INTRODUCTION

Engineering ceramics being able to repair cracks upon heat treatment have gained increasing attention. 1–3 Crack healing may offer a high potential for improving the reliability and prolongation of the lifetime of ceramic components subjected to mechanical loading at elevated temperatures.1 Crack healing in ceramics via re-sintering (based on UO 2,4,5 Al2O3,6,7 ZnO,8 MgO9), as well as oxidation of SiC, Si 3N4, and related composites,10–14 were reported as major crack-healing mechanisms giving rise for partial or even full recovery of the strength. The enhancement of the crack-healing ability of those ceramics that are controlled by re-sintering mechanisms, was successfully achieved by loading repair fillers, such as SiC particles or whiskers in the ceramic matrix, featuring oxidation-induced healing.15–22 Several parameters affecting the healing efficiency were investigated, such as healing temperature and time,15 stress,18 crack dimension,19 and oxygen partial pressure, 20 as well as volume fraction and particle size of the repair filler constituent. 21 For example, an enhanced healing ability was observed in Al 2O3 composites loaded with submicron-sized SiC particles as repair filler. 21 Decreasing the repair filler particle size from 270 to 30 nm resulted in lowering of the healing temperature from 1300 to 950°C, which was attributed to the activation energy for oxidation, scaling with SiC repair filler particle size.21 The presence of an activator, such as MoO (0.2 vol.%) in the SiC–Al2O3 composite, was found to accelerate crack healing significantly, while strength recovery was achieved at 1000°C for 1 hour healing period.22

Low-temperature oxidation-induced crack healing in Ti2Al0.5Sn0.5C–Al2O3 composites

Guoping Bei1,2 | Mirza Mačković3 | Erdmann Spiecker3 | Peter Greil1

1Department of Materials Science, Glass and Ceramics Group, University of Erlangen-Nürnberg, Erlangen, Germany
2Department of Materials Science and Engineering, Delft University of Technology, Delft, The Netherlands
3Department of Materials Science and Engineering, Institute of Micro- and Nanostructure Research (WW9) & Center for Nanoanalysis and Electron Microscopy (CENEM), FAU Erlangen-Nürnberg, Erlangen, Germany

Correspondence
Guoping Bei, Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
Email: G.Bei@tudelft.nl

Funding information
German Research Foundation, Grant/Award Number: GR961/33-2; Cluster of Excellence, Grant/Award Number: EXC315

Abstract
The oxidation-induced crack healing of an Al2O3 composite loaded with various volume fractions of Ti2Al0.5Sn0.5C repair filler particles was investigated by annealing in air at a relatively low temperature of 700°C. After annealing a composite with 20 vol.% repair fillers (with a particle size of ~5.6 µm) for 48 hours, artificial indentation cracks prepared on the surface, as well as pores near the surface, were completely healed by filling with condensed oxidation products. Additionally, minor fraction of metallic Sn was detected. A complementary study by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy revealed that nano-sized oxidation products (SnO2, TiO2, and α-Al2O3 phase) were formed as major crack-filling species. After healing, the strength recovery of the Al2O3 composites was significantly improved in the composites loaded with more than 10 vol.% repair fillers and achieved 107% at 700 for 48 hours.

