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ARTICLE INFO ABSTRACT
Handling Editor: E. Brillas GenX is the trade name of the ammonium salt of hexafluoropropylene oxide dimer acid (HFPO-DA) and is used as

a replacement for the banned perfluorooctanoic acid (PFOA). However, recent studies have found GenX to be

Keywords: ) more toxic than PFOA. This work deals with the electrochemical degradation of HFPO-DA using boron-doped
Boron-doped diamond (BDD) diamond anodes. For the first time, an experimental study was conducted to investigate the influence of sul-

Hexafluoropropylene oxide dimer acid (HFPO-

fate concentration and other operating parameters on HFPO-DA degradation. Results demonstrated that sulfate

DA . . . . . . . .

Ge;X radicals were ineffective in HFPO-DA degradation due to steric hindrance by —CF3 branch. Direct electron
Electrochemical oxidation transfer was found as the rate-determining step. By comparing degradation of HFPO-DA with that of PFOA, it was
Hydroxyl radicals observed that the steric hindrance by —~CF3 branch in HFPO-DA decreased the rate of electron transfer from the
Perfluorooctanoic acid (PFOA) carboxyl head group even though its defluorination rate was faster. Conclusively, a degradation pathway is

proposed in which HFPO-DA mineralizes to CO2 and F~ via formation of three intermediates.

1. Introduction (The Organisation for Economic Co-operation and Development
(OECD), 2018; Goeden et al., 2019). They are made of a chain of C-F

Per- and polyfluoroalkyl substances (PFAS) are man-made sub- bonds which are one of the strongest bonds known (531.5 kJ mol™H)
stances containing at least 4730 different chemical varieties in its family (Parsons et al., 2008; Vecitis et al., 2009; Zhang et al., 2013). Since their
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invention in the 1930s, PFAS have been extensively used in fire-fighting
foams, non-stick cookware, textiles and food packaging materials due to
their hydrophobic, oleophobic and surfactant properties (Baran, 2001;
Prevedouros et al., 2006; Davis et al., 2007; McGuire et al., 2014; Niu
et al., 2016). Owing to their high chemical stability, inability to degrade
naturally and resistance to conventional treatment methods like floc-
culation, coagulation and ozonation (Rahman et al., 2014; Hopkins
et al., 2018), PFAS are nicknamed as “forever chemicals” (Cheryl Hogue,
2019).

By their chemical constitution, PFAS inherently pose severe health
and environmental concerns. Perfluorooctanoic acid (PFOA) and per-
fluorooctanesulfonate (PFOS) are the most widely studied PFAS due to
their widespread contamination of various environmental and biological
matrices including groundwater (Cousins et al., 2016; Hongkachok
et al., 2018), surface water (Gobelius et al., 2018; Wang et al., 2019;
Baabish et al., 2021), drinking water (Hu et al., 2016; Daly et al., 2018;
Domingo and Nadal, 2019), sediments (Guo et al., 2010; Pico et al.,
2012), human serum (Olsen et al., 2007; Fujii et al., 2017) and animal
tissue (Kannan et al., 2004). A recent study showed that elevated
plasma-PFAS concentration in human blood is associated with the se-
vere course of COVID-19 due to their accumulation in lungs (Grandjean
et al., 2020). Taking into account their persistent toxicity and bio-
accumulation, PFOA was listed in the Annex A (elimination) and PFOS
was listed in the Annex B (restriction) of the Stockholm Convention on
Persistent Organic Pollutants for a global ban (Conder et al., 2008;
Springer Berlin Heidelberg, 2013). Due to their phase-out, short-chain
fluorinated compounds such as perfluoroalkyl ether carboxylic and
sulfonic acids (PFECAs and PFESAs) are being used as alternatives (Bao
et al., 2020).

Hexafluoropropylene oxide dimer acid (HFPO-DA, C¢HF;103, CAS
no: 13252-13-6) belongs to a class of PFECAs. The ammonium salt of
HFPO-DA has the trade name GenX. Both HFPO-DA and GenX exist in
the same anionic form (CgF1103") in water due to deprotonation (H™) or
dissociation (NH4™), respectively, and thus can be considered the same
dissolved species. GenX is commercialized by Chemours and is currently
used as a replacement of PFOA in fluoropolymer production plants
(Chemours named in GenX lawsuit, 2017). However, recent studies have
shown that GenX has higher toxicity compared to PFOA (Gomis et al.,
2018) and is more easily soluble in water, thus making it more difficult
for removal (Mullin et al., 2019). In recent years, GenX has been
detected in surface water, drinking water and in tissues of fish near the
production plants in Europe, China and the United States (Heydebreck
etal., 2015; Sun et al., 2016; Brandsma et al., 2019). In 2019, GenX was
added to the list of Substances of Very High Concern due to its potential
adverse health effects (ECHA, 2020). In The Netherlands, The National
Institute for Public Health and the Environment (RIVM) has set a safe
limit of GenX exposure from drinking water (150 ng L™1), surface water
(118 ng L1 and consumption of fish (2.6 pg kg’l) (Beekman et al.,
2016; RIVM, 2019). Production of these short-chain fluorinated alter-
natives, however, still continues because of their unique repellant
properties that are not easily achievable by non-fluorinated compounds
(Bao et al., 2020).

