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Shortening Solitons for Fiber-Optic Transmission
Sander Wahls

Delft Center for Systems and Control, Delft University of Technology, The Netherlands. Email: s.wahls@tudelft.nl.

Abstract—Solitons are stable localized pulses that do not
disperse in optical fiber. When several solitons interact, they
form a multi-soliton. Various fiber-optic communication systems
based on multi-solitons have been investigated, but their spectral
efficiencies are not competitive. One issue with using multi-solitons
for communications is that their effective duration can vary widely
with the number of interacting solitons. In this paper, we therefore
introduce the concept of soliton shortening. In soliton shortening,
a dispersive part is added to the nonlinear spectrum of a multi-
soliton that reduces the pulse to a fixed finite duration, without
changing the characteristics of the solitonic part. As a proof of
concept, soliton shortening is shown to increase the spectral
efficiency of a 2-soliton on-off keying system by 40%.

I. INTRODUCTION

The fiber-optic channel is inherently nonlinear due to the
Kerr effect [1]. Many fiber-optic communication systems
are designed to avoid this issue, and operate in regimes
where nonlinear effects are weak. However, there are also
attempts to embrace the nonlinearity instead of avoiding it.
Solitons are stable localized pulses that do not disperse during
propagation due to the Kerr effect. This makes them interesting
for information transmission, and in the past many soliton
communication systems have been investigated [2]. In these
early systems, trains of single solitons were typically generated
optically. With the advent of coherent receivers and digital
signal processing, it has become possible to go beyond single
solitons. The nonlinear Fourier transform (NFT) decomposes
a signal into solitonic and dispersive components [3,4]. In an
ideal (i.e., loss- and noise-free) nonlinear fiber, the evolution
of these components is decoupled from each other and can
be described using simple analytic formulas. The inverse NFT
conversely synthesizes signals with prescribed solitonic and
dispersive parts. In the last ten years, many different fiber-optic
communication systems based on NFTs have been proposed.
See, e.g., [4,5]. In most designs, either the solitonic part or
the dispersive part of the NFT is used exclusively. There are
a few works in which small numbers of solitons are added
to a dispersive part [6]–[9], but the amount of energy in the
solitonic part is small. Interestingly, one can observe a different
picture when the NFT of conventionally modulated signals is
taken. At higher powers, solitons carry most of the energy
and the dispersive part plays a minor role [10]–[12]. On the
other hand, it was found that the energy contained in a directly
modulated dispersive part can be bounded [13].

Instead of adding carefully chosen solitons to a given
dispersive part, in this paper we add a carefully designed
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dispersive part to a given multi-soliton such that its fitness for
data transmission is improved. We develop a new approach
called soliton shortening to achieve this goal. Specifically,
soliton shortening turns a multi-soliton, which decays quickly
but has infinite duration, into a finite duration signal without
changing the solitonic part of the NFT. As a proof of concept,
we use soliton shortening to harmonize the pulse durations for
a two-soliton on-off keying (OOK) transceiver (see, e.g., [14]),
which leads to an increase in spectral efficiency of 40%.

The paper is structured as follows. Sec. II recalls some
known results, mostly regarding the fiber-optic channel and
the NFT. Then, two soliton shortening methods are presented
in Sec. III. In Sec. IV, soliton shortening is used to improve a
two-soliton OOK system. The paper is concluded in Sec. V.

II. PRELIMINARIES

A. Channel Model

The fiber-optic communication channel is modeled by the
nonlinear Schrödinger equation (NSE) [1, Eq. 7.1.4]

∂A

∂z
+ j

β2
2

∂2A

∂t2
= jγ|A|2 + 1

2
[g0 − α]A+ f, (1)

where j is the imaginary number, and A(z, t) represents the
electromagnetic field at location z [m] and time t [s]; the
squared brackets indicate SI units. The unit of |A| is

√
W.

