Generic Model of PEM Fuel Cells and Performance Analysis in Frequency Containment Period in Systems with Decreased Inertia

Alshehri, F. A.; Rueda, José L.; Perilla Guerra, Arcadio David; Tuinema, Bart; van der Meijden, Mart; Palensky, Peter; Gonzalez-Longatt, F.

DOI
10.1109/ISIE.2019.8781346

Publication date
2019

Document Version
Accepted author manuscript

Published in
2019 IEEE 28th International Symposium on Industrial Electronics (ISIE)

Citation (APA)

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.
Generic Model of PEM Fuel Cells and Performance Analysis in Frequency Containment Period in Systems with Decreased Inertia

F.A. Alshehri¹, J.L. Rueda Torres¹*, A. Perilla¹, B.W. Tuiniena¹, M.A.M.M. van der Meijden¹,², Peter Palensky¹, F. Gonzalez-Longatt³

¹Intelligent Electrical Power Grids, Delft University of Technology, Delft, The Netherlands
²TenneT TSO B.V., Arnhem, The Netherlands
³Centre for Renewable Energy Systems Technology (CREST), Loughborough University, United Kingdom

*J.L.RuedaTorres@tudelft.nl

Abstract—The increase in renewable energy sources in addition to the decrease in conventional synchronous generators is leading to significant challenges for the power system operators to maintain generation load balance and to manage the system’s decreasing inertia. Proton Exchange Membrane (PEM) fuel cells are characterised by high current density and fast power injection, which makes them ideal for frequency containment. This paper presents a generic model for PEM fuel cells developed in PowerFactory for frequency stability studies and provides an evaluation of its performance in a reduced-size dynamic model of the North Netherlands high voltage transmission network. The results show that the PEM fuel cell provides improved frequency response within the containment period when compared with synchronous generators for the same amount of support reserve.

Index Terms—frequency response, fuel cells, renewable energy sources, power system stability.

I. INTRODUCTION

The increasing share of Renewable Energy Sources (RES) increases the variability of electrical power generation, challenging system operators to maintain balance between generation and demand, which implicitly affects frequency stability. Also, replacing synchronous generators with RES results in decreasing inertia in the system, which can involve high Rate-of-Change-of-Frequency (RoCoF) values due to sudden occurrence of active power imbalance. One of the promising technologies that can support to keep active power balance are electrolysers and fuel cells, because of their high current density and fast response. This paper presents a generic model for Proton Exchange Membrane (PEM) fuel cells, including fuel cell dynamics and power control. The model is used to test the fuel cell ability to provide frequency containment reserve in a system with decreasing inertia.

In literature, several approaches have been adopted to develop the model and characterisation of the steady state and dynamic behaviour of PEM fuel cells. For example, models based on electrochemical equations, [1]-[4], provide valuable insight into the reactions that happen within the stack, yet they are very complex and require the knowledge of technical parameters that are not always publicly available. On the other hand, models based on mathematical approximations, semi-empirical or empirical data and model fitting, [5]-[10], are generally simpler, but they represent specific commercial fuel cells, and thus may not be generalised to all existing units. Unfortunately, none of these models can be used to study the frequency stability of the power system. This paper develops an expanded generic PEM fuel cell model that includes frequency and power control and can be used for frequency stability studies on large scale. The model is then used to evaluate the effectiveness of PEM fuel cells in supporting the frequency stability of the power system.

This paper starts with a description of frequency stability and Frequency Containment Reserve (FCR) in section II. Section III presents a generic dynamic model of the PEM fuel cell. This model is tested in a reduced model of the 380-kV North Netherlands transmission network in section IV. Finally, the conclusions from this work and the outline for future research are presented in section V.