Advanced treatment approaches like nanofiltration and reverse
osmosis have shown effective removal efficiency (Appleman et al., 2013;
Flores et al., 2013; Soriano et al., 2017; Boo et al., 2018; Banks et al.,
2020), but the disposal of the concentrated PFAS retentate is still a
problem (Lang et al., 2017; Stoiber et al., 2020). On the other hand,
electrochemical advanced oxidation processes (EAOPs) are one of the
most studied methods for PFAS degradation due to the generation of
highly reactive hydroxyl radicals (OH®) with a high redox potential (E°
= 2.8 V vs SHE) (Moreira et al., 2017; Amor et al., 2019) and their
potential to cleave the highly stable C-F bonds through formation of
thermally unstable alcohol compound (Niu et al., 2013). Among EAOPs,
anodic oxidation is a widely used technique due to its effectiveness and
ease of set-up in existing water treatment plants. The anodic material
plays an important role in determining the degradation efficiency and
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materials like boron-doped diamond (BDD) (Carter and Farrell, 2008;
Trautmann et al., 2015; Urtiaga et al., 2015; Gomez-Ruiz et al., 2019;
Barisci and Suri, 2020; Garcia-Costa et al., 2020; Pierpaoli et al., 2021)
and mixed metal oxides (e.g. Ti4O7, PbO,, Ti/SnO2-Sb, Ti/SnO,-Sb-Bi)
(Zhuo et al., 2011; Lin et al., 2012; Niu et al., 2012; Wang et al., 2020)
have been used for PFOA and PFOS degradation. Among them, BDD is
particularly attractive due to its wide potential window, resistance to
fouling, excellent corrosion resistance and high overpotential for oxygen
generation (Trautmann et al., 2015; Gomez-Ruiz et al., 2019). Previous
works involving EAOPs have reported that the first step in PFOA
oxidation is the direct electron transfer (DET) at the anode followed by
repeated unzipping of CFy units through decarboxylation and thermal
transformation (Ochiai et al., 2011; Zhuo et al., 2012; Niu et al., 2013;
Schaefer et al., 2017; Zhuang et al., 2020). This results in the complete
mineralization of PFOA to CO5 and fluoride ions (F).

Till date, very limited research is reported on HFPO-DA (GenX)
degradation. Bao et al. (2018) studied the oxidation of GenX based on
S04" oxidative degradation using UV/persulfate and reported that <5%
of GenX was degraded whereas 26% of PFOA was degraded in 3 h.
Adding to that, the <5% GenX degradation was completely attributed to
direct UV oxidation and not to sulfate radicals (SO4°"). In their next
research (Bao et al., 2020), they studied the oxidation of hexa-
fluoropropylene oxide tetramer acid (HFPO-TeA) using UV/persulfate
and reported that HFPO-TeA depolymerized to hexafluoropropylene
oxide trimer acid (HFPO-TA) which then depolymerized to HFPO-DA
and not further, which supports their previous finding. Pica et al.
(2019) studied the electrochemical oxidation of HFPO-DA using BDD
anode and reported that SO4°” was capable of enhancing HFPO-DA
oxidation. The effect of SO4°” in the HFPO-DA degradation is still un-
clear owing to the contradictory observations reported. The effects of
other operating parameters of EAOP (e.g. electrolyte concentration,
chloride ions, and current density) that could influence the HFPO-DA
degradation have not yet been explored.

In the present study, we investigate the degradation and defluori-
nation efficiency of HFPO-DA using boron-doped diamond anodes in
EAOP. This study aims to elucidate the first step in the degradation
mechanism of HFPO-DA and to clarify the contradictions previously
reported on the role of sulfate radicals. Experiments were performed
separately with sodium sulfate and sodium perchlorate to assess the
effect of SO4°". To further provide experimental insight into the degra-
dation pathway, the intermediate products were determined using mass
spectrometry in order to propose a possible reaction mechanism. Addi-
tionally, the effects of electrolyte concentration, current density, and
chloride radicals on the degradation and defluorination efficiency were
investigated for the first time to provide in-depth understanding of the
degradation. Finally, a comparison is made between the degradation
efficiency of HFPO-DA and PFOA using BDD-based EAOP to highlight
the effect of steric hindrance in the HFPO-DA molecule.

