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So, the idea of Gordian Knot (...) is that the moments of brilliance, convergence, beauty,
and discovery that we attribute to those brilliant minds from history, appear to me as

knots in that pervasive, ubiquitous fabric of the universe — as if to say, no matter how
disparate they seem, be they advances in music, math, physics, etc., that they are all tied

into that fabric and that they share a profound and common source.

Sean Malone
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SUMMARY

The information-theoretic point of view on physics - and quantum mechanics in partic-
ular - has led to exciting insights on what distinguishes our world from a classical one.
In particular, it was realised that quantum mechanics offers us communication capabil-
ities above and beyond what can be realised in a non-quantum world. One important
aspect of quantum communication is quantum entanglement. Entanglement is a strictly
quantum-mechanical phenomenon, allowing for parties to share correlations that are
impossible with only classical means. The art of devising quantum communication pro-
tocols is thus in exploiting these correlations. Initially the investigation of such quantum
communication protocols was limited to idealised theoretical work, but in recent years
there has been a flurry of proof-of-principle experiments and commercial availability of
quantum communication devices.

While experimental advances have solidified the feasibility of practical quantum com-
munication, distributing entanglement - or even only non-entangled states - remains a
challenging experimental endeavour. This is because the distribution of quantum infor-
mation is markedly different from its classical counterpart. The impossibility of cloning
quantum information is exactly what provides security for certain quantum cryptographic
protocols, but also prevents us from naively amplifying the signal to enlarge the distance
over which qubits can be transmitted. Quantum bits (or qubits) can still be transmit-
ted over large distances using the concept of quantum repeaters. However, their imple-
mentation also increases the decoherence experienced by qubits, a problem unique to
quantum information. Thus, implementing quantum repeaters introduces a trade-off
between the rate at which entanglement is established and the noise experienced by the
states.

As is clear, there are still significant experimental and theoretical hurdles to overcome
before a fully quantum mechanical internet can be realised. In such a quantum internet,
it is envisioned that qubits can be distributed between any two points in the network,
potentially on a global scale.

In this thesis, we investigate some of the pressing questions that need to be answered
before a quantum internet can be realised. These questions mostly deal with how one
should distribute entanglement. For example, what is the best way to distribute entan-
glement over a single repeater node? How about when there are multiple repeater nodes,
not necessarily equally spaced? Is it possible to (more efficiently) counteract the effects
of the noise incurred during the distribution?

The first two chapters are focused on an important building block for long-scale
quantum communication - a single quantum repeater. We investigate the performance
of such a quantum repeater and find parameters where it provides an advantage over di-
rect transmission. Next, by linking quantum repeaters together into a quantum repeater
chain, the distance over which quantum information can be effectively transmitted in-
creases. However, the number of possible protocols that can be performed grows enor-

xi
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mously. We provide an algorithm for efficiently performing a heuristic optimisation over
quantum repeater protocols, allowing us to better understand the form good quantum
repeater protocols take and the required experimental parameters. Finally, we explore
entanglement distillation protocols, which have as goal to combat the effects of noise in
any realistic experimental setup. Entanglement distillation protocols condense multi-
ple weakly entangled states into a (usually) smaller number of more strongly entangled
states. We find all distillation protocols belonging to an experimentally relevant class of
protocols for up to five arbitrary Bell-diagonal states. Furthermore, we use further sym-
metry reductions to find all such protocols for the case of up to eight copies of a Werner
state. The found protocols surpass the fidelities and rates that were previously known to
be achievable. Furthermore, we provide circuits with low depth and a small number of
two-qubit gates that achieve the highest fidelity.



SAMENVATTING

Een informatie-theoretisch perspectief op de kwantummechanica heeft ons geleerd dat
de wereld om ons heen zich op verrassende manieren onderscheidt van een Newtoni-
aans wereldbeeld. Men realiseerde zich dat kwantummechanica ons cryptografische
mogelijkheden geeft, vele malen sterker dan wat gerealiseerd kan worden in een klas-
sieke wereld. Een belangrijk aspect van kwantum communicatie is kwantum verstren-
geling. Verstrengeling is een puur kwantum-mechanisch fenomeen, waardoor gesepa-
reerde partijen correlaties kunnen delen die niet mogelijk zijn met enkel klassieke mid-
delen. De kunst van het bedenken van kwantum communicatie toepassingen ligt in het
uitbuiten van deze correlaties. Aanvankelijk werden dit soort toepassingen enkel theo-
retisch bestudeerd, maar in de laatste jaren zijn er steeds grotere stappen gemaakt met
belangrijke proof-of-principle experimenten en zelfs commercieel verkrijgbare quantum
communicatie apparaten.

Bovenstaande experimentele vorderingen hebben het duidelijk gemaakt dat kwan-
tumcommunicatie niet enkel een abstract concept is maar ook in de praktijk toepasbaar
zal zijn. Desondanks blijft het verspreiden van verspreiding en kwantum informatie een
uitdaging in de praktijk. Dit komt omdat het verspreiden van kwantum informatie ver-
schilt in vele belangrijke aspecten sterk van klassieke informatie. Het feit dat het onmo-
gelijk is om kwantum informatie te kopiëren is vaak precies bepaalde cryptografische
protocollen veilig maakt, maar zorgt er ook voor dat het onmogelijk is om naïef een
signaal van qubits te versterken om zo de afstand waar kwantum informatie over ver-
stuurd kan worden te vergroten. Desondanks is het nog steeds mogelijk om kwantum
bits te versturen over grote afstanden door gebruik te maken van zogenaamde kwantum
herhalers. Elke realistische implementatie van een kwantum herhaler zal ook extra ruis
introduceren, wat de kwaliteit van de verstrengeling zal doen verminderen. Kwantum
herhalers vergroten dus de snelheid van de generatie van verstrengeling, maar zorgen
ook ervoor dat de verstrengeling minder bruikbaar wordt.

Het is evident dat er nog belangrijke experimentele en theoretische vraagstukken te
overkomen voordat een kwantum internet gerealiseerd kan worden. In een mogelijke vi-
sie van het kwantum internet is het mogelijk om kwantum bits (beter bekend als qubits)
te versturen tussen elke twee punten in het netwerk, mogelijk zelfs aan de andere kant
van de wereld.

In dit proefschrift onderzoeken we enkele van de prangende vragen die beantwoord
moeten worden voordat een kwantum internet gerealiseerd kan worden. De nadruk ligt
hierbij vooral op de vraag hoe verstrengeling het best gedistribueerd kan worden. Wat
is de beste manier voor het geval dat er maar een enkele kwantum herhaler is? Wat als
er meerdere kwantum herhalers zijn, die niet noodzakelijk op gelijke afstand gepositi-
oneerd zijn? Is het mogelijk om (efficiënter) de effecten van de ruis die is opgelopen
gedurende de distributie tegen te gaan?

xiii



xiv SAMENVATTING

We beginnen bij de eerste twee hoofdstukken met een analyse van een enkele kwan-
tum herhaler. We vinden experimentele parameters waar een dergelijke kwantum her-
haler beter presteert dan directe transmissie. Vervolgens bestuderen we de situatie waar
meerdere kwantum herhalers gekoppeld zijn aan elkaar tot een kwantum herhaler ket-
ting. Het aantal mogelijke protocollen die uitvoerbaar zijn op een kwantum herhaler
ketting groeit snel met het aantal kwantum herhalers in de ketting. Wij presenteren een
heuristische optimalisatie, en gebruiken deze om de haalbare prestaties te analyseren
van verschillende systemen en experimentele parameters. Tenslotte onderzoeken we
verstrengeling distillatie protocollen. Dit zijn protocollen die als doel hebben om de ef-
fecten van ruis tegen te gaan. Dit gebeurt door meerdere zwakke verstrengelde paren te
distilleren tot een kleiner aantal verstrengelde paren, maar die wel sterker verstrengeld
zijn. We vinden alle mogelijke distillatie protocollen in een klasse van experimenteel re-
levante protocollen, die werken op vijf en minder arbitraire Bell-diagonale toestanden.
Vervolgens gebruiken we de symmetrie in het geval van een n-voudige tensor kopie van
een zogenaamde Werner state om alle protocollen te vinden voor acht en minder kopie-
ëen. Met de gevonden protocollen is het mogelijk om een hogere fideliteit en distillatie
snelheid te behalen dan met voorgaande protocollen. Tenslotte geven we ook de cir-
cuits die de hoogste fideliteit behalen. Deze circuits hebben een lage diepte en een klein
aantal twee-qubit poorten.



1
INTRODUCTION

The topic of this thesis is quantum communication, a relatively young subject. Initial
research showing that quantum mechanics offers - in principle - relevant advantages
over practical tasks, did not yet sway the pessimist that such experiments could actually
be performed. Nowadays, experimental groups worldwide are pushing ever further what
is possible, far exceeding what was imaginable when the first quantum information tasks
were conceived. However, fault-tolerant quantum computation and a quantum internet
- the two holy grails of quantum information processing - are yet to be realised [173].

A quantum internet is envisioned to ultimately allow any two parties in the world to
generate entanglement between themselves, which they can then use for further quan-
tum processing. Constructing and designing such a quantum internet requires not only
immense experimental effort, but also guidance from a theoretical perspective. This the-
sis is but one of many steps required towards a theoretical understanding necessary for
building the first quantum internet.

What would be the benefits of such a quantum internet? There exist certain tasks that
are either impossible to perform using only classical resources, or for which quantum
resources allow for advantages, such as increased security/privacy or reduced resources.
Such tasks include the synchronisation of clocks [56, 80, 88, 133], distributed (quantum)
computation [153], anonymous transmission of information [18, 33] and the distribution
of secret keys [10, 49], which can be used for secure communication. A quantum internet
would allow for two parties to perform such tasks at a global scale.

One of the main bottlenecks for quantum communication is photon loss — as (en-
tangled) photons are transmitted through either free-space or fibre, they get lost with
increasing probability the longer the distance. The rate at which classical and quantum
communication tasks can be performed using only direct transmission is thus limited
by the distance. For classical communication this problem is solved using intermedi-
ate optical amplifiers. A similar solution for the quantum scenario is prohibited by the
no-cloning theorem [124]. Fortunately, while quantum mechanics rules out the ampli-
fication of quantum signals, it allows for a process called entanglement swapping. This

1
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2 1. INTRODUCTION

phenomenon is exploited 1 by so-called quantum repeaters [20, 111, 146], which work by
first establishing entanglement over shorter distances. Performing entanglement swaps
between these states results in entanglement over larger distances. The individual cre-
ation of the shorter entangled links are all independent, and do not have to happen si-
multaneously. Thus, by including a large number of quantum repeaters that can perform
entanglement swaps, the effects of losses can be reduced. This shows that high-rate
quantum communication is possible in the idealised scenario of noiseless apparatuses.

In practice, including more quantum repeaters will increase the noise. It is impor-
tant to understand in which experimental circumstances quantum repeaters will prove
to be beneficial. In fact, the current experimental frontier has seen only recently (non-
scalable) implementations of single repeater nodes that can be claimed to improve over
direct transmission for those distances [94, 108, 170].

Naively, it would thus appear that quantum communication is thus still restricted
to limited distances in the presence of realistic noise. Luckily, quantum mechanics al-
lows for entanglement distillation. This is a process where multiple entangled states are
(possibly probabilistically) converted into a smaller number of more strongly entangled
states [9, 11, 83]. The number of possible ways of distributing entanglement with multi-
ple quantum repeaters grows enormously fast, especially when taking into account en-
tanglement distillation. How should one then distribute entanglement using multi-
ple (near-term) quantum repeaters, and what are the resultant fidelities that can be
achieved?

As mentioned in the above paragraph, entanglement distillation is one key way noise
can be combated in realistic quantum networks. This has motivated the theoretical
study of entanglement distillation protocols with a small number of copies [38, 141, 181].
However, even for a small number of copies, the possible operations one can perform
increases significantly, rendering the analysis of entanglement distillation protocols
difficult. Improved distillation protocols would allow for pushing the capabilities of
near-term quantum networks even further.

In this thesis we explore how one can improve in the near-term on some of the fun-
damental building blocks of quantum networks. In particular, we aim to solve (in part)
the problems indicated in bold above.

1Here and in the remainder of the thesis, the term quantum repeaters refers to first generation quantum re-
peaters [113], unless stated otherwise.
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1.1. THESIS OVERVIEW
This thesis contains four main chapters. In chapters 2 and 3 we investigate proof-of-
principle quantum repeater experiments. We analyse the performance of several se-
tups and investigate parameter regimes to find when an implemented device could be
claimed to provide a benefit over direct transmission. In chapter 4, we examine schemes
for entanglement distribution over quantum repeater chains. We utilise a heuristic op-
timisation to find better schemes than previously known and investigate the relevant
parameters for long-distance entanglement distribution. Finally, we explore further en-
tanglement distillation protocols in chapter 5. We provide a systematic way to find and
optimise over distillation protocols belonging to an experimentally relevant class, allow-
ing us to improve on previously known distillation protocols. Below we conclude with a
more detailed summary of the remainder of the thesis.

Chapter 2: In this chapter we provide a fine-grained analysis of a specific scheme of a
so-called single quantum repeater node. We are primarily interested in when a
quantum repeater outperforms direct transmission, in particular for the task of
quantum key distribution. This is motivated by quantum key distribution being
one of the most mature quantum technologies. Thus, the metric we use for the
performance of the single sequental quantum repeater is the asymptotic secret-
key generated per attempt. We compare this quantity with several information-
theoretic bounds on the achievable secret-key rate over quantum channels mod-
elling direct transmission. For the modelling of direct transmission, we consider
different benchmarks, depending on whether the input energy is constrained and
whether thermal noise or additional losses are included. We use two methods for
increasing the secret-key rate with the repeater. First, we introduce the cut-off,
which allows to make a trade-off between the secret-key fraction and the gener-
ation rate. The cut-off imposes only a maximum storage time on the state to be
stored, and is thus experimentally easy to implement. Secondly, we use advantage
distillation for the classical post-processing to increase the generated secret-key
rate. We perform an analysis for which parameters it is possible to beat each of
the abovementioned benchmarks. We use this to find the important parameters
to improve on for claiming a proper quantum repeater.

Chapter 3: In chapter 2 the analysis presented was tailored to a specific quantum re-
peater scheme. In this chapter, we consider four quantum repeater schemes, and
assess their performance for generating secret key when implemented on a nitrogen-
vacancy centre in diamond setup. The single-photon scheme performs the best out
of all four schemes with near-term parameters. In fact, the single-photon scheme
surpasses the capacity (which is the most stringent of the benchmarks introduced
in chapter 2) by a factor of 7 with near-term parameters. Surprisingly, this scheme
does not require any storage, highlighting the experimental feasibility of such a
scheme.
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Chapter 4: In the previous two chapters we were concerned with a single quantum re-
peater node. Multiple of these repeaters can be linked up together to form a quan-
tum repeater chain. Each of the nodes has the potential to perform elementary
link generation, Bell state measurements and distillation. However, the number
of possible schemes that can be performed on such a repeater chain grows super-
exponentially with the number of involved nodes. This complicates the optimisa-
tion over schemes for repeater chains. We provide an algorithm that can efficiently
perform a heuristic optimisation over quantum repeater schemes. We find that
our algorithm finds significant improvements in the generation rate in compari-
son to an optimisation over a simpler class of repeater schemes based on BDCZ
repeater schemes. Furthermore, we apply our algorithm to three different imple-
mentations for an investigation of the important parameters to improve.

Chapter 5: In this chapter we study entanglement distillation protocols. We consider a
class of experimentally relevant protocols, which are built from so-called bilocal
Clifford gates and require only a single round of communication. We provide a full
classification of such protocols for up to five arbitrary Bell-diagonal states. Fur-
thermore, we consider the case of distilling an n-fold tensor product of a Werner
state. By exploiting the symmetry of such an input state, we classify and subse-
quently optimise over all such protocols for up to 8 Werner states. We provide
explicit circuits with modest depth and number of two-qubit gates that achieve
the highest fidelity for the Werner case.

Chapter 6: We conclude with a summary of the results found in this thesis, and possible
directions for future research.
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Quantum key distribution allows for the generation of a secret key between distant par-
ties connected by a quantum channel such as optical fibre or free space. Unfortunately,
the rate of generation of a secret key by direct transmission is fundamentally limited by
the distance. This limit can be overcome by the implementation of so-called quantum re-
peaters. Here, we assess the performance of a specific but very natural setup called a single
sequential repeater for quantum key distribution. We offer a fine-grained assessment of
the repeater by introducing a series of benchmarks. The benchmarks, which should be
surpassed to claim a working repeater, are based on finite-energy considerations, thermal
noise and the losses in the setup. In order to boost the performance of the studied repeaters
we introduce two methods. The first one corresponds to the concept of a cut-off, which
reduces the effect of decoherence during storage of a quantum state by introducing a max-
imum storage time. Secondly, we supplement the standard classical post-processing with
an advantage distillation procedure. Using these methods, we find realistic parameters for
which it is possible to achieve rates greater than each of the benchmarks, guiding the way
towards implementing quantum repeaters.

*These authors contributed equally. K. Goodenough contributed with the analysis of the cut-off
and the benchmarks, implementing the code and co-writing the manuscript.
This chapter has been adapted from the following publication: Quantum Sci. Technol. 3, 034002
(2018)
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2.1. INTRODUCTION
In this first chapter we evaluate a realistic setup of a so-called single sequential quantum repeater,
one of the (possible) building blocks for the quantum internet. The general concept of a (not nec-
essarily single sequential) quantum repeater was proposed in [20]. The authors of this scheme
showed that by dividing the entire communication distance into smaller segments, generating en-
tanglement over those short links and performing entanglement swapping operation at each of
the intermediate nodes in a nested way, one can establish long-distance entanglement. It was also
shown that by including the procedure of entanglement distillation, one can furthermore over-
come the problem of noise.

Unfortunately, this model does not go into detail of how the physical imperfections of realistic
devices, such as decoherence of the quantum memories with time or possibly the probabilistic
nature of entanglement swapping, affect the performance. These observations have led to the
development of significantly more detailed and accurate, but at the same time significantly more
complex, repeater schemes [4, 45, 78, 110, 112]. Many quantum repeater proposals require sig-
nificant resources and are thus not within experimental reach. However, the recent experimental
progress in the development of quantum memories [101, 135, 152] has brought the realisation of
a quantum repeater closer than ever.

This motivates us to study a quantum repeater setup that is close to experimental realisa-
tion. The setup that we will investigate here was originally proposed in [99], where the authors
were inspired by the memory-assisted measurement-device-independent QKD setup (MA-MDI
QKD) [121]. Alice and Bob use a single sequential quantum repeater located between them, where
both of them are connected to the quantum repeater by optical fibre. The repeater is composed of
two quantum memories, both of which have the ability to become entangled with a photon, see
FIG. 2.1. However, the repeater has a single photonic interface, which means that it can only ad-
dress Alice and Bob in a sequential fashion. Examples where only one of the qubit memories has
an interface to the photonic channel include modular ion traps [71] and nitrogen-vacancy centres
in diamond [14, 55, 135]. The situation is similar for atoms or ions trapped in a single cavity [136].
In this case, both memories can have a photonic interface. However, typically only one of the
interfaces can be active at a given moment.

The figure of merit that we have chosen to evaluate the repeater is the secret-key rate. That
is, the ratio between the number of generated secret bits and the number of uses of the quantum
channel connecting the two parties. The secret-key rate is a very natural quantifier of the perfor-
mance of the studied scheme for the task of the secret key generation. It depends both on the
success rate of the protocol as well as on the quality of the transmission. We compare the secret-
key rate achievable with the repeater with a set of benchmarks that we introduce here. The most
strict of these benchmarks is the capacity of the channel [175]. That is, the optimal secret-key
rate achievable over optical fibre unassisted by a quantum repeater [131]. The other benchmarks
correspond to the optimal rates achievable with additional restrictions. In consequence, these
benchmarks form a set of stepping stones towards the first quantum repeater able to produce a
secure key over large distances.

The idea of assessing quantum repeaters by comparing with the optimal unassisted rates [6,
32, 59, 130, 131, 155, 176, 176] has spurred a significant amount of research devoted to developing
sophisticated repeater proposals. Analysis of practical systems that utilise only parametric down-
conversion sources and optical measurement setups [85] has shown that such systems do not al-
low for overcoming the channel capacity, which hints at the importance of quantum memories in
repeater architectures. Specific architectures that utilise entangled-photon pair sources together
with multimode quantum memories have also been considered in this context [63, 89]. Their anal-
ysis suggests that the required efficiency of those entangled-photon pair sources and number of
storage modes might be experimentally very challenging for implementation in the very near fu-
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ture. Finally, the so called all-optical repeaters that do not require quantum memories but allow
to overcome the channel capacity have been proposed [122]. However, they necessitate the ability
to create large photonic cluster states which are beyond current experimental capabilities.

A detailed analysis of a realistic, single-node proof-of-principle repeater that includes all the
specific system imperfections has been recently performed [99]. In particular, the analysis identi-
fied parameter regimes where it would be possible to surpass the optimal direct transmission rates
with a repeater scheme that is close to experimental implementation. We build upon the analysis
of [99] by introducing two methods that allow us to achieve higher rates. The first of these methods
is the introduction of a maximum storage time for the memories in the quantum repeater. This
restriction effectively reduces the effect of decoherence. We derive tight analytical bounds for the
secret-key rate as a function of the maximum storage time. In this way we can perform efficient
optimisation of the secret-key rate over the maximum storage time. The second of these meth-
ods is advantage distillation [61], a two-way classical post-processing technique that allows for
distilling secret key at a higher rate than achievable with only one-way post-processing. We note
here that our analysis here — similar to the one from [99] — is on the implementation of a system
without any further noise incurred by any potential eavesdropper, i.e. a so-called simulation sce-
nario. Clearly this does not affect the security of the implementation of the setup for quantum key
distribution.

This chapter is structured as follows. In Section 2.2 we detail our key distribution protocol. The
sources of errors, such as losses in the apparatus and noisy operations and storage, are discussed
in Section 2.3. In Section 2.4, we calculate the secret-key rate that the single sequential quan-
tum repeater would achieve. We define the benchmarks in Section 2.5, in Section 2.6 we discuss a
specific implementation for NV-centres, and in Section 2.7 we numerically explore the parameter
regimes for which the quantum repeater implementation overcomes each benchmark and deter-
mine how the secret-key rate of the proposed protocol scales as a function of the distance. We end
in Section 2.8 with some concluding remarks.

2.2. A SINGLE SEQUENTIAL QUANTUM REPEATER PROTOCOL
A quantum key distribution protocol consists of two main parts. First, Alice and Bob exchange
quantum signals over a quantum channel and measure them to obtain a raw key that is post-
processed in a second, purely classical part into a secure key [148]. Here, we focus our interest on
the entanglement-based version of the BB84 [10] and the six-state [21] protocols. In this section,
we describe the first part of both key distribution protocols.

The physical setup consists of two spatially separated parties Alice and Bob connected to an
intermediate repeater via optical fibre channels. We note that such a repeater does not need to
be positioned exactly half-way between Alice and Bob. The repeater is composed of two qubit
quantum memories which we denote by QM1 and QM2. The repeater is then able to generate
memory-photon entanglement, where the photonic degree of freedom in which the qubits are en-
coded is assumed to be time-bin. Alice and Bob each have an optical detector setup that performs
a BB84 or a six-state measurement. For technical reasons (see Section 2.3), we consider slightly
different setups for BB84 and six-state. More concretely, for BB84 we consider an active setup
that switches randomly between the two measurement bases, while in the six-state protocol we
consider a passive setup that chooses between the three measurement bases by a passive optical
construction [57].

Let us now describe a first version of the protocol without a maximum storage time. First, the
quantum repeater attempts to generate an entangled qubit-qubit state between a photon and the
first quantum memory QM1, after which the photon is sent through a fibre to Alice. Such a trial
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Figure 2.1: The quantum repeater will send photons entangled with the QM1 to Alice through the optical fibre
of transmissivity ηA . After receiving one photon she will perform a BB84 or six-state measurement. After Alice
has measured a photon and communicated her success to the quantum repeater, the quantum repeater tries
to send a photon entangled with the QM2 to Bob through the optical fibre of transmissivity ηB . If Bob does not
receive a photon within some pre-defined amount of trials (i.e. the cut-off), Alice and Bob will abort the round.
This is done to prevent the state in the QM1 from decohering excessively. If Bob does succeed, the quantum
repeater performs a Bell state measurement on the two quantum memories.

is attempted repeatedly until a photon arrives at Alice’s side, after which Alice performs either a
BB84 or a six-state measurement. Second, the quantum repeater attempts to do the same on Bob’s
side with the second quantum memory QM2 while the state in QM1 is kept stored.

We denote the number of trials performed until a photon arrives at Alice’s and Bob’s sides nA
and nB respectively. After Bob has received and measured a photon, a Bell state measurement
is performed on the two states in QM1 and QM2. We denote by pbsm the probability that the
measurement succeeds. The classical outcome of the Bell state measurement is communicated
to Bob. This concludes a single round of the protocol. We note that in this protocol every round
ends with a successful generation of one bit of raw key. Such a protocol is closely related to the
memory-assisted measurement-device-independent QKD setup (MA-MDI QKD) [121]. We dis-
cuss this connection in Appendix 2.9.3.

One of the main problems in a quantum repeater implementation is that a quantum state will
decohere when it is stored in a quantum memory. This means that if it takes Bob a large amount of
trials to receive a photon, the state in the quantum memory QM1 will have significantly decohered,
preventing the generation of secret key. This motivates the introduction of a cut-off. A cut-off is a
limit on the amount of trials that Bob can attempt to receive a photon. We denote this maximum
number by n?.
The protocol that we consider here modifies the protocol above as follows: if in a given round
Bob reaches the cut-off without success, the round is interrupted and a new round starts from the
beginning with the quantum repeater again attempting to send a photon to Alice. In this scheme
a large number of rounds might be required until a single bit of raw key is successfully generated.
See Algorithm 1 for a description of the modified protocol with the cut-off.
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Algorithm 1: Generation of a bit of raw key with a single sequential
quantum repeater

1 k ← 0;
2 Loop
3 nA ← 0, nB ← 0;
4 do
5 k ← k +1 . Increment the number of rounds;
6 nA ← nA +1 . Increment the number of Alice’s channel uses;
7 Generate entangled photon-QM1 pair ;
8 Send entangled photon through fibre towards Alice

9 while Alice has not received photon;
10 Alice performs a BB84 or a six-state measurement, stores result;
11 do
12 nB ← nB +1 . Increment the number of Bob’s channel uses;
13 Generate entangled photon-QM2 pair ;
14 Send entangled photon through fibre towards Bob;
15 if Bob received photon then
16 Bob performs a BB84 or a six-state measurement, stores result;
17 Perform the Bell state measurement on the memories;
18 Communicate result;
19 Store max(nA ,nB ) . Store channel uses;

20 end if
21 while Bob has not received photon and nB < n?;

22 EndLoop

2.3. SOURCES OF ERRORS

In this section, we model the different elements in the setup to identify the sources of losses and
noise. The losses in the system are not only due to the transmissivity of the fibre; depending on
the implementation a significant amount of photons is lost before they enter the fibre or due to
the non-unit detector efficiency. The causes of noise are the experimental imperfections of the
operations, measurements and quantum memories.

LOSSES

We model the process of generating and sending an entangled photon through a fibre as follows
(see FIG. 2.2). First, the photon has to be generated at some photon source and be captured in
the fibre. This process happens with probability pem. Depending on the experimental implemen-
tation, only a fraction pps of the photons entering the fibre can be used for secret key genera-
tion. This can occur for any number of reasons, for instance photons might be filtered according
to frequency or a certain time-window [55, 136]. The filtering can happen either before or after
the transmission through the fibre. The fibre losses are modelled as an exponential decay of the

transmissivity η f with the distance L, i.e. η f = exp
(
− L

L0

)
for some fibre attenuation length L0.

We denote by ηA the fibre losses on Alice’s side and by ηB the fibre losses on Bob’s side. Finally,
the arriving photons will be captured by the detectors with an efficiency pdet. This probability
of detecting a photon will be increased by the presence of dark counts (which will also inevitably
add noise to the system), see the discussion of the dark counts at the bottom of this section and
in Appendix 2.9.1. We define the quantity papp = pempdet describing the total efficiency of our
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Figure 2.2: General model of all photon losses occurring in the repeater setup. pem is the probability of gen-
erating and capturing a photon into the fibre. For experimental reasons a fraction (1− pps) of photons are
additionally filtered out. The fibre has a transmissivity η f . After exiting the fibre, the photons produce a click
in the detector with probability pdet. The total efficiency of the apparatus is described by one parameter,
papp = pempdet.

apparatus.

NOISE
We model all noise processes either by the action of a dephasing channel

D
λ1
dephase(ρ) =λ1ρ+ (1−λ1) ZρZ (2.1)

or that of a depolarising channel

D
λ2
depol(ρ) =λ2ρ+ (1−λ2)

I

2
(2.2)

where the parameters λ1 and λ2 quantify the noise, Z is the qubit gate
(1 0

0 −1

)
and I/2 is the max-

imally mixed state. The noise processes occur due to imperfect operations, decoherence of the
state while stored in QM1 and dark counts in the detectors.

The noise from imperfect quantum operations is captured by two parameters: Fprep and Fgm.
Fprep is a dephasing parameter which corresponds to the preparation fidelity of the memory-
photon entangled state [162]. Fgm is a depolarising parameter that describes the noise introduced
by the imperfect gates and measurements performed on the two quantum memories during the
protocol [35, 83]. Hence, the noise can be modelled by a dephasing and a depolarising channel
with λ1 = Fprep and λ2 = Fgm.

Besides the dephasing and depolarising noise with λ1 = Fprep and λ2 = Fgm. , there is also
decoherence over time. The decoherence is modelled by a decay of the fidelity in the number of
trials n. This decoherence is caused by two distinct effects. Firstly, there is the decoherence due to
the time that the quantum repeater has to wait between sending photons. This time is the time it
takes to confirm whether the photon got lost plus the time it takes to generate a photon entangled
with the memory. We model this effect through an exponential decay of fidelity with time [115],
which is expected whenever excess dephasing is suppressed (e.g. by dynamical decoupling [36]).
However, we note that this is not the only possible model of decay, in several experiments a Gaus-
sian decay has been observed [71, 146, 152, 160]. Secondly, attempting to generate an entangled
photon-memory pair at QM2 might also decohere the state stored in the QM1. For example, this ef-
fect is the most prominent decoherence mechanism in nitrogen-vacancy implementations [135],
where an exponential decay of fidelity with the number of trials was observed. This is also how we
model that effect here.
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The quantum state ρ that is subjected to those effects undergoes an evolution given by the
dephasing and depolarising channels with λ1 = (1+ e−an )/2 and λ2 = e−bn . The two parameters
a and b are given by

a = a0 +a1

(
2nriLB

c
+ tprep

)
, (2.3)

b = b0 +b1

(
2nriLB

c
+ tprep

)
, (2.4)

where nri is the refractive index of the fibre, c is the speed of light in vacuum, LB the distance from
the quantum repeater to Bob and tprep is the time it takes to prepare for the emission of an entan-
gled photon. Here a0 and b0 quantify the noise due to a single attempt at generating an entangled
state and a1 and b1 quantify the noise during storage per second. Finally, the dark counts in the
detectors introduce depolarising noise. This model is justified for the two quantum key distribu-
tion protocols that we consider, see [8, 57]. We let αA/B denote the corresponding depolarising
parameter on Alice’s/Bob’s side. The details of this model are presented in Appendix 2.9.1.

2.4. SECRET-KEY RATE OF THE SETUP
The performance of a setup is assessed in this chapter by its ability to generate secret key between
two parties, Alice and Bob. We note here that the ability of a quantum repeater to generate se-
cret key can be measured in two different ways - in its throughput and its secret-key rate. The
throughput is equal to the amount of secret key generated per unit of time, while the secret-key
rate equals the amount of secret key generated per channel use. Here and in the following chapter,
we will focus on the secret-key rate only. This is due to the fact that it allows us to make concrete
information-theoretical statements about our ability to generate secret key. Moreover, we note
that the secret-key rate is also more universal in the sense that it can be easily converted into the
throughput by multiplying it with the repetition rate of our scheme (number of attempts we can
perform in a unit of time). It must be also noted here that demonstrating repeater schemes that
achieve higher throughput than the currently available QKD systems based on direct transmission
will be a great challenge. This is because the sources of photonic states used within those QKD
systems operate at the GHz repetition rates, while the performance of the repeater schemes will
be limited by many additional factors such as transmission latency and time of local operations at
the memory nodes. These issues are not captured by the secret-key rate directly. Nevertheless, as
mentioned before, the universality of the secret-key rate allows for the interconversion between
the two quantities. We further discuss the differences between the throughput and secret-key rate
in Section 3.6.5 of the next chapter.

The secret-key rate R is defined as the amount of secret-key bits generated by a protocol di-
vided by the number of channel uses and the number of optical modes. In the particular case of
our sequential quantum repeater, the secret-key rate is given by

R = Y

2
r . (2.5)

The yield Y of the protocol is defined as the rate of raw bits per channel use. The secret-key fraction
r is defined as the average amount of secret key that can be extracted from a single raw bit. The
(conservative) factor of a half is due to the fact that the encoding uses two optical modes — in
principle it would be possible to use those two modes to asymptotically generate −2log2(1−η) key
bits per two modes.

Since we consider two possible quantum key distribution protocols we take

r = max{rBB84,rsix-state} . (2.6)
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where rBB84 and rsix-state are the secret-key fractions of the BB84 and six-state protocols, respec-
tively (see Eq. (2.12) and Appendix 2.9.4).

YIELD
The yield can be calculated as pbsm (i.e. the success probability of the Bell state measurement)
divided by the (average) number of channel uses needed for the successful detection of a photon
by both Alice and Bob in the same round. With a single sequential quantum repeater it is not
obvious how to count the number of channel uses. As in [99], we count the maximum of the two
channel uses on Alice’s and Bob’s sides respectively in this chapter,

Y = pbsm

E [N ]
= pbsm

E [max(NA , NB )]
. (2.7)

where N , NA and NB are the random variables that model the number of channel uses, the num-
ber of channel uses at Alice’s side and the number of channel uses at Bob’s side, respectively. We
note here that for a sequential repeater, the sum of the channel uses better captures the time spent
occupying the channel. In this chapter, we use the maximum to match the approach from [99], but
we consider the more conservative sum of NA and NB in the next chapter. We note here that the
qualitative results from this and the following chapter do not strongly depend on which definition
of the number of channel uses is used.

Without the cut-off, it is possible to obtain an analytical formula for the average number of
channel uses [99, 121],

E [max(NA , NB )] = 1

p A
+ 1

pB
− 1

p A +pB −p A pB
, (2.8)

where p A and pB depend on the quantum key distribution protocol and are given by the following
equations (see Appendix 2.9.1),

p A/B ,BB84 = 1− (1−pappppsηA/B )(1−pd )2 , (2.9)

p A/B ,six-state = 1− (1−pappppsηA/B )(1−pd )6 . (2.10)

Here pd is the probability of measuring a dark count.
Every time that Bob reaches n? trials, Alice and Bob restart the round and start over again.

The cut-off thus increases the average number of channel uses. We have developed an analytic
approximation of E [N ] which is essentially tight (see Appendix 2.9.5 for the derivation and error
bounds)

E [max(NA , NB )] ≈


1

p A

(
1−(1−pB )n?

) 1
p A

> n?

1
p A

+ 1
pB

− 1
p A+pB−p A pB

1
p A

≤ n? .
(2.11)

SECRET-KEY FRACTION
Here we consider the secret-key fraction of the BB84 and six-state protocols. As we discussed pre-
viously, we consider the BB84 protocol with an active measuring scheme and the six-state protocol
with a passive one. Moreover, we consider a fully asymmetric version of BB84 and a fully symmet-
ric version of six-state. Fully symmetric means that all bases are used with equal probability while
fully asymmetric means that the ratio at which one of the bases is used is arbitrarily close to one.
Finally, we consider a one-way key distillation scheme for BB84 [148] while for the six-state proto-
col we consider the advantage distillation scheme in [171]. Advantage distillation [61] is a classical
post-processing technique that allows to increase the secret-key fraction at all levels of noise.