The coefficients α [m−1], β2 [s2m−1] and γ [W−1m−1]
characterize the loss, dispersion and Kerr nonlinearity of
the fiber, respectively. The profile g0(z) depends on the
amplification scheme. Ideal distributed Raman amplification
corresponds to g0(z) = α, while lumped EDFA amplification
corresponds to g0(z) = G

∑∞
n=1 δ(z − nS) with G [] being

a gain and S [m] being the amplifier spacing. The term
f(z, t) finally represents noise. In the context of NFTs, it
is convenient to neglect noise and normalize the NSE. For
anomalous dispersion fiber, the normalized field q(z, t) obeys

j
∂q

∂z
+

1

2

∂2q

∂t2
+ |q|2q = 0, q = q(z, t), (2)

where z and t are normalized versions of the location z and
time t. The precise normalization depends on the amplification
scheme. With ideal distributed amplification, the normalized
NSE (2) is equivalent to (1) (in the absence of noise). When
the dispersion and nonlinearity coefficients are allowed to vary
in space, then the normalization can also be exact for lumped
amplification [15]. In this paper, we use the normalization from
[16] for the constant coefficient case. The normalized NSE (2)
only approximates the original NSE (1) in this case.



B. Nonlinear Fourier Transform (NFT)

The NFT of the time-domain signal q(z0, t) is defined with
the help of the Zakharov-Shabat scattering problem [3]

dφ

dt
=

[
−jλ q
−q∗ jλ

]
φ, lim

t→−∞
ejλtφ =

[
1
0

]
,

φ = φ(z0, t, λ) =

[
φ1(z0, t, λ)
φ2(z0, t, λ)

]
, q(z0, t)

|t|→∞−→ 0 "fast".

Here, the asterisk ∗ denotes the complex conjugate. The
scattering coefficients of q(z0, t) are given by a(λ) =
a(z0, λ) := limt→∞ ejλtφ1(z0, t, λ) and b(λ) = b(z0, λ) :=
limt→∞ e−jλtφ2(z0, t, λ). They always satisfy the relation

a(ξ)a∗(ξ∗) + b(ξ)b∗(ξ∗) = 1, ∀ξ ∈ R. (3)

The NFT of q(z0, t) consists of a continuous spectrum b(ξ), ξ ∈
R, and a finite discrete spectrum (λn, bn), n = 1, . . . , N , where
the so-called eigenvalues λn are the solutions of a(λ) = 0 with
imaginary part =(λ) > 0; the bn are called norming constants.
The continuous spectrum represents dispersive components of
q, while the discrete spectrum indicates solitonic components.

If q(z, t) is a solution of the normalized NSE (2), then the
scattering coefficients evolve in a very simple manner:

a(z, λ) = a(0, λ), b(z, λ) = e2jλ
2zb(0, λ). (4)

Therefore, we know exactly how the NFT of a pulse launched
at z = 0 evolves when it propagates according to the NSE (2).

C. Nonlinear Fourier Transform of Time-Limited Signals

Early NFT-based fiber-optic transmission systems used a
different definition of the NFT that made it difficult to control
the temporal support of pulses generated by modulation of the
continuous part of the NFT. In [17], it was recognized that
these problems can be avoided by using the definition of the
NFT above. The NFT of a time-limited signal q(z0, t), i.e.

q(z0, t) = 0, ∀|t| > T, (5)

has a band-limited continuous part. More precisely, the Fourier
transform of the b-coefficient of a time-limited signal satisfies

F [b](τ) :=
∫ ∞
−∞

b(ξ)e−jξτdξ = 0, ∀|τ | > 2T. (6)

This implies that b(λ) is an entire function. Thus, (3) extends
into the complex plane, and the discrete spectrum satisfies

b(λn)b
∗(λ∗n) = 1, bn = b(λn), ∀n = 1, . . . , N. (7)

These conditions are also sufficient [18]. To give a precise
statement, we require the Paley-Wiener space PW1

σ .

Definition 1. We denote the space of Lebesgue integrable
complex-valued functions on R by L1. The Paley-Wiener space
PW1

σ contains all functions of the form

f(λ) =
1

2π

∫ σ

−σ
F (τ)ejλτdτ, F ∈ L1, λ ∈ C.

(Note that functions in PW1
σ are entire and therefore already

uniquely specified their values on the real line.)