KEYWORDS
Al2O3-MAX phase composites, oxidation products, oxidation-induced crack healing, strength recovery
Recently, a group of ternary nitrides and carbides (MAX phases) with the general formula \(M_{n+1}AX_n\) \((n = 1 \text{ to } 3)\), where \(M\) is a transition metal, \(A\) is an A group element, and \(X\) is either carbon or nitrogen,\(^{23}\) demonstrated interesting healing abilities. MAX phases containing Al, such as \(\text{Ti}_3\text{AlC}_2\),\(^{24}\) \(\text{Ti}_2\text{AlC}\)\(^{25-27}\) and \(\text{Cr}_2\text{AlC}\)\(^{28}\) were reported to form a dense layer of \(\alpha\)-\(\text{Al}_2\text{O}_3\) filling in the gap. Compared with \(\text{SiC}\)- and \(\text{Si}_3\text{N}_4\)-based composites, larger cracks with a length of up to 7 mm and a crack opening width of up to 5 \(\mu\)m could be fully healed in \(\text{Ti}_2\text{AlC}_2\) after heat treatment at 1100°C for 2 hours in air. Even a repeatable crack healing was observed in \(\text{Ti}_2\text{AlC}\), indicating that MAX phases offer a multiple crack-healing ability. Furthermore, a Sn-containing MAX phase (\(\text{Ti}_2\text{SnC}\)) was able to repair millimeter-sized cracks by annealing at a relatively low temperature of 800°C within only 1 hour in air,\(^{29}\) as well as in vacuum.\(^{30}\) After heating, the flexural strength\(^{29}\) and electrical conductivity\(^{29,30}\) of the damaged material were almost fully recovered and reached the level of the virgin material. \(\text{Ti}_2\text{Al}_{0.5}\text{Sn}_{0.5}C\) MAX phase solid solutions were able to undergo oxidation-induced crack healing in ceramic composites at temperatures even below 1000°C.\(^{29-33}\) The fracture strength of \(\text{Al}_2\text{O}_3\) composites loaded with 20 vol.% of the \(\text{Ti}_2\text{Al}_{0.5}\text{Sn}_{0.5}C\) repair filler containing artificial indent cracks, recovered fully to the level of the virgin material upon isothermal annealing in air atmosphere for 0.5 hours at 900°C.\(^{32}\) However, the intrinsic healing mechanisms of \(\text{Ti}_2\text{Al}_{1-x}\text{Sn}_{x}C\)–\(\text{Al}_2\text{O}_3\) at temperatures even lower than 700°C have not been discovered yet. Thus, the scope of the present work was to examine the crack-healing behavior of \(\text{Al}_2\text{O}_3\) composites loaded with \(\text{Ti}_2\text{Al}_{0.5}\text{Sn}_{0.5}C\) repair filler operating at 700°C. An improved distribution of the repair filler in the \(\text{Al}_2\text{O}_3\) matrix composites were obtained by reducing the particle size of repair filler. The healing efficiency was correlated with the oxidation and microstructure analysis of the healed zone of \(\text{Ti}_2\text{Al}_{0.5}\text{Sn}_{0.5}C\)–\(\text{Al}_2\text{O}_3\) composites.

2 | EXPERIMENTAL DETAILS

The \(\text{Ti}_2\text{Al}_{0.5}\text{Sn}_{0.5}C\) solid solution was synthesized from a reactant powder mixture, consisting of Ti, Al, Sn, and \(\text{TiC}\) (2 \(\mu\)m, 99% purity) with a molar composition corresponding to \(\text{Ti}_0.5\text{Sn}_0.5\text{Al}_0.5\text{Ti}_0\). The annealing was conducted for 1 hour in vacuum at 1400°C. The reaction product was milled for 12 hours (Attrition mill with a ball-to-materials ratio of 2:1), resulting in a mean particle size of 5.6 \(\mu\)m (Mastersizer 2000, Malvern Instruments, UK). The \(\text{Al}_2\text{O}_3\) matrix (AKP-53; Sumitomo Chemical, Japan) loaded with \(\text{Ti}_2\text{Al}_{0.5}\text{Sn}_{0.5}C\) composites with repair filler fractions of 5, 10 and 20 vol.% were sintered at 1350°C for 4 hours in Ar atmosphere (Heraeus Holding GmbH, Hanau, Germany) by applying a heating rate of 5°C/min. Further details of the manufacturing process are given in Ref\(^{30,31}\). The \(\text{Ti}_2\text{Al}_{0.5}\text{Sn}_{0.5}C\)–\(\text{Al}_2\text{O}_3\) composite, dedicated for mechanical investigation, was polished to 1 \(\mu\)m surface finish using a diamond suspension and cut into bar specimens with dimensions of 2.5 \(\times\) 2.0 \(\times\) 28 mm\(^3\). The density of the materials was measured according to the Archimedes method. Surface cracks were generated by means of Vickers indentation, applying a constant load of 100 N (HV10) for 10 seconds (Zwick, Ulm, Germany). Oxidation-induced crack healing was carried out in an oxidation furnace (Linn High Term GmbH, Eschenfelden, Germany) at 700°C for 48 and 96 hours. The weight change of \(\text{Ti}_2\text{Al}_{0.5}\text{Sn}_{0.5}C\)–\(\text{Al}_2\text{O}_3\) composites caused by oxidation reaction was recorded at 700 and 900°C for 12 hours by a thermal balance, applying a heating rate of 5°C/min (STA 429; Netzsch, Selb, Germany).