2. Material and methods
2.1. Chemicals

Hexafluoropropylene oxide dimer acid (HFPO-DA, CgHF1,03, 97%)
was purchased from abcr GmbH, Germany. Perfluorooctanoic acid
(PFOA, CgHF1505, 95%), sodium sulfate (NapSO4, >99%), sodium
perchlorate (NaClO4, >98%), sodium chloride (NaCl, >99%), methanol
(CH30H, HPLC grade, >99.9%), potassium dihydrogen phosphate
(KH2PO4, EMSURE® ISO) and tert-butyl alcohol ((CH3)3sCOH, >99%)
were purchased from Sigma-Aldrich, The Netherlands. N, N-diethyl-p-
phenylenediamine (DPD) reagent powder pillows for free chlorine
detection were purchased from Hach, The Netherlands. All chemicals
were of analytical grade or higher and were used without further puri-
fication. All solutions were prepared with ~18 MQ cm, Type I water
(ELGA Purelab UHQ).
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2.2. Electrode characterization

Thin-film boron-doped diamond (6 pm thick, boron concentration
2500 ppm) electrodes were purchased from NeoCoat, Switzerland. BDD
was coated on a pre-treated niobium substrate (50 mm x 25 mm, 2 mm
thick), uniformly on both sides including the edges, using a hot-filament
chemical vapor deposition reactor.

Scanning electron microscopy (SEM) measurement was performed
with a JEOL JSM-6010LA scanning electron microscope and corre-
sponding images were taken, at a working distance of 10 mm with an
accelerating voltage of 10 keV, using a secondary electron detector.
Atomic force microscopy (AFM) measurement was done using a Bruker
Dimension Edge™ in tapping mode with antimony n-doped silicon tip.
The scanned area was 50 pm x 50 pm and the scanning rate was 0.6 Hz.
Raman spectroscopy measurement was performed with a Horiba Lab-
RAM HR setup, equipped with an argon ion laser operating at 514 nm
and a spectral resolution of ~0.3 cm™?.

2.3. Electrochemical experimentation

Electrochemical oxidation experiments were performed in a single
compartment electrochemical cell made of polypropylene. BDD elec-
trode with an effective surface area of 22.6 cm? was used as the working
anode and a platinum mesh was used as the cathode placed parallel to
either side of the anode with an electrode spacing of 10 mm. Experi-
ments were conducted in duplicate in batch mode at room temperature
(approximately 22 °C) with an electrolyte volume of 400 mL containing
15 mg L™! of HFPO-DA. To compare between HFPO-DA and PFOA
degradation, an equimolar concentration ([HFPO-DA]y = [PFOA]y =
45.4 uM) was taken. Electrolytes used in the experiments were sodium
sulfate and sodium perchlorate at varying molar concentrations. The
concentrations and pH were chosen to simulate the conductivity and pH
of groundwater (Bathrellos et al., 2008). The degradation experiments
were carried out under constant current conditions. The applied current
was supplied by a Keithley 2400 Sourcemeter with a maximum output of
1 A and 200 V and the resulting cell voltage was continuously moni-
tored. The electrolyte solution was stirred using a magnetic stirrer at
300 rpm to increase mass transfer. The initial and final pH (after
degradation) of the electrolyte were observed using VWR Dosatest pH
test strips. Each experiment was conducted for 4 h with samples
collected every 30 min. At the selected intervals, the power source was
turned off with the electrolyte being continuously stirred to maintain
homogeneity and a sample of 2 mL was collected and stored in a
LightSafe polypropylene micro centrifuge tube.

To check for the direct oxidation of chloride and radical scavenger at
the BDD anode, linear sweep voltammetry (LSV) measurements were
performed using a multichannel Metrohm Autolab potentiostat. They
were performed in a three-electrode setup, BDD as the working anode
with an active surface area of 1 cmz, platinum mesh (2 cm x 2 cm) as the
cathode, and Ag/AgCl as the reference electrode.