2.5. BENCHMARKS FOR ASSESSING QUANTUM REPEATERS

2

13

The reasons for not analysing the BB84 protocol with advantage distillation and the fully asym-
metric six-state with advantage distillation are technical. In the case of BB84, computing the rate
with advantage distillation requires the optimisation over a free parameter. The combination of
the optimisation over the cut-off together with the extra free parameter was computationally too
intensive to consider here.

For the six-state protocol there is, to our knowledge, no security proof that can deal with the
asymmetric six-state protocol with photonic qubits without introducing extra noise [5, 57]. How-
ever, these protocol choices do not have a strong impact on our analysis. Advantage distillation
does not significantly increase the amount of distillable key for low error rates. Hence, asymmet-
ric BB84 without advantage distillation is only slightly suboptimal. For higher error rates, where
advantage distillation plays a role, the symmetric six-state protocol with advantage distillation is a
factor of three away from the asymmetric version.

The expression for the secret-key fraction of both protocols depends on the error rates in the
X , Y and Z bases, which we denote by eX , eY and eZ . In the case of the BB84 protocol, [95, 148] it
is given by

rBB84 = 1−h(eZ )−h(eX ) , (2.12)

where h(p) = −p log2 p − (1 − p) log2(1 − p) is the binary entropy function. The expression for
rsix-state is more complex; we leave its discussion to Appendix 2.9.4.

We can directly evaluate the error rates in each basis as a function of the general parameters
of Section 2.3. For the single sequential quantum repeater these average errors are

eX = eY = eX Y = 1

2
− 1

2
FgmαAαB

(
2Fprep −1

)2
〈

e−(a+b)n
〉

, (2.13)

eZ = 1

2
− 1

2
FgmαAαB 〈e−bn〉 . (2.14)

where
〈

e−cn〉
is the average of the exponential e−cn over a geometric distribution over the first n?

trials. The detailed derivation of the error expressions is presented in Appendix 2.9.2.

2.5. BENCHMARKS FOR ASSESSING QUANTUM REPEATERS
We introduce a set of benchmarks to assess the performance of a quantum repeater implementa-
tion.

The first benchmark that we consider is the rate that would be achieved with the same pa-
rameters for the system losses and dark counts and for the same protocol but without a quantum
repeater. Overcoming this benchmark gives the first indication that the repeater setup is useful;
it means that the repeater setup outperforms the setup without repeater. We call this benchmark
the direct transmission benchmark.

The remaining benchmarks represent the optimal secret-key rate that Alice and Bob could
achieve if they were to communicate over the same quantum channel without a repeater under
some constraints.

The optimal secret-key rate without a repeater highly depends on the channel model. The
first modelling decision is the placement of the boundary between Alice’s and Bob’s laboratories
and the quantum channel. This is because it is not a priori clear where the channel begins and
ends. However, this decision has a strong impact on the optimal achievable rate; if the channel
includes most of Alice’s and Bob’s laboratories, then the channel is more lossy and noisy and the
benchmark is easier to overcome. If, on the other hand, the channel is just the optical fibre cable
the benchmark becomes more difficult to overcome.

We consider three cases in terms of the individual lossy components of our setup (see FIG. 2.1,
FIG. 2.2 and their captions):
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Case 1: Fibre only, in this case the transmissivity is: η= ηf = ηAηB .

Case 2: Fibre and different filters, then the channel transmissivity becomes: η= ηfpps.

Case 3: Fibre, filters and Alice’s and Bob’s apparatus, then the transmissivity becomes: η =
ηfppspapp.

Note that although in the experimental implementation of the repeater the terms pps and papp
appear twice in the expression of the transmissivity, they appear only once in the benchmarks
which include them. The reason is that in a scenario without a repeater the emission inefficiency
and the filters only affect the transmissivity once.

The second design parameter for these benchmarks is the type of channel. Transmission of
photons through fibres is modelled as a pure-loss channel [172], where only a fraction η of the
input photons reach the end of the channel. The first type of channel that we consider is the pure-
loss channel without any additional restriction. The optimal achievable rate over one mode of the
pure-loss channel is given by the secret-key capacity [131]

− log2
(
1−η)

. (2.15)

Note that for high losses the scaling of this capacity with distance is proportional to η f = exp
(
− L

L0

)
.

At the same time with an ideal (noiseless) single quantum repeater placed half-way between Alice

and Bob, the expected secret-key rate would scale proportionally to
√
η f = exp

(
− L

2L0

)
[99].

The second type of channel that we consider is the pure-loss channel when the transmitter has
a limitation in the energy that can be introduced into the channel. There has been some recent
work studying the optimal rate per mode of the finite-energy pure-loss channel [59, 156, 176].
However, the optimal rate remains unknown. The bound that we consider here [156] is given by

g
((

1+η)
P/2

)− g
((

1−η)
P/2

)
, (2.16)

where g (x) := (x +1)log2(x+1)−x log2 x and P is the mean photon number. In our repeater setup,
the finite energy restriction arises from the fact that, on average, only a fraction of a photon enters
the fibre in each trial. More precisely, the average photon number satisfies P = pem in cases 1 and
2 above and P = 1 in case 3. Unfortunately, since Eq. (2.16) is an upper bound, it is only strictly
smaller than the capacity of the pure-loss channel for small mean photon number. Expanding the
bounds from equations Eq. (2.15) and Eq. (2.16) around η = 0 shows that the cross-over between

the two bounds occurs when pem log2

(
pem+2

pem

)
= 1

ln2 . In other words, for high losses the finite-

energy bound is tighter when pem . 0.796. This implies that the finite-energy bound does not
yield an interesting benchmark in case 3.

The third type of channel that we consider is the thermal-loss channel. An upper bound on
the capacity of the thermal-loss channel is

− log2[
(
1−η)

ηn ]− g
(
n

)
, (2.17)

if n < η
1−η and zero otherwise [131]. Here, n is the average number of thermal photons per channel

use [172]. This is an interesting channel because the effect of dark counts can be seen as caused by
the thermal photons. Hence this type of channel becomes relevant for case 3, where detectors, and
therefore also the dark counts, are regarded as part of the channel. The details of the dark count
model are presented in Appendix 2.9.1. There we also show how to easily convert the experimen-
tally relevant dark count rate of the detector and the duration of the detection window tint into n
and pd , the probability of getting a dark count within the given time window.

The combinations of a channel boundary together with a channel type give us a set of bench-
marks. Not all combinations yield interesting benchmarks. In Table 2.1, we summarise the bench-
marks that we consider.
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Note that beating the benchmark in Eq. 2.15 would be the most convincing, especially since
the other benchmarks make (stronger) assumptions on the channel that would be used for di-
rect transmission. That is, for benchmark 3c one would have to assume one compares with direct
transmission through a channel corresponding to certain values of the losses and dark counts. Our
consideration of the other benchmarks also puts into a practical perspective the purely theoretical
work from [59, 131, 156, 176].

Infinite Finite Thermal Direct transmission
Case 1: ηf 1a 1b − −

Case 2: ηfpps 2a 2b − −
Case 3: ηfppspapp − − 3c 3d

Table 2.1: Labels of the benchmarks that we use to assess the performance of a quantum repeater. These la-
bels are frequently referred to in the numerical results. Each row corresponds to a different channel boundary,
which translates into an effective channel transmissivity. Each column corresponds to a different type of chan-
nel: pure loss, pure loss with energy constraint and thermal channel, and the final column corresponds to the
direct transmission benchmark.

2.6. IMPLEMENTATION USING NITROGEN-VACANCY CENTRES
Our model is fully general and can be applied to a wide range of physical platforms. To illus-
trate its performance we will now consider one of such potential near-term realisations of a sin-
gle sequential quantum repeater. For this particular example we choose to base our system on
Nitrogen-Vacancy (NV) centres in diamond. NVs are a prime candidate for this task due to their
optical interface featuring high-fidelity single-shot readout [139] and their recently demonstrated
capabilities to distribute spin-photon entanglement while faithfully storing quantum states [83].

In the following we expand on the required experimental techniques (see Fig. 2.3). The NV
centre itself can be readily used as a generator of spin-photon entanglement at cryogenic temper-
atures. The NV is encapsulated in an optical cavity of low-mode volume [138] to strongly enhance
the emission into the zero phonon line (ZPL) via the Purcell effect. As no particular low-loss cavity
design has been implemented with NVs yet, we rely purely on the aforementioned ZPL enhance-
ment. More specific cavity configurations that allow for reflection based mechanisms rely on the
realisation of a low-loss overcoupled cavity to be efficient [44] and might become available in the
future.

Firstly, we generate spin-photon entanglement [126] and send the emitted photon off to Alice
who reports successful detection events back to the repeater station. Note that electron spin de-
coherence during communication rounds is negligible since second-long coherence times have
been demonstrated by employing XY8 dynamical decoupling sequences [1].

Upon success the optical interface of the NV is reused for communication with Bob. To this
end, the NV spin state that is correlated with Alice’s measurement outcome is stored on a 13C
nuclear spin in the vicinity of the electron spin, which itself is then reinitialised. We choose a
configuration in which the always-on magnetic hyperfine coupling between both spins is weak (on
the order of a few kHz). This configuration has been experimentally shown to result in a highly-
addressable quantum memory which is resilient to optical excitation and reinitialisation of the
NV spin [135]. Coherently swapping the NV state onto - and high-fidelity control over - such a
weakly-coupled nuclear spin has been demonstrated recently [83, 158].

The protocol then proceeds as described in Section 2.2 by communicating with Bob. Note that
repeated communication attempts will eventually decohere the memory state due to the necessity
for frequent electron spin resets and the always-on hyperfine interaction between the two spins.
This constitutes the main source of error in this system (parametrised by a0 and b0, see Sec. 2.3).
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Figure 2.3: Single sequential quantum repeater based on an electron spin associated with an NV (purple)
and 13C nuclear spin (orange) in diamond. The previous quantum memories QM1,2 are now represented by
the electron and nuclear spin respectively. The optical interface of the NV is strongly Purcell-enhanced by an
optical cavity with low-mode volume and allows for efficient photon transmission to Alice and Bob.

After a successful state transmission to Bob, we conduct a sequential two-step Bell state mea-
surement and read-out the X X and Z Z parities of the combined nuclear-electron spin state,
where X and Z denote the standard Pauli matrices. This can be achieved by means of the earlier
mentioned universal control over the system or by introducing additional resource qubits such as
the nitrogen nuclear spin associated with the NV [126].

2.7. NUMERICAL RESULTS
In this section, we perform a numerical analysis of our model applied to the physical system based
on NV centres as described in Section 2.6. All numerical results have been obtained using a Math-
ematica notebook [177]. Unless specified otherwise, we use the following parameters that we call
“expected parameters” These parameters represent best-case scenarios from the chosen refer-
ences. These experimental capabilities do not fundamentally contradict or exclude each other
and seem therefore achievable in a single experimental NV setup.

• a0 (dephasing due to interaction) = 1
2000 per attempt [135],

• a1 (dephasing with time) = 1
3 per second [107],

• b0 (depolarisation due to interaction) = 1
5000 per attempt [135],

• b1 (depolarisation with time) = 1
3 per second [107],

• tprep (memory-photon entanglement preparation time) = 6µs [65],

• Fgm (depolarising parameter for gates and measurements) = 0.9 [83],

• Fprep (dephasing parameter for the memory-photon state preparation) = 0.99 [65],

• pem (probability of emission) = 0.49 [16, 65],

• pps (post-selection) = 0.46 [138],

• pdet (detector efficiency) = 0.8 [65],

• pbsm (Bell state measurement success probability) = 1 [126],

• Dark count rate = 10 per second [65],

• tint (detection window) = 30 ns [65],

• L0 (attenuation length) = 0.542 km [65],

• nri (refractive index of the fibre) = 1.44 [125].

Before we present the results, we note that the emission frequency of the nitrogen-vacancy
centres results in a relatively low L0 which in turn does not allow to achieve large distances. In
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Figure 2.4: Upper- and lower bounds on the secret-key rate rate with a quantum repeater as a function of the
distance in units of L0 = 0.542 km. The repeater is positioned half-way between Alice and Bob. The curves
correspond to the expected and improved parameters with optimised cut-off. The improved parameters cor-
respond to setting pps = pem = 0.6 and Fgm = 0.97. For high losses, the upper- and lower bounds become
essentially tight. For this reason, the upper bound on the achieved rate forms a reliable estimate of the secret-
key rate.

practical quantum key distribution networks, assuming that dedicated fibres are used for which
one can choose which frequency mode one wants to transmit at, this problem might be overcome
using the frequency conversion of the emitted photons into a telecom frequency, which will yield
an increased L0. Note that the benchmarks in Table 2.1 will scale accordingly.

There is a range of frequencies used in fibre-based communication and for each of those fre-
quencies the attenuation length varies greatly depending on the type of the fibre used. To give
some examples, the best fibres at 1560 nm have losses of 0.1419 dB/km (L0 ≈ 30.6 km) [159], while
at 1310 nm standard single-mode fibres exhibit losses of 0.4 dB/km (L0 ≈ 10.9 km) [84].

Clearly our model is general and can be applied to a channel with any value of L0. Here,
throughout most of this section, we consider the transmission through the channel at the same
wavelength as the emission line of the NV-centre setup, as such a channel for this specific physical
system has been realised in an experiment [65] using fibre with losses of 8 dB/km (L0 = 0.542 km
as given in the list of parameters above). At the end we present an additional plot describing the
scenario in which a telecom channel with the commonly used in the quantum repeater commu-
nity attenuation length of L0 ≈ 22 km is available. In this case the frequency conversion of the
emitted photons to telecom is applied.

Tightness of the error bounds for the secret-key rate. We have derived upper and lower bounds
on the yield, and thus also on the secret-key rate, for the two studied protocols. In FIG. 2.4, we
plot both the upper and the lower bound on the achieved rate with the current and improved
parameters (pps = pem = 0.6 and Fgm = 0.97) and optimised cut-off as a function of the distance
in units of L0. There are two regimes visible on the plot. This is a consequence of the fact that our
bounds have a different analytical form in the two regimes (see Appendix 2.9.5). Since for practical
purposes our bounds are essentially tight, from now on we will refer to the upper bound as the
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Figure 2.5: Secret-key rate as a function of the cut-off for the expected parameters with the repeater positioned
half-way between Alice and Bob. The reduced losses are for p ′

app = (papp)0.9 and p ′
ps = (pps)0.9, the reduced

SPAM (state preparation and measurement) and gate errors are for F ′
gm = (Fgm)0.7 and F ′

prep = (Fprep)0.7 and

the reduced decoherence is for a′ = a/2 and b′ = b/2. The optimal n? shifts depending on the parameters. The
kinks arise due to the fact that we optimise over two protocols: fully asymmetric BB84 and symmetric six-state
protocol with advantage distillation which itself consists of two subprotocols. The optimal protocol depends
on the bit error rates. The data have been plotted for the distance of 15L0, where L0 = 0.542 km.
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Figure 2.6: Secret-key rate with and without the cut-off as a function of the distance in units of L0 = 0.542 km
between Alice and quantum repeater. The total distance between Alice and Bob is fixed to 11L0. We see that
with the cut-off optimisation, positioning the repeater half-way between Alice and Bob is optimal. This be-
haviour was also observed for other parameter regimes. This result contrasts with the optimal positioning for
the no cut-off scenario, for which we see that shifting the repeater towards Bob is beneficial. We also note that
the two rates overlap when the repeater is shifted towards Bob.
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expected secret-key rate, and will omit the lower bound for the legibility of the plots.
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Figure 2.7: Secret-key rate as a function of the distance in units of L0 = 0.542 km, assuming detectors without
dark counts. The black lines correspond to the protocol with cut-off and the blue lines to the protocol without
the cut-off but with optimised positioning of the repeater. We plot the data for both the expected and improved
parameters. The improved parameters correspond to setting pps = pem = 0.6 and Fgm = 0.97. Finally, the
channel capacity (1a) is also included for comparison. It can be seen that both the cut-off and repositioning of
the repeater allows to generate key for all distances.

The impact of the cut-off on the secret-key rate. In FIG. 2.5 we plot the secret-key rate versus the
cut-off for different sets of parameters. The repeater is assumed to be positioned half-way between
Alice and Bob. We observe a strong dependency of the secret-key rate on the cut-off. In particular,
for large cut-off the secret-key rate drops to zero. This is due to the inclusion of rounds where
the state has significantly decohered. This implies that the cut-off is essential for generating a key
at large distances. Moreover, we observe that the optimal cut-off highly depends on the explored
parameter regime.

Optimal positioning of the repeater. The asymmetry of the studied sequential protocol raises
the question of whether it is best to position the repeater half-way between Alice and Bob. In fact,
in the absence of a cut-off this is not the case [99]. For sufficiently large distances, shifting the
repeater towards Bob can increase both the secret-key rate and the distance over which the secret-
key rate is non-zero in the presence of dark counts. Specifically, the optimal positioning remains
a fixed distance away from Bob independently of the actual total distance. Here, we find that with
the cut-off and for the parameters considered this phenomenon disappears. We see in FIG. 2.6
that the optimal position with the cut-off optimisation appears to be exactly in the middle of Alice
and Bob.

Nevertheless, we note that the bounds for the yield derived in Appendix 2.9.5 are valid under
the condition ηB ≥ ηA . This means that we can only study the effect of moving the repeater to-
wards Bob. However, we do not expect any benefit in shifting the repeater towards Alice as this
could only increase the noise due to decoherence. From now on for the scenarios with the cut-off
optimisation, we always consider the repeater to be placed half-way between Alice and Bob. In-
terestingly, in FIG. 2.6 we also see that the rates for the two scenarios with and without the cut-off



2

20 2. PARAMETER REGIMES FOR A SINGLE SEQUENTIAL QUANTUM REPEATER

0 5 10 15 20

10- 10

10- 8

10- 6

10- 4

0.01

1

Distance (L0)

R
at
e

1a

No cut-off, expected parameters

No cut-off, improved parameters

With cut-off, expected parameters

With cut-off, improved parameters

0 5 10 15 20

10- 10

10- 8

10- 6

10- 4

0.01

1

Distance (L0)

R
at
e

1a

No cut-off, expected parameters

No cut-off, improved parameters

With cut-off, expected parameters

With cut-off, improved parameters

Figure 2.8: Secret-key rate as a function of the distance in units of L0 = 0.542 km with dark counts. The black
lines correspond to the protocol with cut-off and the blue lines to the protocol without the cut-off but with
optimised positioning of the repeater. We plot the data for both the expected and improved parameters. The
improved parameters correspond to setting pps = pem = 0.6 and Fgm = 0.97. Finally, the channel capacity (1a)
is also included for comparison. It can be seen that the protocol with the cut-off is more robust against dark
counts than the protocol without the cut-off.

start to coincide after the quantum repeater is shifted within a certain distance of Bob. Intuitively
this happens when the probability of Bob getting a photon is large enough so that the significance
of the cut-off becomes marginal.

Cut-off versus no cut-off. Having established the optimal positioning of the repeater, we can
now compare the two scenarios: optimised cut-off with middle positioning of the repeater and no
cut-off with optimised positioning. We find that in the absence of dark counts the scaling with
distance of both schemes is the same, with a small advantage of the cut-off scheme. However,
the cut-off is more robust against dark counts. Hence, for imperfect detectors the cut-off allows
distributing keys at larger distances. These results can be seen in FIG. 2.7 and FIG. 2.8, which show
the secret-key rate as a function of distance for detectors without and with dark counts, together
with the channel capacity of the optical fibre (i.e. benchmark 1a). We plot the data for the expected
and improved parameters (pps = pem = 0.6 and Fgm = 0.97).

In FIG. 2.7 where we assume no dark counts, we see that for small distances the rate scales
approximately with the square root of the transmissivity for both scenarios. That is, they are pro-
portional to the theoretical optimum [99] of

√
η f = e−L/2L0 . For sufficiently large distances time-

dependent decoherence of the memory QM1 becomes a problem. Both schemes overcome it at
the expense of reducing the yield. As a result, the scaling becomes proportional to η f = e−L/L0 for
both schemes. In FIG. 2.8 however we see that the presence of dark counts affects the two schemes
quite differently. While for both schemes the effect of dark counts becomes the dominant source of
noise after a certain distance, this distance is shorter for the no cut-off scheme than for the scheme
with the cut-off. In other words, we see that the cut-off is more robust towards dark counts than
the repositioning method. This fact can be explained by noting that shifting the repeater towards
Bob increases the losses on Alice’s side and as a result makes the Alice-repeater link vulnerable to
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Figure 2.9: Secret-key rate with the quantum repeater implementation for the expected parameters with opti-
mised cut-off as a function of the distance in units of L0 = 0.542 km. The rate is compared to all the benchmarks
defined in Table 2.1.
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Figure 2.10: Contour plot of regions of pem versus pps with the expected parameters where the benchmarks
listed in Table 2.1 can be surpassed. The contour lines correspond to the parameters that achieve the corre-
sponding benchmarks while the parameter regimes above the curves allow us to surpass them. The data is
plotted for the distance of 9.6L0, where L0 = 0.542 km.
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dark counts. With the cut-off however, the repeater remains in the middle making both of the indi-
vidual links Alice-repeater and repeater-Bob shorter than the Alice-repeater link in the no cut-off
scheme. As a result the setup with the cut-off and with the improved parameters allows us to over-
come the channel capacity (1a) more confidently and over larger range of distances, than without
the cut-off.

Comparison with the proposed benchmarks. Let us now investigate the secret-key rate achiev-
able with the expected parameters and how it compares with the proposed benchmarks. The
comparison is depicted in FIG. 2.9. The benchmarks corresponding to direct transmission (3d),
the thermal-loss channel (3c) and the pure-loss channel with energy constraint and inclusion of
post-selection (2b) are outperformed. The achievable secret-key rate is also very close to the pure-
loss channel benchmark with post-selection (2a). The other benchmarks are not overcome but are
within experimental reach.

Parameter trade-off. Let us now give a general overview of how good the improved parameters
need to be in order to overcome individual benchmarks. This information is presented on two
contour plots. In FIG. 2.10, we study the parameter regions for which it is possible to beat the
benchmarks in Table 2.1 as a function of pps and pem. A similar plot as a function of Fgm and
pem can be seen in FIG. 2.11. We omit here the direct transmission benchmark which, as we have
already seen, can be easily surpassed with the expected parameters. Moreover, we note that the
capacity of the thermal channel in the benchmark (3c) goes to zero for very low pps and pem for
which it is still possible to generate key with the quantum repeater. Hence it is trivially easy to beat
this benchmark for low pps and pem. In that sense this benchmark is not so interesting in that
regime. It is for this reason that this regime is not depicted on the contour plots. In both FIG. 2.10
and FIG. 2.11 we observe a crossing between the finite energy benchmarks (1b) and (2b) and their
infinite energy counterparts (1a) and (2a) at pem ≈ 0.796, as discussed in Section 2.5.

Comparison with the proposed benchmarks for a commonly used telecom channel. Let us now
again investigate the secret-key rate achievable with the expected parameters and how it com-
pares with the proposed benchmarks, but this time assuming that we have an available channel at
the commonly used telecom wavelength with attenuation length L0 = 22 km. Hence in this case
the frequency conversion of the emitted light into telecom would be applied. We consider such a
conversion process with efficiency of 30% [180]. This parameter can be added to pem so that we
define p ′

em = 0.3 pem. We note here that the assumed value of this parameter is a choice based on
the specific experimental implementation. However, higher conversion efficiencies are in princi-
ple achievable. The comparison is depicted in FIG. 2.12. We see that for this choice of the direct
channel, the benchmarks are more difficult to overcome. In particular only the benchmarks corre-
sponding to direct transmission (3d) and the thermal-loss channel (3c) can be outperformed. The
other benchmarks seem to be far from near-term experimental reach.

2.8. CONCLUSIONS
In this chapter, we have analysed numerically a realistic quantum repeater implementation for
quantum key distribution. We have introduced two methods for improving the rates of the re-
peater with respect to previous proposals: advantage distillation and the cut-off. Advantage dis-
tillation is a classical post-processing method that increases the secret-key rate at all levels of
noise. The cut-off on the other hand allows for a trade-off between the channel uses required
and the secret-key fraction. Utilising the cut-off results in three benefits with respect to the previ-
ous scheme for the single sequential quantum repeater [99]. Firstly, the cut-off method achieves
a higher rate for all distances. Secondly, the protocol is more robust against dark counts, in the
sense that non-zero secret key can be generated over larger distances. Finally, the cut-off can be
adjusted on the fly, unlike the repositioning of the repeater [99]. This is especially convenient in
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Figure 2.11: Contour plot of regions of Fgm versus pem with the expected parameters where the benchmarks
listed in Table 2.1 can be surpassed. The contour lines correspond to the parameters that achieve the corre-
sponding benchmarks while the parameter regimes above the curves allow us to surpass them. The data is
plotted for the distance of 9.6L0, where L0 = 0.542 km.

the scenario where the experimental setup might be modified. With the previous scheme for ex-
ample, improving the coherence times of the memories would lead to a new optimal position. The
repositioning of the repeater node would be both costly and time-inefficient, while modifying the
cut-off corresponds to a simple change in the programming of the devices.

We note here that one could also use the secret-key rate per unit time to assess the perfor-
mance of a quantum repeater. The secret-key rate per unit time can be calculated by multiplying
the secret-key fraction with the inverse of the (average) time it takes to generate a single raw bit
between Alice and Bob. This time will depend on the travel time of the photons from the quantum
repeater to Alice and Bob, the generation time of the entangled photon-memory pairs and the time
it takes to perform the required operations such as the Bell state measurement. To compare the
secret-key rate per unit time to the benchmarks, the benchmarks too must then be re-expressed
in the secret-key rate per unit time. This can be achieved by multiplying the benchmarks with a
fixed emission rate of a photon source [128]. Note that there is now an ambiguity in the bench-
marks, as they depend on the fixed emission rate. Since the emission rate is limited by engineering
constraints, the benchmarks are dependent on current technologies and cannot be claimed to be
fundamental.

By optimising over the cut-off, we have found realistic parameter regions where it is possible
to surpass several different benchmarks including the secret-key capacity. These benchmarks are
relevant milestones towards claiming a quantum repeater, and thus form an important step in the
creation of the first large-scale quantum networks.

To make our arguments concrete, we have chosen a specific parameter set induced by some
recent experimental results. However, other platforms or technological advances might allow to
improve upon our results and predict particularly simple setups for performing the first quantum
repeater experiment. For example, our work could be extended by including other types of encod-
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Figure 2.12: Secret-key rate for the telecom channel with L0 = 22 km with the quantum repeater implementa-
tion for the expected parameters with optimised cut-off as a function of the distance in units of km. The rate
is compared to all the benchmarks defined in Table 2.1.

ing, such as polarisation encoding, in which case additional depolarising noise in the fibre could
become relevant. We leave the investigation of other parameter regimes open. In this respect
our model has a very broad functionality, as it allows us to perform efficient optimisation of the
secret-key rate over the cut-off for any set of parameters. We achieve this functionality by finding
tight analytical bounds for the number of channel uses needed to generate one bit of raw key as a
function of the cut-off. Our numerical package is freely available for further exploration [177].

2.9. APPENDIX

2.9.1. DARK COUNTS
In this section we detail the effect of dark counts in the detectors of Alice and Bob on our protocol.
In particular, we briefly go over the concept of so-called squashing models [8, 57], after which we
will be able to calculate the induced depolarising noise. We conclude with explaining how dark
counts increase the yield.

Quantum states of light are naturally described by operators on an infinite-dimensional Hilbert
space. However, a significant number of optical experiments have been performed where the
infinite-dimensional states and operations are approximated by a lower dimensional description.
An example of this is where the state of light is assumed to lie within a two-dimensional subspace
spanned by the vacuum state and a single-photon excitation. Such an approximation is valid in
the sense that the theoretical predictions of measurement statistics correspond accurately to those
that are observed experimentally.

However, in cryptographic contexts one usually has to make unconditional statements about
the information held by a third party. This third party might be malicious and all-powerful, and
her measurement statistics are, by definition, unknown. This implies that there is not necessarily
a bound on the information held by a malicious third party, despite the fact that the truncation of
the Hilbert space is a good approximation for experimental statistics.
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Since the theoretical analysis in an infinite-dimensional Hilbert space is difficult, one would
prefer to be able to bound the information held by a third party, while at the same time applying
a truncation to the finite-dimensional Hilbert space. This can be done if a so-called squashing
model exists, which is a way of relating measurements performed on a high-dimensional state to a
truncated space. As an approximation we consider here the squashing models for measurements
of qubits encoded in the polarisation of photons. In this case squashing models exist for both the
fully asymmetric BB84 protocol and the symmetric six-state protocol (with only passive measure-
ments), implying that one can, without loss of generality, perform the fully asymmetric BB84 and
symmetric (passive) six-state protocol with photons [8, 57]. The squashing model also dictates
how multiple clicks in different detectors give rise to noise in the truncated space. In the next sec-
tion, we discuss how to map the dark counts in the detectors to depolarising noise according to
the corresponding squashing model.

The parameters typically used to quantify detectors are the dark counts per second and the
detection window tint, which is the duration of the integration period of the detectors. The number
of thermal photons n relevant for the thermal benchmark is given by tint times the dark counts per
second. Assuming a Poisson distribution of the dark counts, it follows that the probability pd of
getting at least a single dark count click within the time window of awaiting the signal photon is
given by pd = 1−exp

(−n
)≈ n for small n.

The noise caused by the dark counts at Alice’s or Bob’s detector can then be modelled by a
depolarising channel, where the depolarising parameter αA/B depends on the implemented pro-
tocol,

αA/B , BB84 = pappppsηA/B (1−pd )

1− (1−pappppsηA/B )(1−pd )2
, (2.18)

αA/B , six-state = pappppsηA/B (1−pd )5

1− (1−pappppsηA/B )(1−pd )6
. (2.19)

That is, conditioned on a click in at least one of the detectors, Alice or Bob receive the desired state
if they receive the signal photon and no other detector was triggered. Due to the squashing map
all other events can be mapped onto a maximally mixed state [8, 57]. To explain the exponents,
we note that the active BB84 protocol requires an optical measurement setup with two detectors,
while for the six-state protocol such a measurement setup will consist of six detectors.

Furthermore, independent of the existence of a squashing map, the dark counts increase the
total probability that Alice or Bob gets a click. This probability depends on whether the BB84 or
six-state protocol is implemented, and is given by

p A/B , BB84 = 1− (1−pappppsηA/B )(1−pd )2 , (2.20)

p A/B , six-state = 1− (1−pappppsηA/B )(1−pd )6 . (2.21)

2.9.2. QUANTUM BIT ERROR RATE
In this Appendix we derive the expressions for the average quantum bit error rate in the X , Y and
Z basis as a function of the experimental parameters. It is given by

〈eX 〉 = 〈eY 〉 = 1

2
− 1

2
FgmαAαB

(
2Fprep −1

)2
〈

e−(a+b)n
〉

, (2.22)

〈eZ 〉 = 1

2
− 1

2
FgmαAαB 〈e−b·n〉 , (2.23)
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where the average is performed over the geometric distribution with only the first n? trials. That
is, the average of the exponential e−cn is given by

〈e−cn〉 =
∑n?

n=1 pB
(
1−pB

)n−1 e−cn∑n?
n=1 pB

(
1−pB

)n−1
(2.24)

= pB e−c

1− (
1−p

)n?
1− (

1−pB
)n? e−cn?

1− (
1−pB

)
e−c

.

To derive these quantum bit error rates, let us firstly define the two-qubit Bell states as

|ψ(x,z)〉 = 1p
2

(|0〉 |0+x〉+ (−1)z |1〉 |1+x (mod2)〉), (2.25)

for x,z ∈ {0,1}. The noise in the preparation can be modelled as dephasing noise [162]. The initially
generated entangled state between the quantum memory and the state of the photon flying to
Alice is then

ρAR = Fprep|ψ(1,0)〉〈ψ(1,0)|+ (1−Fprep)|ψ(1,1)〉〈ψ(1,1)| , (2.26)

where Fprep is the preparation fidelity of this state. The state in the first quantum memory is now
kept stored there. During this time, a second entangled photon-memory is attempted to be gener-
ated at the second quantum memory. During these attempts, the state stored in the first quantum
memory decoheres through time-dependent dephasing and depolarising noise acting on it. This
means that at the time when the second copy is generated, the first copy will have decohered. This
second copy will be of the same form as the first one. The decohered first copy is of the form

ρ′AR = FT1 [Fprep(FT2 |ψ(1,0)〉〈ψ(1,0)|+ (1−FT2 )|ψ(1,1)〉〈ψ(1,1)|) (2.27)

+ (1−Fprep)
(
FT2 |ψ(1,1)〉〈ψ(1,1)|+ (1−FT2 )|ψ(1,0)〉〈ψ(1,0)|)]+ (1−FT1 )

I

4
,

where FT1 ,FT2 are respectively the depolarising and dephasing parameters due to the decoher-
ence processes on the stored state in the first memory. The fidelity decays exponentially with the
number of attempts [135] and hence these parameters be written as

FT1 = e−b·n , (2.28)

FT2 =
1+e−a·n

2
. (2.29)

Here n is the number of attempts that have been performed on the second memory to successfully
generate the repeater-Bob entanglement and the decay rates a and b are defined in the main text.
Hence we can rewrite the state of ρ′AR as

ρ′AR = FT1 (Fdeph,AR |ψ(1,0)〉〈ψ(1,0)| (2.30)

+(1−Fdeph,AR )|ψ(1,1)〉〈ψ(1,1)|)+ (1−FT1 )
I

4
. (2.31)

where

Fdeph,AR = 1+ (2Fprep −1)e−an

2
. (2.32)

The entanglement swapping is performed at the two memories at the repeater node. Since the
situation is symmetric for all the four measurement outcomes, without loss of generality we can
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consider the resulting state on AB as if the repeater measured |ψ(1,0)〉. If a different Bell state was
measured, a Pauli rotation could be used to bring the state to this form. The state that we obtain is

ρ′′AB = FT1

([
Fdeph,AR Fprep + (1−Fdeph,AR )(1−Fprep)

]
|ψ(1,0)〉〈ψ(1,0)| (2.33)

+
[

Fdeph,AR (1−Fprep)+ (1−Fdeph,AR )Fprep

]
|ψ(1,1)〉〈ψ(1,1)|)+ (

1−FT1

) I
4

.

Finally we note that the operations such as Bell state measurements or any other required gates
performed on the memories are also noisy. We will model them by the depolarising channel
here [35]. The depolarising channel commutes with the dephasing channel. For the two copies
of the Bell-diagonal state, it also commutes with the entanglement swapping, in the sense that ap-
plying it to one of our memory qubits is mathematically equivalent to applying the same channel
to one of the photons flying to Alice or Bob. Hence independently of when exactly in the protocol
those gates or measurements on the memories are applied, we can add the resulting depolarisa-
tion to the final state shared between Alice and Bob, so that we obtain

ρ′′AB = FgmαAαB FT1

([
Fdeph,AR Fprep + (1−Fdeph,AR )(1−Fprep)

]
|ψ(1,0)〉〈ψ(1,0)| (2.34)

+
[

Fdeph,AR (1−Fprep)+ (1−Fdeph,AR )Fprep

]
|ψ(1,1)〉〈ψ(1,1)|)+ (

1−FgmαAαB FT1

) I
4

.

Here by Fgm we denote the product of all the depolarising parameters corresponding to all noisy
gates and measurements and αA/B corresponds to the noise caused by the dark counts on Al-
ice’s/Bob’s side. From the final state it follows that

〈eX 〉 = 〈eY 〉 = 1

2
− 1

2
FgmαAαB

(
2Fprep −1

)2
〈

e−(a+b)n
〉

, (2.35)

〈eZ 〉 = 1

2
− 1

2
FgmαAαB 〈e−b·n〉 . (2.36)

where the average is over the geometric distribution with only the first n? trials. This is due to the
fact that, by construction, the state is never allowed to decohere more than n? trials.

2.9.3. COMPARISON WITH MEMORY-ASSISTED MDI QKD SCHEMES
The setup of the proof-of-principle repeater analysed in this chapter bears close resemblance to
the memory-assisted measurement-device-independent QKD (MA-MDI QKD) setups proposed
in [121], which were analysed in more detail in the particular context of NV centres in [127]. How-
ever, in contrast to our focus on key per channel use, these schemes were mostly assessed on their
performance of generating key per unit time. In this section, we will briefly discuss these schemes
and their advantages and disadvantages in comparison to the scheme analysed in this chapter. In
particular, we will focus both on their relevance in the context of secret-key generation per channel
use, and on the complexity of their experimental implementation.

