Erratum
Correction to: GASAL2: a GPU accelerated sequence alignment library for high-throughput NGS data (BMC bioinformatics (2019) 20 1 (520))
Ahmed, Nauman; Lévy, Jonathan; Ren, Shanshan; Mushtaq, Hamid; Bertels, Koen; Al-Ars, Zaid

DOI
10.1186/s12859-019-3185-7

Publication date
2019

Document Version
Final published version

Published in
BMC Bioinformatics

Citation (APA)

Important note
To cite this publication, please use the final published version (if applicable). Please check the document version above.
Correction to: GASAL2: a GPU accelerated sequence alignment library for high-throughput NGS data

Nauman Ahmed1*, Jonathan Lévy2, Shanshan Ren2, Hamid Mushtaq3, Koen Bertels2 and Zaid Al-Ars2


Following publication of the original article [1], the author requested changes to the Figs. 4, 7, 8, 9, 12 and 14 to align these with the text. The corrected figures are supplied below.

The original article [1] has been corrected.

Author details
1Delft University of Technology, Delft, Netherlands and University of Engineering and Technology, Lahore, Pakistan. 2Delft University of Technology, Netherlands, Delft, Netherlands. 3Maastricht UMC+, Netherlands, Maastricht, Netherlands.

Published online: 19 November 2019

Reference

* Correspondence: n.ahmed@tudelft.nl

The original article can be found online at https://doi.org/10.1186/s12859-019-3086-9

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Fig. 4 Packing the sequences on GPU. $b_1, b_2, \ldots$ are the bases.

Fig. 7 Total execution times for local alignment computing only the score and end-position. The execution time of CPU-based libraries is obtained with 56 threads.
Fig. 8 Total execution times for local alignment computing start-position without traceback. The execution time of CPU-based libraries is obtained with 56 threads.

Fig. 9 Total execution times for local alignment with traceback computation. The execution time of CPU-based libraries is obtained with 56 threads.

Fig. 12 Total execution times for semi-global alignment with traceback computation. The execution time of CPU-based libraries is obtained with 56 threads except of SeqAn. For SeqAn the DS100 results are with 56 threads, whereas the DS150 and DS300 results are with 28 threads.
Fig. 14 Total execution times for global alignment with traceback computation. The execution time of CPU-based libraries is obtained with 56 threads except for SeqAn. For SeqAn the DS100 results are with 56 threads, whereas the DS150 and DS300 results are with 28 threads.