \)), respectively. In Eq. 1, the function \(A(\theta) \) is defined according to the formulation proposed by Jiang and Zhao, 2015 in which \(A(\theta) = 2\cos(\pi/3 - \theta) \) and \(\sigma_{ci} \) represents the uniaxial compression strength. \(m_b \), \(s \) and \(a \) are dimensionless parameters which are determined by the empirical correlations proposed by Marinos et al., 2015 and Brown, 2008 (i.e., the GS1 system):

\[m_{bi} = m \cdot \exp \left(\frac{GS1 - 100}{28 - 14D} \right), \]

\[s_i = \exp \left(\frac{GS1 - 100}{9 - 3D} \right), \]

\[a = \frac{1}{2} + \frac{1}{6} \left(e^{-GS1/15} - e^{-20/3} \right), \]

(2)

where GS1 represents the Geological Strength Index which is aimed to determine the quality of the rock mass from geological observations of joints, fractures and discontinuities. Although the GS1 classification enables to differentiate the initial yielding according to the spatial distribution of discontinuities, there is no specific reference to their rock-quality (i.e., the opening and the roughness of joints and fractures). For this purpose, a disturbance factor \(D \) has been introduced by Hoek et al., 2002 to calculate the material properties \(m_b, s \) and \(a \), as reported in Eq. 2.

According to the elasto-plastic theory, plastic strains \(\varepsilon_{ij}^p \) are computed by using the classical flow rule: \(\varepsilon_{ij}^p = \lambda (\partial g/\partial \sigma_{ij}) \), where \(\lambda \) represents the plastic multiplier and \(g \) the plastic potential, respectively. To introduce non-associative plasticity in the constitutive equations, the plastic potential has been selected with the same mathematical expression of the yield surface, differing from it through the variable \(m_p \) (i.e., when \(m_p = m_b \) the model is associated):

\[g = \frac{q^{1/a}}{\sigma_c^{(1/a-1)}} + A(\theta) \frac{q}{3} m_p - m_p p. \]

(3)

The degradation of the rock mass due to shearing has been simulated through a hyperbolic decreasing of the material properties (i.e., the hardening variables \(\alpha \) of the model) by considering the following hardening rule:

\[\alpha = \{ m_b \} = \left\{ \frac{m_{bi} - m_p}{B_m + \varepsilon_{eq}} \varepsilon_{eq} \right\}, \]

(4)

\[\varepsilon_{eq} = \int_0^t \varepsilon_{eq}^p \, dt. \]

(5)

In these equations, the subscripts \(i \) and \(r \) refer to the initial and the residual values of the corresponding variable. \(\varepsilon_{eq}^p \) represents the increment of deviatoric plastic strain (i.e., \(\varepsilon_{eq}^p = \sqrt{2(\varepsilon_{sij}^p \varepsilon_{sij}^p)/3} \)) where \(\varepsilon_{sij}^p = \varepsilon_{ij}^p - \varepsilon_{ij}^p/3 \) and \(\varepsilon_{ij}^p \) are the deviator component of the plastic strain and the volumetric plastic strain, respectively) and the equivalent plastic strain \(\varepsilon_{eq}^p \) is its cumulated value. Consistently with Eq. 4, the same hyperbolic function has been introduced in the variable \(m_p \) to simulate the non-linear trend of volumetric strain in the brittle regime (El Moustapha, 2014):

\[m_p = m_{pi} - \left(\frac{m_{pi} - m_{pr}}{B_p + \varepsilon_{eq}^p} \right) \varepsilon_{eq}^p. \]

(6)

In Eqs. 4 and 6, the parameters \(B_m \) and \(B_p \) govern the rate of softening resulting from deviatoric shearing while \(B_p \) dictates the rate of dilation after initial yielding. The hardening rule reported in Eq. 4 is plotted in Fig. 1 to highlight how the parameters \(B_m, B_s \) and \(B_p \) (i.e., the parameters \(B_r \)) enforce a given rate of decay on the corresponding hardening variables.
Figure 1: Evolution of the hardening variables as a function of the equivalent plastic strain. The letters A, B, C indicate the value of ε_{eq}^p corresponding to 50% of the corresponding initial hardening variable for three different values of B_j (i.e., $B_j^A = 0.005, B_j^B = 0.01, B_j^C = 0.02$).