II. FREQUENCY STABILITY

A. Description of Frequency Stability

Frequency stability is defined as the ability of a power system to maintain a steady frequency following a severe system upset resulting in a significant imbalance between generation and load demand [11]. The instability in such case will result in increasing frequency deviation or sustained frequency oscillations. In the case of a severe disturbance that results in a sudden generation-load demand imbalance, the frequency will start to deviate, and the power system response to such deviation is defined in three classifications: inertial response, primary frequency response and secondary frequency response. Inertial response is responsible for resisting frequency changes in the first 5-10 seconds after the disturbance, and it depends on the amount of rotating mass in the system, which is typically associated to synchronous generators. Primary frequency response works to arrest and stabilise the frequency response in the entire connected synchronous area after a disruption during the first 30 seconds [12]. Secondary frequency control acts after primary frequency control in order to restore the active power balance in each control area within 15 minutes after a disturbance.
B. Frequency Ancillary Services

In the context of frequency stability, ancillary services are operational reserves that the Transmission System Operator (TSO) can procure to preserve the balance between supply and demand to maintain frequency stability. The service considered in this study is Frequency Containment Reserve (FCR): a market implementation of primary frequency support through an auction platform. The focus of this paper is on PEM fuel cell participation in the FCR market as a supplier. The TSO identifies the required reserve capacity based on the total generation capacity in the managed area, suppliers submit their symmetrical bids, and the lowest bids are chosen until the required reserve capacity is achieved. The suppliers’ bids should be activated automatically with frequency deviation and should change the output power through a linear droop control mechanism [13]:

\[
\Delta P = P_{bid} \frac{|f-f_0|}{\Delta f_{max}}
\]  

(1)

where \(\Delta P\) is the change in generator power in MW, \(P_{bid}\) is the bid value in MW, \(f\) is the measured frequency in Hz, \(f_0\) is the reference frequency in Hz, and \(\Delta f_{max}\) is the full activation frequency deviation, which is the frequency deviation value where the supplier should provide the full bid amount. For example, in the Dutch system, the full activation frequency deviation is 200 mHz, and suppliers can also have a deadband of 10 mHz as illustrated in Fig. 1. A detailed description of the FCR market mechanism is provided in [13], [14].

![Droop control for FCR suppliers in the Dutch market.](image)

III. PEM FUEL CELL MODEL

A. PEM Fuel Cell Model

In literature, several approaches have been adopted to develop the model and characterisation of the steady-state and dynamic behaviour of PEM fuel cells. Some are based on the electrochemical equations, while some are based on empirical data and model fitting. A comprehensive review of literature models is provided in [15]. In this paper, a generalised model of PEM fuel cells for frequency support applications is developed, which covers the dynamics of the stack, the power conditioning system (i.e. DC-AC inverter) and the balance of plant. The developed model is built upon previous research [16], that estimates physical parameters through experiments and empirical data collection from the 1.2-kW Nexa PEM fuel cell, a frequently studied unit in this field. An advantage of using the Nexa model is the inclusion of an air compressor, a cooling fan and fully automated control [17], making it possible to incorporate the description of the balance of plant within the stack model. This paper builds upon the model from [16] and expands it with a frequency droop controller and active/reactive power control. The performance of this model is then studied in several grid-connected frequency stability studies.

The voltage of the fuel cell stack is dependent on the drawn current and the stack temperature. While the load determines the current, the temperature can be defined through a thermodynamic model. In order to simplify the modelling of the fuel cell, it will be assumed that the gases are ideal and uniformly distributed, gas flow will be at constant pressure at both anode and cathode, individual fuel-cell stacks can be lumped together to represent the fuel-cell array, and thermodynamic. The parameters of the developed fuel cell model are estimated using empirical data, which results in a very close fit to experimental measurements.

