From definitional interpreter to symbolic executor

Mensing, Adrian D.; van Antwerpen, Hendrik; Poulsen, Casper; Visser, Eelco

DOI
10.1145/3358502.3361269

Publication date
2019

Document Version
Final published version

Published in
META 2019 - Proceedings of the 4th ACM SIGPLAN International Workshop on Meta-Programming Techniques and Reflection, co-located with SPLASH 2019

Citation (APA)

Important note
To cite this publication, please use the final published version (if applicable). Please check the document version above.
From Definitional Interpreter to Symbolic Executor

Adrian D. Mensing
Delft University of Technology
Netherlands
a.d.mensing-1@student.tudelft.nl

Casper Bach Poulsen
Delft University of Technology
Netherlands
c.b.poulsen@tudelft.nl

Hendrik van Antwerpen
Delft University of Technology
Netherlands
h.vanantwerpen@tudelft.nl

Eelco Visser
Delft University of Technology
Netherlands
e.visser@tudelft.nl

Abstract
Symbolic execution is a technique for automatic software validation and verification. New symbolic executors regularly appear for both existing and new languages and such symbolic executors are generally manually (re)implemented each time we want to support a new language. We propose to automatically generate symbolic executors from language definitions, and present a technique for mechanically (but as yet, manually) deriving a symbolic executor from a definitional interpreter. The idea is that language designers define their language as a monadic definitional interpreter, where the monad of the interpreter defines the meaning of branch points. Developing a symbolic executor for a language is a matter of changing the monadic interpretation of branch points. In this paper, we illustrate the technique on a language with recursive functions and pattern matching, and use the derived symbolic executor to automatically generate test cases for definitional interpreters implemented in our defined language.

CCS Concepts
• Theory of computation → Program schemes
• Software and its engineering → Formal methods; Automatic programming.

Keywords
Symbolic Execution, Monads, Haskell, Definitional Interpreter

1 Introduction
Symbolic execution [27] is a meta-programming technique that is at the core of techniques for boosting developer productivity, such as automated testing [3, 9, 17, 19, 38] and program synthesis [14, 20, 35]. A symbolic executor allows exploration of possible execution paths by running a program with symbolic variables in place of concrete values. By strategically instantiating symbolic variables, a symbolic executor can be used to systematically analyze which parts of a program are reachable, with which inputs.

Constructing symbolic executors is non-trivial, and enabling support for symbolic execution for general-purpose languages, such as C [4, 19, 38], C++ [31], Java [1, 37], PHP [2], or Rust [33], is the topic of entire publications at major software engineering conferences. We propose that techniques for symbolic execution are reusable between languages, and investigate the foundations of how to define and implement symbolic executors, by deriving them from definitional interpreters. Our long-term goal is to integrate these techniques into language workbenches, such as Spoofox [25], Rascal [29], or Racket [15], to enable the automatic generation of programmer productivity boosting tools, such as automated testing frameworks and program synthesizers.

In this paper we explore how to mechanically derive symbolic executors that explore possible execution paths through programs by instantiating and specializing symbolic variables, following a breadth-first search strategy. Our exploration revolves around a dynamically-typed language with recursive functions and pattern matching. Using Haskell as our meta-language, and working with its integrated support for generic and monadic programming, we implement a definitional interpreter for this language. This definitional interpreter is parameterized with an interface which we instantiate in two different ways to obtain first a concrete interpreter, and then a symbolic executor. The “derivation” thus amounts to instantiating the interface operations in a manner that yields a symbolic executor.

The symbolic executor we derive allows us to explore the solution space for constraints such as the following constraint that a list `xs` must be a palindrome:

```
xss ⇔ reverse xs
```
Symbolic execution explores all execution paths through the \textit{reverse} function that satisfy the constraint, and instantiates \texttt{xs} accordingly, thereby generating palindromes. This paper is a literate Haskell file, and we invite interested readers to download the Haskell version of the paper to experiment with, and extend, the framework we present.\footnote{\url{https://github.com/MetaBorgCube/From-Definitional-Interpreter-To-Symbolic-Executor}}

\textbf{Related Previous Lines of Work} The techniques that we develop in this paper are closely related to the techniques used for \textit{relational programming}, pioneered by Friedman and Byrd in miniKanren \cite{friedman1992mini,byrd1991declarative,bird1990structure,dreyer2004declarative}, a language for relational programming and constraint logic programming, which has been implemented in a wide range of different languages; notably Scheme \cite{graefe1992repl,schmidt2012logic}, but also, e.g., OCaml \cite{ocaml}. The miniKanren language and many of its implementations have been developed and researched for more than a decade, with new developments and improvements appearing each year, such as new and better heuristics for guiding the exploration of execution paths \cite{lagasse2011exploiting}. The motivation for this paper is to bring similar benefits as found in miniKanren to programming languages at large, by automatically deriving symbolic executors from definitional interpreters.