By observing Fig. 1, it is worth remarking that $B_j = \varepsilon_{eq}^p$ is the specific value for which the decaying evolution of α_j reaches the 50% of its corresponding initial variable (i.e., $\alpha_j = 0.5 \alpha_{j0}$). For this reason, smaller values of B_j involve a faster decrease of α_j, thus resulting to a more important decrease of the material strength.

3. MODEL CALIBRATION

To test the performance of the HBS model, a first-order calibration has been proposed to simulate the post-peak regime of a porous sandstone loaded through a drained triaxial test. For this purpose, the experimental tests performed by Bésuelle et al., 2003 to investigate the mechanical behaviour of Rothbach sandstone have been considered to evaluate the initial yielding and the model characteristics during the post-peak regime. Specifically, as the experiments have been performed on the intact material, the GSI and the disturbance factor D have been selected equal to $GSI = 100$ and $D = 0$, thus having the initial values of m_B, s and α equal to $m_{B0} = m_B, s_i = 1$ and $\alpha = 0.5$, respectively. A further constitutive choice employed to reduce the number of the calibrated parameters, concerns the parameters characterizing the residual material properties which have been selected equal to zero (i.e., $m_{B0} = m_{\psi\alpha} = s_r = 0$), thus assuming a complete material destructuration of the rock for large values of shear strain. This hypothesis simplifies the calibration process during the brittle regime, in that it assumes the post-peak response only governed by the parameters B_m, B_s and $B_{\psi\alpha}$ with a resulting reduction of the number of material parameters. The performance of the resulting calibration is illustrated in Fig. 2 which shows the ability of the HBS to capture the post-peak behaviour in terms of both resistance and deformability characteristics for the set of parameters listed in Table 1.

Table 1 Model parameters for the HBS model used to calibrate Rothbach sandstone.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>E [MPa]</td>
<td>8500</td>
</tr>
<tr>
<td>ν [-]</td>
<td>0.17</td>
</tr>
<tr>
<td>σ_{ci} [MPa]</td>
<td>38</td>
</tr>
<tr>
<td>m_i [-]</td>
<td>10</td>
</tr>
<tr>
<td>$m_{\psi\alpha}$ [-]</td>
<td>8</td>
</tr>
<tr>
<td>B_m [-]</td>
<td>0.017</td>
</tr>
<tr>
<td>B_s [-]</td>
<td>0.017</td>
</tr>
<tr>
<td>$B_{\psi\alpha}$ [-]</td>
<td>0.0035</td>
</tr>
</tbody>
</table>

By observing Fig. 2, it is possible to note that the selected calibration slightly anticipates the axial strain corresponding to the peak strength and postpones its value in proximity of the minimum of volumetric strain. This trend of behaviour is explained by the fact that the model neglects the presence of dissipative phenomena due to micro-cracking growth and homogeneous cements debonding occurring before the peak stress, thus considering a linear elastic response until the peak. Moreover, it is worth remarking that the proposed set of parameters results from material point analyses, thus neglecting the strong non-homogeneous strain-field consequent from the appearing of strain localization phenomena in the sample.

4. PARAMETRIC ANALYSES

To investigate the effect of the model parameters during the post-peak response, sensitivity studies have been performed through a set of drained biaxial tests (BXD)
performed at 5 MPa of initial confining pressure. Specifically, the parameters tested in these analyses are i) the parameter m_i which prescribes the shape of the elastic domain, ii) the parameter $m_{\psi i}$ which influences the evolution of volumetric strains in the post-peak regime, iii) the parameters B_m and B_{ψ} governing the rate of softening and the rate of dilation, respectively. The numerical results are presented in Figs. 3-6, where the parameters used to simulate Rothbach sandstone are employed as a reference set of parameters and they are reported with a blue line.

Figure 3: Sensitivity study performed on the parameter B_m through a set of drained biaxial test (BXD) performed at 5 MPa of initial confining pressures: (a) stress paths, (b) stress-strain response, (c) evolution of volumetric strain. The blue line indicates the solution of the stress path computed with the reference set of parameters reported in Table 1.