The three schemes that we compare with can be found in Figure 2.13. These schemes have
the advantage of high expected rate per unit time, since heralding of the successful events now
takes place at the repeater. Thus, after a failed attempt the repeater can immediately prepare for
receiving another photon, without the need for waiting on any classical communication from Alice
and Bob. Furthermore, these schemes are secure against detector side-channel attacks [96], since
in each scheme there is no quantum information sent from the repeater to Alice or Bob.

However, these advantages, while relevant in practical QKD setups, might not necessarily
translate directly in higher secret-key rate per channel use for proof-of-principle repeaters. More-
over, there are experimental challenges that make these MA-MDI QKD schemes more difficult to
implement than the sequential quantum repeater that we consider. This is particularly important,
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QM2QM1 BSM
a)

QM2QM1 BSM BSMBSM
b)

Ψ ΨQM2QM1 BSM BSMBSM

c)
Alice Bob

Figure 2.13: Three different setups for the memory-assisted measurement-device-independent quantum key
distribution (MA-MDI QKD). Here, BSM stands for Bell state measurement. The first setup a) corresponds
to the scheme of MA-MDI QKD with direct heralding. Specifically, the implementation of this setup requires
that a photonic state can be transferred into a quantum memory QM1 and QM2 in a heralded fashion. That
is, following the transfer attempt, one obtains the information whether the state of the photon emitted at
Alice or Bob has been successfully transferred to the desired quantum memory. The second setup b) with
indirect heralding is a modification of the first one. Here the requirement of the heralded state transfer has
been dropped, at the cost of probabilistic Bell state measurements between two photonic qubits at the outer
BSM stations. Finally, the setup in c) is a modification of b), which uses sources of entangled photons (Ψ). In
this way, the attempt to transfer the quantum state of the photon into the memory is performed only after a
successful Bell state measurement. This can increase the rate per unit time, since writing unto and resetting
the memory is a time-consuming process.

since the goal of this chapter is to analyse a protocol that would be simple from the implementa-
tion perspective, and would have the capability to exceed the benchmarks in Section 2.5.

Let us now go over each of these schemes. Firstly, let us consider the first scheme a). This
scheme seems to require a similar number of components as our proposed scheme, with the ex-
ception that the two detector setups have now been replaced with the sources of BB84 states. The
main difficulty with implementing such a scheme lies in the requirement of heralded quantum
state transfer from a single photon into the quantum memory. This is a great challenge from the
experimental perspective and is not expected to be realised with high fidelity on a significant num-
ber of physical platforms in the near future. In systems that utilise cavities this task can be per-
formed, provided that one can realise a low-loss overcoupled cavity with high cooperativity. While
such a scenario has been demonstrated experimentally in trapped atoms by achieving the strong
coupling regime [82], demonstrating high cooperativity is very challenging in general.

Due to the reasons explained above, scheme b) seems more realistic than scheme a) with the
current state-of-the-art technology. However, a larger number of components is needed and the
two additional optical Bell state measurements will reduce the rate by a factor of four. In particu-
lar, photonic states need to be emitted both from the quantum memories and the BB84 sources.
These need to be synchronised such that the Bell state measurements can be performed on both of
them. While there is nothing fundamentally challenging with this scheme, it requires larger num-
ber of components and is more complicated than the scheme analysed in this chapter. Similar
conclusions apply to the more complex scheme proposed in c), which adds sources of entangled
photons (denoted here by Ψ) into the scheme of b). A comparison of the achieved secret-key rate
with the secret-key capacity, for a variant of scheme c), has been performed in [97].
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2.9.4. SECRET-KEY FRACTION AND ADVANTAGE DISTILLATION
In this section the secret-key fraction formula for the six-state protocol with advantage distillation
of [171] is briefly reviewed. We note here that while the analysis in Appendix 2.9.2 has the state
|ψ(1,0)〉 as the target state, here we follow the analysis of [171] for which |ψ(0,0)〉 is the target state.
This does not affect the overall analysis as the final state from Appendix 2.9.2 can be rotated locally
such that |ψ(0,0)〉 could be made the target state. The secret key fraction can be expressed in terms
of the Bell coefficients of the Bell diagonal state

ρAB =∑
x,z∈{0,1}

PXZ(x,z) |ψ(x,z)〉〈ψ(x,z)| . (2.37)

Here PXZ is a probability distribution and we will abbreviate PXZ(x,z) as pxz. For the description
of the advantage distillation protocol we refer the reader to [171]. It is shown there that the secret-
key fraction can be written as

rsix-state (2.38)

=1

3
max

[
1−H(PXZ)+ PX̄(1)

2
h

(
p00p10 +p01p11

(p00 +p01)(p10 +p11)

)
,

PX̄(0)

2
(1−H(P ′

XZ))

]
, (2.39)

where

PX̄(0) = (p00 +p01)2 + (p10 +p11)2 , (2.40)

PX̄(1) = 2(p00 +p01)(p10 +p11) , (2.41)

P ′
XZ(0,0) = p2

00 +p2
01

(p00 +p01)2 + (p10 +p11)2
, (2.42)

P ′
XZ(1,0) = 2p00p01

(p00 +p01)2 + (p10 +p11)2
, (2.43)

P ′
XZ(0,1) = p2

10 +p2
11

(p00 +p01)2 + (p10 +p11)2
, (2.44)

P ′
XZ(1,1) = 2p10p11

(p00 +p01)2 + (p10 +p11)2
, (2.45)

and H(PXZ) is the Shannon entropy of the distribution PXZ. The factor of a third arises from the
fact that for a symmetric six-state protocol only a third of the measurements will be performed in
the same basis by Alice and Bob.

In our model we only consider depolarising noise and dephasing noise in standard basis.
Hence for the six-state protocol the error rates in X and Y basis will be the same. Therefore

p10 +p11 = eZ , (2.46)

p01 +p11 = eX Y , (2.47)

p01 +p10 = eX Y , (2.48)

p00 +p01 +p10 +p11 = 1 . (2.49)

Hence

p00 = 1− eZ

2
−eX Y , (2.50)

p01 = eX Y − eZ

2
, (2.51)

p10 = p11 = eZ

2
. (2.52)
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And so

PX̄(0) = 1−2eZ +2e2
Z , (2.53)

PX̄(1) = 2(1−eZ )eZ . (2.54)

2.9.5. YIELD

In this Appendix we derive the analytical approximation for the yield with the cut-off n?. The yield
Y is given by

Y = pbsm

E [N ]
= pbsm

E [max(NA , NB )]
. (2.55)

The approximation used for E [max(NA , NB )] is

E [max(NA , NB )] ≈


1

p A

(
1−(1−pB )n?

) 1
p A

≥ n?

1
p A

+ 1
pB

− 1
p A+pB−p A pB

1
p A

< n?,
(2.56)

where p A and pB are defined in Eq. (2.9) for BB84 and in Eq. (2.10) for the six-state protocol. In
the rest of this Appendix, we will motivate this approximation by finding tight analytical lower and
upper bounds on E [N ].

We note that we consider separately two parameter regimes. One of them is the regime where

on average the dominant number of channel uses per round is on Alice’s side
(

1
p A

> n?
)
. This

corresponds to the high-loss regime since the number of channel uses per round on Bob’s side is

upper bounded by the cut-off. The other regime is the low-loss regime
(

1
p A

≤ n?
)
. In this regime

we will show that the cut-off does not play any significant role, so that in this regime the formula for
the yield with no cut-off [99, 121] can be used. Moreover, for our derivation to be valid we require
an additional constraint to be satisfied, namely pB ≥ p A . This means that we cannot consider
scenarios when the repeater is positioned closer to Alice than to Bob. Such a constraint is well-
justified since the time-dependent decoherence in quantum memory QM1 would only increase
by shifting the repeater towards Alice.

HIGH-LOSS REGIME
The high-loss regime is the regime where the losses on Alice’s side together with the cut-off on
Bob’s side ensure that the predominant number of channel uses is almost always on Alice’s side,
i.e. E [N ] = E [max(NA , NB )] ≈ E [NA]. This regime is described by the condition p An? < 1. More
specifically, as we will show in this section, if

1

p A
:=µ=βn?, β> 1 , (2.57)

then

E[NA] ≤ E [N ] ≤ (
gerr(p A , pB ,n?)+1

)
E[NA] , (2.58)

where E[NA] = 1
p A (1−(1−pB )n? )

(see Eq. (2.66)) and gerr(p A , pB ,n?) = O
(

1
β2

)
is a function de-

fined in Eq. (2.86). This implies that for β large enough, E [N ] can be accurately approximated
by 1

p A (1−(1−pB )n? )
.

We start the proof of Eq. (2.58) by first noticing that E [NA] ≤ E [N ]. It is, thus, only necessary
to find an upper bound for E [N ]. Now, let p(K = k) = (1− pr )k−1pr be the probability that Bob
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succeeds in round k. Here pr = 1−(1−pB )n? is the probability that Bob succeeds in a given round.
Then

E [N ] = E [max(NA , NB )]

=
∞∑

k=1
p(K = k)

( ∞∑
nA=k

(
kn?∑

nB=(k−1)n?+1
p(NA = nA ∧NB = nB |K = k)max(nA ,nB )

))
. (2.59)

One can split the sum over nA in two, depending on whether nA is greater than nB or vice versa.
We get

E [N ] =
∞∑

k=1
p(k)

(
kn?∑

nB=(k−1)n?+1

(
nB∑

nA=k
p(nA ∧nB |k)nB

)

+
kn?∑

nB=(k−1)n?+1

( ∞∑
nA=nB+1

p(nA ∧nB |k)nA

))
, (2.60)

where p(k) = p(K = k), and p(nA∧nB |k) = p(NA = nA∧NB = nB |K = k). The first term of Eq. (2.60)
can be upper bounded noticing that nB ≤ kn?, i.e.

∞∑
k=1

p(k)

(
kn?∑

nB=(k−1)n?+1

(
nB∑

nA=k
p(nA ∧nB |k)nB

))
≤

∞∑
k=1

p(k)p (NA ≤ NB |K = k)kn?. (2.61)

The second term of Eq. (2.60) can be upper bounded in the following way

∞∑
k=1

p(k)

(
kn?∑

nB=(k−1)n?+1

( ∞∑
nA=nB+1

p(nA ∧nB |k)nA

))
≤

∞∑
k=1

p(k)

( ∞∑
nA=k

p(nA |k)nA

)
(2.62)

=
∞∑

k=1
p(k)

∞∑
nA=1

p(nA |k)nA (2.63)

=
∞∑

nA=1
p(nA)nA = E [NA] . (2.64)

Inputting Eq. (2.61) and Eq. (2.64) back into Eq. (2.60), we obtain

E[N ] ≤
(

n?

E[NA]

∞∑
k=1

p(k)p (NA ≤ NB |k)k +1

)
E[NA] . (2.65)

Let N i
A be the random variable describing the number of trials on Alice’s side in round i . Since

p(N i
A = ni

A) = (1−p A)ni
A−1p A , we clearly have that E[N i

A] = 1
p A

=µ. Then we note that

E[NA] =
∞∑

k=1
p(k)

k∑
i=1

∞∑
ni

A=1

p(ni
A)ni

A =
∞∑

k=1
p(k)

k∑
i=1

E[N i
A]

=µ
∞∑

k=1
p(k)k = E[K ]µ= 1

p A pr
= 1

p A(1− (1−pB )n? )
. (2.66)

Here, we first express E[NA] by calculating the average number of trials in each of the k rounds.
Then, we sum the k averages together, and finally, we average over the total number of rounds k.
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Since all the rounds are independent, we replace each E[N i
A] by µ as stated above. By inputting

Eq. (2.66) into Eq. (2.65), we get

E [NA] ≤ E [N ] ≤
(

1

E[K ]β

∞∑
k=1

p(k)p (NA ≤ NB |k)k +1

)
E[NA] . (2.67)

We now upper bound the p (NA ≤ NB |k) term. Note that

p (NA ≤ NB |k) = p

(
k∑

i=1
N i

A ≤
k∑

i=1
N i

B

∣∣∣k)
. (2.68)

We note that conditioned on K = k, we have that
∑k

i=1 N i
B = (k −1)n?+N k

B . It then follows that

p (NA ≤ NB |k) = p

(
k∑

i=1
N i

A ≤ (k −1)n?+N k
B

∣∣∣k)
≤ p

(
k∑

i=1
N i

A ≤ kn?
∣∣∣k)

. (2.69)

Condition Eq. (2.57) and −∑k
i=1 N i

A ≥−kn? is equivalent to kµ−∑k
i=1 N i

A ≥ k(β−1)n?. Hence,

p

(
k∑

i=1
N i

A ≤ kn?
∣∣∣k)

= p

(
kµ−

k∑
i=1

N i
A ≥ k(β−1)n?

∣∣∣k)
. (2.70)

We can use the Chernoff bound to upper bound this probability. The Chernoff bound for a random
variable X is

p(X ≥ a) ≤ E[e t X ]

e t a , t > 0 . (2.71)

Let X be the sum of k random variables X1, X2, . . . , Xk , where

Xi =µ−N i
A , (2.72)

i.e. X =∑k
i=1 Xi = kµ−∑k

i=1 N i
A . From this we can now bound the desired probability. Using (2.71)

and a = k(β−1)n?, we obtain the inequality

p

(
kµ−

k∑
i=1

N i
A ≥ k(β−1)n?

∣∣∣k)
≤
E
[

exp
(
t
(
kµ−∑k

i=1 N i
A

))∣∣∣k]
e tk(β−1)n?

(2.73)

= exp
[
tk

(
µ− (β−1)n?

)]
E
[
Πk

i=1e−t N i
A |k

]
. (2.74)

Let us now focus on E
[∏k

i=1 e−t N i
A |k

]
,

E

[
k∏

i=1
e−t N i

A |k
]
=

k∏
i=1

E
[

e−t N i
A |k

]
(2.75)

=
k∏

i=1

 ∞∑
ni

A=1

p A(1−p A)ni
A−1 e−tni

A

=
(

p Ae−t

1− (1−p A)e−t

)k

. (2.76)

Here, after the first equality sign we have used the fact that the random variables N i
A are inde-

pendent for different i ’s. After the second equality we note that all of them have exactly the same
geometric distribution over the k rounds. Specifically, it is now important to note that this holds
provided that k is the value of K on which we have conditioned, i.e., the success on Bob’s side
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occurs exactly in the k’th round. Furthermore, the common ratio (1−p A)e−t satisfies the conver-
gence condition

∣∣(1−p A)e−t
∣∣< 1 for all t > 0. This yields

p (NA ≤ NB |K = k) ≤
(
exp

[
t

(
1

p A
− (β−1)n?

)]
p Ae−t

1− (1−p A)e−t

)k

. (2.77)

Let’s define the function f (t ) as

f (t ) := exp

[
t

(
1

p A
− (β−1)n?

)]
p Ae−t

1− (1−p A)e−t . (2.78)

This function should be minimised subject to t > 0 to obtain the tightest bound. A single stationary
point is analytically found at

t0 = ln

(
(1−p A)(p A(β−1)n?−1)

p A(β−1)n?+p A −1

)
. (2.79)

We now want to make sure that t0 always satisfies the condition t > 0, necessary for applying
the Chernoff bound. By condition Eq. (2.57), the denominator of the above expression inside the
logarithm is p A(β−1)n?+p A −1 = 1−p An?+p A −1 = p A(1−n?) < 0 as long as n? > 1. From this
it follows that t0 > 0 if and only if

(1−p A)(p A(β−1)n?−1) < p A(β−1)n?+p A −1 . (2.80)

Clearly this condition is equivalent to −p2
A(β−1)n? < 0 which is satisfied for β > 1. This means

that t0 > 0 is always satisfied. Now note that f (t = 0) = 1. Moreover, one can also easily verify that
f ′(t = 0) = n?(1−β) < 0 for β> 1, and that limt→∞ f (t ) →∞ as long as n? > 1. These properties of
f (t ), together with the continuity of f (t ), prove that t = t0 corresponds to the global minimum of
this function in the regime t > 0 and that f (t0) < 1. Hence, we can now calculate f (t0) which gives

f (t0) =
(

(p A(β−1)n?−1)(1−p A)

p A(β−1)n?+p A −1

) 1
p A

−(β−1)n?−1

(1−p A(β−1)n?) . (2.81)

This formula can be simplified by substituting the condition Eq. (2.57) to eliminate β

f (t0) = p An?
(

n?(1−p A)

n?−1

)n?−1

. (2.82)

E [N ] can now be upper bounded by an expression that depends on f (t0), that is

E [N ] ≤
(

1

E[K ]β

∞∑
k=1

p(K = k) f (t0)k k +1

)
E[NA] . (2.83)

We can now average over the number of rounds k,

∞∑
k=1

pr

(1−pr )

[
(1−pr ) f (t0)

]k k = pr f (t0)[
1− (1−pr ) f (t0)

]2
. (2.84)

Moreover, E[K ] = 1
pr

and again removing β through condition Eq. (2.57) yields

E [N ] ≤
(

p2
r p An? f (t0)[

1− (1−pr ) f (t0)
]2

+1

)
E[NA]

=
(

(1− (1−pB )n? )2p An? f (t0)[
1− (1−pB )n? f (t0)

]2
+1

)
E[NA] . (2.85)
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Now by taking the number of channel uses to be E [NA], we can define the relative error gerr(p A , pB ,n?),

gerr(p A , pB ,n?) := (1− (1−pB )n? )2p An? f (t0)[
1− (1−pB )n? f (t0)

]2
, (2.86)

with f (t0) given in Eq. (2.82), so that

E[NA] ≤ E [N ] ≤ (
gerr(p A , pB ,n?)+1

)
E[NA] , (2.87)

where the conditions required to satisfy the above formula are n? > 1 and p An? < 1. Finally, we
can now show how gerr(p A , pB ,n?) scales with β. Note that

f (t0) ≤ p An?
(
1+ 1

n?−1

)n?−1
≤ p An?e . (2.88)

This together with f (t0) < 1 gives

gerr(p A , pB ,n?) < p2
r (p An?)2e

p2
r

= e

β2
. (2.89)

Therefore gerr(p A , pB ,n?) = O
(

1
β2

)
, implying that the bounds in the high-loss regime are good

enough to tightly bound the achieved yield.

LOW-LOSS REGIME

Now we consider the complementary low-loss regime characterised by the condition p An? ≥ 1.
Firstly, since in our protocol there is never any benefit in placing the repeater closer to Alice than
to Bob, we also have that pB ≥ p A . This implies that 1

pB
≤ 1

p A
= E[N i

A] ≤ n?. This is the regime
where the cut-off is large in comparison with the average number of channel uses required to
detect a single photon on Bob’s side. That is,

β′
pB

= n?, n? ≥β′ ≥ 1 . (2.90)

As we will show in this section, in this region we can approximate E [N ] = E [max(NA , NB )] by NNC ,
where

NNC = 1

p A
+ 1

pB
− 1

p A +pB −p A pB
, (2.91)

is the average number of channel uses in the no cut-off (NC) scenario [99, 121]. Intuitively, this is
because Alice and Bob almost never have to restart due to Bob reaching the cut-off. More specifi-
cally, we show that

NNC ≤ E [N ] ≤ (
g̃err(p A , pB ,n?)+1

)
NNC , (2.92)

where g̃err(p A , pB ,n?) is defined in Eq. (2.105). Since g̃err(p A , pB ,n?) =O
(
β′e−β′)

, for sufficiently

large β′ the expectation value E [N ] can be accurately approximated by NNC .

Here we detail a proof of Eq. (2.92). We note that the presence of the cut-off increases the
number of needed channel uses with respect to the no cut-off scenario, i.e. NNC ≤ E[N ]. For the
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upper bound we can write now

E [N ] = E [max(NA , NB )] (2.93)

=
∞∑

k=1
p(K = k)

( ∞∑
nA=k

(
kn?∑

nB=(k−1)n?+1
p(nA ∧nB |K = k)max(nA ,nB )

))
(2.94)

= p(K = 1)
n?∑

nB=1

∞∑
nA=1

p(nA |K = 1)p(nB |K = 1)max(nA ,nB )

+
∞∑

k=2
p(K = k)

(
kn?∑

nB=(k−1)n?+1

( ∞∑
nA=k

p(nA ∧nB |k)max(nA ,nB )

))
. (2.95)

In Eq. (2.95) we split the sum over k into two terms, one with k = 1 and the other with k > 1.
Since the first term has fixed k = 1, the variables NA and NB are independent here (there is only
one round in which Bob for sure succeeds, so the value of nB does not affect the value of nA).
Moreover, the geometric distribution of NB is normalised over the interval [1, . . . ,n?],

E [N ] ≤p(K = 1)NNC (2.96)

+
∞∑

k=2
p(K = k)

(
kn?∑

nB=(k−1)n?+1

( ∞∑
nA=k

p(nA ∧nB |k)max(nA ,kn?)

))
. (2.97)

We have upper bounded the first term of Eq. (2.95) by upper bounding the sum
∑n?

nB=1 with
∑∞

nB=1
. In this case the expression after p(K = 1) in the first term becomes NNC . In the second term we
upper bound nB by kn?. Since the second term does not depend on nB anymore we upper bound
it by removing the constraints on NB completely from the probabilities p(nA ∧nB |K = k), i.e.

E [N ] ≤ p(K = 1)NNC +
∞∑

k=2
p(K = k)

∞∑
nA=k

p(nA |K = k)max(nA ,kn?) (2.98)

= p(K = 1)NNC+
∞∑

k=2
p(K = k)

(
kn?∑

nA=k
p(nA |K = k)kn?+

∞∑
nA=kn?+1

p(nA |K = k)nA

)
, (2.99)

where in the last line of Eq. (2.99) we split the second term into two terms corresponding to the
regime where kn? is larger than nA and vice versa. Since kn? does not depend on nA , we upper
bound this term by removing the constraints on nA ,

E [N ] ≤ p(K = 1)NNC +
∞∑

k=2
p(K = k)kn?+

∞∑
k=2

p(K = k)
∞∑

nA=k
p(nA |K = k)nA . (2.100)

Eq. (2.100) can be greatly simplified. We can perform the sum over nA in the third term obtaining
kµ. The sums over k can then be easily evaluated so that the right hand side of Eq. (2.100) can be
rewritten as

p(K = 1)NNC+
∞∑

k=2
p(K = k)kn?+

∞∑
k=2

p(K = k)kµ (2.101)

= p(K = 1)NNC + (n?+µ)(E(K )−p(K = 1))

=
(

pr + n?+µ
NNC

(
1

pr
−pr

))
NNC (2.102)

=
(

pr +
(

n?+µ
NNC

)(
1−p2

r

pr

))
NNC . (2.103)
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Hence we have that
NNC ≤ E [N ] ≤ (

g̃err(p A , pB ,n?)+1
)

NNC , (2.104)

where g̃err(p A , pB ,n?) is defined as

g̃err(p A , pB ,n?) := (1−pB )n?
[(

n?+µ
NNC

)(
2− (1−pB )n?

1− (1−pB )n?

)
−1

]
. (2.105)

We now show that g̃err(p A , pB ,n?) is small compared to the other quantities in Eq. (2.104). Ob-
serve that

(1−pB )n? =
(
1− β′

n?

)n?

≤ e−β
′

. (2.106)

From Eq. (2.105) it follows that

g̃err(p A , pB ,n?) ≤ e−β
′
 n?+ 1

p A

NNC

(
2

1−e−β′

)
−1

 . (2.107)

To upper bound the relative error, we start by upper bounding the first term inside the brackets,
namely

n?+ 1
p A

NNC
=

n?+ 1
p A

1
p A

+ 1
pB

− 1
p A+pB−p A pB

≤
n?+ 1

p A

1
p A

+ 1
pB

− 1
p A+pB−p A

= p An?+1 . (2.108)

g̃err(p A , pB ,n?), then, is upper bounded by

g̃err(p A , pB ,n?) ≤ e−β
′
[

(p An?+1)

(
2

1−e−β′

)
−1

]
(2.109)

= e−β′

1−e−β′ (2p An?+1+e−β
′
) (2.110)

≤ e−β′

1−e−β′ (2β′+1+e−β
′
) (2.111)

= e−β
′
(

2β′

1−e−β′ +coth

(
β′
2

))
(2.112)

< e−β
′
(

2β′

1−e−1
+coth

(
1

2

))
(2.113)

< e−β
′
coth

(
1

2

)(
2β′+1

)
(2.114)

< 3coth

(
1

2

)
β′e−β

′
. (2.115)

Therefore g̃err(p A , pB ,n?) =O
(
β′e−β′)

.
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Quantum channels enable the implementation of communication tasks inaccessible to
their classical counterparts. The most famous example is the distribution of secret keys.
However, in the absence of quantum repeaters the rate at which these tasks can be per-
formed is dictated by the losses in the quantum channel. In practice, channel losses have
limited the reach of quantum protocols to short distances. Quantum repeaters have the
potential to significantly increase the rates and reach beyond the limits of direct trans-
mission. However, no experimental implementation has overcome the direct transmission
threshold. Here, we propose three quantum repeater schemes and assess their ability to
generate secret key when implemented on a setup using NV centres in diamond with near-
term experimental parameters. We find that one of these schemes - the so-called single-
photon scheme, requiring no quantum storage - has the ability to surpass the capacity -
the highest secret-key rate achievable with direct transmission - by a factor of seven for a
distance of approximately 9.2 kilometres with near-term parameters, establishing it as a
prime candidate for the first experimental realisation of a quantum repeater.
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3.1. INTRODUCTION
This chapter is a continuation of the investigation of proof-of-principle repeater setups in the pre-
vious chapter. Unlike the previous chapter, we will now investigate four schemes at the same
time, as opposed to only one. As before, we will analyse the ability of each of these repeater
schemes to generate secret-key. We focus once again on nitrogen-vacancy centres in diamond
(NV), due to their properties lending themselves well to long-distance quantum communication
tasks [1, 14, 16, 35, 55, 72, 83, 135, 158, 165].

Besides an explicit focus on four different NV-based setups, there are two other differences
with the previous chapter we will now highlight beforehand. First, we will consider a smaller num-
ber of benchmarks, and include a new benchmark for one scheme in particular. Second, we now
take a more conservative approach to counting the number of channel uses for our calculation of
the yield. That is, we now take the sum of the channel uses on Alice’s and Bob’s side, which can be
calculated exactly

The four considered schemes are: the single sequential quantum repeater node (first proposed
and studied in [99], then further analysed in the previous chapter and [140]), the single-photon
scheme (proposed originally in the context of remote entanglement generation [23], also studied
in the context of secret-key generation without quantum memories [98]), and two schemes which
are a combination of the first two. See Fig. 3.1 for a schematic overview of the repeater proposals
considered in this chapter.

We show that one of these schemes, the single-photon scheme, can surpass the secret-key ca-
pacity by a factor of seven for a distance of ≈ 9.2 km with near-term parameters. This shows the
viability of this scheme for the first experimental implementation of a quantum repeater.

In Section 3.2 we discuss and detail the different repeater proposals that will be assessed in
this chapter. In Section 3.3 we expand on how the different components of the repeater proposals
would be implemented experimentally. Section 3.4 details how to calculate the secret-key rate
achieved with the quantum repeater proposals from the modelled components. In Section 3.5 we
discuss how to assess the performance of a quantum repeater. The comparison of the different
repeater proposals is performed in Section 3.6, which allows us to conclude with our results in
Section 3.7. The numerical results of this article were produced with a Python and a Mathematica
script, which are available upon request.

3.2. QUANTUM REPEATER SCHEMES
In the following section we present the quantum repeater schemes that will be assessed in this
chapter. All these schemes use NV centre based setups which involve memory nodes consisting of
an electron spin qubit acting as an optical interface and possibly an additional carbon 13C nuclear
spin qubit acting as a long-lived quantum memory. Specifically, the optical interface of the elec-
tron spin allows for the generation of spin-photon entanglement, where the photonic qubits can
then be transmitted over large distances. The carbon nuclear spin acts as a long-lived memory, but
can be accessed only through the interaction with the electron spin. Here, we briefly go over all
the new proposed schemes, motivate why they are interesting from an experimental perspective
and discuss their advantages and disadvantages. The first of these schemes was already studied in
the previous chapter, and we will thus not discuss the implementation further here. From hereon,
we will denote this scheme as a Single Sequential Quantum Repeater (SiSQuaRe).

3.2.1. THE SINGLE-PHOTON SCHEME
Cabrillo et al. [23] devised a procedure that allows for the heralded generation of entanglement
between a separated pair of matter qubits (their proposal discusses specific implementation with
single atoms, but the scheme can also be applied to other platforms such as NV centres or quan-
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Figure 3.1: Schematic overview of the four quantum repeater schemes assessed in this chapter. From top to
bottom: the Single Sequential Quantum Repeater (SiSQuaRe) scheme (A), the single-photon scheme (B), the
Single-Photon with Additional Detection Setup (SPADS) scheme (C) and the Single-Photon Over Two Links
(SPOTL) scheme (D). The purple particles represent NV electron spins capable of emitting photons (red wiggly
arrows) while the yellow particles represent carbon 13C nuclear spins. Dark blue squares depict the beam
splitters used to erase the which-way information of the photons, followed by blue photon detectors. For more
details on the different proposals, see Section 3.2.
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tum dots) using linear optics. For the atomic ensemble platform this scheme also forms a building
block of the DLCZ quantum repeater scheme [45]. Here we will refer to this scheme as a single-
photon scheme as the entanglement generation is heralded by a detection of only a single photon.
This requirement of successful transmission of only a single photon from one node makes it pos-
sible for this scheme to qualify as a quantum repeater (see below for more details).

The basic setup of the single-photon scheme consists of placing a beam splitter and two detec-
tors between Alice and Bob, with both parties simultaneously sending a photonic quantum state
towards the beam splitter. The transmitted quantum state is entangled with a quantum mem-
ory, and the state space of the photon is spanned by the two states corresponding to the pres-
ence and absence of a photon. Immediately after transmitting their photons through the fibre,
both Alice and Bob measure their quantum memories in a BB84 or six-state basis (see the discus-
sion of which quantum key distribution protocol is optimal for each scheme in Section 3.4.2 and
in Section 3.6.1). Note that this is equivalent to preparing a specific state of the photonic qubit
and therefore is closely linked to the measurement device independent quantum key distribution
(MDI QKD) [96] as discussed in Appendix 3.8.9. However, preparing specific states that involve
the superposition of the presence and absence of a photon on its own is generally experimen-
tally challenging. The NV-implementation allows us to achieve this task precisely by preparing
spin-photon entanglement and then measuring the spin qubit. Afterwards, by conditioning on
the click of a single detector only, Alice and Bob can use the information of which detector clicked
to generate a single raw bit of key, see Appendix 3.8.5 and [23] for more information.

The main motivation of this scheme is that, informally, we only need one photon to travel half
the distance between the two parties to get an entangled state. This thus effectively reduces the
effects of losses, and in the ideal scenario the secret-key rate would scale with the square root of
the total transmissivity η, as opposed to linear scaling in η (which is the optimal scaling without a
quantum repeater [129]).

However, one problem that one faces when implementing this scheme is that the fibre induces
a phase shift on the transmitted photons. This shift can change over time, e.g. due to fluctuations
in the temperature and vibrations of the fibre. The uncertainty of the phase shift induces dephas-
ing noise on the state, reducing the quality of the state.

To overcome this problem, a two-photon scheme was proposed by Barrett and Kok [7], which
does not place such high requirement on the optical stability of the setup. Specifically, in the
Barrett and Kok scheme the problem of optical phase fluctuations is overcome by requiring two
consecutive clicks and performing additional spin flip operations on both of the remote memo-
ries. The Barrett and Kok scheme has seen implementation in many experiments [13, 65, 66, 106].
However, the requirement of two consecutive clicks implies that a setup using only the Barrett and
Kok scheme with two memory nodes will never be able to satisfy the demands of a quantum re-
peater. Specifically, the probability of getting two consecutive clicks will not be higher than the
transmissivity of the fibre between the two parties and therefore will not surpass the secret-key
capacity.

In the single-photon scheme, on the other hand, the dephasing caused by the unknown op-
tical phase shift is overcome by using active phase-stabilisation of the fibre to reduce the fluctua-
tions in the induced phase. This technique has been used in the experimental implementations of
the single-photon scheme for remote entanglement generation using quantum dots [40, 154], NV
centres [72] and atomic ensembles [31]. For experimental details relating to NV-implementation,
we refer the reader to Section 3.3. This phase-stabilisation technique effectively reduces the opti-
cal phase uncertainty ∆φ, allowing us to significantly mitigate the resulting dephasing noise, see
Appendix 3.8.1 for mathematical details.

In contrast to the Barrett and Kok scheme, the single-photon scheme cannot produce a perfect
maximally entangled state, even in the case of perfect operations and perfect phase-stabilisation.
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Figure 3.2: Schematic overview of the single-photon scheme. Alice and Bob simultaneously transmit a pho-
tonic state from their NV centres towards a balanced beam splitter in the centre. This photonic qubit, corre-
sponding to the presence and absence of a photon, is initially entangled with the NV electron spin. If only
one of the detectors (which can be seen at the top of the figure) registers a click, Alice and Bob can use the
information of which detector clicked to generate a single raw bit of key.

This is because losses in the channel result in a significant probability of having both nodes emit-
ting a photon which can also lead to a single click in one of the detectors, yet the memories will be
projected onto a product state. As we discuss below, this noise can be traded versus the probabil-
ity of success of the scheme by reducing the weight of the photon-presence term in the generated
spin-photon entangled state. This is discussed in more detail below and the full analysis is pre-
sented in Appendix 3.8.5.

The single-photon scheme with phase-stabilisation is a promising candidate for a near-term
quantum repeater with NV centres. We note here that recently other QKD schemes that use the
MDI framework have been proposed. These twin-field QKD schemes, similarly to our proposal,
use single-photon detection events to overcome the linear scaling of the secret-key rate with η [98,
102, 157]. In these so-called twin-field QKD proposals, in contrast to our single-photon scheme,
no quantum memories are used, but instead Alice and Bob send phase-randomised optical pulses
to the middle heralding station.

SETUP AND SCHEME

In the setup of the single-photon scheme Alice and Bob are separated by a fibre where in the cen-
tre there is a beam splitter with two detectors (see Fig. 3.2). They will both create entanglement
between a photonic qubit and a stored spin and send the photonic qubit to the beam splitter.

Alice and Bob thus perform the following,

1. Alice and Bob both prepare a state |ψ〉 = sinθ |↓〉 |0〉+cosθ |↑〉 |1〉 where |↓〉/|↑〉 refers to the
dark/bright state of the electron-spin qubit, |0〉/|1〉 indicates the absence/presence of a
photon, and θ is a tunable parameter.

2. Alice and Bob attempt to both separately send the photonic qubit to the beam splitter.

3. Alice and Bob both perform a BB84 or six-state measurement on their memories.

4. The previous steps are repeated until only one of the detectors between the parties clicks.

5. The information of which detector clicked gets sent to Alice and Bob for classical correction.

6. All the previous step are repeated until sufficient data have been generated.

The parameter θ can be chosen by preparing a non-uniform superposition of the dark and
bright state of the electron spin |ψ〉 = sinθ |↓〉+cosθ |↑〉 via coherent microwave pulses. This is done
before applying the optical pulse to the electron which entangles it with the presence and absence
of a photon. The parameter θ can then be tuned in such a way as to maximise the secret-key rate.
In the next section, we will briefly expand on some of the issues arising when losses and imperfect
detectors are present. We defer the full explanation and calculations until Appendix 3.8.5.
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REALISTIC SETUP

In any realistic implementation of the single-photon scheme, a large number of attempts is needed
before a photon detection event is observed. Furthermore, a single detector registering a click
does not necessarily mean that the state of the memories is projected onto the maximally entan-
gled state. This is due to multiple reasons, such as losing photons in the fibre or in some other
loss process between the emission and detection, arrival of the emitted photons outside of the
detection time-window and the fact that dark counts generate clicks at the detectors. Photon loss
in the fibre effectively acts as amplitude-damping on the state of the photon when using the pres-
ence/absence state space [74, 131]. Dark counts are clicks in the detectors, caused by thermal ex-
citations. These clicks introduce noise, since it is impossible to distinguish between clicks caused
by thermal excitations and the photons traveling through the fibre if they arrive in the same time-
window. All these sources of loss and noise acting on the photonic qubits are discussed in detail
in Appendix 3.8.1. Finally we note that we assume here the application of non-number resolving
detectors. This can lead to additional noise in the low loss regime, since the event in which two
photons got emitted cannot be distinguished from the single-photon emission events even if no
photons got lost. However, in any realistic loss regime this is not a problem, since the probability
of two such photons arriving at the heralding station is quadratically suppressed with respect to
events where only one photon arrives. In the realistic regime, almost all the noise coming from
the impossibility of distinguishing two-photon from single-photon emission events is the result
of photon loss. Namely, if a two-photon emission event occurs and the detector registers a click,
then with dominant probability it is due to only a single photon arriving, while the other one being
lost. Hence the use of photon-number resolving detectors would not give any visible benefit with
respect to the use of the non-number resolving ones. For a detailed calculation of the effects of
losses and dark counts for the single-photon scheme, see Appendix 3.8.5.
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Figure 3.3: Schematic overview of the SPADS scheme. First, the two NV centres run the single-photon scheme,
such that Alice measures her electron spin directly after every attempt. After success, the middle node swaps its
state to the carbon spin. Then the middle node generates electron-photon entangled pairs where the photonic
qubit is encoded in the time-bin degree of freedom and sent to Bob. This is attempted until Bob success-
fully measures the photon or until the cut-off is reached. If the cut-off is reached, the scheme gets restarted,
otherwise the middle node performs an entanglement swapping on its two memories and communicates the
classical outcome to Alice and Bob, who can correct their measurement outcomes to obtain a bit of raw key.