Rosette \cite{rossette,rossette2016} is a solver-aided language that extends Racket \cite{racket} to provide framework for implementing solver-aided domain-specific languages, by means of a symbolic virtual machine and symbolic compiler. This VM brings the benefits of symbolic execution and model checking to languages implemented in Rosette via general-purpose symbolic abstractions that support sophisticated symbolic reasoning, beyond the relatively simple constraints found in (most variants of) miniKanren. A main goal of Rosette is to implement solver-aided languages, but the symbolic abstractions and techniques that Rosette implements could also be used to address the problem that is the motivation for this paper, namely the problem of automatically deriving symbolic executors from “traditional” definitional interpreters.

There has been much work on symbolic execution in the literature on software engineering; e.g., \cite{hermani2005concolic,hermani2006concolic,hermani2008concolic,hermani2010concolic,hermani2011concolic,hermani2013concolic,hermani2015concolic}. Many of these frameworks are so-called \textit{concolic} frameworks that work by instrumenting a concrete language runtime to track \textit{symbolic path constraints}. After each concrete execution, these path constraints are collected and solved in order to cover a different path through the program in a subsequent run of the program. Concolic testing is typically implemented by generating test inputs randomly, rather than systematically solving path constraints. In this paper, we explore a symbolic execution strategy which interleavingly explores multiple execution paths concurrently, rather than a concolic testing approach which would require a relatively sophisticated constraint solver in order to explore execution paths in an equally systematic manner.

\textbf{Contributions}
\begin{itemize}
 \item Techniques (in \S 3) for deriving symbolic executors from definitional interpreters, by using \textit{free monads} to compile programs into \textit{command trees}, and interpreting these using a small-step execution strategy.
 \item A symbolic executor (in \S 4) for a language with algebraic datatypes that illustrates these techniques.
 \item A simple example application (in \S 6): automated test generation for definitional interpreters.
\end{itemize}

The rest of this paper is structured as follows. In \S 2 we introduce a definitional interpreter for a language with recursion and pattern matching. In \S 3 we present a definitional interpretation of the effects, by means of a free monad, using a small-step semantics execution strategy. In \S 4 we generalize the definitional interpretation of effects from \S 3, to obtain a symbolic executor, whose correctness we discuss in \S 5. Finally, in \S 6 we discuss a case study application of the symbolic executor: generating tests for definitional interpreters, and \S 7 concludes.

\section{Definitional Interpreter for a Language With Pattern Matching}

Definitional interpreters define the meaning of a (new) object language by implementing an interpreter for it in an existing, well-understood, language. We use Haskell to implement a definitional interpreter for a functional language with pattern matching.

\subsection{Syntax}

The abstract syntax of the language we consider is summarized in Fig. 1. The expression constructors for \texttt{Var}, \texttt{Lam}, and \texttt{App} are standard expressions for variables, unary functions, and function application. An expression constructor expression \texttt{Con} \([\texttt{Var} e_1, \ldots, e_n]\) represents an \(n\)-ary term whose head symbol is \(f\), and whose sub-term values are the results of evaluating each expression \(e_1 \ldots e_n\). Case \texttt{Case} \([\texttt{Patt} p_1 \ldots p_n, \texttt{ValExpr} e\]) is a pattern match expression which first evaluates \(e\) to a value and then attempts to match the resulting value against the patterns \(p_1 \ldots p_n\), where patterns are given by the type \texttt{Patt}. \texttt{Letrec} expressions are restricted to bind value expressions, given by the type \texttt{ValExpr}.

\subsection{Prelude to a Definitional Interpreter: Effects and Values}

The definitional interpreter for the language we consider in this paper is given in Fig. 2. The interpreter depends on the \texttt{EffVal} type class which in turn depends on a number of type classes that constrain the polymorphic notion of effects (defined by a monad \texttt{m}) and values (defined by a value type \texttt{val}) of the interpreter. The \texttt{EffVal} type class is thus a polymorphic embedding \cite{wadler1992polymorphic} of a language that allows us to define a \textit{family} of interpreters for the same language,
There are two reasons why we use a specialized version. The MonadEnv is a specialized version of the classical reader Monad m

```haskell
class Monad m ⇒ MonadEnv val m where
  ask :: m (Env val)
  local :: (Env val → Env val) → m val → m val
```

MonadEnv is a specialized version of the classical reader monad \[18, 24, 32\]:

```haskell
class Monad m ⇒ MonadBranch cval rval fork m where
  branch :: cval → fork m rval → m rval
```