Theorem 6 in [18] ensures that for any b(z0, ·) ∈ PW1
2T with

|b(z0, ξ)| < 1 for all ξ ∈ R, and any discrete spectrum (λn, bn)
that satisfies (7), there is exactly one signal q(z0, ·) ∈ L1 with
this nonlinear spectrum. This signal satisfies (5).

D. 99%-Duration and Bandwidth

For any g : R→ C, we set EI(g) :=
∫ I/2
−I/2 |g(s)|

2ds. Then
the 99%-duration and bandwidth of q(t) = q(z0, t) are

D99%(q) := min {D > 0 : ED(q) ≥ 0.99E∞(q)} ,
B99%(q) := min {B > 0 : E2πB(Q) ≥ 0.99E∞(Q)} ,

where Q := F [q] is the conventional Fourier transform of q(t).

III. SOLITON SHORTENING

Multi-solitons are signals for which the discrete part of
the nonlinear spectrum is non-empty, while the continuous
part is trivial in the sense that the b-coefficient is identical to
zero, b(ξ) = 0 for all ξ ∈ R. The real and imaginary parts
of the eigenvalues λn indicate the speed and amplitude of
each solitonic component, while the norming constants bn are
related to their phases. The temporal support of multi-solitons
in communication systems can vary widely, which typically
reduces the spectral efficiency of the overall system. We are
thus interested in using the normally unused continuous part
of the nonlinear spectrum of a multi-soliton to shorten the
corresponding time-domain signal to a finite, given duration.
We had seen in Sec. II-C that the discrete and continuous parts
of the NFT are coupled for time-limited signals. In light of
these constraints, our formal problem statement is as follows.

Problem 2 (Soliton Shortening). Given a desired duration
T > 0 and a desired discrete spectrum (λn, bn) such that

=(λn) > 0 and m 6= n⇒ λm 6= λn, ∀m,n = 1, . . . , N,

find a continuous spectrum b ∈ PW1
2T such that

1) b(λn)b
∗(λ∗n) = 1 for all n = 1, . . . , N ,

2) b(λn) = bn for all n = 1, . . . , N , and
3) |b(ξ)| < 1 for all ξ ∈ R.

Given a solution to the soliton shortening problem, we can use
an inverse NFT to construct a time-limited signal as in (5) that
has the desired discrete spectrum (λn, bn).

In the following, we present two methods for finding solution
candidates b ∈ PW1

2T for Problem 2 that fulfill the first two
conditions. The third condition may or may not be fulfilled. If
it is, we found a solution to the soliton shortening problem.
Otherwise, we have to try different parameters.

A. Method A

Method A is based on Lagrange interpolation. We define

λN+n := λ∗n, bN+n :=
1

b∗n
, n = 1, . . . , N,

and choose our first solution candidate for Problem 2 as

b(λ) =

2N∑
m=1

bmLm(λ),
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(a) Method A with T = 0.6, ζ1 = T , ζ2 = 2T , ζ3 = −ζ1, and ζ4 = −ζ2.
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(b) Method B with T = 0.6, r = 64, ζ2 = −ζ1, ζ3 = ζ∗1 , and ζ4 = ζ∗2 . The value of ζ1 is 1.33881189472387 + 1.26256436322092j for
β = 0.1, 1.06596632148789 + 1.15763272061821j for β = 0.5, and 0.840263882796328 + 0.969670479860097j for β = 0.9.

Figure 1: Comparison of the Methods A and B for N = 2, λn = n
2 j and bn = 1. The shortened q(t) are zero for |t| > T = π 1+β

2T .

where the (still to be specified) functions Ln(λ) satisfy

m 6= n ⇒ Lm(λn) = 0, Ln(λn) = 1. (8)

The first two conditions in Problem 2 are then fulfilled since

b(λn) =

2N∑
m=1

bmLm(λ) = bn Ln(λn)︸ ︷︷ ︸
=1

+

2N∑
m=1
m6=n

bm Lm(λn)︸ ︷︷ ︸
=0

⇒ b(λn)b
∗(λ∗n) = b(λn)b

∗(λN+n) = bnb
∗
N+n =

bn
b∗∗n

= 1

for all n = 1, . . . , N . We only need to choose suitable
interpolation basis functions L1, . . . , L2N . The problem here
is that classical Lagrange polynomials are not in PW1