3.2.2. SINGLE-PHOTON WITH ADDITIONAL DETECTION SETUP (SPADS)
SCHEME

The third scheme that we consider here is the Single-Photon with Additional Detection Setup
(SPADS) scheme, which is effectively a combination of the single-photon scheme and the SiSQuaRe
scheme as shown in Fig. 3.3. If the middle node is positioned at two-thirds of the total distance
away from Alice, the rate of this setup would scale, ideally, with the cube root of the transmissivity
η.

This scheme runs as follows:

1. Alice and the repeater run the single-photon scheme until success, however, only Alice per-
forms her spin measurement immediately after each spin-photon entanglement generation
attempt. This measurement is either in a six-state or BB84 basis.

2. The repeater swaps the state of the electron spin onto the carbon spin.

3. The repeater runs the second part of the SiSQuaRe scheme with Bob. This means it gen-
erates spin-photon entanglement between an electron and the time-bin encoded photonic
qubit. Afterwards, it sends the photonic qubit to Bob. This is repeated until Bob success-
fully measures his photon in a six-state or BB84 basis or until the cut-off n∗ is reached in
which case the scheme is restarted with step 1.

4. After Bob has received the photon and communicated this to the repeater, the repeater
performs a Bell-state measurement on its two quantum memories and communicates the
classical result to Bob.

5. All the previous steps are repeated until sufficient data have been generated.

The motivation for introducing this scheme is two-fold. Firstly, we note that by using this
scheme we divide the total distance between Alice and Bob into three segments: two segments
corresponding to the single-photon subscheme and the third segment over which the time-bin
encoded photons are sent. This gives us one additional independent segment with respect to the
single-photon or the SiSQuaRe scheme on their own. Hence, for distances where no cut-off is re-
quired, we expect the scaling of the secret-key rate with the transmissivity to be better than the
ideal square root scaling of the previous two schemes. Furthermore, dividing the total distance
into more segments should also allow us to reach larger distances before dark counts become sig-
nificant. When considering the resources necessary to run this scheme, we note that the additional
third node needs to be equipped only with a photon detection setup.
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Figure 3.4: Schematic overview of the setup for the SPOTL scheme. This scheme is a combination of the
SiSQuaRe and single-photon scheme. Instead of sending photons directly through the fibre as in the SiSQuaRe
scheme, entanglement is established between the middle node and Alice/Bob using the single-photon scheme.

Secondly, we note that the SPADS scheme can also be naturally compared to the scenario in
which an NV centre is used as a single photon source for direct transmission between Alice and
Bob. Both the setup for the SPADS scheme and such direct transmission involve Alice using an
NV for emission and Bob having only a detector setup. Hence, the SPADS scheme corresponds to
inserting a new NV-node (the repeater) between Alice and Bob without changing their local exper-
imental setups at all. This motivates us to compare the achievable secret-key rate of the SPADS
scheme and direct transmission. We perform this comparison on a separate plot in Section 3.6.

3.2.3. SINGLE-PHOTON OVER TWO LINKS (SPOTL) SCHEME
The final scheme that we study here is the Single-Photon Over Two Links (SPOTL) scheme, and it
is another combination of the single-photon and SiSQuaRe schemes. A node is placed between
Alice and Bob which tries to sequentially generate entanglement with their quantum memories
by using the single-photon scheme (see Fig. 3.4). The motivation for this scheme is that, while
using relatively simple components and without imposing stricter requirement on the memories
than in the previous schemes, its secret-key rate would ideally scale with the fourth root of the
transmissivity η.

SETUP AND SCHEME

The setup that we study is the following:

1. Alice and the repeater run the single-photon scheme until success with the tunable param-
eter θ = θA . However, only Alice performs her spin measurement immediately after each
spin-photon entanglement generation attempt. This measurement is in a BB84 or six-state
basis.

2. The repeater swaps the state of the electron spin onto the carbon spin.

3. Bob and the repeater run the single-photon scheme until success or until the cut-off n∗
is reached in which case the scheme is restarted with step 1. The tunable parameter is
set here to θ = θB . Again, only Bob performs his spin measurement immediately after each
spin-photon entanglement generation attempt and this measurement is in a six-state basis.

4. The quantum repeater performs a Bell-state measurement and communicates the result to
Bob.

5. All the previous steps are repeated until sufficient data have been generated.

We note that for larger distances the optimal cut-off becomes smaller. Then, since we lose the
independence of the attempts on both sides, the scaling of the secret-key rate with distance is
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expected to drop to
p
η, which is the same as for the single-photon scheme. However, the total

distance between Alice and Bob is now split into four segments. Alice and Bob thus send photons
over only one fourth of the total distance. Thus, this scheme should be able to generate key over
much larger distances than the previous ones, as the dark counts will start becoming significant
for larger distances only.

3.3. NV-IMPLEMENTATION
Having proposed the different quantum repeater schemes, we now move on to describe their ex-
perimental implementation based on nitrogen-vacancy centers in diamond [43]. Since most of
the components found in the schemes are the same as in the SiSQuaRe scheme discussed in the
previous chapter, we will only discuss those components and operations that are not used in the
SiSQuaRe scheme.

By applying selective optical pulses and coherent microwave rotations, we first generate spin-
photon entanglement at an NV center node [13]. To generate entanglement between two distant
NV electron spins, these emitted photons are then overlapped on a central beam splitter to remove
their which-path information. Subsequent detection of a single photon heralds the generation of a
spin-spin entangled state [13]. For all schemes based on single-photon entanglement generation,
we need to employ active phase-stabilisation techniques to compensate for phase shifts of the
transmitted photons, which will reduce the entangled state fidelity, as introduced in Section 3.2.1.
These fluctuations arise from both mechanical vibrations and temperature induced changes in
optical path length, as well as phase fluctuations of the lasers used during spin-photon entangle-
ment generation. This problem can be mitigated by using light reflected off the diamond surface
to probe the phase of an effectively formed interferometer between the two NV nodes and the cen-
tral beam splitter, and by feeding the acquired error signal back to a fibre stretcher that changes
the relative optical path length [72].

3.4. CALCULATION OF THE SECRET-KEY RATE
With the modeling of each of the components of the different setups in hand, the performance of
each setup can be estimated. The performance of a setup is again assessed in this chapter by its
ability to generate secret key between two parties Alice and Bob.

The secret-key rate R is equal to

R = Y · r

Nmodes
, (3.1)

where Y and r are the yield and secret-key fraction, respectively. The yield Y is defined as the
average number of raw bits generated per channel use and the secret-key fraction r is defined as
the amount of secret key that can be extracted from a single raw bit (in the limit of asymptotically
many rounds). Here Nmodes is the number of optical modes needed to run the scheme. Time-
bin encoding requires two modes while the single-photon scheme uses only one mode. Hence
Nmodes = 2 for all the schemes that use time-bin encoding in at least one of the arms of the setup
(such as in the previous chapter). For the schemes that use only the single-photon subschemes as
their building blocks we have that Nmodes = 1.

In the remainder of this section, we will briefly detail how to calculate the yield and secret-
key fraction, from which we can estimate the secret-key rate of each scheme. As in the previous
chapter, we consider here a simulation scenario, i.e. the scenario where there is no eavesdropper.
As before, this does not impact the security of any of the statements we make with regards to the
considered implementations.
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Figure 3.5: The model of photon loss proccesses occurring in our repeater setups. The parameter pce is the
photon collection efficiency, which includes the probability that the photon is successfully coupled into the
fibre. Only photons emitted at the zero phonon line (ZPL) can be used for quantum information processing.
All non-ZPL photons are filtered out, such that a fraction pzpl of the photons remains. The photons are then
transmitted through a fibre with transmissivity η f . Such successful transmissions are registered by the detec-
tor with probability pdet. Additionally, a significant fraction of photons can arrive in the detector outside of
the detection time-window tw. Such photons will effectively also get discarded. Here we describe the total
efficiency of our apparatus by a single parameter, papp = pcepzplpdet.

3.4.1. YIELD
The yield depends not only on the used scheme, but also on the losses in the system. We model
the general emission and transmission of photons through fibres similar to the previous chapter.
However, unlike the previous chapter, we focus now on NV centre setups exclusively and add a
variable detection time-window for the photon detectors. This motivates us to use the NV centre
specific terminology for this chapter.

Fig. 3.5 contains our model of photon losses. with probability pce spin-photon entanglement
is generated and the photon is coupled into a fibre. The photons that successfully got coupled
into the fibre might not be useful for quantum information processing since they are not coher-
ent. Thus, we filter out those photons that are not emitted at the zero-phonon line, reducing the
number of photons by a further factor of pzpl. Then, over the length of the fibre, a photon gets lost

with probability 1−η f = 1−e
− L

L0 , where L0 is the attenuation length and η f is the transmissivity.
After exiting the fibre the photon gets registered as a click by the detector with probability pdet.
Finally, the photon gets accepted as a successful click if the click happens within the time-window
tw of the detector (see Appendix 3.8.1 for more details).

The yield can then be calculated as the reciprocal of the expected number of channel uses
needed to get one single raw bit,

Y = 1

E[N ]
, (3.2)

with N being the random variable that models the number of channel uses needed for gener-
ating a single raw bit.

YIELD OF THE SINGLE-PHOTON SCHEME

The yield of the single-photon scheme is relatively easy to calculate, since the single condition
heralding the success of the scheme is a single click in one of the detectors in the heralding station.
Therefore the yield Y is simply the probability that an individual attempt will result in a single click
in one of the detectors. This probability will depend on the losses in the system, dark counts and
the angle θ. A full calculation of the yield is given in Appendix 3.8.5.
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YIELD OF THE SISQUARE, SPADS AND SPOTL SCHEMES

The SiSQuaRe, SPADS and SPOTL schemes require two conditions for the heralding of the suc-
cessful generation of a raw bit, namely the scheme needs to succeed both on Alice’s and Bob’s side
independently. In this case we are going to take a more conservative perspective than in the previ-
ous chapter, and assume the total number of channel uses to be the sum of the required channel
uses on Alice’s and Bob’s side of the memory repeater node,

E[N ] = E[NA +NB ] . (3.3)

This should be contrasted with the previous chapter, where we considered the maximum of
the channel uses on Alice’s and Bob’s side. Considering the sum of NA and NB also better cor-
responds to the time used for the experiment. Moreover, every time Bob reaches n∗ attempts,
both parties start the scheme over again. The cut-off increases the average number of channel
uses, thus decreasing the yield. Denoting by p A and pB the probability that a single attempt of
the subscheme on Alice’s and Bob’s side respectively succeeds, we find (see Appendix 3.8.3 for the
derivation),

E[NA +NB ] = 1

p A

(
1− (

1−pB
)n∗) + 1

pB
. (3.4)

3.4.2. SECRET-KEY FRACTION

We use the same two protocols for generating secret-key as in the previous chapter, namely BB84
with standard one-way error correction and six-state with advantage distillation [171]. As dis-
cussed in the previous chapter, it is not possible to run an asymmetric six-state protocol when
time-bin encoded photons are used.

We now state explicitly which QKD protocols will be considered for each scheme, which in
turn depends on the type of measurements that Alice and Bob perform in that scheme. There
are two physical implementations of measurements that Alice and Bob perform, depending on
the scheme under consideration. That is, they either measure a quantum state of a spin or of a
time-bin encoded photons. Since the fully asymmetric six-state protocol with advantage distilla-
tion has higher efficiency than both symmetric and asymmetric BB84 protocol with one-way error
correction, we will use this six-state protocol for both the single-photon and SPOTL scheme. The
SiSQuaRe and SPADS schemes involve direct measurement on time-bin encoded photons. Hence,
for these schemes we consider the maximum of the amount of key that can be obtained using the
fully asymmetric BB84 protocol and the symmetric six-state protocol with advantage distillation
(which can tolerate more noise, but has three times lower efficiency than the fully asymmetric
BB84 protocol).

To estimate the QBER, we model all the noisy and lossy processes that take place during the
protocol run. From this, we calculate the qubit error rates and yield, from which we can retrieve the
secret-key fraction. We invite the interested reader to read about the details of these calculations
in Appendices 3.8.5 and 3.8.6. The derivation of the QBER and the yield for the SiSQuaRe scheme
can be found in the previous chapter. Moreover, in this chapter we introduce certain refinements
to the model which we discuss in Appendix 3.8.4. With the QBER in hand, we can calculate the
resulting secret-key fraction for the considered protocols as presented in the previous chapter and
Appendix 3.8.7.

We note here that we consider only the secret-key rate in the asymptotic limit, and that we
thus do not have to deal with non-asymptotic statistics.
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3.5. ASSESSING QUANTUM REPEATER SCHEMES
In this section we will detail four benchmarks that will be used to assess the performance of quan-
tum repeaters, similar as was done in the previous chapter.

The considered benchmarks are defined with respect to the efficiencies of processes involving
photon loss when emitting photons at NV centres, transmitting them through an optical fibre and
detecting them at the end of the fibre as described in Section 3.4.1 and as shown in Fig. 3.5.

Having this picture in mind, we can now proceed to present the considered benchmarks. The
first three of these benchmarks are inspired by fundamental limits on the maximum achievable
secret-key rate if Alice and Bob are connected by quantum channels which model quantum key
distribution over optical fibre without the use of a (possible) quantum repeater.

The first of these benchmarks is the capacity of the pure-loss channel introduced in the pre-
vious chapter. The capacity of the pure-loss channel is the maximum achievable secret-key rate
over a channel modeling a fibre of transmissivity η f , and is given by [131]

As noted in the previous chapter, surpassing the capacity is experimentally challenging. This
motivates the introduction of other, easier to surpass, benchmarks. These benchmarks are still
based on (upper bounds on) the secret-key capacity of quantum channels which model realistic
implementations of quantum communications over fibres. The usage of upper bounds on the
secret-key capacity (instead of the secret-key capacity itself) for certain channels is due to the fact
that the secret-key capacity of those channels is still unknown.

The second benchmark is, as before, built on the idea of including the losses of the apparatus
into the transmissivity of the fibre. The resultant channel with all those losses included we call
here the extended channel. The benchmark is thus equal to

− log2

(
1−η f papp

)
. (3.5)

Here papp describes all the intrinsic losses of the devices used. That is, the collection efficiency pce
at the emitting diamond, the probability that the emitted photon is within the zero-phonon-line
pzpl (which is necessary for generating quantum correlations) and photon detection efficiency
pdet, so that papp = pcepzplpdet. This should be contrasted with the previous chapter, where the
post-selection success probability pps was not included in the intrinsic losses of the device, while
the corresponding probability of emitting into the zero-phonon-line pzpl has been included.

The third benchmark is, as in the previous chapter, the thermal channel bound, which takes
into account the effects of dark counts. As in the second benchmark, this benchmark is differ-
ent from the benchmark from the previous chapter in the sense that pzpl (pps) is included in the
losses. We note here that the time-window of the detector tw is not fixed in our model, but is opti-
mised over for every distance in order to achieve the highest possible secret-key rate. Hence in this
benchmark we fix tw = 5 ns which is the shortest duration of the time-window that we consider in
our secret-key rate optimisation.

Finally, the secret-key rate achieved with direct transmission using the same devices can be seen
as the fourth benchmark. Specifically, here we mean the secret-key rate achieved when Alice uses
her electron spin to generate spin-photon entanglement and sends the time-bin encoded photon
to Bob. She then measures her electron spin while Bob measures the arriving photon. However,
to take a conservative view, we will only use this direct transmission benchmark for the SPADS
scheme. This is motivated by the fact that for both the SPADS scheme and the direct transmission
scheme the experimental setups on Alice’s and Bob’s side are the same, ensuring that the two rates
can be compared fairly. We note that similarly as in the modelled secret-key rates achievable with
our proposed repeater schemes, also for this direct transmission benchmark we optimise over the
time-window tw for each distance.

The secret-key capacity is the main benchmark that we consider. Surpassing it establishes
the considered scheme as a quantum repeater. The remaining benchmarks further guide the way
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Parameter Notation Value
Depolarising parameter for electron measurement Fm 0.95 [72]
Depolarising parameter for two qubit gates Fg 0.98 [83]
Characteristic time of the NV emission τ 6.48 ns [53, 138]
Detection window offset t offset

w 1.28 ns [65]
Optical phase uncertainty of the spin-spin state ∆φ 14.3° [72]

Table 3.1: Additional parameters used for the nitrogen-vacancy centre setups considered in this chapter.

towards implementation of a quantum repeater. We define all the considered benchmarks for
the channel with the same fibre attenuation length L0 as the channel used for the corresponding
achievable secret-key rate.

3.6. NUMERICAL RESULTS
We now have a full model of the rate of the presented quantum repeater protocols as a function
of the underlying experimental parameters. In this section we will firstly state all the parameters
required by our model and then present the results and conclusions drawn from the numerical
implementation of this model. In particular, in Section 3.6.1 we will first provide a deeper insight
into the benefits of using the six-state protocol and advantage distillation in specific schemes. In
Section 3.6.2 we determine the optimal positioning of the repeater nodes for our schemes and
investigate the dependence of the secret-key rate achievable with those schemes on the photon
emission angle θ and the cutoff n∗ for the appropriate schemes. In Section 3.6.3 we then use the
insights acquired in the previous section to compare the achievable secret-key rates for all the
proposed repeater schemes with the secret-key capacity and other proposed benchmarks. In par-
ticular, we show that the single-photon scheme significantly outperforms the secret-key capacity
and hence can be used to demonstrate a quantum repeater. Finally, in Section 3.6.4 we determine
the duration of the experiment that would allow us to demonstrate such a quantum repeater with
the single-photon scheme.

We will use the same parameters as in the previous chapter, but with some additional changes.
These modifications are due to the model presented here being more fine-grained (see 3.8.4) and
that there are certain parameters relevant only for the single-photon scheme. Furthermore, cer-
tain parameters from the previous chapter have been renamed to fit their NV description, while
retaining the same value. That is, pem and pps have been renamed to pce and pzpl, respectively.
Furthermore, the detector time-window tw is now not fixed, but optimised over to maximise the
secret-key rate. To reiterate, the parameters that we use are either parameters that have been
achieved in an experiment, or correspond to expected parameters when the NV centre is embed-
ded in an optical Fabry-Perot microcavity. The parameters we will use are listed in Table 3.1.

The parameters that have not been discussed in the main text are discussed in the appendix.

3.6.1. COMPARING BB84 AND SIX-STATE ADVANTAGE DISTILLATION PRO-
TOCOLS

We first investigate here when the BB84 or six-state advantage distillation protocol performs better.
Advantage distillation is a specific way of post-processing the gathered data, allowing for a higher
secret-key rate. It was shown in the previous chapter that in the SiSQuaRe scheme there is a trade-
off - for the low noise regime (small distances) the fully asymmetric BB84 protocol is preferable,
while in the high noise regime (large distances) the problem of noise can be overcome by using a
six-state protocol supplemented with advantage distillation. This technique allows us to increase
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Figure 3.6: Secret-key fraction as a function of the depolarising parameter due to noisy measurement Fm for
the total distance of 12.5L0. We see that for the current experimental value of Fm = 0.95 (marked with a dashed
black vertical line) both schemes can generate key only if the advantage distillation post-processing is used. As
Fm increases the protocols that do not utilise advantage distillation also start generating key. We also see that
the curves can be divided into two groups in terms of their slope in the regime where they generate non-zero
amount of key. Those two groups correspond to the scenarios where a fully asymmetric (bigger slope) or a
symmetric (smaller slope) protocol is used. For all the plotted protocols the cutoff n∗ is set to one and tw = 5
ns (the smallest detection time-window we use) to maximize the secret-key fraction. Moreover, for each value
of Fm we optimize the secret-key fraction over the angle θ. For the SPOTL scheme we assume θA = θB . For
the SPADS scheme we position the repeater node 2/3 away of the total distance from Alice and in the middle
between Alice and Bob for the SPOTL scheme.
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the secret-key fraction at the expense of reducing the yield by a factor of three, since a six-state
protocol in which Alice and Bob perform measurements on photonic qubits does not allow for the
(fully) asymmetric protocol within our model. Numerically, we find that for the SPADS and SPOTL
scheme advantage distillation is necessary to generate non-zero secret-key at any distance. This is
due to the fact that there is a significant amount of noise in these schemes. Thus, for the SPADS
(SPOTL) scheme the (a)symmetric six-state protocol with advantage distillation is optimal.

To provide more insight into the performance of those different QKD schemes for different
parameter regimes, we plot the achievable secret-key fraction for the SPADS and SPOTL schemes
as a function of the depolarising parameter due to imperfect electron spin measurement Fm in
Figure 3.6 (see Appendix 3.8.2 for the discussion of the corresponding noise model). Noise due
to imperfect measurements is one of the significant noise sources in our setup, since the SPADS
scheme involves three and the SPOTL scheme four single-qubit measurements on the memory
qubits. The data have been plotted for a fixed distance of 12.5L0, where L0 = 0.542 km is the atten-
uation length of the fibre. Moreover, since on this plot we aim at maximising only the secret-key
fraction over the tunable parameters, we set the cutoff n∗ to one and the detection time-window
tw to 5 ns (the smallest detection time-window we use) for both schemes. Furthermore, within the
single-photon subscheme the heralding station is always placed exactly in the middle between
the two memory nodes. We also consider the positioning of the memory repeater node to be two-
thirds away from Alice for the SPADS scheme and in the middle for the SPOTL scheme as discussed
in the next section. For the SPOTL scheme we also assume θA = θB which we will justify in the next
section.

We see that for the current experimental value of Fm = 0.95 both schemes can generate key
only if the advantage distillation post-processing is used. As Fm increases, we observe that for the
SPADS scheme firstly the six-state protocol without advantage distillation and then the BB84 pro-
tocol start generating key. For the SPOTL scheme the value of Fm at which the six-state protocol
without advantage distillation starts generating key is much larger than the corresponding value
of Fm for any of the studied protocols for the SPADS scheme. This is because the SPOTL scheme
involves more noisy processes than the SPADS scheme. This also provides an approximate quan-
tification of the benefit of using advantage distillation. Specifically, looking at the SPOTL scheme,
it can be observed that while at the current experimental value of Fm = 0.95 advantage distillation
allows for generating key, at a higher value of the depolarising parameter Fm = 0.97, still no key can
be generated with standard one-way post-processing. Moreover, we see that utilising advantage
distillation for the SPADS scheme allows for the generation of key, even with very noisy measure-
ments when Fm = 0.91. We also observe two distinct scalings of the secret-key fraction with Fm in
the regime where non-zero amount of key is generated. These two scalings depend on whether we
use a symmetric or asymmetric protocol. Specifically, for the SPADS scheme the symmetric six-
state protocol is used. Therefore the corresponding two curves have a slope that is approximately
three times smaller than the other three curves corresponding to the protocols that run in the fully
asymmetric mode.

3.6.2. OPTIMAL SETTINGS
We see that the above described repeater schemes include several tunable parameters. These pa-
rameters are the cut-off n? for Bob’s number of attempts until restart, the angle θ in the single-
photon scheme and the positioning of the repeater. These parameters can be optimised to max-
imise the secret-key rate. Here we will approach this optimisation in a consistent way - we gradu-
ally restrict the parameter space by making specific observations based on numerical evidence.

The first claim that we will make is in relation to the optimal positioning of the repeater. In
the previous chapter we have conjectured that for the SiSQuaRe scheme the middle positioning
of the repeater is optimal. For the single-photon scheme we want the probability of transmitting
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Figure 3.7: Secret-key rate as a function of the relative positioning of the repeater for few different total dis-
tances for the SPADS scheme. The total distances are expressed in terms of the fibre attenuation length
L0 = 0.542 km. We see that positioning the repeater two-thirds of the distance away from Alice (marked by
the vertical black dashed line) is a good positioning for all the distances. For each total distance considered
and each positioning the secret-key rate is optimised over the cutoff n∗, the angle θ and the time-window of
the detector tw.

the photons from each of the two nodes to the beam splitter heralding station to be equal. This
effectively sets the target state between the electron spins to be the maximally entangled state.
Hence, if we restrict ourselves to the case where the emission angles θ of both Alice and Bob are
the same, then it is natural to position the heralding station symmetrically in the middle between
them. Hence, the only non-obvious optimal positioning is for the SPADS and SPOTL scheme.

For the SPADS scheme, positioning the repeater at two-thirds of the relative distance away
from Alice could intuitively be expected to be optimal. This is due to the fact that the single-photon
scheme runs on two segments: Alice-beam splitter, beam splitter-repeater, while the one half of
the SiSQuaRe scheme runs only over a single segment between repeater and Bob. By segment
we mean here a distance over which we need to be able to independently transmit a photon. In
Fig. 3.7 we show the secret-key rate as a function of the relative positioning of the repeater for a
set of different total distances. We see there that despite the fact that positioning the repeater at
two-thirds is not always optimal, it is a good enough positioning for all distances for our purposes.
For each data point on the plot we independently optimise over the cut-off n∗, the angle θ of the
single-photon subscheme and the duration of the detector time-window tw.

The SPOTL scheme has the same symmetry as the SiSQuaRe scheme, in the sense that the part
of the scheme performed on Alice’s side is exactly the same as on Bob’s side. This symmetry is only
broken by the sequential nature of the scheme. Since we have already observed that the middle
positioning is optimal for the SiSQuaRe scheme, we expect to see the same behavior for the SPOTL
scheme. Indeed, we confirm this expectation numerically in Fig. 3.8. Here for each data point we
independently optimise over the cut-off n?, the angle θA (θB ) of the single-photon subscheme on
Alice’s (Bob’s) side and the duration of the detection time-window.

To conclude, we will always place the heralding station within the single-photon (sub)protocol
exactly in the middle between the two corresponding memory nodes. Moreover, we will also al-
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Figure 3.8: Secret-key rate as a function of the relative positioning of the repeater for few different total dis-
tances for the SPOTL scheme. The total distances are expressed in terms of the fibre attenuation length
L0 = 0.542 km. We see that positioning the repeater in the middle between Alice and Bob (marked by the
vertical black dashed line) is a good positioning for all the distances. For each total distance considered and
each positioning the secret-key rate is optimised over the cutoff n∗, the angles θA and θB and the time-window
of the detector tw.

ways place the memory repeater node in the middle for the SPOTL scheme and two-thirds of the
distance away from Alice for the SPADS scheme.

Having established the optimal positioning of the repeater, we look into the relation between
θA and θB for the SPOTL scheme. We observe that the relative error resulting from optimising the
secret-key rate over a single angle θA = θB rather than two independent ones is smaller than 1%
for all distances. Hence from now on we will restrict ourselves to optimising only over one angle θ
for the SPOTL scheme.

Having resolved the issues of the optimal positioning of the repeater for all schemes and re-
ducing the number of angles to optimise over for the SPOTL scheme to one, we now investigate
how our secret-key rate depends on the remaining parameters. These parameters are the angle
θ, the cut-off n? and the duration of the detection time-window tw. The optimal time-window
follows a simple behavior for all schemes: for short distances the probability of getting a dark
count pd is negligible compared to the probability of detecting the signal photon. Hence for those
distances we can use a time-window of 30 ns to make sure that almost all the emitted photons
which are not polluted by the photons from the optical excitation pulse arrive inside the detec-
tion time-window. We always need to sacrifice the photons arriving within the time t offset

w after
the optical pulse has been applied to filter out the photons from that pulse, see Appendix 3.8.1 for
details. Then, for larger distances where pd starts to become comparable with the probability of
detecting the signal photon, the duration of the time-window is gradually reduced. This reduces
the effect of dark counts at the expense of having more and more photons arriving outside of the
time-window. See Appendix 3.8.1 for the modeling of the losses resulting from photons arriving
outside of the time-window.

The dependence of the secret-key rate on the angle θ, the tunable parameter that Alice and
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Figure 3.9: Secret-key rate as a function of the angle θ = θA = θB for the single-photon, SPADS and SPOTL
schemes for the total distance of 12.5L0, where L0 = 0.542 km. For each value of θ the secret-key rate is opti-
mised over the cutoff n∗ and time-window tw. The schemes have a decreasing range of θ for which secret-key
can be generated. This is due to the additional noisy processes in the SPADS scheme, and the overwhelming
dominance of the dark state of the spin (no emission of the photon) in order to avoid any extra noise coming
from the photon loss for SPOTL scheme. The visible kink for the single-photon scheme is a consequence of the
fact that the six-state protocol with advantage distillation involves optimisation over of two subprotocols.
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(a) Secret-key rates for the SiSQuaRe and SPADS
scheme.
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(b) Secret-key rates for the SPOTL scheme.

Figure 3.10: Secret-key rate as a function of the cut-off for the SiSQuaRe, SPADS and SPOTL scheme for the
total distance of 12.5L0, where L0 = 0.542 km. We observe a drop in the needed cut-off to maximise the secret-
key rate, due to the schemes becoming progressively more noisy. For each value of the cutoff n∗ we optimise
the secret-key rate over the time-window tw and for the SPADS scheme also over the θ angle. The kink for the
SiSQuaRe scheme arises because of the optimisation over the fully asymmetric one-way BB84 protocol and
symmetric six-state protocol with advantage distillation, which itself involves optimization over two subpro-
tocols.

Bob choose in their starting state |ψ〉 = sinθ |↓〉 |0〉 + cosθ |↑〉 |1〉 in the single-photon scheme, is
more complex. We observe that the optimal value of θ is closer to π

2 for schemes that involve
more noisy processes. Informally, this means that Alice and Bob send ‘less’ photons towards the
beam splitter, to overcome the noise coming from events in which both nodes emit a photon. At
π
2 however, no photons are emitted and the rate drops down to zero. We illustrate this in Fig 3.9.
We see that for the SPADS and SPOTL scheme, there is only a restricted regime of the angle θ for
which one can generate non-zero amount of key. In particular, the SPOTL scheme requires a larger
number of noisy operations, and therefore cannot tolerate much noise arising from the effect of
photon loss in the single-photon subscheme. This means that there is only a small range of θ that
allows for production of secret key. The single-photon scheme involves much less operations and
can tolerate more noise, and so lower values of the parameter θ still allow for the generation of key.

We also investigate the dependence of the rate on the cut-off. Both the SPADS and SPOTL
scheme require a lower cut-off than the SiSQuaRe scheme, see Fig. 3.10a and 3.10b. This is caused
by the fact that each of them involves more noisy operations, and hence less noise tolerance is
possible.

3.6.3. ACHIEVED SECRET-KEY RATES OF THE REPEATER PROPOSALS
Now we are ready to present the main results, the secret-key rate for all the considered schemes
as a function of the total distance when optimised over θ, the cut-off n? and the duration of the
time-window tw. We compare the rates to the benchmarks from Section 3.5.

In Fig. 3.11 we plot the rate of all four of the quantum repeater schemes as a function of the
distance between Alice and Bob. We observe that already for realistic near-term parameters, the
single-photon scheme can outperform the secret-key capacity of the pure-loss channel by a factor
of seven for a distance of ≈ 9.2 km.
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Figure 3.11: Rate of all studied quantum repeater schemes as a function of the distance between Alice and Bob,
expressed in the units of L0 = 0.542 km. We also plot the different benchmarks from Section 3.5. We see that
the single-photon scheme outperforms the secret-key capacity. For the achievable rates the secret-key rate is
optimised over the cutoff n∗, the angle θ and the time-window tw independently for each distance.

We have also investigated what improvements would need to be done in order for the SPADS
and SPOTL schemes to also overcome the secret-key capacity. An example scenario in which the
SPADS scheme outperforms this repeaterless bound includes better phase stabilisation such that
∆φ = 5° and reduction of the decoherence effects in the carbon spin during subsequent entan-
glement generation attempts such that a0 = 1/8000 and b0 = 1/20000. Further improvement of
these effective coherence times to a0 = 1/20000 and b0 = 1/50000 allows the SPOTL scheme to
also overcome the secret-key capacity. We note that maintaining coherence of the carbon-spin
memory qubit for such large number of subsequent remote entanglement generation attempts is
expected to be possible using the method of decoherence-protected subspaces [81, 135].

As mentioned before, the SPADS scheme can be naturally compared against the benchmark of
the direct transmission using NV as a source. The results are depicted in Fig. 3.12. We see that the
SPADS scheme easily overcomes the NV-based direct transmission and the thermal benchmark
for larger distances for which these benchmarks drop to zero.

In Fig. 3.11 we observe that for the SPOTL scheme, the total distance over which key can be
generated is significantly smaller than for the SPADS scheme. This is despite the fact that the full
distance is divided into four segments. The rather weak performance of this scheme is due to the
fact that it involves a larger number of noisy operations. As a result, the scheme can tolerate little
noise from the single-photon subscheme, requiring the angle θ to be close to π

2 as can be seen in
Fig. 3.9. As a result, the probability of photon emission becomes greatly diminished and so the
distance after which dark counts start becoming significant is much smaller than for the SPADS
scheme. To overcome this problem one would need to reduce the amount of noise in the system.
One of the main sources of noise is the imperfect single-qubit measurement. Hence we illus-
trate the achievable rates for the scenario with the boosted measurement depolarising parameter
Fm = 0.98 in Fig. 3.13. Additionally, in this plot we also consider the application of probabilis-
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Figure 3.12: Comparison of the SPADS scheme with the rate achievable using the direct transmission, with
NV being the photon source. The secret-key rates for those schemes are plotted as a function of the distance
between Alice and Bob, expressed in the units of L0 = 0.542 km. We also plot the different benchmarks. We see
that the SPADS scheme easily overcomes the direct transmission and the thermal benchmark (see Section 3.5).
For the secret-key rate achievable with the SPADS scheme we perform optimisation over the cutoff n∗, the
angle θ and the time-window tw independently for each distance. Similarly, we also optimise the secret-key
rate achievable with direct transmission over the time-window tw.

tic frequency conversion to the telecom wavelength at which L0 = 22 km. Frequency conversion
has already been achieved experimentally in the single-photon regime with success probability of
30% [180]. This is also the success probability that we consider here. The corresponding bench-
marks have also been plotted for the new channel with L0 = 22 km. We see in Fig. 3.13 that with the
improved measurement and using frequency conversion, the SPOTL scheme allows now to gener-
ate secret key over more than 550 km. We also see that under those conditions the single-photon
scheme can also overcome the secret-key capacity of the telecom channel.

3.6.4. RUNTIME OF THE EXPERIMENT
While the theoretical capability of an experimental setup to surpass the secret-key capacity is a
necessary requirement to claim a working quantum repeater, it does not necessarily mean that this
can be experimentally verified in practice. Indeed, if a quantum repeater proposal only surpasses
the secret-key capacity by a narrow margin at a large distance, the running time of an experiment
could be too long for practical purposes. In this section, we will discuss an experiment which
can validate a quantum repeater setup and calculate the running time of such an experiment,
where we demonstrate that the single-photon scheme could be validated to be a quantum repeater
within twelve hours.