Specifically, a sensitivity study on the parameter B_m is plotted in Fig. 3 which shows the material response in terms of stress path and stress-strain response. Consistently with the plot illustrated in Fig. 1, Fig. 3 emphasizes i) the reduction of the strength resistance corresponding to decreasing values of B_m (Figs. 3(a)-(b)), ii) the influence of the softening process on the evolution of volumetric strain. As a matter of fact, it is possible to observe that the dilation trend is more accentuated for decreasing values of B_m resulting from a more important decay of the material properties (Fig. 3(c)). At variance with B_m, the parameter B_{ψ} has an important influence on the development of volumetric strain which for lower values of B_{ψ} tends to approach a regime of zero-dilation corresponding to lower values of ε_v (Fig. 4). Fig. 5 shows the effect of m_i on the mechanical behaviour of the rock which results in a homothetical expansion/shrinking of q and ε_v (Figs. 5(b)-5(c)) due to the corresponding variation of the elastic domain. Analogously, Fig. 6 reports the sensitivity study on the parameter $m_{\psi i}$ which affects significantly the initial evolution of volumetric strain after the peak, thus bringing the material response to higher values of ε_v at the end of the loading process.

5. LOCALIZATION ANALYSES

To investigate the intrinsic capability of the selected constitutive equations to deform in narrow shear bands, the strain localization theory (Rudnicki and Rice, 1975) has been employed in this study to characterize the inception of localized strain during a given stress path.
Figure 4: Sensitivity study performed on the parameter B_ψ through a set of drained biaxial test (BXD) performed at 5 MPa of initial confining pressures: (a) stress paths, (b) stress-strain response, (c) evolution of volumetric strain. The blue line indicates the solution of the stress path computed with the reference set of parameters reported in Table 1.

![Figure 4](image1)

Figure 5: Sensitivity study performed on the parameter m_i through a set of drained biaxial test (BXD) performed at 5 MPa of initial confining pressures: (a) stress paths, (b) stress-strain response, (c) evolution of volumetric strain. The blue line indicates the solution of the stress path computed with the reference set of parameters reported in Table 1.

![Figure 5](image2)

Figure 6: Sensitivity study performed on the parameter m_ψ through a set of drained biaxial test (BXD) performed at 5 MPa of initial confining pressures: (a) stress paths, (b) stress-strain response, (c) evolution of volumetric strain. The blue line indicates the solution of the stress path computed with the reference set of parameters reported in Table 1.

![Figure 6](image3)

For elastoplastic constitutive equations, a criterion to identify bifurcated solutions in the form of narrow shear bands can be written as:

$$
\mathcal{L}(\varphi) \leq \det \left[n_j(\varphi) C_{ijkl}^p n_i(\varphi) \right],
$$

where C_{ijkl}^p is the elasto-plastic constitutive tensor and φ is the angle defining the unit vector n_j orthogonal to the band (Fig. 7). In particular, although all the angles satisfying the condition reported in Eq. 7 are susceptible to predict strain localization, to evaluate the effective angle at which the strain localizes, reference will be made to the angle $\bar{\varphi}$ corresponding to the minimum of the localization criterion $\mathcal{L}(\varphi)$ (i.e., the angle φ at which $\min(\mathcal{L}) = \mathcal{L}(\bar{\varphi})$ as illustrated in Fig. 7).

This theoretical framework is here employed to explore the model performance of the HBS, thus investigating the evolution of the shear-strain characteristics during plane strain stress paths. A similar strategy is proposed by Marinelli and Buscarnera (2015) and Papazoglou et al., 2017 in which the strain localization theory is used as a further tool to calibrate the mechanical response of porous rocks in the compaction regime.

The results are shown in Fig. 8 where the evolution of the localization angle $\bar{\varphi}$ is plotted as a function of the prescribed axial strains. From this figure, it is possible to observe that, for a given confining pressure p_o, there is a decreasing evolution of the angle $\bar{\varphi}$, which indicates a rotation of the shear band during the loading process.
Figure 7: Plot of the bifurcation criterion \(L(\varphi) \) for the HBS model.