This type class is parameterized by: (1) a value type \textit{cval} that branch selection is conditional upon; (2) a value type \textit{rval} for the return type of computations in branches; and (3) a \textit{fork} type, an abstract notion of branches comprising computations described by \textit{m} and \textit{val}. To illustrate, consider the following instance of \textit{MonadBranch} which represents a classical if-then-else expression:

```haskell
newtype IfThenElse a = ITE (m a, m a)
instance Monad m ⇒ MonadBranch Bool rval IfThenElse m where
  branch True (ITE (t, _)) = t
  branch False (ITE (_, f)) = f
```

For our interpreter, which branches on values and returns values of the same type, we rely on the following more restrictive version of \textit{MonadBranch}:

```haskell
class Monad m ⇒ MonadMatch val fork m where
  match :: val → fork m val → m val
```

And our interpreter uses the following notion of \textit{fork} over a list of pairs consisting of a pattern and a (monadic) computation where each computation has the return type \textit{a}:

```haskell
newtype Cases a = Cases [(Patt, m a)]
```

Values The following type classes define the constructors for term values \textit{con}, and function closures \textit{clos}, as well as operation \textit{app} for applying a function to an argument and operation \textit{eq} for checking equality between two term values.

```haskell
class TermVal val where
  con :: String → [val] → val
class FunVal val where
  clos :: String → Expr → Env val → val
class FunApp val m where
  app :: val → val → m val
class TermEq val m where
  eq :: val → val → m val
```

2.3 A Definitional Interpreter for a Language with Pattern Matching

The interpreter in Fig. 2 relies on the effect and value type classes summarized in the previous section. Additionally, the interpreter makes use of a few auxiliary functions whose definitions we elide: \textit{mmap} maps a monadic function over a list; \textit{mapSnd} maps a function over the second element of a tuple; and \textit{resolve} resolves a name in an association list, or fails. The implementation of \textit{Letrec} uses Haskell’s support for

\[\text{data } \text{Expr} = \text{Con } \text{[Expr]} | \text{Case } \text{Expr} [(\text{Patt}, \text{Expr})] | \text{Var } \text{String} | \text{Lam } \text{String } \text{Expr} | \text{App } \text{Expr } \text{Expr} | \text{Let } [(\text{String}, \text{Expr})] \text{Expr} | \text{Letrec } [(\text{String}, \text{ValExpr})] \text{Expr} | \text{EEq } \text{Expr } \text{Expr}\]

\[\text{data } \text{ValExpr} = \text{VCon } \text{String } \text{ValExpr} | \text{VLam } \text{String } \text{Expr}\]

\[\text{data } \text{Patt} = \text{PVar } \text{String} | \text{PCon } \text{String}\]

\[\text{Figure 1. Syntax for a language with pattern matching, functions, let, and letrec}\]
(lazy) recursive definitions to define a recursive environment \(nv\), that \(ValExprs\) are evaluated under.

To run our definitional interpreter we must provide concrete instances of the abstract type classes from § 2.2. We use the following notion of value and monad:

data ConcreteValue = ConV String [ConcreteValue]

| ClosV String Expr (Env ConcreteValue)

type ConcreteMonad = ReaderT (Env ConcreteValue) (Except String)

Here \(ReaderT\) is a monad transformer [32] for the classical reader monad, and \(Except\) is the exception monad. So \(ConcreteMonad\) is isomorphic to:

type ConcreteMonad’ a = Env ConcreteValue \rightarrow Either String a

The type class instances for this notion of value and monad are defined in the obvious way. \(MonadMatch\) attempts to pattern match a value against a list of cases by attempting each from left-to-right until a match succeeds:

instance MonadMatch ConcreteValue Cases

\[\text{ConcreteMonad where}\]

\[\text{match } v \text{ (Cases } \{(p, m) : bs\}) = \text{ case } vmatch (v, p) \text{ of }\]

\[\text{Just } nv \rightarrow \text{ local } (\lambda \text{nv} \rightarrow \text{ nv } + \text{ nv} v) \text{ m }\]

\[\text{Nothing } \rightarrow \text{ match } v \text{ (Cases bs) }\]

\[\text{match } _{-} \text{ (Cases } []) = \text{ throwError ”Match failure“} \]

\[vmatch :: (ConcreteValue, Patt) \rightarrow \]

\[\text{Maybe } (\text{Env ConcreteValue})\]

Using these type class instances, our definitional interpreter can be run as follows:

\[\text{runSteps :: Expr } \rightarrow \text{ Env ConcreteValue } \rightarrow \]

\[\text{Either String ConcreteMonad} \]

\[\text{runSteps } e \text{ nv } = \text{ runExcept } (\text{runReaderT } (\text{interp } e) \text{ nv})\]

3 Towards a Symbolic Executor

The definitional interpreter presented in § 2.3 uses standard monads and monad transformers to implement the definitional interpreter given in Fig. 2. But it gives meta-programmers little control over how interpretation proceeds. Our goal is to implement a symbolic executor for running a program in a way that interleavingly explores all possible execution paths. To this end, we want a symbolic executor that can operate on a pool of concurrently running threads where each thread represents a possible path through the program. We will approach this challenge by adopting a small-step execution strategy for each thread. In this section we provide alternative type class instances that give meta-programmers more fine-grained control over how interpretation proceeds. Concretely, we adopt a small-step execution strategy for effect interpretation, by using free monads.