A straightforward way of validating a quantum repeater would consist of first generating secret-
key, calculating the achieved (finite-size) secret-key rate and then comparing the rate with the
secret-key capacity. However, this requires a large number of raw bits to be generated, partially
due to the loose bounds on finite-size secret-key generation. What we propose here is an experi-
ment where the QBER and yield are separately estimated to lie within a certain confidence inter-
val. Then, if with the (worst-case) values of the yield and the QBER the corresponding asymptotic
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Figure 3.13: Secret-key rate as a function of distance in units of km for transmission at telecom channel with
L0 = 22 km, along with the benchmarks from Section 3.5. We consider an improved measurement depolarising
parameter of Fm = 0.98. The frequency conversion efficiency is assumed to be 0.3. We observe that the SPOTL
scheme allows for the generation of secret-key over a distance of more than 550 km. For the achievable rates
the secret-key rate is optimised over the cutoff n∗, the angle θ and the time-window tw independently for each
distance.

secret-key rate still confidently beats the benchmarks, one could claim that, in the asymptotic
regime, the setup would qualify as a quantum repeater.

As we show in Appendix 3.8.8, it is possible to run the single-photon scheme over a distance
of 17L0 ≈ 9.2 km for approximately twelve hours to find with high confidence (≥ 1−1.5 ·10−4) that
the scheme beats the capacity (see Eq. (2.15)) at that distance by a factor of at least three.

3.6.5. DISCUSSION AND FUTURE OUTLOOK
It is worth noting that our figure of merit - the secret-key rate - is weakly impacted by the latency of
transmission, which grows linearly with distance for the SiSQuaRe, SPADS and SPOTL schemes. Its
only effect on the secret-key rate is the resulting decoherence time in the quantum memories while
the memory nodes await the success/failure signals. This decoherence due to the waiting time is
negligible in comparison to the noise due to interaction, arising from subsequent entanglement
generation attempts. On the other hand, this latency would clearly be very visible in low through-
put of these schemes. The single-photon scheme on the other hand has the advantage of the
repetition rate being limited only by the local processing of the memory nodes which would result
in a higher throughput. We observe this fact in the modest expected duration of the experiment,
even in the high loss regime needed for overcoming the secret-key capacity. It is worth noting that
while the single-photon scheme maintains constant latency for QKD, there exist schemes where
such constant latency can be maintained also for remote entanglement generation, see e.g. [79]. It
is hence clear that there are certain important properties of an efficient quantum repeater scheme
that are not captured by the secret-key rate. However, achieving high throughputs for arbitrary
distances would require almost all the components to be efficient in terms of rates and memories
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to be of high quality in terms of operational and long-storage fidelities. It is clear that demonstrat-
ing all these features together in a single experiment is still a future goal. The advantage of the
secret-key rate is that overcoming the secret-key capacity would form a crucial step towards an
implementation of an efficient and practical, long-distance quantum repeater architecture whose
validity would carry an information-theoretic significance and will therefore be totally indepen-
dent of any hardware-based reference scenario.

In our model we have identified significant amount of noise arising in the system. As a re-
sult, we find that it is not always beneficial to just divide the fixed distance into more elementary
links. Hence, it is a natural question whether this noise could be eliminated e.g. using entan-
glement distillation. In fact for the noise arising due to photon loss in the single-photon scheme
not only does there exist an efficient distillation procedure [24, 118], but it has also already been
demonstrated in the NV-platform [83]. Moreover, in the ideal case of noiseless operations and
storage, a scheme based on generating two entangled states through the single-photon scheme
and then distilling them as demonstrated in [83] should effectively also be able to overcome the
secret-key capacity [165] and provide a significant boost by completely removing the noise due
to photon loss. Furthermore, an implementation of such a distillation-based remote entangle-
ment generation scheme would alleviate the requirement of the optical phase stabilisation of the
system. Therefore this distillation based scheme could be a natural fifth candidate for a proof-
of-principle repeater. Nevertheless, we believe that the fidelities of quantum operations and the
effective coherence times of the memories used in this chapter might need to be improved before
this distillation would prove useful.

Since the publication of this work, there has been an impressive improvement on performed
experiments on two fronts. First, several twin-field QKD [98] experiments have been performed [25,
26, 52], beating the secret-key capacity for those distances. Twin-field QKD is closely related to
the single-photon scheme, in the sense that both allow for surpassing the secret-key capacity (by
achieving a

p
η scaling of the secret-key rate), while not relying on any swapping operations. One

drawback is that both the single-photon scheme and twin-field QKD do not scale, in the sense
that achieving a better than square root scaling in the transmissivity is not possible using only
these techniques. Still, the usefulness of twin-field QKD has been demonstrated by the imple-
mentation of QKD over a distance of over 500 kilometre in a non-laboratory environment [25].
Second, one of the main sources of errors in the memory-based repeater schemes in this and the
previous chapter was the decoherence experienced during subsequent entanglement generation.
Recent experiments have shown a significant reduction of the incurred dephasing by increasing
the applied magnetic field [67, 132]. It would be of strong interest to see how the memory-based
repeater proposals (which are thus scalable unlike twin-field QKD and the single-photon scheme)
here would perform with such new improved parameters.

3.7. CONCLUSIONS
We analysed four experimentally relevant quantum repeater schemes on their ability to generate
secret key. More specifically, the schemes were assessed by contrasting their achievable secret-
key rate with the secret-key capacity of the channel corresponding to direct transmission. The
secret-key rates have been estimated using near-term experimental parameters for the NV cen-
tre platform. The majority of these parameters have already been demonstrated across multiple
experiments. A remaining challenging element of our proposed schemes is the implementation
of optical cavities. These cavities would enable the enhancement of both the photon emission
probability into the zero-phonon line and the photon collection efficiency to the desired level.

With these near-term experimental parameters, our assessment shows the viability of one of
the schemes, the single-photon scheme, for the first experimental demonstration of a quantum re-
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peater. In fact, the single-photon scheme achieves a secret-key rate more than seven times greater
than the secret-key capacity. We also estimated the duration of an experiment to conclude that
a rate larger than the secret-key capacity is achievable. The duration of the experiment would be
approximately twelve hours.

Finally, we show that a scheme based on concatenating the single-photon scheme twice (i.e. the
SPOTL scheme), has the capability to generate secret-key at large distances. However, this requires
converting the frequency of the emitted photons to the telecom wavelength and modestly improv-
ing the fidelity at which measurements can be performed.

3.8. APPENDIX

3.8.1. LOSSES AND NOISE ON THE PHOTONIC QUBITS
In this Appendix we describe how the losses and noise affect our photonic qubits. In particular, we
first recall how the two types of encoding result in the losses acting as different quantum channels
on the states. Then, we study the effects of a finite detector time-window. More specifically, we
firstly show that the arrival of a photon outside the time-window is equivalent to all the other loss
processes and secondly we calculate the probability of registering a dark count within the time-
window. We also show how to model the noise arising from those dark counts for the SiSQuaRe
and SPADS schemes. Finally, we calculate the dephasing induced by the unknown phase shift for
the single-photon scheme.

EFFECTS OF LOSSES FOR THE DIFFERENT ENCODINGS

The physical process of probabilistically losing photons corresponds to different quantum chan-
nels depending on the qubit encoding. In our repeater schemes we use two types of encoding:
time-bin and presence-absence of a photon. For a time-bin encoded qubit in the ideal scenario of
no loss we always expect to obtain a click in one of the detectors. Hence loss of a photon resulting
in a no-click event raises an erasure flag which carries the failure information. Therefore it is clear
that for this encoding the physical photon loss process corresponds to an erasure channel with the
erasure probability given by one minus the corresponding transmissivity,

D(ρ) = ηρ+ (1−η)| ⊥〉〈⊥ | . (3.6)

Here |⊥〉 is the loss flag, corresponding to the non-detection of a photon. Since we are only in-
terested in the quantum state of the system for the successful events when a detection event has
occurred, we effectively post-select on the non-erasure events. For presence-absence encoding
the situation is different since now there is no flag available that could explicitly tell us whether a
photon got lost or not. In fact for this encoding the photon loss results in an amplitude-damping
channel applied to the photonic qubit. Here the damping parameter equals one minus the trans-
missivity of the channel [34].

EFFECTS OF THE DETECTOR TIME-WINDOW

The detector only registers clicks that fall within a certain time-window. It is a priori not clear
what kind of noisy or lossy channel should be used to model the loss of information due to non-
detection of photons arriving outside of the time-window. This is because in a typical loss process
we have a probabilistic leakage of information to the environment. In the scenario considered
here, the situation is slightly different as effectively no leakage occurs, but rather certain part of
the incoming signal effectively gets discarded. Here we will show that despite this qualitative dif-
ference, within our model this process can effectively be modelled as any other loss process.

Now, let us provide a brief description of the physics of this process. Firstly, the detection time-
window is chosen such that the probability of detecting a photon from the optical excitation pulse
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used to entangle the electron spin with the photonic qubit is negligible [65]. For that reason the
detection time-window is opened after a fixed offset t offset

w with respect to the beginning of the de-
cay of the optical excited state of the electron spin. We note that for the considered enhancement
of the ZPL-emission using the optical cavity we predict the characteristic time of the NV emission
τ to be approximately a half of the corresponding value of τ if no cavity is used [53, 65, 138]. There-
fore here we consider the scenario where the duration of the optical excitation pulse is made twice
shorter with respect to the one used in [65]. This will allow us to filter out the unwanted photons
from the excitation pulse by setting t offset

w to half of the offset used in [65].
Secondly, we note that the detection time-window cannot last too long, specifically, it needs

to be chosen such that there is a good trade-off between detecting coherent and non-coherent
(i.e. dark counts) photons. In this subsection we will discuss the effects of photons arriving outside
of this time-window and the effects of registering dark counts within this time-window.

Losses from the detector time-window. The NV centre emits a photon through an exponential
decay process with characteristic time τ. Therefore the probability of detecting a photon during a
time-window starting at t offset

w and lasting for tw is

pin(tw) = 1

τ

∫ t offset
w +tw

t offset
w

dt exp

(
− t

τ

)
= exp

(
− t offset

w

τ

)
−exp

(
− t offset

w + tw

τ

)
. (3.7)

Clearly the process of a photon arriving outside of the time-window is qualitatively different from
the loss process where the photons get lost to the environment. In the remainder of this section
we will now look at the difference between these two phenomena in more detail.

The emission process of the NV centre is a coherent process over time. Consider a generic
scenario in which we divide the emission time into two intervals, denoted by “in” and “out”, re-
spectively. Coherent emission then means that the state of the photon emitted by the electron
spin in state |↑〉 will be

|ψ〉 =p
pin |1〉in |0〉out +

√
1−pin |0〉in |1〉out . (3.8)

Now let us come back to our specific model, in which the “in” mode corresponds to the interval[
t offset
w , t offset

w + tw

]
and the “out” mode to all the times t ≥ 0 lying outside of this interval (t = 0 is

the earliest possible emission time). Here, the emission into the “in” mode occurs with probability
pin(tw). Hence the spin-photon state resulting from the emission by the α |↓〉+β |↑〉 spin state is

|ψ〉 =α |↓〉 |0〉in |0〉out +β |↑〉
(√

pin(tw) |1〉in |0〉out +
√

1−pin(tw) |0〉in |1〉out

)
. (3.9)

If the presence-absence encoding is used, such a photonic qubit is then transmitted to the detec-
tor. Since only the spin and the “in” mode of the photon will be measured, we can now trace out
the “out” mode

ρ =
(
|α|2 + ∣∣β∣∣2pin(tw)

)
|φ〉〈φ|+ ∣∣β∣∣2(1−pin(tw))| ↑〉〈↑ |⊗ |0〉〈0|in , (3.10)

where

|φ〉 = 1√
|α|2 + ∣∣β∣∣2pin(tw)

(
α |↓〉 |0〉in +β√

pin(tw) |↑〉 |1〉in

)
. (3.11)

Note that this state can be obtained by passing the photonic qubit of the state

|ψ〉 =α |↓〉 |0〉+β |↑〉 |1〉 , (3.12)

through the amplitude-damping channel with the damping parameter given by 1−pin(tw). Hence
we can conclude that for the photon number encoding, the possibility of the photon arriving out-
side of the time-window of the detector can be modelled in the same way as any other photon loss
process, namely an amplitude-damping channel applied to that photonic qubit.
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In the case of time-bin encoding we effectively have four photonic qubits, since now we have
an “in” and “out” mode for both the early (denoted by “e”) and the late (denoted by “l”) time-
window. We assume here that the slots do not overlap. That is, a photon emitted in the “out” mode
of the early time-window is always distinct from any photon in the late time-window. This can
be achieved by making the time gap between the “in” modes of the early and late window long
enough. In this case the emission process results in a state

|ψ〉 =α |↓〉
(√

pin(tw) |1〉e,in |0〉e,out |0〉l ,in |0〉l ,out +
√

1−pin(tw) |0〉e,in |1〉e,out |0〉l ,in |0〉l ,out

)
+β |↑〉

(√
pin(tw) |0〉e,in |0〉e,out |1〉l ,in |0〉l ,out +

√
1−pin(tw) |0〉e,in |0〉e,out |0〉l ,in |1〉l ,out

)
.

Again, tracing out the “out” modes results in a state

ρ = pin(tw)|φ〉〈φ|+ (1−pin(tw))
(
|α|2| ↓〉〈↓ |+ ∣∣β∣∣2| ↑〉〈↑ |

)
⊗|00〉〈00|e,l , (3.13)

where
|φ〉 =α |↓〉 |1〉e |0〉l +β |↑〉 |0〉e |1〉l =α |↓〉 |e〉+β |↑〉 |l〉 . (3.14)

Here |00〉e,l corresponds to the loss flag from which we see that for the time-bin encoding the
possible arrival of a photon outside of the time-window results in an erasure channel with the
erasure probability given by (1− pin(tw)). Hence this process can be also modelled as any other
loss process for this encoding.

We have just shown that for both photon presence/absence and time-bin encodings the pro-
cess of the photon arriving outside of the time-window can be modelled by the source which pre-
pares photons in a coherent superposition of the “in” and “out” modes and the detector tracing
out (losing) the “out” modes. We have also shown that those two elements combined together re-
sult effectively in a loss process corresponding to the same channel as any other loss process for
that encoding (amplitude-damping for photon presence/absence and erasure channel for time-
bin encoding).

However, between the source and the detector there are other lossy or noisy components re-
sulting in other quantum channels that need to be applied before the tracing out of the “out”
mode at the detector. Now we show that for all loss and noise processes that occur in our model,
the tracing out of the “out” mode can be mathematically commuted through all those additional
noise/lossy processes. This means that the tracing out can be applied directly after the source,
such that the above described reductions to amplitude-damping or erasure channel can be ap-
plied.

Consider the quantum channels acting on the photonic qubits of the form

N =∑
i

pi N
i

in ⊗N i
out . (3.15)

Effectively these are the channels that do not couple the “in” and “out” modes. Since in reality
“in” and “out” modes correspond to different time modes, their coupling would require some kind
of memory inside the channel. Hence we can think of the above defined channels as channels
without memory. Now it is clear that for a quantum state ρ that among its registers includes both
the “in” and the “out” mode, we have that

trout[N (ρ)] = trout

[∑
i

pi N
i

in ⊗N i
out(ρ)

]
=∑

i
pi N

i
in(ρin) . (3.16)

Now, firstly tracing out the “out” modes and then applying the channel N (only the “in” part can
be applied now) also results in

∑
i pi N

i
in(ρin) at the output. Hence the tracing out of the “out”



3.8. APPENDIX

3

63

modes commutes with all the channels that are of the form (3.15), which correspond to channels
without memory. Clearly the noise/loss processes that occur before the detection, such as photon
loss or dephasing due to uncertainty in the optical phase of the photon, belong to this class of
channels. In particular this means that for photon presence/absence the amplitude-damping due
to photon loss in the channel and due to photon arrival outside of the time-window can be both
combined into one channel with the single damping parameter given by 1−ηpin(tw) (ηdenotes the
transmissivity due to the loss process e.g. the transmissivity of the fibre). The same applies to time-
bin encoding where we now have a single erasure channel with erasure probability 1−ηpin(tw).

To conclude, the arrival of the photon outside of the time-window can be modelled in the same
way as any other loss process for both photon encodings used and therefore we can now redefine
the detector efficiency p ′

det = pdet ·pin(tw) and the total apparatus efficiency p ′
app = pcepzplp

′
det.

We can then define ηtotal = p ′
appη f as the total transmissivity - with probability ηtotal a photon

will be successfully transmitted from the sender to the receiver.
Dark counts within the detector time-window.
Photon detectors are imperfect, and due to thermal excitations, they will register clicks that

do not correspond to any incoming photons. These undesired clicks are called dark counts and
can effectively be seen as a source of noise. The magnitude of this noise depends on the ratio
between the probability of detecting the signal photon and measuring a dark count. Clearly, dark
counts become a dominant source of noise when the probability of detecting the signal photon
becomes comparable to the probability of a dark count click. The probability pd of getting at
least one dark count within the time-window tw of awaiting the signal photon is given by pd =
1−exp

(−tw ·DCpS
)
, where DCpS is the number of dark count per second of the detector, see the

previous chapter.
In the SiSQuaRe scheme Alice and Bob perform measurements on time-bin encoded photons.

The same applies to Bob in the SPADS scheme. Since at least two detectors are required to perform
this measurement, the presence of dark counts means that the outcome may lie outside of the
qubit space. Moreover, this measurement needs to be trusted. In consequence, a squashing map
needs to be used to process the multi-click events in a secure way. Here as an approximation we
consider the squashing map for the polarisation encoding [57] in the same way as described in
the previous chapter. Hence this measurement can also be modelled as a perfect measurement
preceded by a depolarising channel with parameter α which depends on whether the BB84 or six-
state protocol is used. The parameter α is given by (see previous chapter):

αA/B , BB84 =
p ′

appηB (1−pd )

1− (1−p ′
appηA/B )(1−pd )2

, (3.17)

αA/B , six-state =
p ′

appηA/B (1−pd )5

1− (1−p ′
appηA/B )(1−pd )6

. (3.18)

Here ηA/B denotes the transmissivity of the fibre between the memory repeater node and Al-
ice’s/Bob’s detector setup. Finally we note that dark counts increase the probability of registering
a successfull measurement event. For the optical measurement schemes utilising the squashing
map the probability of registering a click in at least one detector is given by (see preceding chap-
ter):

p A/B , BB84 = 1− (1−p ′
appηA/B )(1−pd )2 , (3.19)

p A/B , six-state = 1− (1−p ′
appηA/B )(1−pd )6 . (3.20)

The effect of dark counts in the single-photon scheme, which carries over to the SPOTL scheme, is
analyzed in Appendix 3.8.5.
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NOISE DUE TO OPTICAL PHASE UNCERTAINTY

Another important noise process affecting photonic qubits is related to the fact that for the photon
presence/absence encoding the spin-photon entangled state will also depend on the optical phase
of the apparatus used. Specifically, it will depend on the phase of the lasers used to generate the
spin photon entanglement as well as the optical phase acquired by the photons during the trans-
mission of the photonic qubit. Knowledge about this phase is crucial for being able to generate
entanglement through the single-photon scheme. In any realistic setup however, there would be a
certain degree of the lack of knowledge about this phase acquired by the photons. Since in the end
what matters is the knowledge about the relative phase between the two photons, we can model
this source of noise as the lack of knowledge of the phase on only one of the incoming photonic
qubits. This noise process can be effectively modelled as dephasing. In this section we will show
that the phase uncertainty induces dephasing with a parameter λ equal to

λ=
I1

(
1

(∆φ)2

)
2I0

(
1

(∆φ)2

) + 1

2
, (3.21)

where∆φ is the uncertainty in the phase and I0/1 is the Bessel function of order 0/1. Let us assume
that for Alice, the local phase of the photonic qubit has a Gaussian-like distribution on a circle,
i.e. it corresponds to a wrapped distribution with standard deviation ∆φ as observed in [72]. This
motivates us to model the distribution as a von Mises distribution [75]. The von Mises distribution
reads

f (φ) = eκcos(φ−µ)

2πI0(κ)
. (3.22)

Hereµ is the measure of location, i.e. it corresponds to the centre of the distribution, κ is a measure
of concentration and can be effectively seen as the inverse of the variance and I0 is the modified
Bessel function of the first kind of order 0. One can then show [75] that∫ π

−π
dφ f (φ)e±iφ = I1(κ)

I0(κ)
e±iµ . (3.23)

Since we are only interested in the noise arising from the lack of knowledge about the phase rather
than the actual value of this phase, without loss of generality we can assume µ= 0. Moreover, the
experimental parameter that we use here is effectively the standard deviation of the distribution
∆φ and therefore we can write κ= 1

(∆φ)2 .

Hence, let us write the spin-photon entangled state that depends on the optical phase φ.

|ψ±(φ)〉 = sin(θ) |↓ 0〉±eiφ cos(θ) |↑ 1〉 . (3.24)

Now, the lack of knowledge about this phase leads to a mixed state:

∫ π

−π
f (φ)|ψ±(φ)〉〈ψ±(φ)|dφ= sin2(θ)| ↓ 0〉〈↓ 0|+cos2(θ)| ↑ 1〉〈↑ 1|

± sin(θ)cos(θ)
∫ π

−π
f (φ)(eiφ |↑ 1〉〈↓ 0|+e−iφ |↓ 0〉〈↑ 1|)dφ .

(3.25)

Let us now try to map this state onto a dephased state

λ|ψ±(0)〉〈ψ±(0)|+ (1−λ)|ψ∓(0)〉〈ψ∓(0)| = sin2(θ)| ↓ 0〉〈↓ 0|+cos2(θ)| ↑ 1〉〈↑ 1|
± sin(θ)cos(θ)(2λ−1)(|↑ 1〉〈↓ 0|+ |↓ 0〉〈↑ 1|) .

(3.26)
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Hence, we observe that

2λ−1 =
I1

(
1

(∆φ)2

)
I0

(
1

(∆φ)2

) . (3.27)

→λ=
I1

(
1

(∆φ)2

)
2I0

(
1

(∆φ)2

) + 1

2
. (3.28)

3.8.2. NOISY PROCESSES IN NV-BASED QUANTUM MEMORIES

In our setups we use 13C nuclear spins in diamond as long-lived memory qubits next to a Nitrogen-
Vacancy (NV) electron spin taking the role of a communication qubit. In this Appendix, we will
focus on the modifications to the model presented in the previous chapter, since for most error
processes the model is the same.

Storage of quantum states in the carbon spin memory during entanglement generation at-
tempts are modelled as applying dephasing noise with parameter

λ1 = FT2 =
1+e−a·n

2
, (3.29)

where a = a0 +a1

(
Ls · nr i

c
+ tprep

)
, (3.30)

(3.31)

and depolarising with parameter,

λ2 = FT1 = e−b·n , (3.32)

where b = b0 +b1

(
Ls · nr i

c
+ tprep

)
. (3.33)

Here nr i is the refractive index of the fibre, c is the speed of light in vacuum, tprep is the time it
takes to prepare for the emission of an entangled photon and Ls is the distance the signal needs
to travel before the repeater receives the information about failure or success of the attempt. Let
LB denote the distance between the memory repeater node and Bob. Then for the SiSQuaRe and
SPADS schemes Ls = 2LB as in each attempt first the quantum signal needs to travel to Bob who
then sends back to the middle node the classical information about success or failure. For the
SPOTL scheme Ls = LB as in this case both the quantum and the classical signals need to travel
only half of the distance between the middle node and Bob since the signals are exchanged with
the heralding station which is located half-way between the middle memory node and Bob. The
parameters a0 and b0 quantify the noise due to a single attempt at generating an entangled spin-
photon, induced by stochastic electron spin reset operations, quasi static noise and microwave
control infidelities. The parameters a1 and b1 quantify the noise during storage per second.

Gates and measurements in the quantum memory are also imperfect. We model those im-
perfections via two depolarising channels. The first one acts on a single qubit with depolarising
parameter λ2 = Fm corresponding to the measurement of the electron spin. The second one acts
on two qubits with depolarising parameter λ2 = Fg corresponding to applying a two-qubit gate

to both the electron spin and the 13C spin. This means that every time a measurement is done

on a e− qubit of a quantum state ρ, it is actually done on D
Fm
depol(ρ). Also a swapping operation

between the e− spin and the nuclear spin (done experimentally via two two-qubit gates, see main
text) leads to an error modelled by a depolarising channel of parameter Fswap = F 2

g . Following
the same logic, a Bell state measurement will cause the state to undergo an evolution given by a
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depolarising channel. Specifically, following the decomposition of the Bell measurement into ele-
mentary gates for the NV-implementation as described in Section 3.3, this evolution will consist of
a depolarising channel with parameter F 2

g acting on both of the measured qubits and the depolar-

ising channel with parameter F 2
m acting only on the electron spin qubit, see the previous chapter

for more information.

3.8.3. EXPECTATION OF THE NUMBER OF CHANNEL USES WITH A CUT-OFF
In this Appendix we derive an analytical formula for the expectation value of the number of chan-
nel uses between Alice and Bob needed to generate one bit of raw key for the SiSQuaRe, SPADS
and SPOTL schemes,

E[N ] = 1

p A · (1− (1−pB )n∗ ) + 1

pB
. (3.34)

For these three schemes, we implement a cut-off which is used to prevent decoherence. Each time
the number of channel uses between the repeater node and Bob reaches the cut-off n∗, the entire
protocol restarts from the beginning. Here we take a conservative view and define the number
of channel uses N between Alice and Bob as the sum NA + NB , where NA (NB ) corresponds to
the number of channel uses between Alice (Bob) and the middle node. From the linearity of the
expectation value we have that

E[NA +NB ] = E[NA]+E[NB ] . (3.35)

We denote by p A and pB the probability of a successful attempt on Alice’s and Bob’s side re-
spectively. Bob’s number of channel uses follows a geometric distribution with parameter p = pB ,
so that E[NB ] = 1

pB
. Without the cut-off, Alice’s number of channel use would follow a geometric

distribution with parameter p = p A . However, the cut-off parameter adds additional channel uses
on Alice side. Since the probability that Bob succeeds within n∗ trials is psucc = 1− (1−pB )n∗

, we
in fact have that Alice’s number of channel uses follows a geometric distribution with parameter
p ′

A = p A ·psucc. Hence it is straightforward to see that

E[NA +NB ] = 1

p ′
A

+ 1

pB
(3.36)

= 1

p A · (1− (1−pB )n∗ ) + 1

pB
. (3.37)

3.8.4. SISQUARE SCHEME ANALYSIS
The analysis of the SiSQuare scheme has been performed in the previous chapter. In this chapter
we use the estimates of the yield and QBER as derived before with the following modifications:

• For the calculation of the yield we now adopt a conservative perspective and calculate the
number of channel uses as E[NA+NB ], as derived in Appendix 3.8.3, rather than E[max(NA , NB )].
Note that E[max(NA , NB )] ≤ E[NA +NB ] ≤ 2E[max(NA , NB )].

• The total depolarising parameter for gates and measurements Fgm defined in the previous
chapter is now decomposed into individual operations as described in Appendix 3.8.2. That
is, in this chapter depolarisation due to imperfect operations on the memories is expressed
in terms of depolarising parameter due to imperfect measurement, Fm , and imperfect two-
qubit gate, Fg . Since in the analysis of the SiSQuaRe scheme we only deal with Bell diago-
nal states, the overall noise due to imperfect swap gate and the Bell measurement leads to
Fgm = F 4

g F 2
m .
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• In the previous chapter we assumed the duration of the detection time-window to be fixed
to 30 ns and assumed that all the emitted photons will fall into that time-window. Here,
similarly as for other schemes, we perform a more refined analysis in which we include
the trade-off between the duration of the time-window and the dark count probability as
described in Appendix 3.8.1.

• We do not limit ourselves only to extracting key from the Z -basis for the advantage distilla-
tion scheme, as was done in the preceding chapter. By allowing extracting secret-key from
the X - or Y -basis as well, a higher secret-key fraction can be achieved, see 3.8.7 for more
information.

3.8.5. SINGLE-PHOTON SCHEME ANALYSIS
In this Appendix we provide a detailed analysis of the single-photon scheme between two remote
NV-centre nodes. This section is structured as follows. First, we describe the creation of the spin-
photon entangled state followed by the action of the lossy channel on the photonic part of this
state, including the noise due to the uncertainty in the phase of the state induced by the fibre.
Second, we apply the optical Bell measurement. Then we evaluate the effect of dark counts which
introduce additional errors to the generated state. Finally we calculate the yield of this scheme
and extract the QBER from the resulting state.

SPIN-PHOTON ENTANGLEMENT AND ACTION OF A LOSSY FIBRE ON THE PHOTONIC QUBIT

Firstly, both Alice and Bob generate spin-photon entangled states, parameterised by θ. As we will
later see, this parameter allows for trading off the quality of the final entangled state of the two
spins with the yield of the generation process. The ideal spin-photon state would then be de-
scribed as

|ψ+〉 = sin(θ) |↓〉 |0〉+cos(θ) |↑〉 |1〉 . (3.38)

The preparation of the spin-photon entangled state is not ideal. That is, the spin-photon entangled
state is not actually as described above, but rather of the form (see Appendix 3.8.2)

ρ =Fprep|ψ+〉〈ψ+|+ (1−Fprep)(I⊗Z )|ψ+〉〈ψ+|(I⊗Z ) (3.39)

=Fprep|ψ+〉〈ψ+|+ (1−Fprep)|ψ−〉〈ψ−| . (3.40)

Here
|ψ−〉 = sin(θ) |↓〉 |0〉−cos(θ) |↑〉 |1〉 . (3.41)

For the next step we need to consider two additional noise processes that affect the photonic
qubits before the optical Bell measurement is performed. The first one is the loss of the photonic
qubit. This can happen at the emission, while filtering the photons that are not of the required
ZPL frequency, in the lossy fibre, in the imperfect detectors, or due to the arrival outside of the
time window in which detectors expect a click. All these losses can be combined into a single loss
parameter

η= ηtotal = pcepzpl
√
η f p ′

det , (3.42)

with η f = exp
(
− L

L0

)
, where L is the distance between the two remote NV-centre nodes in the

scheme (see Fig. 3.5 and Appendix A). Hence, a photon is successfully transmitted through the
fibre and detected in the middle heralding station with probability η. Now we note that the action
of the pure-loss channel on the qubit encoded in the presence or absence of a photon corresponds
to the action of the amplitude-damping channel with the damping parameter 1−η [34].

The second process that effectively happens at the same time as loss, is the dephasing noise
arising from the optical instability of the apparatus as described in Appendix 3.8.1. We note that
the amplitude-damping and dephasing channel commute, hence it does not matter in which order
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we apply the two noise processes corresponding to the loss of the photonic qubit and unknown
drifts of the phase of the photonic qubit in our model. Here we firstly apply the dephasing due
to the lack of knowledge of the phase on Alice’s photon and then amplitude-damping on both
photons due to all the loss processes.

Following the model in Appendix 3.8.1, the lack of knowledge about the optical phase will
effectively transform Alice’s state to

ρA =(
Fprepλ+ (1−Fprep)(1−λ)

) |ψ+〉〈ψ+|
+(

(1−Fprep)λ+Fprep(1−λ)
) |ψ−〉〈ψ−| .

where

λ=
I1

(
1

(∆φ)2

)
2I0

(
1

(∆φ)2

) + 1

2
. (3.43)

Now we can apply all the transmission losses modelled as the amplitude-damping channel.
The action of this channel on the photonic part of the state ρ results in the state that we can de-
scribe as follows. Firstly, let us introduce two new states

|ψ±
η 〉 =

1√
sin2(θ)+ηcos2(θ)

(sin(θ) |↓〉 |0〉±p
ηcos(θ) |↑〉 |1〉) . (3.44)

Then, after the losses and before the Bell measurement, the state of Alice can be written as

ρ′A =
(
sin2(θ)+ηcos2(θ)

)((
Fprepλ+ (1−Fprep)(1−λ)

) |ψ+
η 〉〈ψ+

η |

+ (
(1−Fprep)λ+Fprep(1−λ)

) |ψ−
η 〉〈ψ−

η |
)
+ (1−η)cos2(θ)| ↑〉〈↑ ||0〉〈0| ,

and for Bob

ρ′B =
(
sin2(θ)+ηcos2(θ)

)(
Fprep|ψ+

η 〉〈ψ+
η |+ (1−Fprep)|ψ−

η 〉〈ψ−
η |

)
+(1−η)cos2(θ)| ↑〉〈↑ ||0〉〈0| . (3.45)

STATES AFTER THE BELL MEASUREMENT

Now we need to perform a Bell measurement on the photonic qubits within the states ρ′A and ρ′B .
Here we consider the scenario with non photon-number resolving detectors. Assuming for the
moment the scenario without dark counts, we have at most two photons in the system. Hence
we can consider three possible outcomes of our optical measurement: left detector clicked, right
detector clicked, none of the detectors clicked. The measurement operators can be easily derived
by noting that in our scenario without dark counts, each of the detectors can be triggered either
by one or two photons and no cross-clicks between detectors are possible due to the photon-
bunching effect. Then we can apply the reverse of the beam splitter mode transformations to the
projectors on the events with one or two photons in each of the detectors to obtain these projectors
in terms of the input modes. Finally we truncate the resulting projectors to the qubit space since in
our scenario it is not possible for more than one photon to be present in each of the input modes
of the beam splitter. In this way we obtain the following measurement operators

A0 = |Ψ+〉〈Ψ+|+ 1p
2
|11〉〈11| ,

A1 = |Ψ−〉〈Ψ−|+ 1p
2
|11〉〈11| ,

A2 = |00〉〈00| .

(3.46)
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These outcomes occur with the following probabilities,

p0 = p1 = ηcos2(θ)
(
1− η

2
cos2(θ)

)
, (3.47)

p2 = (1−ηcos2(θ))2 . (3.48)

The post-measurement state of the two spins for the outcome A0 is

ρ0 = 2sin2(θ)

2−ηcos2(θ)

(
a|Ψ+〉〈Ψ+|+b|Ψ−〉〈Ψ−|)+ cos2(θ)(2−η)

2−ηcos2(θ)
| ↑↑〉〈↑↑ | . (3.49)

Here

|Ψ±〉 = 1p
2

(|↓↑〉± |↑↓〉) , (3.50)

a =λ(F 2
prep + (1−Fprep)2)+2Fprep(1−Fprep)(1−λ) , (3.51)

b = (1−λ)(F 2
prep + (1−Fprep)2)+2Fprep(1−Fprep)λ . (3.52)

For the outcome A1 the post-measurement state of the spins is the same up to a local Z gate which
Bob can apply following the trigger of the A1 outcome. The post-measurement state of the spins
for the outcome A2, that is when none of the detector clicked, is

ρ2 = 1

(1−ηcos2(θ))2

(
sin4(θ)| ↓↓〉〈↓↓ |+ (1−η)cos2(θ)sin2(θ) (| ↓↑〉〈↓↑ |+ | ↑↓〉〈↑↓ |)

+ (1−η)2 cos4(θ)| ↑↑〉〈↑↑ |
)

. (3.53)

This is a separable state and so events corresponding to outcome A2 (that is, no click in any of the
detectors) will be discarded as failure. However, dark counts on our detectors can make us draw
wrong conclusions about which of the three outcomes we actually obtained.

The effect of dark counts can be seen as follows

• We measured A2 (no actual detection) but one of the detectors had a dark count. This event
will happen with probability 2p2pd (1−pd ) and will make us accept the state ρ2. Note that
this is a classical state so application of the Z correction by Bob does not affect this state at
all.

• We measured A1 or A2 but we also got a dark count in the other detector. This event will
happen with probability (p0+p1)·pd . This will effectively lead us to rejection of the desired
state ρ0. Hence effectively ρ0 will only be accepted if we measured A1 or A2 but the other
detector did not have a dark count, which will happen with probability (p0 +p1) · (1−pd ).

THE YIELD AND QBER
Taking dark counts into account, we see that the yield of the single-photon scheme, which is just
the probability of registering a click in only one of the detectors, will be

Y = (p0 +p1)(1−pd )+2p2pd (1−pd ) = 2(1−pd )
[
ηcos2(θ)

(
1− η

2
cos2(θ)

)
+ (1−ηcos2(θ))2pd

]
.

The effective accepted state after a click in one of the detectors will then be

ρout = 1

Y

(
(p0 +p1)(1−pd )ρ0 +2p2pd (1−pd )ρ2

)
. (3.54)

Note that both Alice and Bob perform a measurement on their electron spins immediately
after each of the spin-photon entanglement generation events. This measurement causes an error
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modelled as a depolarising channel of parameter Fm on each qubit, which means that after a
successful run of the single-photon protocol, the effective state shared by Alice and Bob including
the noise of their measurements will be given by

ρAB = F 2
mρout + (1−Fm )Fm

[
I2,A

2
⊗ trA[ρout]+ trB [ρout]⊗ I2,B

2

]
+ (1−Fm )2 I4,AB

4
.