2T as
required in Problem 2. We therefore instead use

Ln(λ) :=
ψ(λ)Rn(λ)

ψ(λn)Rn(λn)
, Rn(λ) :=

2N∏
m=1
m6=n

1− λ/λm
1− λ/ζm

, (9)

where ψ denotes the impulse response of a raised cosine filter:

ψ(λ) =


π
4T sinc

(
1
2β

)
, λ = ± T2β

1
T sinc

(
λ
T
) cos(πβλT )

1−( 2βλ
T )

2 , λ 6= ± T2β
. (10)

Here T > 0 and β ∈ (0, 1] are free parameters, sinc(λ) =
sinπλ
πλ for λ 6= 0 and sinc(0) = 1. The ζn in (9) are furthermore

arbitrarily chosen pairwise different zeros of ψ(λ), i.e.,

{ζ1, . . . , ζ2N} ⊂ {±T ,±2T , · · · }, m 6= n⇒ ζm 6= ζn.

Direct substitution shows that the functions (9) satisfy the
interpolation condition (8). Furthermore, it is known that

ψ ∈ PW1
π(1+β)/T . (11)

Note that the rational product in (9) moves 2N − 2 zeros of
ψ to new locations. It is known that this operation does not
change the band-limitation [19, IV.D]. (In fact, Ln is a slightly
generalized version of [20, Eq. 5].) Since the poles of the
rational product Rn are cancelled by zeros of ψ and Rn is
furthermore proper, Ln ∈ L1. This implies F [Ln] ∈ L∞. Since
Ln is also band-limited, we find that F [Ln] ∈ L1. Hence,

Ln ∈ PW1
π(1+β)/T , ∀n ⇒ b ∈ PW1

π(1+β)/T .

We therefore found a candidate solution for Problem 2 if we
choose the parameters β and T such that 2T = π 1+β

T . If the
constructed b(λ) in addition satisfies |b(ξ)| < 1 for all ξ ∈ R,
then it is a solution. If not, then we have to try again with
different parameters, as was already mentioned before.

B. Method B
Our second solution candidate for Problem 2 is

b(λ) := ±1− f(λ)R(λ), R(λ) :=

2N∏
m=1

λ− λm
λ− ζm

, (12)

where f(λ) := 1− 1
rψ(λ) with r > 0, the ±1 is a parameter,

ψ(λ) is still given by (10), and λN+n := λ∗n for n = 1, . . . , N .
The ζ1, . . . , ζ2N are now (numerically found) non-real zeros of
f . We assume that the following two conditions are fulfilled,

2N∑
m=1

(ζm − λm) = 0 and m 6= n⇒ ζm 6= ζn. (13)

We now discuss the conditions from Problem 2. Note that

b(λn) = ±1− f(λn)R(λn) = ±1− f(λn)0 = ±1,
b∗(λ∗n) = b∗(λN+n) = ±1∗ − f∗(λN+n)0 = ±1.



The first condition in Problem 2 is thus always fulfilled, while
the second condition is fulfilled if and only if

b1 = · · · = bN = ±1. (14)

We still need to investigate if (12) is in PW1
2T . Since the

Fourier transform of λ 7→ 1 is a Dirac delta at τ = 0, we find
that f(λ) = 1 + 1

rψ(λ) is still band-limited with F [f ](τ) = 0

for |τ | > π 1+β
T . However, F [f ] is not in L1, and hence also

not in PW1
π(1+β)/T , due to the delta pulse. The multiplication

of f with R in (12) again moves 2N zeros of f . Even though
the result in [19, IV.D] only states that moving zeros keeps
the band-limit intact for finite energy signals, numerical tests
indicate that this still works in our case here. Assuming that
this is indeed true, we find that F [fR](τ) = 0, and thus

F [b](τ) = F [±1− fR](τ) = 0, for |τ | > π
1 + β

T
. (15)

Furthermore, note that

b = 1− (1− r−1ψ)R = 1−R+ r−1ψR.