Following Kiselyov and Ishii [28] and Swierstra and Bannen [39], the following data type defines a family of free monads:

data Free c a = Stop a

\[\mid \forall b. \text{Step } (c b) (b \rightarrow \text{Free } c a)\]

Figure 2. A definitional interpreter for a language with pattern matching

\[
\text{interp :: EffVal m val } \Rightarrow \text{ Expr } \rightarrow m \text{ val} \\
\text{interp (Con c es) } = \text{ do} \\
\text{ vs } \leftarrow \text{ mmap interp es} \\
\text{ return } (\text{con, c vs)} \\
\text{interp (Case e bs) } = \\
\text{ let vbs } = \text{ map } (\text{mapSnd interp bs}) \text{ in do} \\
\text{ v } \leftarrow \text{ interp e} \\
\text{ match v } \text{ (Cases vbs)} \\
\text{interp (Var x) } = \text{ do} \\
\text{ nv } \leftarrow \text{ ask} \\
\text{return } (\text{resolve x nv)} \\
\text{interp (Lam x e) } = \text{ do} \\
\text{ nv } \leftarrow \text{ ask} \\
\text{return } (\text{con, x e nv)} \\
\text{interp (App e1 e2) } = \text{ do} \\
\text{ f } \leftarrow \text{ interp e1} \\
\text{ a } \leftarrow \text{ interp e2} \\
\text{app f a}
\]
Following Hancock and Setzer [21], we call values of this data type command trees: each Step represents an application of a command c b, corresponding to a monadic operation, which yields a value of type b when interpreted. This value is passed to the continuation (b → Free c a) of Step. The Free data type is a monad:

\[\text{instance Monad (Free c) where} \]
\[\text{return} \quad = \text{Stop} \]
\[\text{Stop} a \quad \Rightarrow k = k a \]
\[\text{Step} c f \quad \Rightarrow k = \text{Step} c (\lambda x \to f x) \Rightarrow k \]

By defining a suitable notion of command, we can define a free monad instance which satisfies the type class constraints for our definitional interpreter from Fig. 2. The following data type defines such a notion of command:

\[\text{data Cmd val} :: \ast \to \ast \\text{where} \]
\[\text{Match} :: \text{val} \to \text{Cases (Free (Cmd val))} \\text{val} \to \text{Cmd val val} \]
\[\text{Local} :: (\text{Env val} \to \text{Env val}) \to \text{Free (Cmd val)} \\text{val} \to \text{Cmd val val} \]
\[\text{Ask} :: \text{Cmd val} \to \text{Env val} \]
\[\text{App} :: \text{val} \to \text{val} \to \text{Cmd val val} \]
\[\text{Eq} :: \text{val} \to \text{val} \to \text{Cmd val val} \]
\[\text{Fail} :: \text{String} \to \text{Cmd val val} \]

By instantiating each of the type classes we obtain a compiler from expressions into command trees:

\[\text{comp} :: (\text{TermVal val, FunVal val}) \Rightarrow \text{Expr} \to \text{Free (Cmd val)) val} \]
\[\text{comp} = \text{interp} \]

The command trees that comp yields are the sequences (or rather trees) of effectful operations that define the meaning of object language expressions. But the meaning of command trees is left open to interpretation. We define the meaning of command trees by means of a small-step transition function and a driver loop for the transition function. This small-step transition function operates on a single command tree (whose type we abbreviate Thread, since the command tree represents a thread of interpretation), and yields a single command tree as result (or raises an exception). For brevity, we show just a few cases of the step function:

\[\text{type Thread} = \text{Free (Cmd ConcreteValue)} \]
\[\text{step} :: \text{Thread, ConcreteValue} \Rightarrow \text{ConcreteMonad (Thread, ConcreteValue)} \]
\[\text{step} (\text{Stop} x) \quad = \text{return} (\text{Stop} x) \]
\[\text{step} (\text{Step} \ (\text{Match } v (\text{Cases } ([[]])) _)) = \]
\[\text{throwError "Pattern match failure"} \]
\[\text{step} (\text{Step} \ (\text{Match } v (\text{Cases } ((p, m) : bs)))) k) = \]
\[\text{case vmatch } (v, p) \text{ of} \]
\[\text{Just } nv \to \]

return (Step (\text{Local} (\lambda \text{nv} \to \text{nv} + \text{nv}) m) k)
Nothing \to \text{step} (\text{Step} \ (\text{Match } v \ (\text{Cases } bs)) k)

