A Comparison of Particle Filter Efficiency Measurements for Protective Masks using Particle Counters with Different Flow Rates.

John van den Dobbelsteen Delft University of Technology
Bart van Straten Delft University of Technology, Van Straten Medical BV
Tim Horeman Delft University of Technology

Background
The Covid-19 pandemic can cause imminent local shortages of personal protective equipment such as face masks, in hospitals and other healthcare facilities. In preparation for that scarcity hospitals may obtain masks from other parties than their regular suppliers or consider re-use of masks after sterilization. To evaluate the safety of these masks extensive testing according to standardized norms is required. However, as these testing facilities are not readily available we and other institutes initiated the use of basic particle filtering measurements to quickly get insight in the minimal required filtering performance of a mask. Here we study the robustness of these measurement approaches as well as their sensitivity to differences in the flow rates used by various particle counters.

Aim
The filtration efficiencies of protective masks are evaluated with use of several different types of airborne particle counters from Lighthouse Benelux (www.lighthouseetest.com). These particle counters are intended for clean room validation and enable the measurement of filter integrity for particle sizes between 0.3 and 25 μm. All have an internal closed-loop controlled vacuum pump for generating a constant inlet flow. However, the flow rate delivered by these devices can differ (range 0.1-2.0 cfm; cubic feet per minute) which may affect the robustness of the measurements. In this study we test filters in equal environmental conditions with flow rates of 0.1 cfm and 1.0 cfm to determine to what extent different flow rates affect the outcomes of the filter efficiency measurements of protective masks.

Apparatus
Lighthouse Solair 3100, Particle size: 0.3 - 25.0μm, Flow rate: 1.0 cfm
Lighthouse Handheld 3016, Particle size: 0.3 - 25.0μm, Flow rate: 0.1 cfm
Lighthouse Handheld 2016, Particle size: 0.2 μm - 2 μm, Flow rate: 0.1 cfm

Data format particle counters
The data format is either Raw (RAW) or Normalized (NORM). Raw data pertains to the actual number of particles counted. Normalized data shows particle concentrations calculated from the raw data (based on the settings chosen in ft3 or m3).

\[
\text{Volume of Air} = \text{Sample time (minutes)} \times \text{FlowRate (CFM)} \\
\text{Normalized Data} = \frac{\text{Number of Particles}}{\text{Volume of Air}}
\]

Thus, depending on the flow rate and sample time a certain volume of air is collected by the particle counter. The Normalized data on the number of particles counted output is presented relative to this volume.
Hardware & Test setup

To ensure correct comparison between filter capacity of different mouth masks it is important to measure on a standardized area of the mask. This area should be large enough to guarantee sufficient airflow through the filter material that matches the specifications of the particle counter device. Figure 1 shows a particle chamber that allows researchers to use a particle counter as a device that measures the filter efficiency of a mask. The design of the setup can be downloaded here https://surfdrive.surf.nl/files/index.php/s/EVtnsfPUz7FQozAJ. Figure 1-middle shows the lid and chamber of the device that are designed such that easy install of a mask with minimum risk of contamination of the filter surface is possible. Furthermore, the lid compresses the mask material on a quad ring in the chamber that facilitates a constant distributed force (Figure 1-right) around the chamber rim. This minimizing the risk of false air inflow due to folds in the material. The lid height with respect to the chamber top can be adjusted to facilitate different filters with various filter thicknesses. The particle chamber has an internal diameter of 40 mm and is 40 mm deep. The outer diameter measures 50mm. Especially for the low flow particle counters it is important to keep the tube between particle chamber and counter as short as possible to minimize the influence of the trapped environmental air (after filter placement) on the measurement results. Figure 2 shows how adapters can be made to fit different tubes of filters and tubes on the particle counter.

Figure 1 Filter testing setup. Left, Solar 3100 connected with a tube to the Particle Chamber. Middle, Particle chamber components. Right Mouth piece installed in particle chamber.

Figure 2 Filter testing setup. Left, adapter made to test respiratory filter for ventilation. Right, adapter made for connection of the particle chamber.
Procedure

For each particle counter the number of free floating airborne particles of sizes 0.3, 0.5 and 5.0 μm were measured in an enclosed room for 1 minute at the flow rate as a baseline measurement. Next, a mask was firmly installed on the particle chamber that was connected to the inlet tube of the particle counter. Subsequent measurements reveal a reduction of particles counted due to the filtering of the environmental air that enters the inlet tube. Filtering efficiency was expressed as the percentage particle reduction relative to the baseline measurement for that particular particle counter.

Results

Table 1 shows the results of particle measurements for 2 mask samples from polish origin (supposedly of class FFP2). Each mask was measured for 3 times on different locations on the mask. These masks were also sterilised once using steam sterilization by means at 121 °C in combination with permeable laminate bags, Halyard type CLFP150X300WI-S20. Both Lighthouse hand-held devices show similar particle filter capacity. The filter capacity of the samples measured with the 3100 version are much lower when compared with the hand-held version.

Table 2, comparison between 3 different particle counters with different flow rates

<table>
<thead>
<tr>
<th>Mask Type</th>
<th>Counted Particles [μm]</th>
<th>Percentage Filtered Particles [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>New FFP2 Polish mask FFP2 class</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample 1a</td>
<td>2767,00</td>
<td>246</td>
</tr>
<tr>
<td>Sample 1b</td>
<td>2580,00</td>
<td>213</td>
</tr>
<tr>
<td>Sample 1c</td>
<td>2722,00</td>
<td>255</td>
</tr>
<tr>
<td>1x steam sterilized FFP2 Polish mask FFP2 class</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample 1a</td>
<td>11041,00</td>
<td>929</td>
</tr>
<tr>
<td>Sample 1b</td>
<td>10494,00</td>
<td>867</td>
</tr>
<tr>
<td>Sample 1c</td>
<td>9155,00</td>
<td>768</td>
</tr>
</tbody>
</table>

Comments

The particle filtering efficiency was only tested with dry particles that are present in the environmental air. Additional aerosol testing (NaCl test, Paraffin oil) is needed to evaluate the filtering efficiency of aerosols.
The breathability of the material has not been tested. Pressure drop tests need to be performed to evaluate whether the ability to breathe through the masks is not affected. Also, no FIT test has been performed to determine whether the mask properly fits on to the face of the user and whether air bypasses the mask along the face of the wearer.

Take home message

We tested whether the data obtained for particle counters having different specifications, in particular using different flow rates, results in different outcomes and therefore different estimates of the filter efficiency of a mask.

The results obtained with all individual particle counters are robust and reproducible. This suggests that all counters are suitable for direct comparisons between masks (for instance to compare effects of sterilization or direct comparisons between different types of masks). However, testing at a low flow rate (0.1 cfm) results in higher overall estimates of the filter efficiency than testing at a high flow rate (1.0 cfm). Therefore, tests performed at low flow rates may overestimate the actual filter efficiency and cannot directly show whether a mask reaches the requirements for certain types of masks such as FFP1 and FFP2 without benchmark testing.