2.4. Analytical methods

To estimate the efficiency of degradation, the concentration of
HFPO-DA or PFOA at different time intervals was measured using high
performance liquid chromatography (HPLC). The HPLC system (Knauer
Smartline) consisted of a degasser, a pump, an automatic sample injector
with an injection volume of 10 pL, a column oven (40 °C) and a UV-Vis
detector. The HPLC system was equipped with a Phenomenex Kinetex®
C18 column (100 mm x 4.6 mm, 2.6 pm). A mixture of 20 mM potas-
sium dihydrogen phosphate (35%) and methanol (65%) was used as
mobile phase in isocratic mode. The flow rate was set at 0.6 mL min
for HFPO-DA and 0.8 mL min~! for PFOA. The detection was monitored
at A = 200 nm. The UV excitation wavelength of HFPO-DA and PFOA
was checked with a Shimadzu UV-2600 (Fig. S1).

To confirm the complete degradation/mineralization of HFPO-DA
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and PFOA, the concentration of fluoride (F~) was measured using an
ion-chromatograph system (DX-120, DIONEX) consisting of a separation
column (TonPak AS12A, 200 mm x 4 mm) and a suppressed conductivity
detector. The mobile phase consisted of an aqueous solution of 1 mM
NayCOs5 and 1 mM NaHCOj3 and the flow rate was set at 1.3 mL min .
Other anions such as chloride and sulfate were also measured. The
retention times of F, CI” and SO4% were 2.9, 3.5 and 13 min,
respectively.

The intermediates of HFPO-DA degradation were qualitatively
analyzed using an ultra-performance liquid chromatography coupled
with high-resolution mass spectrometry (LC-MS). Samples from indi-
vidual time points were diluted 1:100 with HyO and 2.5 pL of each
sample was analyzed. Reverse phase chromatography was performed
using a UPLC BEH (1.0 mm x 100 mm, 1.7 pm, Waters, Acquity) sep-
aration column coupled online to a QE plus Orbitrap mass spectrometer
(Thermo Scientific, Germany) operated in polarity switching, thereby
alternating ES+ and ES- modes. Buffer A consisted of 0.1% formic acid in
LC-MS grade water and buffer B consisted of 0.1% formic acid in LC-MS
grade acetonitrile. A flow rate of 50 L min~' was maintained using an
Acquity Ultra Performance LC pump system (Waters, Milford, United
States). After sample injection, 10% B was kept constant over 2.5 min,
followed by a linear gradient to a solvent composition of 90% B over 10
min, which was kept constant for further 2.5 min until back-
equilibration to solvent start conditions. The full scan was acquired
over the mass range of 75-500 m/z at a resolution of 70k and an AGC
target of 1e6. External calibration was performed using the Pierce LTQ
Velos ESI Positive Ion Calibration Solution before performing the sample
analysis. Sample runs were analyzed using QualBrowser part of the
Thermo Scientific Xcalibur software tool.

3. Results and discussion
3.1. Characterization of the BDD electrode

The SEM image in Fig. 1a illustrates the surface morphology of the
thin-film BDD electrode. The irregular topography observed is due to the
roughness generated during pretreatment of the niobium surface prior to
deposition. The BDD surface represents a cauliflower-like morphology
(Castro et al., 2012) likely caused by renucleation (Buijnsters and
Vazquez, 2011) occurring during the growth of the polycrystalline
diamond coating. The average surface grain size of the BDD coating was
between 0.5 and 1 pm. Irrespective of the Nb roughness, the diamond
grains were uniformly distributed and no coating defects (e.g. pinholes
or delamination) were observed. Using AFM, the topography of the BDD
coating with a root-mean square surface roughness of about 860 nm and
a maximum peak height of 5.44 pm was observed (Fig. S2). The ratio of
surface area to projected area was calculated to be 1.11. Fig. 1b shows
the Raman spectrum obtained from the BDD surface. At least, five
different signals can be distinguished. The origin of the two broad bands
located at ca. 491 and 1239 cm™! remains poorly understood (Mortet
et al., 2019) but they are frequently attributed to boron inclusion in the
diamond lattice (B—C vibrational modes) and the Fano resonance from
lattice impurities due to boron doping (Sartori et al., 2018), respectively.
The sharp peak at 1330 cm ™! corresponds to diamond one-phonon line
(Sartori et al., 2018). The shoulder peak observed around 1355 em™!
and the peak at 1587 cm ! are the so-called D- and G-bands (Merlen
et al., 2017), which originate from sp? carbon present in both dis-
ordered/defective and crystalline forms of graphite trapped in the grain
boundaries. Since sp? carbon mainly resides in the grain boundaries,
small average diamond grain size leads to a relatively low sp®/sp? ratio
which plays an important role in determining the electrode performance
(Macpherson, 2015; Liu et al., 2021) in EAOP.
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Fig. 1. Characterization of the pristine BDD anode surface (a) SEM micrograph (b) visible micro-Raman spectrum. The Raman signals labeled 1-5 correspond to
signals from B-C vibrational modes (1), Fano resonance (2), diamond (3), and the D-band (4) and G-band (5) of graphite, respectively.