The driver loop for the step function is straightforwardly defined to continue interpretation until the current thread of interpretation terminates successfully (or fails):

\[\text{drive} :: \text{Thread, ConcreteValue} \Rightarrow \]
\[\text{ConcreteMonad ConcreteValue} \]
\[\text{drive} (\text{Stop} x) = \text{return} x \]
\[\text{drive} c \quad = \text{do} \ r \leftarrow \text{step} c; \text{drive} r \]

Thus an alternative definitional interpreter for the language in Fig. 2 is given by the following function:

\[\text{runSteps} :: \text{Expr} \to \text{Env ConcreteValue} \Rightarrow \]
\[\text{Either String ConcreteValue} \Rightarrow \]
\[\text{Either String ConcreteValue} \rightarrow \]
\[\text{runSteps} e \text{nv} = \text{runExcept} (\text{runReaderT} (\text{drive} (\text{comp} e)) \text{nv}) \]

4 From Definitional Interpreter to Symbolic Executor

In this section we derive a symbolic executor from the definitional interpreter in § 3, by: (1) generalizing the notion of value from previous sections to also incorporate symbolic variables; and (2) generalizing the semantics (monad and small-step transition function) to support instantiation of symbolic variables and fork new threads of interpretation.

Symbolic Values The updated notion of value is an extension of the notion of ConcreteValue data type from § 2.3 with a symbolic variable constructor, SymV:

\[\text{data SymbolicValue} = \text{ConV′ String [SymbolicValue]} \]
\[\mid \text{ClosV′ String Expr} \]
\[\mid \text{SymV String} \]

Monad The monad for evaluating a step of symbolic execution has an environment and may raise an exception, just like the monad in § 3 for evaluating a step of concrete execution. Additionally, the monad has a stateful Int field for keeping track of a fresh supply of symbolic variable names:

\[\text{type SymbolicMonad} = \]
\[\text{ReaderT (Env SymbolicValue)} \]
\[\text{(StateT Int (Except String))} \]

Since symbolic execution should explore all possible execution paths through a program, we generalize the small-step transition relation from § 3 by letting the transition relation take a single thread of interpretation as input, but return a set of possible continuation threads. Each step may result in unifying a symbolic variable in order to explore a possible execution path. Our generalized notion of monad is thus given by the following types:

\[\text{type Unifier} = [(\text{String}, \text{SymbolicValue})] \]
\[\text{type Unifier}_N = [(\text{SymbolicValue}, \text{SymbolicValue})] \]
type SymbolicSetMonad =
 StateT (Unifier, UnifierN) (ListT SymbolicMonad)

Here, Unifier witnesses how symbolic variables must be instantiated in order to complete a single transition step, representing a particular execution path of the program being symbolically executed. UnifierN represents a set of negative unification constraints. We motivate the use and need for these shortly. The ListT monad transformer generalizes the return type of a monadic computation m a to return a list of as; i.e., m [a]. Note that, although we call ListT a monad transformer, it is well-known that ListT in Haskell is not guaranteed to yield a monad that satisfies the monad laws. For the purpose of this paper, it is not essential whether the particular definition of SymbolicSetMonad above actually satisfies the monad laws.

Small-Step Transition Function Our symbolic executor is derived from the concrete semantics of effects in § 3 by altering how we Match and Eq effects are interpreted. Thus all cases of the transition function step₁ (below) are identical to the small-step transition function from § 3, except for the cases for the Match and Eq. Furthermore, the definitional interpreter from Fig. 2 is unchanged. We summarize the interesting cases for the step₁ function, which takes a symbolic interpretation thread, Threadₐ, as input, and returns a set of threads (note the use of SymbolicSetMonad):

type Threadₐ = Free (Cmd SymbolicValue)

step₁ :: Threadₐ, SymbolicValue →
 SymbolicSetMonad (Thread₂, SymbolicValue)

step₁ (Step (Match _ (Cases []))) _ = mzero

step₁ (Step (Match v (Cases ((p, m) : bs)))) k = (do
 (nv, u) ← vmatch₁ (v, p)
 (applySubst u (Step (Local (λnv0 → nv + nv0) m) k))
 "mplus" step₁ (Step (Match v (Cases bs)) k))

step₁ (Step (Eqₐ v₁ v₂)) k =
 case unify v₁ v₂ of
 Just [] → return (k (ConV' "true" []))
 Just u → do
 (applySubst u (k (ConV' "true" []))) 'mplus'
 (constrainUnifiₐ u (k (ConV' "false" []))))