The following equation can represent the dynamic model for temperature change [16]:

\[
T(t) = T_2 + (T_1 - T_2) \times \exp\left(-\frac{H_t}{mc_p}t\right)
\]

(2)

where \(T_1\) is the initial temperature, \(T_2\) is the final steady state asymptotic temperature, \(H_t\) is the heat transfer coefficient (W/°C) and \(mc_p\) is the thermal capacitance (J/°C). The fuel cell output voltage as a function of current is empirically defined by the following equation [18]:

\[
V = E_0 - IR - A \ln \left(\frac{I}{I_s}\right)
\]

(3)

where \(E_0\) is the Nernst potential in Volts, \(R\) is the resistance in ohms, \(A\) is the Tafel Slope in Volts and \(I_s\) is the exchange current in amperes, which is considered a constant. The Nernst potential is calculated by [19]:

\[
E_0 = 47 \times \begin{bmatrix} 1.482 - 0.0008457T_K + 0.00004317T_K \ln(p_{H_2}p_{O_2}) \end{bmatrix} \]

(4)

where \(T_K\) is the stack temperature in Kelvin and \(p_{H_2}, p_{O_2}\) are the hydrogen and oxygen pressures in atm, respectively. Multiplication by 47 is to account for the 47 individual cells within the stack. The other parameters are estimated using empirical data fitting. The resistance is dependent on the temperature and is defined as [16]:

\[
R(T_K) = R_0 \times \exp\left(\frac{E_{a,K}}{R_0 T_K}\right)
\]

(5)

where \(R_0\) is the pre-exponential factor in ohms and \(E_{a,K}\) is the activation energy in J/mol. The Tafel slope is also dependent on temperature and is defined as [16]:

\[
A(T_K) = A_0 \times \exp\left(\frac{E_{a,A}}{R_0 T_K}\right)
\]

(6)

where \(A_0\) is the pre-exponential factor in Volts and \(E_{a,A}\) is the activation energy in J/mol. The output power from the fuel cell is simply the multiplication of the output current and the stack voltage. Table 1 gives the parameters for the fuel cell dynamic model equations.
Table I. Parameters for Fuel Cell Dynamic Model Equations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value and Unit</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>( m_{c_p} )</td>
<td>4304 J/°C</td>
<td>2</td>
</tr>
<tr>
<td>( \theta_0 )</td>
<td>15.67 x 10^{-,3} W/°C</td>
<td>2</td>
</tr>
<tr>
<td>( I_d )</td>
<td>1 x 10^{-,4} A</td>
<td>3</td>
</tr>
<tr>
<td>( R_c )</td>
<td>0.1537 Ω</td>
<td>5</td>
</tr>
<tr>
<td>( E_{eq} )</td>
<td>1800 J/mol</td>
<td>5</td>
</tr>
<tr>
<td>( A_e )</td>
<td>0.1591 V</td>
<td>6</td>
</tr>
<tr>
<td>( E_{eq,act} )</td>
<td>5344 J/mol</td>
<td>6</td>
</tr>
</tbody>
</table>

The use of per unit inputs and outputs for the dynamic model makes the developed model generic and can, therefore, be used to represent any size of fuel cell.

B. PowerFactory Model

The fuel cell is represented in PowerFactory through the static generator built-in component, configured to perform as an externally controlled current source. In PowerFactory, the static generator is used to represent any type of non-rotating generator connected to the grid via a converter. The control of the static generator is developed using DiGSIILENT Simulation Language (DSL), which can be programmed using visual structures such as frames and blocks. The model can be divided into three parts as shown in Fig. 2.

The frequency control measures the frequency deviation and applies a deadband, e.g., 10 mHz for the Dutch system. Then, the signal is run through a droop control block which is defined by the following equation:

\[
\Delta P = -P_{bid} \times \frac{(f - f_{nominal})}{Full Bid Frequency Deviation}
\]

where \( P_{bid} \) is the bid value as decided by the FCR market in MW, \( f \) is the measured frequency in Hz, \( f_{nominal} \) is the reference frequency in Hz and Full Bid Frequency Deviation is the frequency at which the generator shall supply the full bid value and it is decided by the system operator, e.g., 200 mHz for the Dutch system. The power output of this block (\( \Delta P \)) is limited by the value of the bid \( (P_{bid}) \) and does not exceed it, even if the frequency deviation goes beyond the full bid frequency deviation. The power reference is then added in order to give the power setpoint for the fuel cell, which is converted to per unit. Limits are applied to the power setpoint to ensure that the fuel cell plant operates within the allowable limits, i.e., 20–100% of the fuel cell plant rated power.