The function 1−R is strictly proper rational without poles on R.
Since 1−R ≈ λ2N−1

∑2N
m=1(λm−ζm)

/
λ2N for |λ| large, (13)

ensures that 1−R has a non-simple zero at infinity. Thus, 1−
R ∈ L1. Similarly, R is proper without poles on R and therefore
bounded. Since ψ ∈ L1, this implies r−1ψR ∈ L1 and thus
b ∈ L1. This in turn implies that F [b] is in L∞ (and thus
bounded), which together with (15) finally shows that F [b] ∈
L1. Assuming that (15) is indeed true, this finally implies b ∈
PW1

π(1+β)/T . We therefore found another candidate solution
for Problem 2 if we choose β and T s.t. 2T = π 1+β

T . Due to
(14), all bn have to be equal (either 1 or −1) for this method.

C. Numerical Example

We now compare both methods in a numerical example. The
multi-soliton that will be shortened is shown as a blue curve
in the left plot in Fig. 1a. Its nonlinear spectrum is purely
discrete with λn = n

2 j, bn = 1, n = 1, 2. The multi-soliton
decays exponentially fast, but it is of infinite duration. The
other curves in the left plot in Fig. 1a show the shortened
signals for Method A for different values of the parameters β,
which controls the shape of the raised cosine impulse response
(10). The other parameters were fixed and can be found in the
caption of Fig. 1a. The support [−T, T ] of the generated finite
duration signal (5) varies since 2T = π(1 + β)/T . The center
plot in Fig. 1a illustrates the corresponding b-coefficients. We
can see that the more the multi-soliton is shortened, the stronger
the added continuous spectrum becomes. In this example, all
b(ξ) generated by Method A still fulfill the third condition
in Prob. 2, but for larger values of T that is no longer the
case. The right plot in Fig. 1a finally shows the numerically
computed eigenvalues for each of the signals. It confirms
that the eigenvalues of the shortened signals indeed coincide
with the eigenvalues of the original multi-soliton as desired.
The norming constants (not shown) match as well. Fig. 1b
shows analog plots for Method B. We find that also Method
B successfully shortens the multi-soliton in all cases.
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Figure 3: Illustration of the two transmit alphabets.

The durations of the shortened signals are the same for both
methods when β and T coincide, but the signals generated by
Method B are more concentrated around the center at t = 0.
Thus, Method B generates “effectively shorter” signals than
Method A in this example. However, we emphasize again that
Method B only applies if all norming constants are either 1 or
−1. Therefore, it is less flexible than Method A.

IV. IMPROVED SOLITONIC ON-OFF KEYING

We now discuss an application of soliton shortening. Soltion
on-off keying (OOK) is a communication technique in which a
bit is signaled through the presence or absence of an eigenvalue
at a prescribed position. Fig. 2 shows the transmit signals
generated by an exemplary two-bit soliton OOK transmitter.



α 1
10

log(10)× 0.2× 10−3 m−1

β2 −21.5× 10−27 s2m−1

γ 10−3 W−1m−1

T0 2.0317×10−10 s

Span length 80 km

Link length 960 km

Noise figure 5 dB

Table I: Simulation parameters

The appeal of soliton OOK is that a) (multi-)solitons do
not disperse during propagation, and b) the eigenvalues are
easily localized at the receiver since they stay constant during
propagation in an ideal fiber [due to (4)]. The principle was
explored in various papers [4,14,21]–[23], but in general the
interest in soliton OOK has been low since the achieved
spectral efficiencies were much lower than for other NFT-
based techniques. The problem is that the effective durations
(and also bandwidths) of the different pulses in a soliton OOK
system vary widely. Some of the signals are long (and have
a relatively low bandwidth), while others are short (and have
a higher bandwidth). This can already be seen for the simple
two eigenvalue case in Fig. 2. The maximum duration and the
maximum bandwidth that the transmitter and receiver have
to accommodate are therefore both high. Hence, the system
occupates a large area in the time-frequency plane, resulting
in low overall spectral efficiencies.

In this section, we will show that soliton shortening can
be used to alleviate this problem and improve the spectral
efficiency of soliton OOK systems. Specifically, we will use
Method B from in Sec. III-B to improve the spectral efficiency
of the soliton OOK system illustrated in Fig. 2.