In this context, the initial confining pressure \(p_0 \) has mainly two effects on the localization angle \(\varphi \): i) for increasing values of \(p_0 \), the range of rotations between the initial yielding and the end of the loading tends to decrease, ii) for increasing values of \(p_0 \), the angle \(\varphi \) at first yielding shows a decreasing trend as reported by the red line in Fig. 8. The results shown in Fig. 8 are consistent with the experimental evidence which report a decrease of the band angle inclination for higher values of the confining pressure, especially if the stress path approaches the transition from brittle-dilation to ductile compaction behaviour (Wong et al., 1997; Wong and Baud, 2012).

Moreover, the band angle inclinations are consistent with the experimental results presented in El Moustapha, 2014; Lanatà, 2015 in which biaxial stress experiments are performed on Vosges sandstone, a porous rock characterized by the same initial porosity of Rothbach sandstone (i.e., the experiments show a band inclination of 60° and 54° for a radial confinement of \(p_0 = 20 \) MPa and \(p_0 = 30 \) MPa, respectively).

To avoid the pathological mesh sensitivity characteristics of classical continuum models, a viscous regularization technique has been employed to restore the objectivity of the numerical solution during the shear band formation (Sluys, 1992). This approach has been successfully used by several authors in the compaction regime (Das and Buscarrera, 2014; Shahin et al., 2019) and will be here employed to regularize the numerical problem during brittle failure. For this purpose, the inviscid model presented in Eqs. (1)-(6), has been replaced within a rate-dependent framework based on the overstress theory proposed by Perzyna 1966, in which the visco-plastic strains are calculated through a viscous nucleus function \(\Phi(f) \) according to the equation: \(\varepsilon_{ij}^{vp} = \frac{\partial g}{\partial \sigma_{ij}} \)

In this study, the following expression of the viscous nucleus has been used: \(\Phi = \mu(\frac{\varepsilon_{ij}}{\sigma_{ij}}) \), where \(\mu \)
represents a fluidity parameter, and $< >$, the McCauley brackets. The global mechanical response of the sample shown in Fig. 9(b) is illustrated in Fig. 10 where the sample behavior is expressed as a function of the vertical reaction R_y and the normalized displacement $u_y/u_{y,tot}$. The total value of the applied displacements $u_{y,tot}$ has been considered equal to $u_{y,tot} = 5 \text{ cm}$, while a fluidity μ has been prescribed equal to $\mu = 1.15 \times 10^{-5}$/s.

![Figure 10](image)

Figure 10: Global trend of behavior of the rock sample tested through a drained biaxial computation with an initial confining of 20 MPa. A value of 1 m has been considered for the height H of the sample.

6. CONCLUSIONS

This paper has discussed an elasto-plastic model based on a HB failure criterion in which a hyperbolic softening rule has been implemented to consider the material properties degradation during the post-peak regime. Specifically, the expression of the softening rule has been expressed as a function of an equivalent plastic strain (i.e., a cumulated value of the norm of deviatoric plastic strains), thus obtaining a residual strength resistance for large strains. The presented constitutive framework has been enriched by introducing a non-associated plastic potential which conserves the same mathematical expression of the yield criterion but differs from it through the variable m_ψ (i.e., when $m_\psi \equiv m_b$ the model is associated). Furthermore, to enable an accurate description of volumetric strain during the post-peak regime, the same hyperbolic function implemented for the hardening variable has been also introduced for m_ψ. The performance of the model has been investigated i) by calibrating the material parameters to simulate the mechanical behaviour of Rothbach sandstone, ii) by performing sensitivity analyses to highlight the effect of the parameters governing the rate of the softening process. To further explore the capability of the HBS model in simulating failure mechanisms with dilatant shear bands, the strain localization theory has been employed to calculate the shear band inclination of potential strain localization phenomena. The results predicted by the strain localization theory have been confirmed by numerical computations performed with the finite element code PLAXIS 2D in which biaxial tests have been solved as an IBVP. The enhanced constitutive framework based on a HB yield criterion opens the avenue to improve the analyses of geomechanics systems in which an accurate description of the failure mechanisms represents a crucial ingredient to guarantee more reliable design strategies.

REFERENCES