Nothing →
 return (k (ConV' "false" []))

As in § 3, there are two cases for Match: one for the case where we have exhausted the list of patterns to match a value against, and one for the case where there are more cases to consider. In case we have exhausted the list of patterns to match a value against, we now use mzero to return an empty set of result threads. Otherwise, we match a value against a pattern, using the side-effectful vmatch₁ function (elided for brevity). If the value contains symbolic variables, the vmatch₁ function computes a unifier to be be applied to the symbolic variables in order to make the pattern match succeed. The transition function returns the thread resulting from applying that unifier to the matched branch, unioned with (via the 'mplus' operation of the SymbolicSetMonad) any other threads contained in branches with patterns that may succeed to match (via the recursive call to step₁ in the second Match case above). This way, the transition function computes the set of all possible execution paths for a given expression.

The case of the step₁ function above for expressions of the form Eqₐ v₁ v₂ checks whether v₁ and v₂ are unifiable. If they are unifiable with the empty unifier, there is only one possible execution path to consider, namely the execution path where v₁ and v₂ are equal. Otherwise, if v₁ and v₂ have a non-empty unifier, there are two possible execution paths to consider: one where v₁ and v₂ are equal, and one where they are not. The step₁ function returns the union (again, using 'mplus') of two threads representing each of these execution paths. For safety, we register a negative unification constraint for the execution path that disequalizes v₁ and v₂, such that v₁ and v₂ cannot be unified at any point in the future during symbolic execution.

Driver Loop The driver loop for symbolic execution is generalized to operate on sets of possible execution paths, where each execution path is given by a configuration Configₐ:

type Configₐ a = (a, Env SymbolicValue, UnifierNₐ)

driveₐ :: [Configₐ (Thread, SymbolicValue)] →
 SymbolicMonad (Configₐ, SymbolicValue,
 [Configₐ (Thread, SymbolicValue)])

driveₐ [] = throwError "No solution found"

driveₐ ts =
 case isDone ts of
 (Just c, ts') → return (c, ts')
 Nothing → do
 ts' ← iterate ts

A configuration comprises a value, an environment which may contain terms with symbolic variables, and a list of negative unification constraints (Unifierₐ). The drive function takes a list of configurations as input, uses isDone to check if any of the input configurations is a value, and returns a pair of that configuration and the remaining configurations. If none of the input configurations are values, each input configuration is iterated by a single transition step, and driveₐ is called recursively on the resulting list of configurations.

A Constraint Language for Symbolic Execution We have shown how to alter the interpretation of the effects in the definitional interpreter presented in Fig. 2, to derive a symbolic executor from the concrete definitional interpreter from § 3. Invoking this symbolic executor with input programs
we are symbolically executing (Fig. 1), and what we can do with our derived symbolic executor and small whose type signature is shown in the figure, but whose implemented symbolic variables.

Here, append is a recursive function defined in the language we are symbolically executing (Fig. 1), and @@ is syntactic that contain symbolic variables gives rise to a breadth-first search over possible instantiations of symbolic variables, to synthesize concrete terms. We provide programmers with control over which parts of a program(s) he wishes to synthesize by defining a small constraint language on top of the definitional interpreter from Fig. 2.

The syntax for this constraint language is summarized in Fig. 3. CTake n c_x is a "top-level" constraint for picking n solutions to a constraint c_x that contains existentially quantified symbolic variables. CEx x c_x introduces an existentially quantified symbolic variable, by populating the environment of a symbolic interpreter with a symbolic variable value binding SymV x_y for x, where x_y is a fresh symbolic variable name. CEq e_1 e_2 is a constraint that e_1 and e_2 evaluate to the same value, and CNEq e_1 e_2 is a constraint that e_1 and e_2 evaluate to different values.

Our approach to constraint solving is given by the solve function in Fig. 4 which, in turn, calls the search_x function whose type signature is shown in the figure, but whose implementation we omit for brevity. search_s e ts ceqq n implements a naive constraint solving strategy which uses a symbolic executor to search for n different instantiations of symbolic variables that make the result of symbolic execution of the input expression e equal to the result of symbolic execution of a configuration in ts, modulo a custom notion of SymbolicEqality.