A. Simulation Setup

In our simulations, we considered a 12 × 80km standard
single-mode fiber link with lumped amplification with most pa-
rameters as in [24]. The simulation parameters are summarized
in Tab. I. The simulation included ideal low-pass filters at the
transmitter and receiver to account for band-width constraints
during D/A and A/D conversion, and was realized using
components from the current development version (commit
a7cd9d2) of NFDMLab [25]. In each simulation, 5000 signals
were randomly drawn from an alphabet of transmit signals.
Each of the drawn signals was then truncated to a fixed interval
[−Deff/2, Deff/2]. The truncated signals were concatenated,
and the resulting signal train was low-pass filtered with cut-off
frequency Beff/2. The filtered signal train was propagated and
filtered again (with the same cut-off) at the receiver. There, the
signal train was cut and the NFTs of the individual received
signals were computed using FNFT [26]. Finally, bit error
rates (BERs) were computed. No coding was applied. Since we
transmitted two bits per signal (i.e., 10000 bits per simulation),
the spectral efficiency of the system was estimated as

SE =

{
2

DeffBeff
, BER ≤ 10−3

0, otherwise

[
bits

s×Hz

]
. (16)
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Figure 4: Spectral efficiencies

Two different alphabets of transmit signals were used in the
simulations. Both were derived from the transmitter in Fig. 2.
For the first alphabet, the signals were first shortened using
Method B with parameters β = 0.9, T = 0.7, r = 64 and

ζ1,2 = ±0.976549665010138 + 1.15273776148887j.

To compensate for the spreading of the dispersive part that
was added to shorten the signals, the shortened signals were
then back-propagated to z = −L/2, where L is the normalized
propagation distance. The second alphabet contained the back-
propagated versions of the original two-soliton OOK transmitter
(even as these do not disperse). The alphabets are illustrated
in Fig. 3. The left plots (z = L/2) show the signals after
ideal propagation through the first half of the fiber link. Since
this compensates the initial back-propagation, these signals are
identical to the initial (shortened or original) multi-solitons. The
right plots (z = 0) show the corresponding back-propagated
signals, i.e., the actual transmit alphabets.

B. Simulation Results
It turned out that the transmit signals could be truncated

and/or low-pass filtered further without noticeable performance
impairments. To find the best configuration, the effective
duration Deff and bandwidth Beff used by the transmitter to
truncate and respectively filter the signals before transmission
(see Sec. IV-A) were swept as follows. Recall the 99%-duration
and bandwidth defined in Section II-D. We denote their maxima
taken over all signals in a signal alphabet by

Dmax
99% := max

q
D99%(q) and Bmax

99% := max
q
B99%(q).

The spectral efficiency (16) of each of the two transmit
alphabets was determined in individual simulations for

Deff = ptD
max
99% , Beff = pfB

max
99%
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Figure 5: Time domain and constellations at maximal SE

with pt ∈ {0.3, 0.35, . . . , 0.6} and pf ∈ {0.8, 0.9, . . . , 1.3}.
The results are shown in Fig. 4. The peak efficiency of the
shortened two-soliton OOK transmitter is 0.4655 bits/s/Hz.
This is an improvement of 40% over the original two-soliton
OOK transmitter, whose peak efficiency is 0.3333 bits/s/Hz.
Fig. 5 depicts time domain signals and constellations for both
transmitters at maximum efficiency. Note that the optimally
truncated shortened transmit alphabet still contains shorter
signals than the optimally truncated original transmit alphabet.

V. CONCLUSION

We introduced the concept of soliton shortening, which
means that a multi-soliton is turned into a finite duration signal
without harming the discrete spectrum; the desired duration
is a free parameter. Two different soliton shortening methods
were presented. One of these methods was used to improve
the spectral efficiency of a two-soliton on-off keying system.
There are various interesting questions for future research. From
a theoretical point of view, it would be interesting to know
under which circumstances a multi-soliton can be shortened
to a given duration. The methods presented in this paper have
disadvantages. Method A applies to arbitrary discrete spectra
but may fail in cases where Method B succeeds, while Method
B applies only to specific norming constants. An improved
method that combines the flexibility of Method A with the
stronger shortening capabilities of Method B would be of
interest. Finally, the application of soliton shortening to more
involved communication systems should be investigated.
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