One can then extract the QBER for this state in all the three bases using the appropriate correlated/anti-
correlated projectors such that:

ez = Tr
(
(|00〉〈00|+ |11〉〈11|)ρAB

)
, (3.55)

ex y = Tr
(
(|+−〉〈+−|+ |−+〉〈−+|)ρAB

)= Tr
(
(
∣∣0y 1y

〉〈
0y 1y

∣∣+ ∣∣1y 0y
〉〈

1y 0y
∣∣)ρAB

)
. (3.56)

Here |+〉 and |−〉 denote the two eigenstates of X and |0y 〉 and |1y 〉 denote the two eigenstates of
Y . We note that for our model of the single-photon scheme the QBER in X - and Y - bases are the
same and therefore we denote both by a single symbol ex y .

3.8.6. SPADS AND SPOTL SCHEMES ANALYSIS
In order to compute the quantum bit error rate (QBER) of the Single-Photon with Additional De-
tection Setup (SPADS) scheme and the Single-Photon Over Two Links (SPOTL) scheme, we derive
step by step the quantum state shared between Alice and Bob. The following results have been
found using Mathematica. Finally, we also calculate the yield of the SPADS and SPOTL schemes.

GENERATION OF ELEMENTARY LINKS

Single-photon scheme on Alice’s side. The application of the single-photon scheme on Alice’s side
leads Alice and the quantum repeater to share a state given in Eq. (3.54). This state can be rewritten
as

ρA-QRe = A1
∣∣Ψ+〉〈

Ψ+∣∣+B1 |Ψ−〉〈Ψ−|+C1 (|10〉〈10|+ |01〉〈01|)+D1 |11〉〈11|+E1 |00〉〈00| , (3.57)

with A1 = A(θA ,YA), B1 = B(θA ,YA), C1 =C (θA ,YA), D1 = D(θA ,YA) and E1 = E(θA ,YA). Here we
have that

A(θ,Y ) = 1

Y
2cos2(θ)sin2(θ)η(1−pd )

[
(F 2

prep + (1−Fprep)2)λ+2Fprep(1−Fprep)(1−λ)
]

,

B(θ,Y ) = 1

Y
2cos2(θ)sin2(θ)η(1−pd )

[
(F 2

prep + (1−Fprep)2)(1−λ)+2Fprep(1−Fprep)λ
]

,

C (θ,Y ) = 2

Y
cos2(θ)sin2(θ)pd (1−pd )(1−η) ,

D(θ,Y ) = 1

Y
cos4(θ)

(
2(1−η)η(1−pd )+η2(1−pd )+2(1−η)2pd (1−pd )

)
,

E(θ,Y ) = 2

Y
sin4(θ)pd (1−pd ) .

In the above, Y denotes the yield or the probability of success of the single-photon scheme and is
given by Eq. (3.54). Subscript A indicates that in that expression for the yield and for each of the
above defined coefficients we use θ = θA . Moreover, we have made here the following change of
notation with respect to the Appendix 3.8.5, |↓〉→ |0〉 and |↑〉→ |1〉.

SWAP GATE IN THE MIDDLE NODE

In the next step a SWAP gate is applied in the middle node to transfer the electron state to the
nuclear spin of the NV centre. This causes a depolarising noise of parameter Fswap = F 2

g (see
Appendix 3.8.1). The resulting state can then be written as

ρA-QRC = FswapρA-QRe + (1−Fswap) trQR[ρA-QRe ]⊗ I2,QR

2
. (3.58)
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THE PROCEDURE ON BOB’S SIDE

We now use the electron spin of the quantum repeater to generate the second quantum state. Here
the procedures for the SPADS and SPOTL schemes diverge.

In the procedure for the SPADS scheme, the quantum repeater generates a spin-photon en-
tangled state where the photonic qubit is encoded in the time-bin degree of freedom. Since the
spin-photon entangled state is imperfect, the electron and the photon share a state

ρQRe−B = Fprep
∣∣Ψ+〉〈

Ψ+∣∣+ (1−Fprep) |Ψ−〉〈Ψ−| . (3.59)

Here we use the following labeling for time-bin encoded early and late mode of the photon: |e〉 =
|1〉 , |l〉 = |0〉. This photon is then sent towards Bob’s detector. The lossy channel acts on such
a time-bin encoded qubit as an erasure channel and so the quantum spin-photon state of the
successful events in which the photonic qubit successfully arrives at the detector is unaffected by
the lossy channel.

For the SPOTL scheme the repeater’s electron spin and Bob’s quantum memory generate a
second state of the form given in Eq. (3.54). We can rewrite this state as

ρQRe−B = A2
∣∣Ψ+〉〈

Ψ+∣∣+B2 |Ψ−〉〈Ψ−|+C2 (|10〉〈10|+ |01〉〈01|)+D2 |11〉〈11|+E2 |00〉〈00| ,

with A2 = A(θB ,YB ), B2 = B(θB ,YB ), C2 =C (θB ,YB ), D2 = D(θB ,YB ) and E2 = E(θB ,YB ).

DECOHERENCE IN THE QUANTUM MEMORIES

Decoherence of the carbon spin in the middle node can be modelled identically for both the SPADS
and SPOTL scheme.

During the n < n∗ attempts to generate the state ρQRe -B, the carbon spin in the middle node
holding half of the state ρA-QRC will decohere. Using the decoherence model discussed in Ap-
pendix 3.8.2, decoherence of the carbon spin will thus give us

ρ′
A-QRC =FT1 (FT2ρA-QRC + (1−FT2 )(I2 ⊗Z )ρA-QRC (I2 ⊗Z )†)

+(1−FT1 ) trQR[ρA-QRC ]⊗ I2,QR

2
. (3.60)

For key generation, Alice (SPADS and SPOTL schemes) and Bob (SPOTL scheme) can actually mea-
sure their electron spin(s) immediately after the generation of spin photon entanglement, prevent-
ing the effect of decoherence on these qubit(s).

NOISE DUE TO MEASUREMENTS

MEASUREMENT OF THE QUBITS OF ALICE AND BOB

In the SPADS scheme Alice performs a measurement on her electron spin immediately after each
of the spin-photon entanglement generation events to prevent any decoherence with time of this
qubit. This measurement causes an error modelled as a depolarising channel of parameter Fm .
Bob on the other hand performs a measurement on a photonic qubit that is encoded in the time-
bin degree of freedom. His measurement utilises the squashing map so that we can model the
noise arising from this measurement as a depolarising channel with parameter αB as described in
Appendix 3.8.1. Hence the total state just before the Bell measurement is given by

ρA−QR−B = FmαBρ
′
A-QRC ⊗ρQRe−B + (1−Fm )αB

I2,A

2
⊗ trA[ρ′

A-QRC ]⊗ρQRe−B

+ (1−αB )Fmρ′
A-QRC ⊗ trB [ρQRe−B ]⊗ I2,B

2

+ (1−Fm )(1−αB ) trAB [ρ′
A-QRC ⊗ρQRe−B ]⊗ I4,AB

4
. (3.61)



3

72 3. NEAR-TERM QUANTUM-REPEATER EXPERIMENTS WITH NV CENTRES

For the SPOTL scheme, both Alice and Bob perform a measurement on their electron spins imme-
diately after each of the spin-photon entanglement generation events. This measurement causes
an error modelled as a depolarising channel of parameter Fm on each qubit, which means that af-
ter both Alice and Bob succeeded in performing the single-photon scheme with the repeater, the
total, four-qubit state just before the Bell-measurement and including the noise of the measure-
ments of Alice and Bob will be given by

ρA−QR−B = F 2
mρ′

A-QRC ⊗ρQRe−B

+ (1−Fm )Fm

[
I2,A

2
⊗ trA[ρ′

A-QRC ]⊗ρQRe−B +ρ′
A-QRC ⊗ trB [ρQRe−B ]⊗ I2,B

2

]
+ (1−Fm )2 trAB [ρ′

A-QRC ⊗ρQRe−B ]⊗ I4,AB

4
. (3.62)

BELL STATE MEASUREMENT

Before the entanglement swapping, we have a total state ρA−QR−B . We now perform a Bell state
measurement on the two qubits in the middle node. The error coming from this measurement is
modelled by concatenation of depolarising channels (see Appendix 3.8.1) which means that the
measurement is actually performed on

ρfin = F 2
g F 2

mρA−QR−B +F 2
g (1−F 2

m ) trQRe [ρA−QR−B ]⊗ I2,QRe

2
+ (1−F 2

g ) trQR [ρA−QR−B ]⊗ I4,QR

4
.

While ρ′
A-QRC is not Bell diagonal for the SPADS scheme, ρQRe−B is, and so we find that taking

into account the classical correction (which will be performed on the measured bit-value by Alice
and Bob) the four cases corresponding to different measurement outcomes are equivalent. This
means that if we model the correction to be applied to the quantum state rather than the classical
bit, then the four post-measurement bipartite states shared between Alice and Bob are exactly the
same.

For the SPOTL scheme, both ρ′
A-QRC and ρQRe−B are not Bell diagonal which means that the

resulting state of qubits of Alice and Bob after the Bell state measurement depends on the out-
come of this Bell measurement and those four corresponding states are not equivalent under local
unitary corrections. In fact, the two states corresponding to the Φ± outcomes and the two states
corresponding to the Ψ± outcomes are pairwise equivalent under local Pauli corrections. Hence,
we will derive two different QBER corresponding to the following different resulting states shared
between Alice and Bob,

ρΦ,AB = (IA ⊗UΦ±,B )TrQR

[
(I⊗ ∣∣Φ±〉〈

Φ±∣∣⊗ I)ρfin(I⊗ ∣∣Φ±〉〈
Φ±∣∣⊗ I)†

Tr
(
ρfin(I⊗ ∣∣Φ±〉〈

Φ±∣∣⊗ I))
]

(I⊗UΦ±,B )† ,

ρΨ,AB = (IA ⊗UΨ±,B )TrQR

[
(I⊗ ∣∣Ψ±〉〈

Ψ±∣∣⊗ I)ρfin(I⊗ ∣∣Ψ±〉〈
Ψ±∣∣⊗ I)†

Tr
(
ρfin(I⊗ ∣∣Ψ±〉〈

Ψ±∣∣⊗ I))
]

(I⊗UΨ±,B )† .

Here UΦ±,B and UΨ±,B denote the four Pauli corrections implemented by Bob after the corre-
sponding outcome of the Bell measurement. Note that for the SPADS scheme ρΦ,AB = ρΨ,AB .

THE YIELD AND QBER
YIELD

For both SPADS and SPOTL scheme we calculate the yield as the inverse of the number of channel
uses required to generate one bit of raw key, Y = 1/E[N ], where E[N ] is given by Eq. (3.34). For the
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SPOTL scheme in that formula we use p A/B = YA/B , where YA/B denotes the yield of the single-
photon scheme on Alice’s/Bob’s side given by Eq. (3.54). For the SPADS scheme p A takes the same
form as for the SPOTL scheme (but is now calculated for two thirds of the total distance between
Alice and Bob rather than half), while pB is the probability of registering a click in Bob’s optical
detection setup as in the SiSQuaRe scheme.

EXTRACTION OF THE QUBIT ERROR RATES

By projecting these final corrected states onto the correct subspaces, we can obtain the qubit error
rates ez and ex y (with our model we find that for both SPADS and SPOTL schemes the error rates
in X and Y bases are the same). The state shared between Alice and Bob after the Pauli correction
will always be the same for the SPADS scheme. Thus, there is only a single QBER ez and ex y in-
dependently of the outcome of the Bell measurement. For the SPOTL scheme that is not the case,
there will be two set of QBER corresponding to the states ρΦ,AB and ρΨ,AB .

ez,Φ = Tr
(
(|00〉〈00|+ |11〉〈11|)ρΦ

)
, (3.63)

ez,Ψ = Tr
(
(|00〉〈00|+ |11〉〈11|)ρΨ

)
, (3.64)

ex y,Φ = Tr
(
(|+−〉〈+−|+ |−+〉〈−+|)ρΦ

)= Tr
(
(
∣∣0y 1y

〉〈
0y 1y

∣∣+ ∣∣1y 0y
〉〈

1y 0y
∣∣)ρΦ)

, (3.65)

ex y,Ψ = Tr
(
(|+−〉〈+−|+ |−+〉〈−+|)ρΨ

)= Tr
(
(
∣∣0y 1y

〉〈
0y 1y

∣∣+ ∣∣1y 0y
〉〈

1y 0y
∣∣)ρΨ)

. (3.66)

Again, for the SPADS scheme ez,Φ = ez,Ψ = ez and ex y,Φ = ex y,Ψ = ex y .

AVERAGING THE QUBIT ERROR RATES

We have now derived the qubit error rates as a function of the experimental parameters. For the
SPOTL scheme we now average the QBER over the two outcomes to get the final average QBER

〈ez 〉 = 〈pΨez,Ψ+pΦez,Φ〉 , (3.67)

〈ex y 〉 = 〈pΨex y,Ψ+pΦex y,Φ〉 , (3.68)

where pΨ (pΦ) is the probability of measuring one of the |Ψ〉 (|Φ〉) states in the Bell measurement
and 〈...〉 is found by averaging the expression over the number of Bob’s attempts n with the geo-
metric distribution within the first n∗ trials. For the SPADS scheme 〈ez 〉 and 〈ex y 〉 can be averaged
directly. The dependence on n arises from the decoherence terms FT1 and FT2 . Indeed, those
terms correspond to the decoherence in the middle node during the attempts on Bob’s side. De-
noting by pB the probability that in a single attempt Bob generates entanglement with the quan-
tum repeater using the single-photon scheme for the SPOTL scheme and using direct transmission
of the time-bin encoded qubit from the repeater to Bob for the SPADS scheme, we have that the
exponentials in those expressions can be averaged as follows (see preceding chapter),

〈e−cn〉 = pB e−c

1− (1−pB )n∗
1− (1−p)n∗

e−cn∗

1− (1−pB )e−c . (3.69)

3.8.7. SECRET-KEY FRACTION AND ADVANTAGE DISTILLATION
In this section we review the formulas for the secret-key fraction for the QKD protocols used in our
model as a function of the QBER. In particular, we focus on the case where the QBER is not the
same for all bases. In such a scenario, it is sometimes possible to extract more secret-key using the
six-state protocol with advantage distillation by changing the basis in which one extracts key.
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ONE-WAY BB84 PROTOCOL

For the fully asymmetric BB84 protocol with standard one-way post-processing, the secret-key
fraction is given by [95, 148]:

r = 1−h(ex )−h(ez ) , (3.70)

where h(x) is the binary entropy function. Note that this formula is symmetric under the exchange
of ex and ez - that is, the secret-key fraction is the same independently of whether we extract the
key in the Z - or X -basis. As we will see later in this section, this is not the case for the six-state
protocol with advantage distillation.

SIX-STATE PROTOCOL WITH ADVANTAGE DISTILLATION

In Appendix 2.9.4 from the preceding chapter we considered the secret-key that can be extracted
using the advantage distillation scheme presented in [171]. It is important to note that for the
advantage distillation scheme considered in this chapter, the amount of generated secret key de-
pends on the basis in which it is extracted, as has been shown in [114]. This should be contrasted
with the previous chapter, where the used secret-key fraction assumed the key was extracted in
the Z -basis. This thus allows for a potential increase in the extractable secret-key. Let us now have
a look at the amount of key that can be extracted in the X - and Y -bases. The secret-key fraction in
these cases is also given by Eq. (2.39) but now the Bell coefficients depend on QBER in the following
way [114],

p00 = 1− ez

2
−ex y ,

p10 = ex y − ez

2
,

p01 = p11 = ez

2
.

(3.71)

And so

PX̄(0) = 1−2ex y +2e2
x y ,

PX̄(1) = 2(1−ex y )ex y .
(3.72)

We note that we have assumed here that in the case of key extraction in Y -basis, either Alice
or Bob applies a local bit flip in the Y -basis to the shared state, as the target state |ψ(0,0)〉 is anti-
correlated in that basis.

In [114] it has been also observed that in the considered case of having the QBER in the X - and
Y -bases being equal, the six-state protocol with advantage distillation allows us to extract more
key if it is extracted in the basis with higher QBER. This observation determines the basis that we
use for extracting key for the single-photon and the SPOTL schemes that use fully asymmetric six-
state protocol with advantage distillation. Specifically, for the single-photon scheme we observe
higher QBER in the Z -basis, while for the SPOTL scheme the QBER is higher in the X - and Y -bases.
Therefore these are the bases that we choose to use for extracting key for those schemes.

For the SiSQuaRe and SPADS schemes the symmetric six-state protocol is used, hence for
those schemes we group the raw bits into three groups corresponding to three different key-extraction
bases and we extract the key separately for each of these bases. Finally, to obtain the final secret-
key fraction, we note that for the symmetric six-state protocol we also need to include sifting, that
is only one third of all the raw bits were obtained by Alice and Bob measuring in the same basis (the
raw bits for the protocol runs in which they measured in different bases are discarded). Hence, if
we denote by ri the secret-key fraction obtained from the group of raw bits in which both Alice
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and Bob measured in the basis i , the final secret-key fraction for the six-state protocol for those
schemes is given by

r = 1

3

(
1

3
rx + 1

3
ry + 1

3
rz

)
. (3.73)

Clearly in our case we have rx = ry = rx y .

ONE-WAY SIX-STATE PROTOCOL
In Figure 3.6 we have also plotted the secret-key fraction for the one-way six-state protocol. For
the fully asymmetric protocol and the case in which the key is extracted in the Z -basis, it is given
by [148]

r = 1−ez h

(
1+ (ex −ey )/ez

2

)
− (1−ez )h

(
1− (ex +ey +ez )/2

1−ez

)
−h(ez ) . (3.74)

Although this formula does not appear to be symmetric under the permutation of ex , ey , ez , it is in
fact invariant under this permutation [137]. This means that for the symmetric one-way six-state
protocol, in our case the final secret-key fraction is given by the expression in Eq. (3.74) multiplied
by the sifting efficiency of one-third.

3.8.8. RUNTIME OF THE EXPERIMENT
In this section we will detail how to perform an experiment that will be able to establish that a
setup can surpass the capacity of a quantum channel modeling losses in a fibre (see Eq. (2.15)).
This experiment can validate a setup to qualify as a quantum repeater, without explicitly having
to generate secret-key. We show then that, for the listed parameters in the main text, the single-
photon scheme can be certified to be a quantum repeater within approximately twelve hours.

The experiment is based on estimating the yield of the scheme and the individual QBER of the
generated states. More specifically, here we will calculate the probability that, assuming our model
is accurate and each individual run is independent and identically distributed, the observed esti-
mate of the yield and the individual QBER are larger and smaller, respectively, than some fixed
threshold values. If, with these threshold values for the yield and QBER, the calculated asymptotic
secret-key still surpasses the capacity, we can claim a working quantum repeater. The experiment
consists of first performing n attempts at generating a state between Alice and Bob, from which the
yield can be estimated by calculating the ratio of the successful attempts and n. Then, the QBER
in each basis is estimated by Alice and Bob measuring in the same basis in each of the successful
attempts.

Central to our calculation is the fact that, for n instances of a Bernoulli random variable with
probability p, the probability that the number of observed successes S(n) is smaller or equal than
some value k is equal to

P (S(n) ≤ k) =
k∑

i=0

(
n

i

)
pi (

1−p
)n−i . (3.75)

Assuming the outcomes of our experiment are independent and identically distributed, the
observed yield Ȳ satisfies

P
(
Ȳ ≤ (Y − tY )

)= P
(
nȲ ≤ n (Y − tY )

)= bn(Y −tY )c∑
i=0

(
n

i

)
Y i (1−Y )n−i , (3.76)

where Y −tY is the lower threshold. Let us make this more concrete with a specific calculation. For
a distance of 17L0 the yield is equal to ≈ 5.6 ·10−6. Setting the maximum deviation in the yield to
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Ȳ = Y − tY with tY = 2.0·10−7 and the number of attempts to n = 5·109 (which corresponds to ap-
proximately a runtime of twelve hours assuming a single attempt takes 8.5 ·10−6 s, corresponding
to tprep and a single-shot readout lasting 2.5 ·10−6 s), we find that

P
(
Ȳ ≤ (Y − tY )

)≤ 9.2 ·10−10 . (3.77)

Similarly, for the individual errors {ek }k∈{x,y,z} in the three bases we have that

P
(
ēk ≥ (

ek + tk
))= P

(
m · ēk ≥ m

(
ek + tk

))= m∑
i=dm(ek+tk )e

(
m

i

)(
ek

)i (
1−ek

)m−i .

Here we set m = ⌊ n
3 (Y − tY )

⌋
, which is an estimate for the number of raw bits that Alice and Bob

obtain from measurements in each of the three bases, for the total n attempts of the protocol. All
the raw bits from those three sets are then compared to estimate the QBER in each of the three
bases. Note that we gather the same amount of samples for each basis, even when an asymmetric
protocol would be performed. Setting ti = t = 0.015, ∀i ∈ {x, y, z} and, as before, n = 5 · 109, we
find, at a distance of 17L0 where ez ≈ 0.171 and ey = ex ≈ 0.141, that

P (ēz ≥ (ez + t )) ≤ 9.0 ·10−5 , (3.78)

P
(
ēy ≥ (

ey + t
))= P (ēx ≥ (ex + t )) ≤ 2.7 ·10−5 . (3.79)

Then, with probability at least

(1−P (ēx ≥ (ex + t ))) · (1−P
(
ēy ≥ (

ey + t
))) · (1−P (ēz ≥ (ez + t ))) · (1−P

(
Ȳ ≤ (Y − tY )

))
≥ 1−1.5 ·10−4 ,

(3.80)

none of the observed QBER and yield exceed their threshold conditions. The corresponding lowest
secret-key rate for these parameters (with a yield of Y − tY and QBER of ex + tx , ey + ty , ez + tz )

is ≈ 1.97 · 10−7, which we observe is greater than the secret-key capacity by a factor ≈ 3.29 (see
Eq.(2.15)) at a distance of 17L0, since the secret-key capacity equals − log2

(
1−e−17)

. 5.97 ·10−8.

Thus, with high probability we can establish that the single-photon scheme achieves a secret-
key rate significantly greater than the corresponding secret-key capacity for a distance of 17L0 ≈
9.2 kilometer within approximately twelve hours.

3.8.9. MDI QKD
We note here that the single-photon scheme for generating key is closely linked to the measure-
ment device independent (MDI) QKD protocol [96]. In particular it is a version of a scheme in
which Alice and Bob prepare and send specific photonic qubit states to the heralding station in
the middle, where the qubits are encoded in the presence/absence of the photon. We note that
in the ideal case of the single-photon scheme, the spin-photon state is given in Eq. (3.38). For the
six-state protocol the spin part of this state is then measured in the X -, Y - or Z - basis at random
according to a fixed probability distribution (this probability distribution dictates whether we use
symmetric or asymmetric protocol). Considering the probabilities of the individual measurement
outcomes, this is equivalent to the scenario in which Alice and Bob choose one of the three set
of states at random according to the same probability distribution and prepare each of the two
states from that set with the probability equal to the corresponding measurement outcome prob-
ability. These sets do not form bases, as the two states within each set are not orthogonal. We will
therefore refer to these sets here as “pseudo-bases”. Depending on the chosen pseudo-basis they
prepare one of the six states encoding the bit value of “0” or “1” in that pseudo-basis. These states
and the corresponding preparation probabilities are
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• pseudo-basis 1: {|0〉 , |1〉} with probabilities {sin2 θ, cos2 θ},

• pseudo-basis 2: {sinθ |0〉+cosθ |1〉 , sinθ |0〉−cosθ |1〉} with probabilities { 1
2 , 1

2 },

• pseudo-basis 3: {sinθ |0〉+ i cosθ |1〉 , sinθ |0〉− i cosθ |1〉} with probabilities { 1
2 , 1

2 }.

These states are then sent towards the beam splitter station. The station performs the stan-
dard photonic Bell-state measurement and sends the outcome to both Alice and Bob. Alice and
Bob discard all the runs for which the beam splitter station measured A2 (recall the measurement
operators in Eq. (3.46)). They then exchange the classical information about their pseudo-basis
choice and keep only the data for the runs in which they both used the same basis. For those data
they apply the following post-processing in order to obtain correlated raw bits

• pseudo-basis 1: for both outcomes A0 and A1 Bob flips the value of his bit.

• pseudo-basis 2: for the outcome A0 they do nothing, for the outcome A1 Bob flips the value
of his bit.

• pseudo-basis 3: for the outcome A0 they do nothing, for the outcome A1 Bob flips the value
of his bit.

In this way Alice and Bob have generated their strings of raw bits.
We note here that the direct preparation of the six states from the three pseudo-bases de-

scribed above in the photonic presence/absence degree of freedom is experimentally hard. This is
related to the fact that linear optics does not allow to easily perform single qubit rotations neces-
sary to prepare these states. The use of memory-based NV-centres offers a great advantage here,
as in these schemes the rotations that allow us to obtain the required amplitudes of the photonic
states are performed on the electron spins rather than the photons themselves. There has also
been proposed an alternative scheme that also benefits from single photon detection events in
which Alice and Bob send coherent pulses to the heralding station [98, 157].





4
OPTIMISING REPEATER SCHEMES

FOR THE QUANTUM INTERNET

Kenneth Goodenough*, David Elkouss and Stephanie Wehner

The rate at which quantum communication tasks can be performed using direct transmis-
sion is fundamentally hindered by the channel loss. Quantum repeaters allow, in princi-
ple, to overcome these limitations, but their introduction necessarily adds an additional
layer of complexity to the distribution of entanglement. This additional complexity - along
with the stochastic nature of processes such as entanglement generation, Bell swaps, and
entanglement distillation - makes finding good quantum repeater schemes non-trivial.
We develop an algorithm that can efficiently perform a heuristic optimisation over a sub-
set of quantum repeater schemes for general repeater platforms. We find a strong im-
provement in the generation rate in comparison to an optimisation over a simpler class
of repeater schemes based on BDCZ repeater schemes. We use the algorithm to study three
different experimental quantum repeater implementations on their ability to distribute
entanglement, which we dub information processing implementations, multiplexed el-
ementary pair generation implementations, and combinations of the two. We perform
this heuristic optimisation of repeater schemes for each of these implementations for a
wide range of parameters and different experimental settings. This allows us to make es-
timates on what are the most critical parameters to improve for entanglement generation,
how many repeaters to use, and which implementations perform best in their ability to
generate entanglement.

This chapter has been adapted from the following publication: Phys. Rev. A 103, 032610.

79



4

80 4. OPTIMISING REPEATER SCHEMES FOR THE QUANTUM INTERNET

4.1. INTRODUCTION
In the two preceding Chapters 2 and 3 we performed a thorough analysis of proof-of-principle re-
peater schemes, consisting of one or two nodes. Such setups will still be limited in the maximum
distance at which shared entanglement can be generated (at a reasonable rate). Our aim for this
chapter is to consider multiple such nodes, leading to linear quantum repeater chains. The corre-
sponding quantum repeater schemes are built on the concept of breaking the total length between
Alice and Bob into several shorter (elementary) links. Depending on the scheme, the nodes have
different requirements ranging from storage of quantum states to full-fledged quantum computa-
tion. We note here that we will consider more complex schemes than those in chapters 2 and 3.,
but at the same time our analysis will not be as fine-grained as the analysis performed before.

By generating and storing entanglement over the elementary links and performing Bell state
measurements on the locally held states, the distance over which entanglement is present can be
increased, until the two parties at the end are entangled [20, 29, 30, 48].

However, the imperfect operations during this process lower the quality of the entanglement,
potentially ruining the benefits of utilising quantum repeater nodes. The effects of noise can be
counteracted by using entanglement distillation, which can (possibly probabilistically) turn mul-
tiple entangled pairs of lower fidelity into a smaller amount of pairs with higher fidelity [9, 11, 83].

An entanglement generation scheme between two spatially separated parties Alice and Bob
consists of the generation of entanglement over elementary links, entanglement swaps and dis-
tillation. Our goal is to find schemes that minimise the generation time of the entanglement be-
tween Alice and Bob for a given fidelity to the maximally entangled state in a suitable experimen-
tal model. However, finding optimal schemes is non-trivial for two reasons. First, the amount of
schemes that can be performed grows super-exponentially in the number of elementary links/nodes,
making a full systematic optimisation infeasible (see [77] and Appendix 4.6.1). Second, entangle-
ment generation, Bell state measurements, and distillation are all processes that are in general
probabilistic. Finding the corresponding probability distributions is believed to be computation-
ally intensive [17, 147, 150, 168].

For the reasons mentioned above, it seems necessary to either approximate or simplify the
problem. Notably, in [77], an algorithm based on dynamical programming was proposed capa-
ble of efficiently optimising repeater schemes over the full parameter space. Under the heuristic
approximation that all processes finish at the average time and there is no decoherence over time
in the quantum memories, the algorithm constructs the scheme for a large chain combining the
optimal solutions over smaller (multi-hop) links.

We take a different route. Instead of approximating the behaviour of the schemes by the mean,
we simplify the problem by considering a relevant subset of schemes. In particular, we consider
schemes that succeed at all levels near-deterministically. Such schemes have the benefit of hav-
ing a small variance of the fidelity and generation time. We note that the requirement of being
near-deterministic does not imply that our algorithm cannot handle non-deterministic processes.
High success probabilities can be enforced even when certain processes are not deterministic - in
that case, the probability of a single success can be increased by repeating the process a number of
times, ensuring that the whole process can be made near-deterministic, see Section 4.2 for further
details. Furthermore, this allows us to calculate the success probability of a scheme exactly, even
when more complicated protocols such as distillation and probabilistic swapping are performed.
Finally, this approach also allows us to calculate the average noise experienced during storage, in
contrast to [77], see Appendix 4.6.4.

In this chapter, we detail an algorithm (publicly available as a Python script at [58]) that per-
forms a heuristic optimisation over the set of near-deterministic schemes. The optimisation runs
in O

(
n2 log(n)

)
time, and O

(
n log(n)

)
time if all the nodes have the same parameters and are
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equidistant, where n is the number of elementary links. Concretely, the input to our algorithm is
given by the experimental parameters of the nodes and connecting fibres, the distances between
adjacent nodes, the possible protocols for elementary pair generation, swapping and distillation,
and a set of algorithm-specific parameters, see Section 4.2.4.3. The algorithm returns a collection
of optimised schemes for generating entanglement between Alice and Bob.

We exploit the fact that our algorithm is not specific to any particular experimental setup,
which allows for the optimisation over repeater schemes for several types of platforms.

The experimental platforms that we consider can be split up into three types:

• Information processing platforms - Information processing (IP) implementations have the
ability to store quantum states and perform operations on them, such that it is possible to
perform distillation. However, the number of quantum states that can be processed at the
same time is presently limited to a small number. Examples of information processing im-
plementations include systems such as trapped ions [15, 73, 109], nitrogen-vacancy centres
in diamond [28, 163], neutral atoms [134, 151, 174], and quantum dots [64, 179].

• Multiplexed elementary pair generation platforms - Multiplexed elementary pair generation
(MP) implementations lack the ability to properly perform operations on the stored states,
prohibiting distillation. However, a large number (104 − 107) of states can potentially be
generated, transmitted and stored simultaneously with such implementations, effectively
increasing the success probability for the elementary pair generation. Examples of such
implementations include the different types of atomic ensembles [31, 90, 104].

• A combination of IP and MP platforms - Multiplexed elementary pair generation platforms
can overcome the effects of losses over the elementary links more easily than information
processing platforms, but suffer from the lack of control and long coherence times avail-
able to information processing platforms. This motivates a combination of the two. That
is, the elementary pair generation is performed with an MP implementation, after which
the quantum state is transferred into an information processing system. Such a combined
setup benefits from the high success probability of the generation of the elementary pairs,
together with the ability to perform entanglement distillation and longer coherence times.

We find that the optimisation returns schemes that outperform a simplified optimisation over
more structured schemes, similar to those in [20, 29, 30, 48]. This highlights the complexity of re-
peater protocols for realistic repeater chains and the non-trivial nature of the optimisation prob-
lem. With such optimised schemes in hand we use our algorithm to study a range of questions,
such as which setups hold promise for near-term quantum networks, how many nodes should be
implemented, and which experimental parameters are the most important to improve upon.

In Section 4.2 we detail the basics of our algorithm, which takes as input an arbitrary repeater
chain configuration, and returns a collection of heuristically optimised schemes which generate
entanglement between two specified nodes, i.e. the schemes have an optimal trade-off between
the fidelity and generation time (over the set of considered schemes). This section also contains
the heuristics we use to reduce the search space/complexity of the algorithm in Section 4.2.4 (with
further details in Appendices 4.6.1 and 4.6.3 regarding the complexity/runtime) and closes with
the pseudocode of our algorithm in Section 4.2.4.3. Section 4.3 contains an overview of how we
model the three experimental platforms considered in this chapter, namely information process-
ing (Section 4.3.1) implementations, multiplexed (Section 4.3.2) implementations, and a combi-
nation of the two (Section 4.3.3). We then use the algorithm to heuristically optimise over repeater
schemes for each of the implementations for several different scenarios in Section 4.4. We close
with a discussion of the results and the algorithm in Section 4.5.
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Figure 4.1: Elementary pair generation (EPG) be-
tween adjacent nodes QRi and QRi+1. The
schemes take a number of rounds r = r∗, even
if entanglement is generated at an earlier round.
See main text for further details.
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Figure 4.2: Entanglement swapping between two
entangled pairs between (multi-hop) links (QRi ,
QR j ) and (QR j , QRk ), indicated by a circle node.
By performing a Bell state measurement on the
two local states at QR j , the two entangled states
turn into one entangled state between (QRi ,
QRk ). The schemes take a number of rounds
r = r∗ even if the scheme succeeds at an ear-
lier round, see main text for further details. Note
that the distances over which the entanglement
has been generated for the (multi-hop) links (QRi ,
QR j ) and (QR j , QRk ) need not be the same.
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4.2. ALGORITHM DESCRIPTION
In this section we first explain the general structure of quantum repeater schemes (Section 4.2.1).
We then focus on the construction of so-called near-deterministic schemes (Section 4.2.2). After-
wards, we first detail a non-scalable brute-force algorithm for optimising over such near-deterministic
schemes (Section 4.2.3), after which we provide a feasible algorithm by implementing certain
heuristics into the brute-force algorithm (Section 4.2.4). Appendices 4.6.1 and 4.6.3 contain a
more explicit discussion regarding the complexity/runtime with and without the heuristics im-
plemented.

4.2.1. STRUCTURE OF QUANTUM REPEATER SCHEMES
The goal of a quantum repeater scheme is to distribute an entangled state between two remote
parties Alice and Bob. Quantum repeater schemes are built up from smaller schemes. Schemes
are constructed by performing connection and distillation protocols on pairs of smaller schemes.

Connection protocols extend the range over which entanglement exists. This can be done
by elementary pair generation and entanglement swapping. Elementary pair generation (EPG)
creates entanglement over elementary links, see Fig. 4.1. Entanglement swapping transforms two
entangled states over two shorter (multi-hop) links to an entangled state over a longer multi-hop
link using a Bell state measurement, see Fig. 4.2.

Distillation protocols allow to (possibly probabilistically) convert two entangled states to a sin-
gle, more entangled state using only local operations and classical communication [11, 41]. There
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Figure 4.3: Example of a generic entangle-
ment distillation protocol, transforming (possi-
bly probabilistically) two entangled states to a
single, more entangled state between nodes QRi
and QR j , using only local operations and classi-
cal communication. Distillation is indicated by
a square node. The schemes take a number of
rounds r = r∗ even if distillation succeeds at an
earlier round, see main text for further details.
Note that QRi and QR j do not have to be directly
connected by a fibre.

exist more complicated protocols, where an arbitrary number of entangled states are converted to
a smaller number of entangled states [39, 69]. Here, we only consider distillation protocols taking
two states to a single one 1. See Fig. 4.3 for an illustration of a distillation protocol.