Example: Synthesizing Append Expressions To illustrate what we can do with our derived symbolic executor and small constraint language, let us consider list concatenation as an example, inspired by the relational programming techniques and examples given by Byrd et al. [6]. The append0 program below grabs a single solution to the constraint which equates "q" and the result of concatenating (append) a list consisting of three atoms (a, b, c) with a list of two atoms (d, e):

```haskell
append0 :: Constraint
append0 =
  grab 1 (exists "q"
    ((append @@ (atom "a" 'cons' (atom "b" 'cons' (atom "c" 'cons' nil))
       (atom "d" 'cons' (atom "e" 'cons' nil)))
     'CEq' (var "q")))
```

Here, append is a recursive function defined in the language we are symbolically executing (Fig. 1), and @@ is syntactic sugar for 'App'. Solving the append0 constraint yields the instantiation of q to the list containing all input atoms in sequence.

We can also use symbolic execution to synthesize inputs to functions:

```haskell
append01 :: Constraint
append01 =
  grab 1 (exists "q"
    ((append @@ (var "q")
       @@ (atom "d" 'cons' (atom "e" 'cons' nil))
     'CEq' (atom "a" 'cons' (atom "b" 'cons' (atom "c" 'cons' (atom "d" 'cons' (atom "e" 'cons' nil)))))
    ))
```

Solving the append01 constraint yields the instantiation of q to the list containing the atoms a, b, c. We can even use symbolic execution to synthesize multiple inputs:

```haskell
append02 :: Constraint
append02 =
  grab 6 (exists "x" (exists "y"
    ((append @@ (var "x") @@ (var "y")))
  ))
```
We conjecture that, for any pair of concrete environment \(nv\).

We have shown how to derive a symbolic executor from a

work, Rozplokhas et al. [36] provide a certified definition of

work and methodology of Keidel et al. [26]. In very recent

we conjecture a correctness proposition for our symbolic

is only available in French [11].

ecution within the framework of abstract interpretation. This formalization

3

miniKanren. In future work, we will investigate how to port

strategy based on free monads that we adopted in § 3

But it is an open question how the small-step interpreta-

soundness proofs is attractive to consider for this purpose.

concrete and symbolic execution.

framework for formalizing the correspondence between con-

Indeed, it seems Cousot [12] has considered how to formalize symbolic ex-

We believe that abstract interpretation [13] is a suitable

We thank the anonymous reviewers for their insightful sug-

Acknowledgments

We thank the anonymous reviewers for their insightful sug-

5

case Study: Automatic Test Generation

for Definitional Interpreters

In order to test the symbolic executor we have developed, we defined various interpreters for the simply-typed lambda

calculus, and attempt to synthesize program terms that yield
different results for correct and wrong interpreters. Specifi-
cally, we have implemented a canonical, environment-based

interpreter, and variations on this interpreter with scoping

Symbolic execution is able to automatically synthe-

size test programs that will detect these mistakes, by looking

for programs whose results differ between the correct inter-

prem and wrongly-scoped interpreter. For brevity, we omit
discussion of these test cases. The Haskell version of

this paper contains the test cases that we invite interested

readers to consult. Using GHCi (v8.6.4), symbolic execution
takes 1s to synthesize each test program.

Byrd et al. [6] also compare interpreters with lexical and
dynamic scope in their functional pearl on using miniKan-

ren to solve programming problems. Their implementation

is engineered to use miniKanren’s relational programming

constructs to allow them to yield example terms more ef-

ciently than naively written interpreters. Our case study
does not come near the efficiency of the interpreters with

lexical and dynamic scope of Byrd et al. [6], which synthe-

size 100 example programs in <2s. But we did not attempt to

optimize the interpreter implementations either, neither at

the meta-language nor the object-language level, to make it
easier for the symbolic execution strategy to find solutions.

7 Conclusion

In this paper we studied how to derive a symbolic execu-
tor from concrete definitional interpreters, and presented

techniques for structuring definitional interpreters to ease

this derivation: free monads for compiling a definitional in-

terpreter into a command tree with a small-step execution

strategy, suitable for forking threads of interpretation and
doing breadth-first search over how to instantiate symbolic

variables in ways that correspond to execution paths through

a program, subject to constraints. We introduced a small con-

straint language on top of our symbolic executor, and used

this language to derive test cases for definitional interpreters

for the simply-typed lambda calculus.

In future work, we intend to explore how to make the
derivation techniques presented in this paper formally cor-

rect, how to automate them, and how to make them effi-
ciently executable, akin to, e.g., miniKanren [5, 16].

\[CEq \ (atom \ "a" \ 'cons' \ (atom \ "b" \ 'cons' \ (atom \ "c" \ 'cons' \ (atom \ "d" \ 'cons' \ (atom \ "e" \ 'cons' \ nil))))))) \]

Solving the append02 constraint yields the 6 different possi-

ble instantiations of \(x\) and \(y\) that satisfy the constraint.

