The DARE-TU project: Co-creation of clean and affordable smallholder pumped irrigation

Juan Carlo Intriago Zambrano, J.C.1,*, Michavila, J.2, Arenas Pinilla, E.M.3, Diehl, J.C.4, Ertsen, M.W.1
1 Delft University of Technology | Faculty of Civil Engineering and Geosciences | Department of Water Resources Management
2 Comillas Pontifical University | ICAI School of Engineering
3 Delft University of Technology | Faculty of Industrial Design Engineering | Department of Design Engineering
4 aQysta B.V.

Introduction

Intensification of smallholder production is key for local and global food security. Amongst many challenges smallholders that face, proper water management is one of the most crucial in achieving such objective [1]. One way to enable / improve access and control to irrigation water is by the use of water pumping technologies. Most of these technologies, however, run on grid-electricity or fossil fuels, thus becoming (too) cost-intensive or even in accessible for many smallholders. More environmentally sound and at times less expensive alternatives are renewable energy (RE)-based pumping technologies [2]. From these, hydro-powered pumping (HPP) technologies—i.e. those hydro-mechanically driven by the water they lift—pose even further advantages over their other RE counterparts [3]. The Barsha pump, and the novel Integrated Turbine Pump (ITP), developed by the Dutch company aQysta, are amongst these. Nowadays, nevertheless, they are largely ignored / neglected due to technical, social and financial constraints [4].

In this context, a business model that can deal with such limitations is the “Product-Service System” (PSS) [5]. In addition, a PSS co-creation / co-design process [6], especially while identifying and addressing contextual tensions at an early stage—in line with the so-called Context Variation by Design (CVD) approach [7]—will substantially enrich the outputs to meet the user’s needs. However, these have not been studied within the agricultural sector, nor specifically addressed the case of water pumping technologies for smallholder farming.

Research question

What factors must be influenced, by means of the implementation of a co-created PSS, to foster the acceptance of the ITP within smallholder irrigation schemes?

Places of research

The case studies of the project are focused on smallholder communities within low-income countries. Specific cases in Nepal and Indonesia were selected due to the already-existing market penetration of aQysta, manufacturer of the HPP technologies mentioned above.

Methodologies

Several methodologies are carried out:

• Structured questionnaires
• Q-methodology
• Unstructured interviews
• Direct observations

Stakeholders

• Smallholders from the farming communities
• aQysta, as the private partner
• NGO(s) in charge of the service provision
• Governmental organisations / financial institutions

References