4.2.2. NEAR-DETERMINISTIC SCHEMES
Entanglement generation schemes should preferably minimise the average generation time for a
given fidelity F . However, the generation and distribution of entanglement is typically a stochastic
process, greatly complicating the optimisation over such schemes. Here, we simplify the prob-
lem by demanding that every step of the entanglement generation scheme is near-deterministic.
This requirement can be enforced even when some of the processes are not deterministic, such
as elementary pair generation or Bell swaps. The probability of having at least a single success
can be increased by repeating the whole scheme up until that point for multiple attempts 2. Near-
deterministic schemes deliver a state with high probability at a specific time T , and it is this gen-
eration time T that we use as our metric in this work 3.

Let us exemplify this idea through a process for elementary pair generation (EPG). This process
might have a very small probability p to succeed in a single attempt, which takes a time Tattempt
to perform. The probability of having at least a single success after r attempts, is

psingle success = 1− (1−p)r . (4.1)

Thus, the probability of having at least one success can be increased to no less than pmin by trying

for r =
⌈

log(1−pmin)
log(1−p)

⌉
attempts. We now consider protocols where the state is stored until a total

time r ·Tattempt has passed, even if a success occurs before r attempts have passed. This ensures
that a state can be delivered near-deterministically (i.e. with probability at least pmin) at a pre-
specified time T = r ·Tattempt. However, it comes at the cost of increased decoherence, since the
state might have to be stored for a longer time (see [147] for a related concept).

Consider now the success probability of distillation protocols and (optical) Bell state mea-
surements. Both protocols require the two states to be present, which holds with probability
equal to the product of the probabilities of the two individual schemes having succeeded for near-
deterministic schemes. Furthermore, distilling and swapping typically have a non-zero failure

1As discussed later, we actually do consider distillation protocols taking three or more states to a single one,
but these are composed of several distillation protocols taking two states to a single one.

2Or, in the case of MP platforms, the probability of having a single success for elementary link generation can
be increased by having more modes.

3Since the success of a scheme follows a geometric distribution, the average generation time can be computed
from the success probability and the generation time of one attempt.
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Figure 4.4: Schematic description of how near-
deterministic schemes are constructed from the
protocols shown in Figs. 4.1, 4.2 and 4.3. Here en-
tanglement is generated between the nodes A and
B, using an intermediate node labelled by QR. The
overall structure is that of a binary tree (modulo
the leaves indicating elementary pair generation,
indicated by EPG), since swapping and distillation
is always performed between exactly two schemes.
Each sub-tree is required to succeed with probabil-
ity at least pmin, which can be enforced by repeat-
ing the whole sub-tree for a number of attempts r .
Here, the specific number of attempts is indicated
by rb , b ∈ {1,2,3,4,5}. The circular nodes indicate
either elementary pair generation or swapping, and
the square nodes indicate distillation.
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probability, potentially decreasing the success probability even further. However, we can use the
same strategy used previously to increase the total success probability. That is, by repeating the
whole scheme up to that point, it is possible to increase the success probability to at least the
threshold pmin. Let us consider this concept for the example of a swap operation between two el-
ementary pairs. The total success probability can now be increased by repeating the whole process
of generating both elementary pairs and performing the swap operation.

This concept can be extended to more complex repeater schemes, ensuring that each step in
the repeater scheme succeeds with high probability. A repeater scheme can thus be constructed
by combining protocols from the ground up, where the average state, generation time T , and suc-
cess probability p of each scheme are only a function of the number of attempted rounds r , the
protocol used, the parameters of the repeater chain, and the used schemes. We show an example
of how such schemes can be constructed in Fig. 4.4.

We note here that such near-deterministic schemes require us to keep states stored for some
time, even if the underlying process has already succeeded, similar to the approaches in [72, 147].
This evidently comes at the cost of increased storage times, and thus a greater amount of aver-
age decoherence. Near-deterministic schemes also have benefits, however. Firstly, with near-
deterministic schemes it is possible to make the variance of the resultant probability distributions
arbitrary small by increasing pmin. Thus, near-deterministic protocols are able to deliver entan-
glement at a pre-specified time with high probability, which may be important for quantum infor-
mation protocols consisting of multiple steps [72], such as entanglement routing [123, 149]. Sec-
ondly, it is possible to calculate exactly the generation times and fidelities of near-deterministic
schemes with relative ease (see for example Appendix 4.6.4), allowing for the optimisation over
such schemes.

Let us now compare near-deterministic schemes with two similar frameworks considered in [77]
and [147]. Both near-deterministic schemes and the schemes considered in [77] take as building
blocks a similar set of probabilistic protocols. In [77] however, the protocols are freely combined
which makes challenging to estimate the average time they take to generate entanglement. This
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problem is sidestepped in [77] by heuristically assuming that all protocols take average time. In
contrast, in our framework, we combine protocols in blocks that have high success probability
and take a fixed amount of time. This reduces the class of schemes but allows us to estimate ex-
actly the generation time and the fidelity of the state generated.

The framework from [147] considers combining schemes in a similar fashion as done in this
work, but from a more analytical perspective. That is, at each ‘nesting level’ there is a maximum
number of time in which attempts can be made, after which a state is only made available at exactly
this time. The optimisation performed there is only over a limited set of schemes. Namely, distil-
lation is not considered, and swapping only occurs between schemes that have been generated in
the same way. In particular, the optimisation from [147] can only be performed for repeater chains
where the number of elementary links is given by a power of two, and all nodes/fibres share the
same experimental parameters. Furthermore, the only noise present was assumed to be dephas-
ing noise. On the other hand, the optimisation in [147] was not restricted to near-deterministic
schemes.

4.2.3. BRUTE-FORCE ALGORITHM
We now introduce a brute-force algorithm to optimise entanglement distribution over the set of
near-deterministic schemes between two distant nodes Alice and Bob. The algorithm takes as
input the experimental parameters of the nodes and connecting fibres, the distances between ad-
jacent nodes, a set of protocols for elementary pair generation, swapping and distillation, a min-
imum success probability and a limit on the maximum number of attempts and the maximum
number of distillation rounds. The output consists of a data structure containing the schemes that
minimise generation time parametrised by success probability and fidelity.

The brute-force algorithm generates and stores every possible scheme that can be created
from the input conditions. Then for each achieved fidelity, it walks over the stored schemes to
find the scheme minimising the generation time achieving at least that fidelity. In the following we
sketch only the first part, as this is enough to argue that such an approach is non-scalable.

First, the algorithm takes the set E of protocols for elementary pair generation, together with
the different number of attempts considered (of which there are at most rdiscr), and explores all
possible combinations of elementary pair generation protocols and number of attempts for each
elementary link. Each of these combinations is stored if the success probability is larger than a
specified pmin.

Next, the algorithm takes the set of distillation protocols D and a maximum number of dis-
tillation rounds m. For each elementary link, the algorithm loops over the number of distillation
rounds: 1, . . . ,m. For each number of rounds, the algorithm explores all combinations of pairs
of schemes, number of attempts and distillation protocols and stores the resulting scheme if the
success probability is larger than pmin.

The algorithm then proceeds iteratively over multi-hop links of length i ∈ {2,3, . . . ,n}, where n
is the total number of elementary links between the target nodes. Each iteration is divided into a
swapping and a distillation step.

In the swapping step the algorithm considers all adjacent (multi-hop) links of lengths i1, i2
such that i1 + i2 = i . For each valid pair of adjacent links and for each pair of schemes stored over
the adjacent links, the algorithm explores all combinations of number of attempts and protocols
in the set of swapping protocols S . It stores a resulting scheme if the success probability is larger
than pmin.

In the distillation step, the algorithm proceeds analogously to the description above for dis-
tillation over elementary links. The output of the brute-force algorithm is then a collection of
schemes. Each of these schemes is built up from smaller schemes, similar to the scheme shown in
Fig. 4.4.
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While the approach just described might work for a very small chain, the number of schemes
grows too quickly. In particular, the number of schemes to consider in the brute-force approach is
lower bounded by

O
(((

rdiscr
)2 · |E | · |S |

)n)
(4.2)

when distillation protocols are not considered and by

O
((

rdiscr · |E | · |S | · |D|)2m·n )
(4.3)

when distillation is considered. Here n is the number of elementary links, |E | is the number of
ways elementary pairs can be generated (due to for example varying a parameter over some set of
values), |S | the number of swapping protocols, |D| the number of distillation protocols, rdiscr the
different number of attempts considered, and m the number of distillation rounds (see Appendix
4.6.1).

4.2.4. A HEURISTIC ALGORITHM
Now we introduce an efficient heuristic optimisation algorithm. The heuristic algorithm takes as
starting point the brute-force algorithm presented before and incorporates a number of modifica-
tions that reduce the search space, thus overcoming the fast-growing complexity of the brute-force
algorithm. We divide the modifications into heuristics for the pruning of schemes and heuristics
for good schemes and detail them in the following. In the following we first discuss the mod-
ifications to the brute-force algorithm before presenting the pseudocode of the algorithm and
analysing its complexity.

HEURISTICS FOR THE PRUNING OF SCHEMES

The brute-force algorithm explores a grid of parameters at each step and stores all schemes with
success probability above pmin independently of their quality. Instead, we can identify schemes
that either are unlikely to combine into good schemes at subsequent steps or are very similar to
existing schemes and not store them.

A first strategy is to only store schemes that deliver a state with fidelity above the threshold
Fthreshold ≥ 1

2 .
A second strategy is to coarse-grain the fidelity and success probabilities. For this, the algo-

rithm rounds the fidelity F and success probability p of each scheme to F̃ and p̃, the closest val-
ues in the sets

[
Fthreshold, Fthreshold +εF , Fthreshold +2εF , . . . , 1

]
and [pmin, pmin + εp , pmin +

2εp , . . . , pmax] (see Appendix 4.6.3).
If no scheme with the same F̃ and p̃ exists, the scheme is stored. Otherwise, we compare the

two generation times of the two schemes. If the old scheme has a lower generation time, the new
scheme is not stored. Otherwise, the new scheme replaces the old one. We note here that the
actual values of F and p are stored, and not the values F̃ and p̃.

The third strategy consists in pruning sub-optimal protocols after having considered all pro-
tocols over a given (multi-hop) link. A scheme is sub-optimal if there exists another scheme over
that same (multi-hop) link with the same p̃ and has a lower generation time but equal or higher
fidelity. We detail the implementation of the above pruning heuristics in Algorithm 3.

HEURISTICS FOR GOOD SCHEMES

Pruning reduces the amount of sub-optimal schemes that are kept stored. This prevents those
schemes from being combined with other schemes, reducing the algorithm runtime. However,
it would be preferable if those schemes would not even be considered in the first place. For this
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reason, we use heuristics on what schemes to consider. The heuristics that we use are banded
distillation, banded swapping, and the bisection heuristic, which we will detail in what follows.

Many distillation protocols acting on two states yield states of fidelity larger than the input
states only when the input states have fidelities that are relatively close to each other [47]. This
motivates restricting distillation to states that have fidelities F1 and F2 separated at most by some
threshold εdistill,

|F1 −F2| ≤ εdistill . (4.4)

This heuristic, first considered in [166] is called banded distillation.
Inspired by banded distillation we introduce a similar heuristic for entanglement swapping

that we dub banded swapping. A naive extension of banded distillation to swapping would be to
require that the absolute difference of the fidelities of the two swapped states be small. How-
ever, by investigating the heuristically optimised schemes, our numerical exploration (see Ap-
pendix 4.6.3) suggests that the number of nodes over which the entanglement is generated also
plays a role. In particular, we find that it is sufficient to restrict swapping to states that satisfy,

|i1 − i2| ≤ 2log(i1 + i2 −1), (4.5)

and ∣∣∣∣ log(F1)

i1
− log(F2)

i2

∣∣∣∣≤ εswap (4.6)

where εswap controls the granularity of the heuristic, F1, F2 are the fidelities of the two states,
and i1, i2 is the number of elementary links over which the entanglement was generated, e.g. the
number of elementary links between QRi -QR j and QR j -QRk in Fig. 4.2, respectively. We note that
the first condition was already present in [77].

The third heuristic - which we call the bisection heuristic - is inspired by the BDCZ scheme [20].
Similarly to the BDCZ scheme, it applies to symmetric repeater chains. That is, repeater chains
where all nodes have the same parameters and are connected by identical elementary links. How-
ever, unlike the BDCZ scheme which is only applicable if the number of elementary links is equal
to a power of two, the bisection heuristic is applicable independent of the number of elementary
links.

The heuristic works as follows. Factorisation allows us to write the total number of elemen-
tary links as n = 2 j ·h, where j is the number of times n is divisible by 2, and h is the odd part of
n. First, an optimisation is performed over a link of length h. From then on, similar to the BDCZ
scheme, swapping only occurs between entanglement that has been generated over a total num-
ber of elementary links equal to a multiple of h. This heuristic has the possibility of dramatically
reducing the algorithm runtime for certain values of n. However, for odd n this heuristic provides
no speedup.

PSEUDOCODE OF THE HEURISTIC ALGORITHM

We now present the pseudocode of the heuristic algorithm. The general algorithm is described in
Algorithm 4, while the subroutines for storing the schemes and for the pruning heuristic are given
in Algorithm 2 and Algorithm 3.

The algorithm takes as input an additional number of parameters on top of the parameters
already discussed for the brute-force algorithm. These parameters regard the heuristics and were
described in the previous section. These parameters are εF , εp (the discretisation used for the
pruning of schemes for the fidelity and success probability, respectively), Fthreshold and pmax (the
minimum values required to consider a scheme for the fidelity and success probability, respec-
tively). A software implementation requires also a number of experimental parameters for char-
acterising the hardware and estimating the output of each scheme, however we leave the explicit
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description of the hardware parameters out of the pseudocode. For details of the actual imple-
mentation, please refer to the repository [58].

Algorithm 2: STORESCHEME, subroutine for storage of the schemes. Here, ‘link’
refers to either an elementary or multi-hop link.

Input: scheme, store, pmin, Fthreshold, link, εF , εp , T
Output: store with scheme possibly added

1 F ← fidelity stored in scheme ;
2 p ← probability stored in scheme ;
3 nεp ← argminn∈N s.t. p < pmin +n ·εp ;

4 nεF ← argminn∈N s.t. F < Fthreshold +n ·εF ;
5 if F ≥ Fthreshold then
6 if store[link][nεp ][nεF ] already exists then
7 T ′ ← generation time of store[link][nεp ][nεF ];

8 if T<T’ then
9 store[link][nεp ][nεF ] ← scheme

10 end if
11 else
12 store[link][nεp ][nεF ] ← scheme

13 end if
14 end if
15 return store

COMPLEXITY AND RUNTIME OF THE HEURISTIC ALGORITHM

As we show in Appendix 4.6.1, the heuristics allow us to go from a number of considered schemes
that grows super-exponentially in the number of elementary links, to a number of schemes that is
upper bounded by

O

(
2 · rdiscr

( (
1−Fthreshold

)(
1−pmin

)
εF εp

)2

n2 log(n)

)
, (4.7)

implying that the number of considered schemes is now only on the order of n2 log(n), as opposed
to super-exponential in n. Here rdiscr is the maximum number of values allowed for the number
of attempts r , Fthreshold the minimum fidelity we allow a scheme to have, pmin the minimum
accepted success probability, εF , εp , are the discretisation used for the coarse-graining and n the
number of elementary links. Furthermore, in the case of a symmetric repeater chain (i.e. every
node has the same parameters and the nodes are equidistant), the optimisation can be further
simplified. As we show in Appendix 4.6.1, the number of schemes to consider in the symmetric
case is upper bounded by

O

(
rdiscr

( (
1−Fthreshold

)(
1−pmin

)
εF εp

)2

n log(n)

)
. (4.8)



4.2. ALGORITHM DESCRIPTION

4

89

Algorithm 3: PRUNE, prunes the sub-optimal schemes stored for a given link.
Here, ‘link’ refers to either an elementary or multi-hop link.

Input: store, pmin, link, εp

Output: store with sub-optimal schemes over link pruned

1 for n ≥ 0 s.t. pmin +n ·εp ≤ 1 do
2 orderedSchemes ← store[link][n], ordered by fidelity from high to low;
3 N ← size of orderedSchemes;
4 maxTime ← generation time of orderedSchemes[0];
5 for i ← 1, . . . , N do
6 if maxTime ≤ generation time of orderedSchemes[i] then
7 Remove orderedSchemes[i ] from store[link][n]
8 else
9 maxTime ← generation time of orderedSchemes[i ]

10 end if
11 end for
12 end for
13 return store

In practice, we find that our algorithm runtime ranges from approximately 100 seconds to ap-
proximately 100 minutes, when considering 1 and 35 intermediate nodes for a symmetric repeater
chain, respectively. We investigate the effects of the heuristics on the algorithm runtime in more
detail in Appendix 4.6.3, where we perform an experimental analysis of the algorithm runtime and
its ‘accuracy’ when varying εF , εp , εswap, and εdistill. We use these results to settle on the values
for εF , εp , εswap, and εdistill. We only investigate the bisection heuristic when going to a larger
number of nodes in Section 4.4.3.
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Algorithm 4: Heuristic optimisation over near-deterministic schemes for a repeater chain of n ele-
mentary links. Here, ‘link’ refers to either an elementary or multi-hop link.

Input: n : number of elementary links n in repeater chain
εF ,εp : coarse-graining parameters for the fidelity and probability
εdistill,εswap : parameters for the heuristics for distillation and swapping
m : maximum number of distillation rounds
pmin, pmax : minimum and maximum scheme success probabilities
rdiscr : number of different attempt values
Fthreshold : minimum fidelity for schemes to be stored
E ,S ,D: sets of protocols for elementary pair generation, swapping and distillation
Li , i ∈ [1,n]: set of links of length i

Output: store: a data structure containing entanglement generation schemes with the minimum generation time
parametrised by the link, coarse grained success probability and coarse grained fidelity.

1 Initialise store
2 for i ← 1 to n do
3 for link in Li do
4 if i = 1 then
5 // Loop over elementary pair generation protocols
6 for EPGProtocol in E do
7 for r such that (4.1) or (4.24) (IP/MP platforms, resp.) is between pmin and pmax in rdiscr steps do
8 scheme ← EPGProtocol(r, link,n)
9 store ← STORESCHEME(scheme, store, pmin,Fthreshold, link, εF , εp )

10 end for
11 end for
12 else
13 // Loop over all schemes satisfying the swapping heuristic and over all swapping

protocols
14 for every link1 and link2 such that entanglement can be created over link by swapping between those

links do
15 for every pair (s1, s2) of stored schemes in store[link1] and store[link2] satisfying (4.5) and (4.6) do
16 for swapProtocol in S do
17 for r such that (4.1) or (4.24) (IP/MP platforms, resp.) is between pmin and pmax in rdiscr

steps do
18 scheme ← swapProtocol(s1, s2,r, link,n)
19 store ← STORESCHEME(scheme, store, pmin, Fthreshold, link, εF , εp )

20 end for
21 end for
22 end for
23 end for
24 end if
25 for j ← 1 to m do
26 // Loop over all schemes satisfying the distillation heuristic and over all

distillation protocols
27 for every pair (s1, s2) of stored schemes in store[link] and satisfying (4.4) do
28 for distillationProtocol in D do
29 for r such that (4.1) or (4.24) (IP/MP platforms, resp.) is between pmin and pmax in rdiscr steps

do
30 scheme ← distillationProtocol(s1, s2,r, link,n)
31 store ← STORESCHEME(scheme, store, pmin, Fthreshold, link, εF , εp )

32 end for
33 end for
34 end for
35 end for
36 store ← PRUNE(store, pmin, Fthreshold, link, εp )

37 end for
38 end for
39 return store
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Figure 4.5: An example of an elementary link implemented with an information processing platform. The two
nodes are connected by a fibre with a beamsplitter in the middle and two detectors. For the case considered
in this figure, the two nodes are nitrogen-vacancy centres in diamond. For both protocols, the two nodes both
send one-half of an entangled state to the middle, which after interference and successful detection leads to a
shared state between the two nodes. Figure taken with permission from [143].

4.3. PLATFORM MODELS
The algorithm discussed is independent of the underlying physical implementation, and can thus
be applied to several experimental platforms. We use our algorithm to study three different types
of platforms encapsulating a large range of technologies. The three platforms share the capability
to store quantum information but differ in their quantum information processing capabilities. We
call these platforms: information processing platforms, multiplexed elementary pair generation
platforms, and combined platforms. Information processing platforms have the ability to perform
operations on the stored qubits, but are currently limited to a small number of qubits. Multiplexed
elementary pair generation platforms, on the other hand, lack the ability to perform operations on
stored states, but can generate and store a potentially very large number of different states simul-
taneously. Obviously, these platforms differ greatly, but both approaches have complementary
qualities for long-distance entanglement generation. This motivates us to also compare a combi-
nation of the two. That is, a setup where the elementary pairs are generated with an MP platform,
but swapping and distillation are performed by an IP platform.

In the rest of the section, we discuss the basics of each of the implementations and the mod-
elling of the underlying processes.

4.3.1. QUANTUM REPEATERS BASED ON INFORMATION PROCESSING PLAT-
FORMS

We call information processing (IP) platforms those that have the capability to perform gates on
the stored states, thus enabling entanglement distillation. The number of quantum states that can
be stored and processed is presently limited. Experimental information processing platforms that
have demonstrated excellent control over storage qubits include NV centres in diamond [1, 35, 65,
66, 72, 83, 163], neutral atoms [151, 174], non-NV color centres in diamond [116, 117], quantum
dots [22, 27, 70], and trapped ions [15, 73, 109].

In this work we consider two protocols for the generation of elementary pairs for information
processing platforms. These protocols are the single-click- [23, 98, 143] and double-click proto-
col [7]. We give an example based on nitrogen-vacancy centres in diamond in Fig. 4.5. We stress
that this is just one example of an information processing platform, and that our algorithm can be
applied to other platforms.

The setup for both the single-click and the double-click protocols consists of two nodes with
at least one memory qubit. The two nodes are connected via an optical channel to an intermediate
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beamsplitter station with a detector at each of the output ports (see Fig. 4.5).

Let us now detail first the single-click protocol. The qubits at the nodes are prepared in a
superposition of the ground state (|↓〉) and the first excited state (|↑〉): sin(θ) |↓〉+cos(θ) |↑〉. Upon
receiving an appropriate excitation signal, the memory emits a photon (|1〉) if it is in the excited
state, and no photon (|0〉) otherwise. Since the memory qubit is in a superposition, this results in a
memory-photon entangled state sin(θ) |↓〉 |0〉+cos(θ) |↑〉 |1〉. The two photons are then directed to
and interfered on the intermediate beamsplitter. One experimental complication here is that the
phase picked up by the photons as they travel through the fibre is unknown unless the fibres are
stabilised. However, if this is the case, upon the detection of a single photon (single-click) at the
beamsplitter station, the creation of an entangled pair can be heralded to the two nodes.

The double-click protocol on the other hand does not rely on phase-stabilisation. For the
double-click protocol, each node prepares a qubit in a uniform superposition of the ground and
first excited state [7]. By applying specific pulses to the qubits, a photon will be coherently emit-
ted in the early or late time-bin, depending on the state of the qubit at the node. The photons
are then interfered at the beamsplitter station. The entanglement between the two qubits is her-
alded to the two nodes upon the detection of two consecutive clicks at the beamsplitter station.
While the double-click protocol does not require phase-stabilisation, it has a lower success rate in
comparison to the single-click protocol for experimentally relevant distances.

The parameter θ is tuneable, which allows for a trade-off between the success probability and
the fidelity of the heralded state for the single-click protocol [24, 83, 143]. For the double-click
protocol there is no such trade-off however.

For the single-click protocol we use the error model from [143]. For the double-click protocol
we use the error model from [7].

Entanglement distillation across two separated matter qubits has been achieved with an NV-
centre setup [83], where a specific entanglement distillation protocol [24] was implemented. This
distillation protocol is optimal when the involved states are correlated in a particular manner [141].
In general however, the states that we consider are not of this form. For this reason, we will con-
sider here only the DEJMPS protocol [41], which was originally designed to work well for maxi-
mally entangled states with depolarising noise. In this protocol, we first apply a local rotation on
each of the qubits, then two local CNOT operations, and measure the targets of the CNOT opera-
tions in the computational basis. We deem the distillation to be a success when the measurement
outcomes are equal.

We now sketch the underlying abstract error models and the various experimental parameters.

State preparation for the generation of elementary pairs takes some time tprep, performing the
gates for distillation takes time tdistill, and performing a Bell state measurement takes time tswap.
State preparation is also imperfect, which we model as dephasing with parameter Fprep. States
stored in the memories for a time t are subject to decoherence. We model this decoherence as
joint depolarising and dephasing noise, see Appendix 4.6.4 for details on the decoherence model.

The fibre has a refractive index of nri and an attenuation length L0. The attenuation length
is defined such that η = e−L/L0 , where η is the transmissivity and L the length of the fibre. There
are three other sources of photon loss that we model, similar to Chapters 2 and 3. The probabil-
ity of successfully emitting a photon pem, the probability of emitting a photon with the correct
frequency and it not being filtered out (conditioned on having emitted the photon) ppps and the
probability of the detector successfully clicking when a photon is incident pdet.

Applying gates induces noise on the states. Performing a Bell state measurement induces de-
polarising and dephasing with parameters λBSM, depol and λBSM, deph, respectively. Performing
the CNOT operations for distillation also leads to depolarising and dephasing with parameters
λCNOT, depol and λCNOT, deph, respectively. Furthermore, we model measurement errors by apply-
ing depolarising noise with parameter λmeas. depol. before measuring a state. Finally, the uncer-
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Figure 4.6: Schematic description of an MP implemen-
tation. Top: The total distance L is split into N elemen-
tary links, each with a spectrally-resolving BSM (indi-
cated by νRBSM) in the middle, and with two nodes
(each indicated by REP) at the end point of the el-
ementary links. Middle: Zoom in of a node. Each
node contains two PDC sources of multiplexed bipar-
tite entanglement, two quantum memories (indicated
by QM) and a number-resolving Bell state measure-
ment station (indicated by NRBSM). Bottom: Detailed
view of QM and NRBSM. Each quantum memory not
only stores (in the unit indicated by τ), but can also
perform a frequency-shift (in a unit indicated by ∆ν)
and a frequency filter (indicated by the unit ν0), while
each NRBSM contains a beamsplitter and two single-
photon detectors, which performs a Bell state measure-
ment on the frequency-shifted photons. Illustration
taken with permission from [90].

tainty in the phase stabilisation ∆φ induces dephasing in the state preparation for the single-click
protocol (see [143]).

4.3.2. QUANTUM REPEATERS BASED ON MULTIPLEXED ELEMENTARY PAIR

GENERATION PLATFORMS
Multiplexed elementary pair generation (MP) platforms are a promising candidate for quantum
repeater implementations [31, 90, 104, 146]. Such implementations generate elementary pairs
with a potentially large number of modes at the same time. While multiplexed elementary pair
generation platforms lack the ability to perform gates on the states stored in the memories, they
have the potential to process a large number of states simultaneously, which can dramatically
increase the probability at which elementary pairs can be generated. Here we discuss the ba-
sics of a model for the quantum repeater scheme proposed in [90] (see Appendix 4.6.5). This
repeater scheme uses photon-number and spectrally resolving detectors, frequency-multiplexed
multimode memories, and parametric down conversion (PDC) sources.

An elementary link consists of two PDC sources, each located at one of the two nodes. The
PDC sources emit entangled states for a large set of frequencies. One half of each entangled state
is sent towards a jointly collocated quantum memory, which can store a large number of modes
simultaneously. The other half is sent to an intermediate station between the two nodes, where it
interferes on a spectrally-resolving beamsplitter with the corresponding state sent from an adja-
cent node. If at least one successful click pattern is detected at the output of the beamsplitter, the
information of the corresponding mode is sent to the nodes. The information is used to filter out
the other modes, after which frequency conversion is performed to a predetermined frequency at
each of the nodes. The frequency conversion to a predetermined frequency ensures that at each
node the successful modes from the two adjacent links can interfere at a local beamsplitter sta-
tion. Photon-number resolving detectors are collocated at the output of the local beamsplitter to
identify and discard multiphoton events. A schematic description can be found in Fig. 4.6.

Let us now investigate the parameters underlying the scheme we have just described. Con-
sider a PDC source emitting entangled states with time-bin encoding. An ideal source would emit
states of the form 1p

2
(|10,01〉+ |01,10〉), where the notation |nm,mn〉 indicates n/m photons in

the ‘early/late’ bin in one half of the state and m/n photons in the ‘early/late’ bin in the other
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half. However, realistic PDC sources include additional terms. The resulting state can be approxi-
mated [90] by a state of the form

|ψNs 〉 =
p

p0 |00,00〉+
√

p1

2
(|10,01〉+ |01,10〉)

+
√

p2

3
(|20,02〉− |11,11〉+ |02,20〉) , (4.9)

with

p0 = 1

(Ns +1)2
,

p1 = 2Ns

(Ns +1)3
,

p2 = 1−p0 −p1 . (4.10)

Here Ns is the mean photon number present in the state and is a tuneable parameter. Increasing
the mean photon number Ns increases the probability of detecting two clicks at the middle station
(as can be seen from the decrease in the parameter p0), while at the same time lowering the fidelity
of the state conditioned on detecting two clicks.

Note that (4.10) is a truncated version of the state derived in [86], i.e. all the higher order terms
are included in p2. As described in [90], the multiphoton components limit the ability to generate
entanglement without the use of photon-number resolving detectors.

The number of modes Nmodes increases the success probability of elementary pair generation.
If the success probability of the creation of a single elementary pair is given by pel, the success
probability of generating at least one elementary pair is given by 1− (1−pel)

Nmodes . Thus, Nmodes

should be on the order of 1
pel

, since limpel→0 1 − (1 − pel)
α

pel = 1 − e−α. Finally, while a purely
deterministic Bell state measurement is impossible using only linear optics [100, 164], there are
theoretical workarounds to increase the success probability [50, 62, 91–93, 120, 178]. We consider
the approach introduced in [62], where the success probability of the Bell state measurement can
be increased to 1− 1

2N+1 by using 2N+1 −2 ancillary photons.
We assume the states can be retrieved from the memories on-demand. On-demand retrieval

is necessary for our algorithm to work, since the storage times are not fixed. This is due to the un-
certainty in which attempt entanglement will be generated. On-demand retrieval can be achieved
with rare-earth ion ensembles by, for example, switching coherence from electronic levels to spin
levels, as done in [68, 161]. Besides allowing for on-demand recall, this also has the added benefit
of increased memory life-time [145].

We consider the same type of noise for operations as we did for information processing plat-
forms. This means that measurements have an associated amount of depolarising and dephasing.
Finally, ‘decoherence’ over time for the memory manifests as an exponential decay in the output
efficiency of the memory, not in a reduction of the fidelity of the state [2, 145]. Thus, the longer a
state is stored, the smaller the probability it can be retrieved for measuring or further processing.

4.3.3. COMBINING THE TWO SETUPS
An information processing implementation has the benefit of long coherence times and control
over the memory qubits, which allows for distillation. On the other hand, multiplexed elementary
pair generation platforms do not support distillation, but have the benefit of emitting and storing
a large number of modes, increasing the success probability of the elementary pair generation
significantly. Optimistically, one could imagine a futuristic setup which combines the strengths of
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the two setups. That is, elementary pair generation is performed by a multiplexed elementary pair
generation platform, after which the successfully generated pairs are frequency-converted into a
frequency that can be stored in an information processing platform. The state is then stored in
a memory, which can be done using, for example, a reflection-based heralded transfer [82, 115].
For simplicity, we assume that the transfer and frequency conversion do not introduce any further
noise or losses.

4.4. RESULTS
In this section, we study information processing platforms, multiplexed elementary pair genera-
tion platforms and the combination thereof with the algorithm that we introduced in Section 4.3.
In order to compare different optimisation results, we have chosen four sets of parameters for both
platforms. With these sets, we first investigate the performance of information processing plat-
forms for short (≈ 15-50 km), intermediate (50-200 km) and large (i.e. ≈ 200-800 km) distances. We
then perform a similar investigation for multiplexed elementary pair generation platforms, after
which we investigate the combination of the two. In order to get an understanding of the neces-
sary parameters to generate remote entanglement with each platform or combination, the four
sets of parameters for each platform are strictly ordered, with set 4 having the best parameters.
We begin each three of the investigations with a specification of the input to our algorithm, which
consists of the used elementary pair generation, swapping and distillation protocols, experimental
parameters and the parameters specific to the algorithm discussed previously.

In order to investigate longer repeater chains, we consider only symmetric repeater chains (see
Section 4.2.4) in this section unless specified otherwise.

4.4.1. SCHEME OPTIMISATION RESULTS FOR IP PLATFORMS
In the following we discuss the heuristic optimisation results for information processing platforms.
Let us first briefly discuss the protocols that we include in the optimisation.

We consider two protocols for elementary pair generation: the single- and double-click pro-
tocol, see Section 4.3.1. The single-click protocol has an additional parameter θ, which modulates
the weight of the zero and one photon component [143]. We optimise over all single-click proto-
cols with θ taking values between 1

2 and π, equally spaced in 300 steps, thus |E || = 301.
Both for swapping and distillation we consider a single protocol, i.e. |S | = |D| = 1. For swap-

ping we perform a deterministic Bell state measurement on matter qubits while for distillation
we implement the DEJMPS protocol. For swapping and distillation, we optimise over all pairs of
schemes that satisfy the banded swapping and distillation heuristics, see Section 4.2.4.

For all of the schemes, r ranges from rmin to rmax in (at most) rdiscr = 200 steps, where rmin
and rmax are chosen such that the success probabilities are at least pmin and pmax, respectively.

We set εswap = εdistill = 0.05, εF = 0.01 and εp = 0.02. These parameters were settled on by
investigating the trade-off between the accuracy of the algorithm and its runtime, see Section 4.6.3
of the Appendix for a detailed analysis. We only consider m = 2 distillation rounds. Finally, we set
pmin = 0.9.

We now specify four sets of parameters for information processing platforms. We fix the pa-
rameters in Table 4.1 as a baseline common to all sets. We then choose sets of parameters for the
efficiency coherence times, efficiencies and gate fidelities, which can be found in Table 4.2.

ENTANGLEMENT GENERATION FOR SHORT DISTANCES WITH IP PLATFORMS

Small-scale experiments relevant for entanglement distribution with information processing plat-
forms have already been performed [14, 35, 65, 66, 72, 83, 135], demonstrating the potential of such
platforms for quantum networks. It is therefore of interest to understand what is within reach for
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tprep (entanglement preparation time) 6 µs [65]
Fprep (dephasing for state preparation) 0.99 [65]
DcS (dark count rate) 10 Hz [65]
L0 (attenuation length) 22 km [125]
nri (refractive index of the fibre) 1.44 [125]
∆φ (optical phase uncertainty) 14.3° [72]
Fgates, deph (dephasing for all gates) 1

Table 4.1: Base parameters used for information processing platforms.

Set 1 Set 2 Set 3 Set 4
Tdeph (dephasing with time) 3 s 10 s 50 s 100 s
Tdepol (depolarising with time) 3 s 10 s 50 s 100 s
pem (probability of emission) 0.8 0.9 0.95 0.99
pps (probability of post-selection) 0.8 0.9 0.95 0.99
Fgates (depolarisation of all gates) 0.98 0.99 0.995 0.999

Table 4.2: Four different sets of example parameters considered for information processing platforms.

information processing platforms, and what are the relevant parameters to improve. Thus, in this
section we investigate how well we can perform entanglement generation with a small number of
nodes and near-term parameters over short distances with information processing platforms. In
particular, we are interested in when the introduction of a node becomes useful. To this end, we
first consider entanglement generation over a distance of 50 kilometres with parameter set 1. We
show the results from our heuristic optimisation in Fig. 4.7, where we consider the scenarios with
no node, a single node, and two intermediate nodes. Furthermore, we plot the results where we
include only the single-click protocol, and both the single- and double-click protocol.

First off, the double-click protocol provides only a benefit for higher fidelities and for the sce-
narios with one and two intermediate nodes/three hops. This can be attributed to the fact that the
double-click protocol is inherently less noisy if there are no losses, but is more sensitive to losses
than the single-click protocol. However, this does not necessarily imply that all the elementary
pairs have been generated with the double-click protocol. As we will see in later results, we will
find schemes where elementary pairs are generated using both the single and double-click proto-
col, indicating the importance of considering such complex schemes in our optimisation.

Secondly, we observe that there is a cross-over point for F ≈ 0.7 below which adding a node
allows for a shorter generation time. Thus, implementing a quantum node over a modest dis-
tance of less than 50 kilometres, can in fact increase the generation rate by a moderate amount for
low fidelities (. 0.7). However, increasing the total distance does not shift this cross-over point,
since the maximum achieved fidelity with a single node also drops down if the parameters do not
change.