3.2. Electrochemical degradation of HFPO-DA

3.2.1. Role of sulfate radicals

Sulfate radicals formed due to DET at the anode (Ahmadi et al.,
2021) are highly reactive owing to their high redox potential (2.5-3.1 V
vs SHE). The average lifetime of SO4* is 30-40 ps which is much longer
than OH® (20 ns) (Ghanbari and Moradi, 2017). To probe the role of
sulfate radicals, HFPO-DA degradation was performed separately in
NaySO4 and NaClOy4 electrolyte since NaClOy4 is considered inert during
anodic oxidation. The degradation was conducted in NaClO4 electrolyte
with the same ionic conductivity (2.34 mS cm ! @ 22 °C) as 0.01 M
NaySO4. The anodic potentials were higher than the oxidation potential
of sulfate ion to ensure generation of SO4*~ (Fig. S3). Fig. 2a shows the
effect of electrolyte type on the degradation of HFPO-DA. It was
observed that the degradation rate was almost similar in both electro-
lytes reaching a degradation of 91% (Na3SO4) and 93% (NaClOy) after 4
h. The reaction followed pseudo-first order kinetics (Fig. 2a inset) and
the apparent rate constants (kapp) in NaSO4 and NaClO4 electrolytes
were 0.0106 and 0.0113 min~'. Experiments were also conducted at a
higher ionic conductivity (9.77 mS cm~! @ 22 °C) in both electrolytes
and a similar trend was observed (Fig. S4). Again, the degradation rate
was virtually identical for both electrolytes but the overall degradation
(82% after 4 h) was lower than at lower ionic conductivity. This can be
ascribed to the decrease in voltage with increase in ionic conductivity
which directly reduces the electron transfer rate. From the data in
Fig. 2a and S4, we can conclude that sulfate radicals are ineffective in
HFPO-DA degradation which supports previous findings using UV/per-
sulfate (Bao et al., 2018, 2020). This is in contrast with previous findings
using EAOP (Pica et al., 2019) in which sodium chloride and methanol
were used to study the effect of sulfate radicals. It has to be noted that
the direct oxidation of chloride and methanol (a radical scavenger) at
the anode can occur as competing reactions to the direct oxidation of
HFPO-DA and hence hinder its degradation.

Fig. 2b shows the effect of electrolyte on the percentage of fluoride
recovered during the degradation of HFPO-DA. After 4 h, a defluorina-
tion of 80% and 84% was achieved in NaSO4 and NaClOy4 electrolytes,
respectively. Since the generated sulfate radicals can hinder the oxida-
tion of intermediate products through competing reactions (Pica et al.,
2019), the defluorination efficiency was comparatively higher in
NaClOy electrolyte.

3.2.2. Effect of electrolyte concentration

Experiments in different electrolyte concentrations ranging from
0.005 to 0.05 M NaySO4 were conducted as shown in Fig. 3. After 4 h, the
degradation of HFPO-DA reached 96%, 92%, and 81% in corresponding
electrolyte concentrations of 0.005, 0.01, and 0.05 M (Fig. 3a). Fig. 3b
shows the pseudo-first order kinetics followed. The corresponding
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Fig. 2. Effect of electrolyte on (A) HFPO-DA degradation (inset showing the
pseudo-first order kinetic analysis) and (B) defluorination. Current density =
20 mA em~2, pH = 7, [HFPO-DA]o = 15 mg L™, electrolyte: 0.01 M NaySO,
and 0.02 M NaClOy, ionic conductivity = 2.34 mS em™! @ 22 °C.

kinetic constant (kapp) reduced from 0.0129 to 0.0068 min~! with
increasing electrolyte concentration from 0.005 to 0.05 M. After
degradation, it was worth noting that the final pH increased from 7 to 10



D. Suresh Babu et al.

N W 0.005M
< @ 001M
A 005M
80 4
O\O
(o)
S 60-
x
OD
S 40
20
O T . T A T . T o T X T L T ¥ T L4 T
00 05 10 15 20 25 30 35 40
Time (h)
100 4
(c)
3 804
he]l
(O]
o 60
>
Q
Q
(0]
Y 404
E g !
- -__‘.- +
5 20 .
o -4 W 0005M
@ 001M
04 A 005M

1/ T > T Y T

T T
00 05 10 15 20 25 30 35 40
Time (h)

In(C/C,)