The dynamic model converts the incoming power setpoint from the frequency control to Watt by multiplying by the rated power of the Nexa Fuel cell. Then, the current drawn (i.e., DC intensity in Ampere) is calculated using empirical data from [17], which is implemented as a look-up table. The current is fed into the next block, which represents the thermal model from (2). In the equation, the initial and final asymptotic temperatures are calculated using empirical data from [16], which is implemented as a look-up table as well. The current and temperature signals are then fed into the next three parallel blocks, which represent the open circuit voltage in (4), the resistive losses in (5) and the activation losses in (6), respectively. The outputs of these blocks are added in order to give the instantaneous stack voltage, which is multiplied by the current to give the output power of the fuel cell in Watt. This is converted into per unit by dividing by the fuel cell rated power.

The power control consists of two loops: an outer power control loop that controls the active power \( (P_{ou} \) and reactive power \( (Q_{ou} \), and an inner current control loop that controls the currents \( I_d \) and \( I_q \) in the synchronous reference frame as shown in Fig. 3.
static generator, which supplies $P$ and $Q$ to the grid. $Q$-control is identical, except that reactive power is controlled to remain constant throughout the operation of the fuel cell.

C. Model Validation

The accuracy of the developed model was tested against other models in the literature. First, by using (2)-(6), the stack voltage was calculated for each output current value from 0 to 45 A and compared to literature values from [20]. Fig. 4 shows the literature data and the model output. The data shows close resemblance for static operation. There is some offset for low values of current; however, since the fuel cell will be operated at minimum 20%, this offset is not of concern as long as the model shows a resemblance of linear behaviour at higher current values.

The dynamic part of the PowerFactory model is compared with experimental data from [21], and the results shown in Fig. 5 are due to several step changes in drawn current. Comparison of the data shows an almost identical output. The exception is at a low current, which is at low power, where the voltage level is different. However this issue does not affect the reliability of the dynamic model, since at a current less than 9 A, the power output is beyond the normal operating range of 20-100%.

Figure 4. Validation of static model output.

Figure 5. Validation of PowerFactory dynamic model output.
IV. SIMULATION OF FREQUENCY SUPPORT

The fuel cell is tested for its availability to support the frequency by using a reduced representation of the 380-kV Northern Netherlands grid as shown in Fig. 6. This model consists of the 380-kV transmission network of the northern provinces of the Netherlands, together with some 220-kV transmission lines and substations. This part of the power system is particularly suitable for this particular study as it includes a combination of conventional generation, large-scale offshore wind and submarine interconnections, while the exploitation of Power-to-Gas in this area is foreseen for the future. The Northern Netherlands grid features two synchronous generators (at EOS), one offshore wind farm (Gemini), two HVDC links (COBRAcable and NorNed), and multiple onshore wind farms distributed around the area.

A representative dynamic model was developed to represent PEM fuel cells in dynamic simulations concerning frequency performance during the containment period. The simulations of the model show that it resembles the expected performance shown in literature. When tested in a reduced representation of the North Netherlands system, fuel cells proved effective in containing the frequency change. A comparison between the PEM fuel cell and synchronous generators performance in frequency containment showed that the fuel cell’s fast current injection results in better nadir value and smaller oscillations, however the RoCoF value remains unaffected. Future research can address verifying the results through simulation in other simulation platforms and studying performance of other fuel cell types in frequency containment.

ACKNOWLEDGMENT

This work has received funding from the European Union’s Connecting Europe Facility (CEF) programme under the grant agreement No INEA/CEF/SYN/A2016/1336043—TSO Project (Electric “Transmission and Storage Options” along TEN-E and TEN T corridors for 2020). This paper reflects only the authors’ views and the European Commission is not responsible for any use that may be made of the information it contains.
REFERENCES