The phase composition prior and after the heat treatment was analyzed by X-Ray diffraction (XRD, Kristalloflex; Siemens AG, Mannheim, Germany) operated with monochromated Cu-K\(\alpha\) radiation. The composite microstructure and the indent crack morphology were analyzed by scanning electron microscopy (SEM, Helios NanoLab 600i FIB Workstation; FEI, Eindhoven, the Netherlands). After the healing treatment, the reaction products filling the crack space were examined by field emission SEM (FIB, Helios NanoLab 600i FIB Workstation, FEI) system and energy dispersive X-ray spectroscopy (EDXS; Oxford Instruments INCA, Oxford, UK). Thin-section specimens were prepared by FIB, which is equipped with a Ga\(^+\)-ion source and operated at 30 kV. A protective platinum layer (30 \(\times\) 2 \(\times\) 5 \(\mu\)m\(^3\)) was deposited on the surface area of the selected healed zone. The lamella was finally thinned to 50-100 nm with a very fine ion beam current. Transmission electron microscopy (TEM) was performed with a Philips CM30 TWIN/STEM and Philips CM300 UltraTWIN (both from FEI Company), both operated at 300 kV acceleration voltage. TEM images and electron diffraction patterns were recorded using a charged couple device (CCD) camera from TVIPS (Tietz Video and Processing Systems GmbH, Gauting, Germany) with an image size of 1024 \(\times\) 1024 pixels (at the CM30 TEM) and 2048 \(\times\) 2048 pixels (at the CM300 TEM), respectively. The processing of the TEM images and diffraction patterns was performed with the free available software ImageJ (Version 1.48r) and the commercially available software DigitalMicrograph\(^{TM}\). The evaluation of the electron diffraction patterns was performed by simulating the experimental diffraction patterns with the software JEMS (java version 3.5505U2010) and using the inorganic crystal structure database (ICSD) files for \(\text{Al}_2\text{O}_3\) (#10425), \(\text{SnO}_2\) (#9163), and \(\text{TiO}_2\) (#9161).

The Gibbs free energy of various oxidation products, such as \(\text{Al}_2\text{O}_3\), \(\text{SnO}_2\), and \(\text{TiO}_2\), was calculated by thermodynamic calculations using the FactSage 7.1 software.\(^{34}\) The thermodynamic data of oxidation products \(\text{Al}_2\text{O}_3\), \(\text{SnO}_2\), and \(\text{TiO}_2\) were taken from the FToxide database and the
thermodynamic data of metallic Al and Sn and Ti were taken from the Bins database.34

Filling of the crack space with condensed oxidation products causes the strength of the indented samples to recover. The flexural strength of the virgin sample, \(\sigma_0 \), indented sample, \(\sigma_{\text{indent}} \), as well as healed samples after thermal treatment, \(\sigma_{\text{heal}} \), were measured by three-point bending (5565; Instron Deutschland GmbH, Pfungstadt, Germany) using ASTM Standard (C1161-18), by applying a lower support span of 20 mm and a crosshead speed of 0.5 mm/min.