Chemosphere 288 (2022) 132417

0.0
- W 0.005M
o 9. @ 001M
At 3 - A 005M
-1.0
-15-
-2.0-
-25-
-3.0-
BT
00 05 10 15 20 .25 30 35 40
" Time (h)
(d) XXX 0.005 M
B8 0.01 M
18 I 0.05 M
X e
) p Qg K
ol pet K= O
= et % %
S b < X
> % < X
] <H K
X X X
) o I
i < X
X by I

<

X
<X
2

SO

O
X
e

>

kXX
SO

KX
KXX
KX

00 05 10 15 20 25 30 35 40

Fig. 3. Effect of electrolyte concentration on (A) HFPO-DA degradation with (B) corresponding pseudo-first order kinetic analysis, (C) defluorination, and (D) cell
voltage. Current density = 20 mA cm ™2, pH = 7, [HFPO-DA], = 15 mg L™, electrolyte: Na,SO,.

with increase in electrolyte concentration which could hinder the
degradation. This is due to the competitive reactions between DET of
SO42' and OH™ at the anode to maintain the balance of electron flow
(Egs. (1)-(3)) and the hydrogen evolution reaction at the cathode that
leads to formation of OH™ (Eq. (4)).

S0, - S0," + e (@)
S0," + S0," - S,04%" (@)
OH - OH® + ¢~ 3
2H,0 4 2e”—»20H™ + H, 4

Fig. 3c shows the effect of electrolyte concentration on the percentage
of fluoride recovered during the degradation. After 4 h, a defluorination
of 95%, 82%, and 39% was achieved in 0.005, 0.01, and 0.05 M NaySO4
electrolytes, respectively. This supports the above-described fact that the
degradation of intermediates is hindered to a great extent through
competing reactions occurring due to the electrosorption of sulfate ions
at the anode to generate sulfate radicals (Eq. (1)). In addition, with in-
crease in electrolyte concentration, the resulting cell voltage reduces
which directly reduces the effective electron transfer. The resulting cell
voltage at different electrolyte concentrations is shown in Fig. 3d. In
0.005 and 0.01 M experiments, the voltage decreased by 0.9 and 0.5 V
after 1 h of degradation due to the additional conductivity of recovered
fluoride ions. When the electrolyte concentration was increased from
0.05 to 0.1 M NaS0y4, the resulting cell voltage reduced from 7.8 to 7.4 V
(not shown) which was very small compared to the other voltage dif-
ferences between electrolyte concentrations in Fig. 3d. The degradation
in 0.1 M NapSO4 followed zero order kinetics due to the high electrolyte

conductivity which nearly eliminates electromigration based mass
transfer of HFPO-DA (Fig. S5). HFPO-DA (pKa = 2.84) (Mullin et al.,
2019) dissociates into C¢F1;03™ and H' in water and at high background
electrolyte conductivity, the reaction is diffusion-controlled following
zero order kinetics.

3.2.3. Effect of current density

To study the effect of current density on HFPO-DA degradation,
different current densities ranging from 5 to 30 mA cm ™2 were applied.
Fig. 4a shows the effect of current density on HFPO-DA degradation.
After 4 h, the degradation reached 77%, 85%, 91%, and 97% with
corresponding current densities of 5, 10, 20, and 30 mA cm 2. The
corresponding kinetic constant follows the order of 0.0059 < 0.0077 <
0.0105 < 0.0150 min~! with increasing current density from 5 to 30 mA
em™2. Fig. 4b shows the effect of current density on the percentage of
fluoride recovered during the degradation. After 4 h, a defluorination of
63%, 72%, 86%, and 95% was achieved at current densities of 5, 10, 20,
and 30 mA cm ™2, respectively. Increasing applied current density leads
to increasing electron transfer rate and generation of reactive oxidants
(e.g. OH®), thus faster HFPO-DA degradation and defluorination is
achieved.

3.2.4. Effect of chloride and reactive chlorine species

To study the effect of chloride and reactive chlorine species on
HFPO-DA degradation, experiments were conducted in different con-
centrations of NaCl ranging from 0 to 15 mM. To minimize the effect of
voltage reduction due to addition of NaCl, 0.02 M NaySO4 was added as
a background electrolyte. Linear sweep voltammetry (LSV) profiles
confirm the direct oxidation of Cl” at the BDD anode (Fig. S6). The direct
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oxidation of CI” is further confirmed with the decrease in CI” concen-
tration during degradation (Fig. S7). Fig. 5a shows the effect of chloride
on HFPO-DA degradation. After 4 h, the degradation reached 74%, 69%,
62%, and 58% in corresponding NaCl concentrations of 0, 2.5, 10, and
15 mM. This shows that ClI” inhibited HFPO-DA degradation to a
considerable extent by occupying active sites on the electrode. Forma-
tion of free chlorine was confirmed by use of DPD reagent (Schwenke
et al., 2019) which is oxidized by free chlorine to give a pink color
(Fig. S8).