5 Correctness

We have shown how to derive a symbolic executor from a

concrete semantics. The derivation was driven by an intu-
tive understanding of what needs to happen in a symbolic

executor (instantiating and refining symbolic variables, for-

king new threads of interpretation) in order to ensure that

the symbolic executor explores all possible execution paths, but

only possible execution paths (i.e., no execution paths that do

not correspond to an actual execution path). In this section

we conjecture a correctness proposition for our symbolic

evaluator, and discuss directions for making this correctness

proposition more formal.

Let runSteps be a function that uses the drive function to

drive an expression to a final value and pool of alternative

execution paths that may yet yield a final result:

\[
runSteps _ : \ Expr \rightarrow \ Env \ SymbolicValue \rightarrow
\]

Either String (SymbolicValue,

[Config, (Thread, SymbolicValue)]) \]

We conjecture that, for any pair of concrete environment \(nv\) and

symbolic environment \(nv\) that are equal up-to-unification:

1. Any concrete execution path, given by calling runSteps

from § 3 under \(nv\) with any \(e::Expr\) either yields a value

that is equal up-to-unification to the SymbolicValue

that runSteps returns; or yields a value that one of the

configurations in runSteps, will eventually yield, if we

were to iterate that configuration.

2. Any symbolic execution path, given by calling runSteps,

under \(nv\), with any \(e::Expr\) yields a symbolic value

and set of configurations that exhaustively describe

any concrete execution path resulting from evaluating

\(e\) under any \(nv\) that is equal up-to-unification to \(nv\).

We believe that abstract interpretation [13] is a suitable

framework for formalizing the correspondence between con-

crete and symbolic execution. The methodology due to Kei-
del et al. [26] for defining static analyzers with compositional

soundness proofs is attractive to consider for this purpose.

But it is an open question how the small-step interpret-

ation strategy based on free monads that we adopted in § 3

and § 4 to realize our symbolic executor fits into the frame-

work and methodology of Keidel et al. [26]. In very recent

work, Rozplokhas et al. [36] provide a certified definition

of miniKanren. In future work, we will investigate how to port

their verification technique to the development in this paper.

\[(\text{CEq} \ (\text{atom} \ "a" \ (\text{atom} \ "b" \ (\text{atom} \ "c" \ (\text{atom} \ "d" \ (\text{atom} \ "e" \ (\text{atom} \ "cons" \ "cons" \ (\text{atom} \ "cons" \ "cons" \ (\text{atom} \ "cons" \ "cons" \ nil))))))))) \]

\[\text{runSteps}_ : \text{Expr} \rightarrow \text{Env} \ \text{SymbolicValue} \rightarrow \]

\[\text{Either String (SymbolicValue,} \]

\[[\text{Config, (Thread, SymbolicValue)}] \]

\[\text{We conjecture that, for any pair of concrete environment } nv \text{ and} \]

\[\text{symbolic environment } nv \text{ that are equal up-to-unification:} \]

\[1. \text{Any concrete execution path, given by calling runSteps} \]

\[\text{from § 3 under } nv \text{ with any } e::\text{Expr} \text{ either yields a value} \]

\[\text{that is equal up-to-unification to the SymbolicValue} \]

\[\text{that runSteps returns; or yields a value that one of the} \]

\[\text{configurations in runSteps, will eventually yield, if we} \]

\[\text{were to iterate that configuration.} \]

\[2. \text{Any symbolic execution path, given by calling runSteps,} \]

\[\text{under } nv \text{, with any } e::\text{Expr} \text{ yields a symbolic value} \]

\[\text{and set of configurations that exhaustively describe} \]

\[\text{any concrete execution path resulting from evaluating} \]

\[e \text{ under any } nv \text{ that is equal up-to-unification to } nv. \]

\[\text{We believe that abstract interpretation [13] is a suitable} \]

\[\text{framework for formalizing the correspondence between} \]

\[\text{concrete and symbolic execution.} \]

\[\text{The methodology due to Kei-del et al. [26] for defining static} \]

\[\text{analyzers with compositional soundness proofs is attractive to} \]

\[\text{consider for this purpose. But it is an open question how the} \]

\[\text{small-step interpretation strategy based on free monads that we} \]

\[\text{adopted in § 3 and § 4 to realize our symbolic executor fits into the} \]

\[\text{framework and methodology of Keidel et al. [26]. In very recent} \]

\[\text{work, Rozplokhas et al. [36] provide a certified definition} \]

\[\text{of miniKanren. In future work, we will investigate how to port} \]

\[\text{their verification technique to the development in this paper.} \]

\[^{\text{Indeed, it seems Cousot [12] has considered how to formalize symbolic ex-} \]

[\text{ecution within the framework of abstract interpretation. This formalization} \]

\[\text{is only available in French [11].} \]
References