3 | RESULTS AND DISCUSSION

3.1 | Composite microstructure

Figure 1 displays the XRD pattern of the sintered Ti\(_2\)Al\(_{0.5}\)Sn\(_{0.5}\)C–Al\(_2\)O\(_3\) composites loaded with 20 vol.% repair fillers. Only \(\alpha \)-Al\(_2\)O\(_3\) and Ti\(_2\)Al\(_{0.5}\)Sn\(_{0.5}\)C solid solution were detected as crystal phases, indicating that the Ti\(_2\)Al\(_{0.5}\)Sn\(_{0.5}\)C repair filler did not suffer from thermal degradation during the high-temperature sintering process. Figure 2 shows backscattering SEM images of sintered Ti\(_2\)Al\(_{0.5}\)Sn\(_{0.5}\)C–Al\(_2\)O\(_3\) composites containing 5, 10, and 20 vol.% repair fillers. The MAX phase repair filler particles were uniformly dispersed in the alumina matrix. In accordance with the increasing volume fraction of the repair filler, the mean repair filler inter-particle distance, \(\lambda_{\text{MAX}} \), calculated according to Ref. 35, decreased from \(\lambda_{\text{MAX}} \approx 2.3 \) µm (5 vol.%) to \(\approx 1.3 \) µm (20 vol.%), respectively (see Table 1). The repair filler inter-particle distances are significantly smaller compared to the lengths of the artificial cracks emanating from the load indents (\(c_{\text{indent}} = 280 - 330 \) µm).

Figure 3 shows a typical microstructure of a crack emanating from the tip of the Vickers indentation in the Al\(_2\)O\(_3\).
composite containing 10 vol.% repair fillers. The repair filler particles are homogenously distributed around the crack path. A small prolongation of the crack length of 345 µm observed on composites with a minimum repair filler fraction of 5 vol.% may be attributed to a reduced toughness compared to an enhanced toughness at high particle loading fractions.

3.2 Oxidation-induced crack healing

Annealing of the Ti$_2$Al$_{0.5}$Sn$_{0.5}$C–Al$_2$O$_3$ composites in air triggered a sequence of oxidation reactions of the Ti$_2$Al$_{0.5}$Sn$_{0.5}$C repair filler, which resulted in the formation of Al$_2$O$_3$, SnO$_2$, and TiO$_2$ oxidation products (Figure 4). Although, the Gibbs free energy for Al$_2$O$_3$ formation is the lowest among the formed oxides (Figure 5), newly formed Al$_2$O$_3$ could not be detected by XRD due to overlapping Al$_2$O$_3$ matrix peaks. Metallic Sn was detected, which is likely to occur deeply in the crack where the local oxygen concentration is too low for tin oxide formation.

Figure 6 shows the weight increase of the composite loaded with 20 vol.% Ti$_2$Al$_{0.5}$Sn$_{0.5}$C during the thermogravimetric measurement at 700 and 900°C under same heating conditions. Oxidation reactions, indicated by a weight increase, started at about 450°C, which was in agreement with the oxidation behavior measured on the single phase Ti$_2$Al$_{0.5}$Sn$_{0.5}$C powders. While at 900°C a rapid reaction causes the weight gain to raise to 4.25 after 30 minutes, the oxidation reaction at 700°C proceeds much slower and reaches 3.3% after a holding period of 12 hours. Furthermore, time scaling changes from a linear relation at 900°C to a parabolic relation at 700°C. Figure 7 shows the microstructure of the healed crack after annealing at 700°C for an elongated period of 48 hours. Crack bridge formation and partial crack filling was observed on the composite loaded with 10 vol.% repair fillers, whereas complete crack filling occurred in the 20 vol.% specimen. EDXS mapping analysis confirmed the presence of TiO$_2$, SnO$_2$ and Al$_2$O$_3$ as major oxidation products, as well as a minor fraction of metallic Sn.
Figure 8A is a representative bright field (BF) TEM image showing the Al₂O₃ matrix and the healed area. As indicated in Figure 8A by the white dashed line, an interface clearly separates the Al₂O₃ matrix from the healed zone. Selected area electron diffraction (SAED) confirms the presence of single-crystalline orthorhombic α-Al₂O₃ (see Figure 8B). The healed area, as well as the interface between the α-Al₂O₃ matrix and the healed zone, are examined in more details by high-resolution TEM (HR-TEM). The α-Al₂O₃ matrix exhibits a typical fringe periodicity of 0.21 nm, which fits well with the theoretical lattice spacing of α-Al₂O₃ (113) planes (orthorhombic crystal structure, ICSD #10425). The healed area consists of nanocrystallites (which is evident from Bragg-contrasts in Figure 8A) with a random orientation (see HR-TEM images in Figure 8C,D). The observed spacing of 0.26 nm can be assigned to (104) lattice planes of orthorhombic α-Al₂O₃ (ICSD #10425), while the spacing values of 0.17 and 0.18 nm can be assigned to (211) lattice planes of tetragonal TiO₂ (ICSD #9161) and (211) lattice planes of tetragonal SnO₂ (ICSD #9163), respectively. However, since the lattice spacing values of 0.17 and 0.18 nm are very close to each other, a clear differentiation and their assignment to specific lattice planes is problematic. A misinterpretation of the lattice planes can affect conclusions about the phases, which in this particular case also have an identical (tetragonal) crystal structure with similar lattice parameters. However, in relation and agreement with XRD and SEM-EDXS mapping results, we conclude that both phase, tetragonal TiO₂ and SnO₂, are present (and co-existing with α-Al₂O₃) in the healed zone. Furthermore, amorphous regions are detected at the interface between α-Al₂O₃ and the healed zone, as can be seen in Figure 8C. Also in the interior of the healed zone, an amorphous phase is observed between the nanocrystallites (see Figure 8D). There are two possible reasons for these observations:

1. The annealing temperature of 700°C was relatively low. The temperature may be insufficient for complete crystallization and growth of oxidation products (TiO₂ + SnO₂ + α-Al₂O₃), which is in good agreement with the HR-TEM results from the healed area (Figure 8C,D). According to previous results, a large amount of crystalline TiO₂ (>5 µm) and α-Al₂O₃ (<1 µm) can be expected after annealing at 900°C for 1 hour or above 1000°C.37,38
2. Ga⁺-ion beam-induced damage during FIB preparation and possible electron beam (e-beam)-induced damage during the TEM analysis may also cause an amorphization of the specimen. Ion-beam-induced damage is often observed during the thinning procedure of the outer regions of TEM samples.³⁹

3.3 | Strength recovery

Figure 9 shows the variation of the bending strength prior and after healing treatment at 700°C for 48 and 96 hours. Indentation caused the virgin strength to decrease for more than 50%. After annealing in air, the recovery of strength up to the level of the virgin material (and even slightly higher due to the healing of small surface cracks and pores) can be observed for the composites loaded with 10 and 20 vol.% repair fillers. Since the mean coefficients of thermal expansion of the crack-filling oxide reaction products (TiO₂ [rutile]: 8.4 x 10⁻⁶/K)³⁰ and SnO₂: 3.9 x 10⁻⁶/K)³¹ are smaller than the one of the α-Al₂O₃ matrix material (8.4 x 10⁻⁶/K),³⁸ compressive stresses are likely to be generated at the crack-matrix interface upon cooling, which tend to increase the crack growth resistance.³² In addition to healing of the artificial indent cracks, closure of the residual porosity in the composite (2%-7%) might also contribute to the strength recovery.

4 | CONCLUSION

The oxidation-induced crack healing of a Al₂O₃ composite loaded with the Ti₂Al₁₀Sn₅C MAX phase repair filler was examined at 700°C. The formation of nano-sized TiO₂...
(rutile) + SnO₂ + α-Al₂O₃, as well as a minor fraction of metallic Sn as the crack-filling material, is observed. Restoration of the solid contact between the crack surfaces triggers complete recovery of the compromised strength at repair filler fractions exceeding 10 vol.\%.

ACKNOWLEDGMENTS

The financial support by the German Research Foundation (DFG, GR961/33-2 project) and DFG through the Cluster of Excellence EXC315 “Engineering of Advanced Materials” (EAM) is gratefully acknowledged.

ORCID

Guoping Bei https://orcid.org/0000-0002-9315-6834

REFERENCES

How to cite this article: Bei G, Mačković M, Spiecker E, Greil P. Low-temperature oxidation-induced crack healing in Ti₂Al₀.₅Sn₀.₅C–Al₂O₃ composites. Int J Appl Ceram Technol. 2019;00:1–8. https://doi.org/10.1111/ijac.13315