Fig. 5b shows the effect of chloride on the percentage of fluoride
recovered during the degradation. After 4 h, a defluorination of 57%,
54%, 42%, and 17% was achieved in 0, 2.5, 10, and 15 mM NaCl elec-
trolytes, respectively. Since oxidation of chloride (E° = 2.0 V, from
Fig. S6) occurs at a lower potential than OH® generation (E° = 2.8 V),
OH* formation is hindered due to competing reactions at the anode and
also due to consumption of OH® by chloride species to form by-products
(Barazesh et al., 2016). However, previous work demonstrated that DET
of CI” and its reaction with OH® can lead to the formation of reactive
chlorine species (Cl°, Cly, ClO”) (Egs. (5)-(7)) that accelerated the
degradation of PFOS (Wang et al., 2020). Electrooxidation of Cl” using
BDD anode can also lead to the formation of unwanted by-products by
the formation of chlorate and perchlorate (Eq. (8)).
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Cl™ = (Clugs™) + e~ (5)
Cl* + CI* - Cl, (6)
Cl* + OH®* - CIO” 4+ H' @)
Cl~ - CI0~=Cl0, " —Cl0, ~—CIO, ~ (8)

3.2.5. Effect of radical scavengers

To show that OH® plays an important role in the cleaving of C-F
bonds, radical scavengers were used in a further experiment. Tert-butyl
alcohol (TBA) lacking a-hydrogen is commonly used as OH® scavenger
due to its higher reactivity with OH® with a reaction rate constant of
3.8-7.6 x 108 M™! s7! (Buxton et al., 1988; Barazesh et al., 2016;
Schaefer et al., 2017). A molar concentration of 0.1 M TBA was added to
0.01 M NayS0y4 electrolyte containing 15 mg L~} HFPO-DA. After 2 h of
degradation, it was observed that no fluoride was recovered and after 4
h, only 5% of fluoride was recovered. Thus, 0.1 M TBA was sufficient
enough to scavenge most of the generated OH®. This demonstrates that
the reaction of OH®* with HFPO-DA to form an unstable alcohol is
necessary for complete mineralization of HFPO-DA. Fig. S9 shows the
effect of TBA addition on the HFPO-DA degradation. It has to be noted
that OH® reacts rapidly with compounds through hydrogen abstraction
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and addition to unsaturated bonds and not through electron transfer
mechanism (Farhat et al., 2015). Since the first step in HFPO-DA
degradation is the direct electron transfer (DET), the decrease in
degradation efficiency is due to the direct oxidation of TBA competing
with DET of HFPO-DA by occupying the active sites on the BDD anode.
LSV profiles further confirm the oxidation of TBA at the BDD anode
(Fig. S10).

3.2.6. Comparison between PFOA and HFPO-DA degradation

Fig. 6 shows the comparison between PFOA and HFPO-DA on
degradation and defluorination. After 1 h, 57% of PFOA was degraded
whereas only 38% of HFPO-DA was degraded. This indicates that the
presence of —CF3 branch at the a-position hinders effective electron
transfer from the carboxylic head group. Also, sulfate radicals were
observed ineffective due to the same reason, thus introducing
complexity in the first step of HFPO-DA degradation. It can be observed
that in the first hour, more fluoride was generated from PFOA than from
HFPO-DA degradation which is due to the higher efficiency of PFOA
degradation. After 2 h, however, the fluoride generated from PFOA
degradation was lower than from HFPO-DA. The percentage of fluoride
recovered from HFPO-DA after 4 h was 20% higher than from PFOA.
These observations bring us to a conclusion that the direct electron
transfer from HFPO-DA to the anode is the rate-determining step in
HFPO-DA degradation and that HFPO-DA shows a faster defluorination
than PFOA under identical conditions.

3.3. Degradation mechanism of HFPO-DA

The mechanism of electrochemical degradation of HFPO-DA using
BDD anodes was derived using LC-MS analysis. A full scan MS spectrum
of a sample collected after 2.5 h of degradation is shown in Fig. S11. The
spectrum of an intermediate product, namely pentafluoropropionic acid
(PFA, CF3CF2COO") and its corresponding HPLC chromatograph is
shown in Fig. S12. Density functional theory (DFT) calculations indi-
cated that the carboxylic group is the preferred site for direct electron
transfer and the oxidative degradation does not lead to the splitting of
ether bond in HFPO-DA (Pica et al., 2019). Bao et al. (2020) proposed
that the oxidative degradation of HFPO-TeA (TeA-tetramer acid) and
HFPO-TA (TA-trimer acid) led to the split of ether bond at the non-ionic
end whereas the same was not observed in HFPO-DA with only one ether
bond.

From the above, we derive the possible oxidative degradation
pathway of HFPO-DA as illustrated in Fig. 7. The first step in HFPO-DA
degradation is the direct electron transfer (DET) at the anode surface (1)
leading to the formation of an alkyl radical via Kolbe decarboxylation

L0 = HFPO-DA i
® PFOA
= HFPO-DA (F)
80 : - 80
® PFOA (F) T
=
2 | NN\ e S
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> 40 g
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Fig. 6. Comparison between HFPO-DA and PFOA on degradation and
defluorination. Current density = 20 mA cm 2, pH = 7, [HFPO-DA], =
[PFOA]o = 45.4 pM, electrolyte: 0.01 M NaySOy4.
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(2). The formed radical reacts with OH® (3) to form a thermally unstable
alcohol which due to hydrogen abstraction (4) undergoes —CF3 elimi-
nation to form acyl fluoride (C4FgO2). C4FgO2 undergoes hydrolysis (5)
to form an acid (C4F703") through another F~ elimination. This inter-
mediate again undergoes reaction (1) to (3) to form an unstable alcohol
(6) which through HF elimination (7) leads to the formation of a shorter
acyl fluoride (C3F¢O). This acyl fluoride undergoes hydrolysis (8) to
form the second intermediate pentafluoropropionic acid (PFA,
CF3CF2COO"). The formation of subsequent alkyl radical, alcohol, acyl
fluoride and acid is labeled as 4A process (Bao et al., 2020). The inter-
mediate PFA through 4A process (9) leads to the formation of the third
intermediate trifluoroacetic acid (TFA, CF3COO") through —CF5 unzip-
ping. In the final step, TFA through unzipping (10) leads to the forma-
tion of F~ and CO;. Accordingly, HFPO-DA completely mineralizes to F~
and CO; through the formation of three intermediates, namely C4F;03",
PFA and TFA. The formation of PFA and TFA was not reported previ-
ously in the HFPO-DA degradation pathway proposed by Pica et al.
(2019) using DFT calculations. Hence, the experimental determination
of these intermediates gives more insight into the closest feasible
HFPO-DA degradation pathway.

In the case of PFOA, which is a linear PFAS isomer, the number of
intermediates formed are six as illustrated in Fig. S13. Hence, the
number of intermediates in HFPO-DA is comparatively less which leads
to faster defluorination rate, as was observed experimentally (Fig. 6).

The findings of our study demonstrate the complexity in HFPO-DA
degradation due to the presence of ~CF3 branch and its resistance to
sulfate and chloride radicals. However, electrochemical degradation of
HFPO-DA using BDD anode has resulted in the complete mineralization
to COy and F". This supports EAOP using BDD anode as a promising
approach towards sustainable and effective water treatment. EAOPs can
be easily implemented in the existing fluoropolymer production plants
that release various PFAS varieties into the water stream (Gebbink and
van Leeuwen, 2020). Hence, EAOPs help to drastically reduce their
discharge into the environment through the complete mineralization of
PFAS.

4. Conclusions

This study examined the electrochemical degradation of HFPO-DA
using BDD anodes with an experimental insight into degradation influ-
encing parameters. The primary conclusions drawn from this study can
be summarized as follows.

e HFPO-DA completely mineralizes to CO, and F~ via formation of

three intermediates.

Direct electron transfer was observed to be the rate-determining step

in HFPO-DA degradation.

Sulfate radicals are ineffective in HFPO-DA degradation due to the

steric hindrance by the —CF3 branch which blocks the trajectory of

S04,

Increase of sulfate concentration decreased the degradation and

defluorination efficiency due to decrease in cell voltage and decel-

eration in oxidation of intermediate products in presence of SO4°*,

respectively.

Increase of current density increased the degradation and defluori-

nation efficiency due to effective electron transfer and increased OH®

production.

Increase of chloride concentration decreased the degradation and

defluorination efficiency due to competing reactions at anode and

quenching of OH® by CI".

By use of radical scavengers, it was observed that OH® is crucial for

complete mineralization.

e By comparing degradation of HFPO-DA with that of PFOA, it was
observed that the presence of the —-CF3 branch increased the
complexity of electron transfer in HFPO-DA degradation even
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though the defluorination rate was faster for HFPO-DA than for
PFOA due to lesser number of intermediates.
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