Next, we explore the impact of a single parameter in the performance of implementations ex-
pected in the longer term. To this end, in Fig. 4.8a we investigate how the minimum generation
time for several fixed target fidelities (F = 0.7,0.8,0.9) scales, when varying the gate fidelities and
coherence times and using parameter set 2. More specifically, we vary the gate fidelities from 0.98
to 1 and the coherence times Tdeph and Tdepol from 1 to 100 seconds. We perform a similar investi-
gation in Fig. 4.8b, where instead of varying the coherence times, we vary the success probabilities
of the detector successfully clicking (pdet), successfully emitting a photon from a node (pem), and
the probability of emitting a photon of the correct frequency (ppps) simultaneously from 0.8 to 1.
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Figure 4.7: Results of the achieved fidelity and generation time for a total distance of 50 kilometre using pa-
rameter set 1 (see Table 4.2) for information processing nodes, where we consider having 0 (green), 1 (purple),
or 2 (yellow) of such intermediate nodes. The solid line corresponds to a heuristic optimisation where we have
excluded the double-click protocol, and the dotted line corresponds to a heuristic optimisation with both the
single- and double-click protocol. The double-click protocol does not provide a benefit for direct transmission,
since the double-click protocol suffers more strongly from losses than the single-click protocol.

From Fig. 4.8a we observe that increasing the gate fidelities has a bigger impact on the ability
to generate entanglement than increasing the coherence times. In the bottom plot of Fig. 4.8a we
choose two points, indicated by a blue ring and a yellow diamond. The schemes corresponding
to those two points are visualised in Fig. 4.9. The non-monotonicity of the maximum generation
rate most noticeable in Fig. 4.8a is an artefact from the heuristics occasionally leading to worse
protocols, even with improved experimental parameters.

We make two observations about the algorithm from Fig. 4.9. First, the two schemes in Fig. 4.9
require swaps and distillation on states that have been created in different ways. This shows that
already for only a single node entanglement distribution benefits from combining schemes in
asymmetric fashion, even if the repeater chain itself is symmetric. Secondly, the algorithm is sen-
sitive to parameter changes. We see that a small change in the parameters allows the diamond
scheme to achieve a generation rate approximately four times as large as the ring scheme.

The trade-off between the success probability and the gate fidelities in Fig. 4.8b appears more
complex. Not surprisingly, we observe that increasing the success probabilities has the greatest
effect on the generation time and the ability to generate entangled states. In contrast to the pre-
vious scenario where only varying the gate fidelities leads to jumps in the generation time, we
do not observe a similar phenomenon when varying the success probabilities. This is due to the
fact that changing the success probabilities changes the generation time primarily by reducing
the required number of attempts. Thus, if the minimal number of attempts rmin is well approx-
imated by a continuous function r̂min(p) in p, we expect to see no jumps in the generation time

as we vary p. More formally, we say that rmin approximates r̂min well if
rmin(p)−r̂min(p)

rmin(p) ≈ 0. Since

rmin(p) =
⌈

log(1−pmin)
log(1−p)

⌉
, an obvious choice for r̂min is

log(1−pmin)
log(1−p) . Note that we then have that
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(a) Varying the coherence times (1-10s) and gate
fidelities (0.98 to 1). The blue ring and yellow
diamond indicate the schemes we investigate in
Fig. 4.9.
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(b) Varying the success probabilities (i.e. we vary
pdet = pem = pps simultaneously from 0.8 to 1)
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Figure 4.8: Maximum generation rates for several different values of the coherence times (1-10s) and gate fi-
delities (0.98 to 1) (left), and success probabilities (right) and for several different target fidelities, for a distance
of 50 kilometre and a single information processing node. Down and to the right in the plots indicate better
parameters. All the other parameters are fixed to those of set 2 (Table 4.2) or the base parameters (Table 4.1).
The target fidelities are (a) F = 0.7, (b) F = 0.8, (c) F = 0.9, respectively. We also plot the gradient, indicating the
direction and magnitude of steepest ascent.

∣∣rmin(p)− r̂min(p)
∣∣ ≤ 1 , and that for p small enough,

⌈
log(1−pmin)

log(1−p)

⌉
À 1. Since the total success

probability of establishing an elementary pair is small, we have indeed that
rmin(p)−r̂min(p)

rmin(p) ≈ 0,

explaining the lack of sudden jumps. Furthermore, we find from Fig. 4.8b (c) that, for almost all
values of success probabilities and gate fidelities, it is impossible to generate a state with a fidelity
of 0.9.
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Figure 4.9: Visualisation of
the two schemes indicated
in the bottom of Fig. 4.8a by
the blue ring (left) and the
yellow diamond (right). The
numbers indicate the num-
ber of nodes over which en-
tanglement has been estab-
lished, or elementary pair
generation (EPG) has been
performed. The ‘DC’ indi-
cates the double-click pro-
tocol, and the ‘θ = θ∗’ indi-
cates a single-click protocol
with the θ parameter set to
θ∗. The ‘r ’ here indicates
the number of rounds the
corresponding subtree is at-
tempted. Note the neces-
sity of combining disparate
schemes - in both cases the
EPG protocols used are not
the same, and the yellow
diamond scheme requires
a swap on a distilled and
undistilled pair.
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Figure 4.10: Secret-key generation using the six-state protocol, for several different values of (a) the coherence
times (1-10 s) and gate fidelities (0.98 to 1), and (b) the success probabilities (i.e. we vary pdet = pem = pps
simultaneously from 0.8 to 1) and gate fidelities (0.98 to 1) for a distance of 50 kilometre and a single interme-
diate node for information processing platforms. Down and to the right in the plots indicate better parameters.
All the other parameters are fixed to those of set 2 (Table 4.2) and the base parameters (Table 4.1). We also plot
the gradient, indicating the direction and magnitude of steepest ascent.

One of the near-term applications of a quantum repeater chain is the generation of secret-key.
This motivates investigating the rate at which secret-key can be generated per unit time for several
parameter ranges. Concretely, in Fig. 4.10 (a) and (b) we investigate the same experimental settings
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Figure 4.11: Results of the achieved fidelity and generation time for total distances of 50 (a), 100 (b), 150 (c)
and 200 (c) kilometre using parameter sets 2 (solid), 3 (dashed-dotted) and 4 (dashed) (see Table 4.2) for infor-
mation processing nodes, where we consider having 0 (green), 1 (purple), or 2 (yellow) of such intermediate
nodes.

and parameters as in Fig. 4.8a and Fig. 4.8b. Each point corresponds to the maximum achieved
secret-key per unit time generated using a six-state protocol with advantage distillation [171] for
each of the schemes in the output of our algorithm.

As in Fig. 4.8a, we find in Fig. 4.10(a) that for both increasing the generation rate or secret-key
rate, increasing the coherence times is most beneficial only up to a certain point, after which the
gate fidelities become more important. As in Fig. 4.8b, we observe in Fig. 4.10(b) that almost always
the success probabilities are more critical than the gate fidelities for increasing the secret-key rate.

INTERMEDIATE-DISTANCE ENTANGLEMENT GENERATION USING IP PLATFORMS

We expect the addition of nodes to become more beneficial as the distance over which entangle-
ment is generated increases, conditioned on the fact that the experimental parameters are suffi-
ciently high. In this section, we aim to quantify how good the experimental parameters need to be
for this to be true. This motivates us to perform the heuristic optimisation for the entanglement
generation for greater distances, and with improved parameter sets. More concretely, we inves-
tigate the achieved generation times and fidelities for intermediate distances (i.e. 50 to 200 kilo-
metre) for the different experimental parameters proposed in Table 4.2. We start with Fig. 4.11(a),
where we re-examine the scenario of Fig. 4.7 of a total distance of 50 kilometre. We now perform
the heuristic optimisation with parameter sets 2 and 3, where we consider implementing either no
or a single intermediate node. It is clear from Fig. 4.11(a) that introducing a node over a distance of
50 kilometre only improves the generation time by a modest amount for low fidelities, even with
increased parameters. If we increase the total distance to 100 kilometre, where we now also in-
clude parameter set 4, we find in Fig. 4.11(b) that a single node proves advantageous for almost
all fidelities over all three considered parameter sets. In Fig. 4.11(c) and (d) we consider greater
distances of 150 and 200 kilometre, where we also include the heuristic optimisation with two in-
termediate nodes. We observe that while having no node is clearly inferior to having at least one,
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Figure 4.12: Visual representa-
tion of the schemes with the
lowest non-trivial fidelity (a)
and highest fidelity (b), for a
distance of 200 kilometres with
information processing plat-
forms using parameter set 4
(see Table 4.2) and two in-
termediate nodes/three hops.
The numbers in the vertices
indicate the number of nodes
over which entanglement has
been established. The ‘θ = θ∗’
indicates a single-click proto-
col with the θ parameter set to
θ∗. The ‘r ’ indicates the num-
ber of rounds the correspond-
ing subtree is attempted. We
find that the second scheme
performs distillation between
two elementary pairs gener-
ated with a single- and double-
click protocol, demonstrating
the benefit of including such
distillation protocols in our op-
timisation.

introducing two nodes also outperforms a single node for most fidelities and sets of parameters for
these distances. This suggests that the values of parameter set 3 (see Table 4.2) are a relevant ob-
jective to reach for fast near-deterministic entanglement generation with information processing
platforms.

We investigate the schemes for the above scenario of 200 kilometres in Fig. 4.12, where we de-
pict the schemes that achieve the lowest (non-trivial) fidelity and the highest fidelity. Interestingly,
the scheme that achieves the highest fidelity requires that the different elementary pairs are gener-
ated both with the double- and single-click protocol. This exemplifies the need for including such
asymmetric schemes in our optimisation, which appears to become more important for higher
fidelities.

The numerical investigation until this point has been dedicated to symmetric repeater chains.
However, realistic quantum networks will be inhomogeneous and nodes will not be equally sepa-
rated. In Fig. 4.25 in Appendix 4.6.8 we show the optimisation results when considering an asym-
metric repeater chain over 200 kilometres with three intermediate nodes equally separated. The
asymmetry is thus only in the parameters used for the nodes, not the distance between them. The
parameters used are: parameter set 4 for the three intermediate nodes, and parameter set 2 for the
nodes corresponding to Alice and Bob (see Table 4.2). Such a situation can arise if the end users
have access to different technology than the network operator. In this setting, we compare the
results of a full optimisation with an optimisation over BDCZ schemes, a class of schemes similar
to the ones proposed in [20, 48]. In particular, we include under the BDCZ class schemes that only
combine identical pairs of schemes for connection and distillation. This class is different than
the one in [77] as it allows optimisation over the elementary pair generation protocols but, on the
other hand, it does not include distillation schemes based on pumping [77]. We find that the full
optimisation gives an increased generation rate of up to a factor of 10 over BDCZ schemes.
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LONG-DISTANCE ENTANGLEMENT GENERATION USING IP PLATFORMS

Generating near-deterministic entanglement over larger distances requires excellent experimen-
tal control. It is not clear how the number of nodes and the experimental parameters affect our
ability to generate entanglement. To this end, we consider here the generation of high fidelity en-
tanglement over distances of 200, 400, 600 and 800 kilometre. To gain an understanding of the
relevant parameters, we study the effects of increasing gate fidelities and the memory coherence
separately in Fig. 4.28 in Appendix 4.6.8. We observe in Fig. 4.28 that increasing the coherence
times yields a greater benefit than increasing the gate fidelities for these distances and parame-
ters. In particular, increasing the coherence times allows for the generation of entanglement over
larger distances, while increasing the gate fidelities effectively extends the ranges of fidelity over
which entanglement is generated with the same generation time. We note here that the parame-
ters pem, ppps and pdet (corresponding to the probability of emitting a photon from the memory,
emitting in the correct mode/frequency, and the probability of detecting a photon successfully,
respectively) remain fixed, which inhibits the potential benefits of including more nodes.

We have found that information processing platforms, with sufficiently high parameters are
a good candidate for near-term entanglement generation. In particular the success probabilities
are an important factor for the generation of entanglement. However, even with multiple nodes,
the maximum fidelity that can be reached is limited when attempting entanglement generation at
large distances.

4.4.2. OPTIMISATION RESULTS FOR MP PLATFORMS
Having investigated the performance of information processing platforms with regards to entan-
glement generation, we now explore entanglement generation with multiplexed elementary pair
generation platforms. Not only are we interested in how well entanglement can be generated with
a repeater chain built using a multiplexed implementation, but also in how the performance dif-
fers from information processing platforms. As explained in Section 4.1, we expect that multi-
plexed elementary pair generation platforms perform better than information processing plat-
forms for larger distances, provided the experimental parameters are high enough. Our aim for
this section is thus to investigate for which parameters and network configurations this becomes
true.

First, let us discuss the set of protocols, the algorithm parameters and the hardware parame-
ters we will consider.

We consider one protocol for elementary pair generation, one for swapping and no protocol
for distillation.

The elementary pair generation protocol (see Section 4.3.2) has one free parameter, the mean
photon number Ns . Similar to information processing platforms, we also optimise over values of
the mean-photon number by considering a range of values of Ns . In this case, the range is from

2 ·10−4 to 1
2

(√
5+ 2

p
Fthreshold(Fthreshold+3)

Fthreshold
−3

)
, in steps of 10−4. The lowest value of 2 ·10−4 was

empirically found from the simulations to be a good conservative lower bound, while the upper
bound corresponds to achieving a fidelity of the elementary pair with fidelity equal to Fthreshold
when η→ 0 4, see Eq. 4.23.

The swapping protocol is a photonic Bell state measurement with fixed efficiency depending
on the number of ancillary photons, see Table 4.4. Similar to the optimisation with information
processing platforms, to reduce the parameter space, we implement the banded swapping heuris-
tic, see 4.2.4.

4Obviously, when η→ 0 the probability of getting a successful click pattern is zero. However, here we are only
interested in the worst-case scenario/upper bound, which corresponds to detecting a successful click pattern
as η→ 0.
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We use the same algorithm parameters as with the information processing platform optimisa-
tion. For all of the schemes r ranges from rmin to rmax in (at most) rdiscr = 200 steps, where rmin
and rmax are chosen such that the success probabilities are equal to pmin and pmax, respectively.
We set εswap = εdistill = 0.05, εF = 0.01, εp = 0.02 and pmin = 0.9. We consider only symmetric
repeater chains, i.e. all the node have the same parameters and are equidistant.

Regarding the hardware parameters, the base parameters are given in Table 4.3, while the four
sets of parameters are given in Table 4.4.

tprep (entanglement preparation time) 6 µs
DcS (dark count rate) 10 per second
L0 (attenuation length) 22 km
nri (refractive index of the fibre) 1.44 [125]

Table 4.3: Base parameters used for the multiplexed elementary pair generation platforms considered in this
chapter.

Set 1 Set 2 Set 3 Set 4
Tcoh (efficiency coherence times) 10−2 s 10−1 s 100 s 101 s
Nmodes (number of modes) 104 105 106 107

p (success probabilities) 0.9 0.95 0.99 0.999
pBSM (BSM efficiency) 1

2
3
4

7
8

15
16

Table 4.4: The different sets of parameters considered for multiplexed elementary pair generation platforms in
this chapter.

ENTANGLEMENT GENERATION FOR SHORT DISTANCES WITH MP PLATFORMS

We expect that multiplexed elementary pair generation platforms provide mostly a benefit over
information processing platforms for larger distances. However, it is still of interest to investigate
the performance of multiplexed elementary pair generation platforms for shorter distances. This
is to gain an understanding of what can be done experimentally in the very near-term. Thus, as in
Section 4.4.1.1, we first explore entanglement generation with MP platforms for short distances.
We performed the heuristic optimisation with parameter set 1 for distances of 15, 25 and 50 kilo-
metre, with 0, 1 or 2 intermediate nodes. We found that, except for a distance of 15 kilometres
with no nodes, no entanglement could be generated. Even in the scenario of 15 kilometres with no
nodes, the maximum fidelity that could be generated was approximately 0.56. It is thus clear that,
at least with the used parameters, IP platforms are better than MP platforms for entanglement
generation over short distances. We now investigate what are the relevant parameters to increase
for MP platforms for entanglement generation over short distances. To this end, we perform a pa-
rameter exploration for a distance of 15 kilometres. In particular, we vary the success probabilities
and the efficiency coherence times from the values of parameter set 1 to those of set 2 in Table 4.4,
see Fig. 4.13.

We observe that with modest increases in the efficiency coherence times and success prob-
abilities, entanglement generation becomes significantly more efficient. In particular, parameter
set 1 (i.e. top left corner of the parameter plots) is only good enough for the generation of entan-
glement of very low fidelity (∼ 0.56), while already a secret-key rate of ∼ 500 bits per second can
be achieved for parameter set 2, see Table 4.4. We conclude from the plots that, for current and
near-term parameters and short distances, increasing the success probabilities is more important
than increasing the efficiency coherence times.
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Figure 4.13: Maximum generation rates for several different values of the success probabilities (i.e. we vary
pdet = pem = pps simultaneously) and efficiency coherence times, and for several different target fidelities, for
a distance of 15 kilometre and a single node for MP platforms. All the other parameters are fixed to those of
set 2 (Table 4.4) or the base parameters (Table 4.3). The target fidelities are (a) F = 0.7, (b) F = 0.8, (c) F = 0.9,
respectively. We also plot the gradient, indicating the direction and magnitude of steepest ascent.
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Figure 4.14: Results of the achieved fidelity and generation time for total distances of 50 (a), 100 (b), 150 (c)
and 200 (c) kilometre using parameter sets 2 (solid), 3 (dashed-dotted) and 4 (dashed) (see Table 4.4) for mul-
tiplexed elementary pair generation platforms, where we consider having 0 (green), 1 (purple), or 2 (yellow) of
such intermediate nodes.
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Figure 4.15: Secret-key generation using the six-state protocol, for several different values of the efficiency
coherence times (10−2-100 s) and number of modes (104-107), for a distance of 200 kilometre and a single
node for MP platforms. All the other parameters are fixed to those of set 2 (Table 4.4) and the base parameters
(Table 4.3). We also plot the gradient, indicating the direction and magnitude of steepest ascent.
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INTERMEDIATE-DISTANCE ENTANGLEMENT GENERATION USING MP PLATFORMS

In the previous section we have found that at short distances MP platforms do not fare as well
as information processing platforms. This motivates us to investigate for which parameters and
distances this does become the case. We thus investigate here entanglement distribution over
distances of 50, 100, 150 and 200 kilometre, where we consider the improved parameters found in
sets 2, 3, and 4 in Tables 4.3 and 4.4 in Fig. 4.14.

We find that, for most target fidelities in Fig. 4.14(a), (b) and (c), that the generation time is
relatively independent of the desired fidelity. We now explain this behaviour. The fidelity is most
strongly controlled by the parameter Ns - lowering Ns allows us to increase the fidelity, but lowers
the success probability p of the elementary pair generation. However, the total success probability
of generating at least one elementary pair 1− (1−p)Nmodes does not decrease significantly, due to
the large number of modes Nmodes. In Appendix 4.6.6 we investigate how the minimum number
of modes changes, as a function of the desired fidelity of the elementary pairs. We find that the

required number of modes scales at least as
exp

(
L

L0

)
(1−F )2 , where L is the distance between nodes and

L0 the attenuation length.
Since MP platforms are expected to have an advantage over information processing platforms

for longer distances, we investigate the secret-key rate per unit time for a total distance of 200 kilo-
metre (instead of 50 kilometres for information processing platforms, see Fig. 4.8a and 4.10), where
we vary the number of modes and the efficiency coherence time. In Fig. 4.15 we find that for most
parameters the secret-key rate per unit time is zero. As in the previous parameter explorations per-
formed, we observe that increasing the efficiency coherence times is only (strongly) beneficial up
to a certain point (which depends on the number of modes in this case), after which increasing the
efficiency coherence times further does not help. Interestingly, increasing the number of modes
has the greatest effect on the secret-key per unit time. Increasing the number of modes allows us
to push the mean photon number to smaller numbers, effectively increasing the fidelity that can
be generated within the same time-window.

LONG-DISTANCE ENTANGLEMENT GENERATION WITH MP PLATFORMS

We observe by comparing Figs. 4.11 and 4.14 that MP platforms start to outperform information
processing platforms for distances of around ∼200 km. Here we are interested in whether multi-
plexed elementary pair generation platforms still perform well for even greater distances, which is
the relevant scenario for large-scale quantum networks.

Let us first focus on the effect of the efficiency coherence times and Bell state measurement
efficiency on long distance entanglement generation. In Fig. 4.16 we investigate a repeater chain
with 10 nodes with the parameters from set 2, the success probabilities of the Bell state measure-
ments given by 3

4 , 7
8 or 15

16 (corresponding to a number of ancillary photons 2,6 and 14, respec-
tively), and the efficiency coherence time Tcoh set to 1 or 10. We find that, even with the most
optimistic parameters it is not possible to generate entanglement for distances of 800 kilometre
with ten nodes.

This leads to our results shown Fig. 4.17, where we plot the heuristic optimisation results using
parameter set 4, for distances of 200, 400, 600 and 800 kilometre, and the number of nodes running
from one to four. We find indeed that, even for a distance of 800 kilometres, entanglement can still
be generated at a high fidelity (∼ 0.95). This, combined with the fact that entanglement generation
for the same distance is not possible in Fig. 4.16, suggests that it is essential to also increase the
number of modes and the success probabilities to generate entanglement over large distances.

We give more detail of two schemes found from the optimisation of Fig. 4.17. In particular,
in Fig. 4.18 we give the schemes that achieve the lowest non-trivial fidelity and highest fidelity,
respectively. As expected, the second scheme uses smaller values of the mean-photon number Ns
for the elementary pair generation. This increases the fidelity of the elementary pairs, at the cost
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Figure 4.17: Results of the achieved fidelity and generation time for total distances of 200 (a), 400 (b), 600
(c) and 800 (c) kilometre using parameter set 4 (see Table 4.4) for MP platforms, where we consider having 1
(purple), 2 (yellow), 3 (blue) or 4 (orange) of such intermediate nodes.
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Figure 4.18: Visual repre-
sentation of the schemes
with the lowest non-trivial
fidelity (a) and highest fi-
delity (b) respectively, for a
distance of 800 kilometres
with MP platforms using
parameter set 4 (see Table
4.4) and four intermediate
nodes/five hops. The ‘Ns=
N∗

s ’ indicates the elemen-
tary pair generation (EPG)
protocol with mean pho-
ton number N∗

s used for
MP platforms discussed in
the main text. The ‘r ’ here
indicates the number of
rounds the corresponding
subtree is attempted. Note
that the second scheme
requires a swap between
schemes over multi-hop
links of lengths five and
two at the end.
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of a lower success probability. Indeed, the number of attempts for the elementary pair generation
range from 1 to 5 and from 8 to as high as 128, for the schemes in (a) and (b), respectively.

Here, we also note that there is a non-trivial interplay between the exponential decrease in
output efficiency and performing more rounds (i.e. attempting more times to generate the ele-
mentary pairs) to increase the success probability. As we show in Appendix 4.6.7, the requirement
that each step succeeds with probability at least pmin can lead to a scenario where under a slight
change of the network/parameters, entanglement suddenly cannot be generated anymore.

Interestingly, we observe that the second scheme in Fig. 4.18 requires a swap between multi-
hop links of lengths as five and two at the end. This shows that, as with information processing
platforms, exploring more complex asymmetric schemes provides a benefit over more simplistic
schemes.

4.4.3. LONG-DISTANCE ENTANGLEMENT GENERATION USING A COMBINA-
TION OF IP AND MP PLATFORMS

Here we investigate combining the strengths of IP platforms with those of MP platforms. For this,
we generate the elementary pairs with MP platforms, after which all the operations are performed
with IP platforms. We optimise then over the same protocols as was done for IP and MP platforms,
see Sections 4.4.1 and 4.4.2. We expect that, with sufficiently good parameters, the combination
of the two outperforms the individual platforms, and that we can distribute entanglement over
significantly larger distances.

Using the parameter set 4 of both platforms, we plot the results for 15, 25 and 35 nodes in
Fig. 4.19, for a total distance of 4000 kilometre. Furthermore, we also plot a comparison here when
the optimisation includes the bisection heuristic, see Section 4.2.4.

From Fig. 4.19 we observe that, by combining both the strengths from multiplexing and in-
formation processing platforms, it is possible to generate entanglement with a high fidelity near-
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Figure 4.19: Optimisation results for a total distance of 4000 kilometres, using a combination of multiplexed
and information processing platforms. We use parameter sets 4 from both the multiplexed and information
processing part of the platform, see Tables 4.2 and 4.4. The solid lines are the optimisation without the bisec-
tion heuristic discussed in 4.2.4, while the dotted lines are with the bisection heuristic.

deterministically over large distances by using a large number of nodes. We find that the optimisa-
tion results with the bisection heuristic are similar to the results without, while being significantly
faster to perform. We find for the cases of 15, 25, and 35 intermediate nodes that the algorithm
runtime drops from an order of magnitude of ∼100 minutes to .10 minutes. We thus find that
the bisection heuristic allows for a faster heuristic optimisation, without the resultant schemes
becoming significantly worse than without the bisection heuristic.

We conclude our results with a plot comparing entanglement generation with the three imple-
mentations considered in this chapter for a distance of 800 kilometres and five or ten intermediate
nodes. We find in Fig. 4.20 that, for large distances, the combination of IP and MP platforms out-
performs the individual platforms. In fact, it can generate target fidelities below ∼ 0.9 an order of
magnitude faster than the MP platform. We see that, as expected, information processing plat-
forms perform significantly worse, where the maximum fidelity is limited to around ∼ 0.6. This
is due to the effects of losses during elementary pair generation becoming too strong. This can
of course be counteracted by using more nodes, but this results in too much decoherence. This
suggests that, for large distances, MP platforms outperform IP platforms for near-deterministic
entanglement generation.

We depict the two schemes corresponding to the two crosses found in Fig. 4.20 in Figs. 4.26
and 4.27 in Appendix 4.6.8, respectively. The first of these (blue cross) corresponds to the lowest
non-trivial fidelity achieved, while the second one (red cross) corresponds to a state with fidelity
of F = 0.9605, generated in time T = 17.7 milliseconds. A higher fidelity was not chosen, due
to those schemes becoming too big to fit on a page, demonstrating the non-trivial nature of the
optimisation performed here.



4

110 4. OPTIMISING REPEATER SCHEMES FOR THE QUANTUM INTERNET

0.5 0.6 0.7 0.8 0.9 1.0
Fidelity

10−2

10−1

100

G
en

er
at

io
n

ti
m

e
(s

)

Five nodes Ten nodes

IP MP IP+MP

Figure 4.20: Results of the heuristic optimisation for a total distance of 800 kilometres, where we compare the
three implementations considered in this chapter, using five (solid) or ten (dashed) intermediate nodes. We
use parameter sets 4 from information processing (IP) platforms, multiplexed elementary pair generation (MP)
platforms and the combination of the two (IP+MP). The two crosses in the plot indicate the schemes depicted
in Figs. 4.26 and 4.27, respectively.

4.5. CONCLUSIONS
The future quantum internet has the potential to change our information society by enabling the
implementation of quantum communication tasks. For many of these tasks the key resource is the
availability of high fidelity entanglement at the necessary rates. However, given the complex re-
lation between experimental parameters, entanglement distribution protocols and quantum net-
work design, it is unclear what are the necessary parameters to distribute entanglement except for
the most basic scenarios. Here, we develop an algorithm to partially answer this question. In par-
ticular, our algorithm optimises the near-deterministic distribution of entanglement over chains
of quantum repeaters which are abstractly characterised by a small set of relevant parameters.

Even in this abstract setting, the number of possible protocols for a given quantum repeater
chain is too large to attempt brute-force optimisation. To make optimisation feasible, we intro-
duce a number of heuristics that render optimisation feasible by dramatically reducing the run-
time of the algorithm. Moreover, the heuristics can also be interpreted as approximate rules for
protocol design as numerical results show that optimal protocols follow the heuristics. We could
expect these heuristics to apply to more dynamic schemes, where the information of the current
present entanglement in the network is used to make decisions on the fly by the network.

Any realistic quantum repeater network will be asymmetric in the distances between the nodes
and the experimental parameters. We have applied our algorithm to an asymmetric repeater
chain, and have found that our optimisation results strongly outperform the results from a simpli-
fied optimisation over symmetric/hierarchical schemes, such as those presented in [20, 48].

We have used the algorithm not only for optimising entanglement distribution, but also for
parameter exploration. In particular, we have optimised entanglement distribution for several
parameter regimes investigating the most relevant parameters for both information processing
and multiplexed elementary pair generation platforms. For both, we find that success probabilities
(e.g. the emission probabilities, detector efficiencies, etc.) have a strong impact on performance.

In contrast with previous work, our focus on near-deterministic schemes allowed us to make
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exact statements about the generation time and fidelities of the distributed states. The ability to
deliver states with high probability at specific times could be of benefit for routing entanglement
in a network.

In conclusion, here we have developed an algorithm that allows to efficiently optimise and ex-
plore the parameter space for near-deterministic entanglement distribution over repeater chains.
We have investigated a number of representative platforms but the algorithm is not particular to
these choices. We make the source code publicly available [58] to facilitate the investigation of
other implementations, parameters and/or error models.

4.6. APPENDIX

4.6.1. COMPLEXITY OF THE ALGORITHM
Here we discuss the complexity of the algorithm. For this, first we bound from below the number
of schemes that a brute-force approach without heuristics would need to explore. We then incor-
porate the heuristics and derive an upper bound on the number of schemes of the algorithm as
described in Section 4.2.4. We finalise by deriving an upper bound on the number of schemes in
the particular case of ‘symmetric’ repeater chains. That is, chains where each node has the same
parameters and adjacent nodes are connected by identical elementary links.

4.6.2. A LOWER BOUND ON THE COMPLEXITY OF THE BRUTE-FORCE ALGO-
RITHM

Here we derive two lower bounds on the number of schemes considered by a brute-force algo-

rithm. The two lower bounds are given by O
((

rdiscr · |E | · |S | · |D|)2m·n )
and O

(((
rdiscr

)2 · |E | · |S |
)n)

.

These bounds correspond to the case with and without distillation protocols considered, respec-
tively. Here, n denotes the number of elementary links in the repeater chain (i.e. one less than the
number of nodes), m denotes the maximum number of distillation rounds, rdiscr the maximum
different values of the number of attempts, and |E |, |S | and |D| denote the number of elementary
pair generation, swapping and distillation protocols, respectively.

To make the analysis tractable, while still obtaining a strict lower bound on the number of
schemes, we analyse a simpler algorithm that explores a reduced set of swapping schemes. At
level i , instead of exploring all combinations of swapping between schemes for every pair of adja-
cent (multi-hop) links with a combined length i , this algorithm only considers swapping between
schemes on the leftmost link of length i−1 and one of length 1, i.e. the entanglement is propagated
by one elementary link at each level. Furthermore, we will assume the worst case scenario, where
all generated schemes have success probability greater than pmin, meaning that all of them will be
stored.

We first present a sketch of our derivation of the lower bound. We find two maps fswap / fdistill
which send the number of schemes ζ before the swap operation/m distillation round to a lower
bound on the number of schemes after the swap/distillations. Denoting by ζinit the number of
schemes over an elementary link after distillation, a lower bound for the number of schemes after
two hops is then given by:

(
fdistill ◦ fswap

)(
ζinit

)
. (4.11)

Similarly, after n −1 hops we find the following lower bound

((
fdistill ◦ fswap

))n−1 (
ζinit

)
. (4.12)
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In what follows, we will find the maps fswap, fdistill and ζinit. The map fswap will depend
implicitly on rdiscr, |S | and ζinit, while fdistill depends implicitly on rdiscr, |D| and m.

Let us start with fswap. As mentioned above, for each multi-hop link of length i , the simplified
algorithm combines each of the ζ schemes of the multi-hop link of length i−1 with each of the ζinit
schemes stored for an elementary link. We obtain the following map on the number of schemes,

ζ
fswap−−−−→ rdiscr · |S | ·ζinit ·ζ . (4.13)

Let us now find the map fdistill. Assuming we start with ζ schemes, each of the |D| distillations
will generate a new scheme for each possible pair of schemes, and for each of the rdiscr possible
values of attempts. Thus, after a single distillation round, we end up with rdiscr · |D| ·ζ2+ζ≥ rdiscr ·
|D| ·ζ2 schemes, where we have only kept the schemes which had a distillation step at the end.

We can now repeat the above for m = 2 distillation rounds, by setting ζ= rdiscr |D|ζ2. We then

find that for m = 2 distillation rounds that a lower bound is given by rdiscr · |D| ·(rdiscr · |D| ·ζ2)2
. In

general, after m distillation rounds we find that

ζ
fdistill−−−−→ (

rdiscr · |D|)2m−1 ·ζ2m
. (4.14)

Thus, starting from a number ζ of schemes, the composition of swapping with a scheme on an
elementary link (equation (4.13)) and then distilling (equation (4.14)) gives us the following map
for the lower bound on the number of schemes

ζ
fdistill◦ fswap−−−−−−−−−→ (

rdiscr · |D|)2m−1 · (rdiscr · |S | ·ζinit ·ζ
)2m

=Ω ·ζ2m
, (4.15)

where we defineΩ≡ (
rdiscr · |D|)2m−1 · (rdiscr · |S | ·ζinit

)2m
, which is independent of ζ.

Repeating the above map in equation (4.15) n−1 times on ζinit (the number of schemes stored
over an elementary link) yields the following lower bound,

ζinit
fdistill◦ fswap−−−−−−−−−→Ω · (ζinit

)2m

fdistill◦ fswap−−−−−−−−−→Ω ·
(
Ω · (ζinit

)2m )2m fdistill◦ fswap−−−−−−−−−→ ·· ·

=Ω1+2m+22·m+...+2m·(n−2) ·ζinit
2m(n−1)

=Ω 2m(n−1)−1
2m−1 · (ζinit

)2m(n−1)
. (4.16)

The only ingredient missing from our analysis now is ζinit, the number of schemes on an ele-
mentary link after m distillation rounds. First, for elementary pair generation there are rdiscr dif-
ferent values of attempts per elementary pair generation protocol. In other words, for each of the
|E | elementary pair generation protocols that can be performed, there are rdiscr different choices
of r , leading to a total of |E | · rdiscr schemes. To find the number of schemes after m distillation
rounds we apply our map fdistill to |E | · rdiscr find that

ζinit ≡
(
rdiscr · |D|)2m−1 · (|E | · rdiscr

)2m
. (4.17)
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Inserting equation (4.17) into (4.16) and expanding gives

Ω
2m(n−1)−1

2m−1 · (ζinit
)2m(n−1)

=
((

rdiscr · |D|)2m−1 ·
(
rdiscr · |S | ·

((
rdiscr · |D|)2m−1 · (|E | · rdiscr)2m ))2m ) 2m(n−1)−1

2m−1

·
((

rdiscr · |D|)2m−1 · (rdiscr · |E |)2m )2m(n−1)

= (
rdiscr

)(2m(n−2)
)·(4m+1−1

)
· |E |

(
2m·n+1)·(2m+1) · |S |2m(n−1) · |D|

(
2m(n−2)

)·(22m+1−2m−1
)

=O
((

rdiscr · |E | · |S | · |D|)2m·n )
. (4.18)

We note that this bound becomes trivial when no distillation is performed, i.e. m = 0. This is due
to the fact that lower order terms were ignored in the number of schemes after distilling. We treat
the m = 0 case separately here. For the case of no distillation, we perform rdiscr · |S | different
swap protocols for n − 1 times. Since we start with a total number of rdiscr · |E | schemes on the
elementary links, the total number of schemes is then given by

(
rdiscr · |S |)n−1 · (rdiscr · |E |)n = (

rdiscr
)2n−1 (|E | · |S |)n−1

= O
(((

rdiscr
)2 · |E | · |S |

)n)
. (4.19)

We see that with distillation (i.e. m ≥ 1) the number of schemes to consider grows super-
exponentially in the number of elementary links n, while without distillation m = 0 the number of
schemes grows exponentially. It is clear that a brute-force optimisation becomes infeasible for any
reasonable number of protocols (i.e. |E |, |S |, |D|), number of distillation rounds m and elemen-
tary links n.

AN UPPER BOUND ON THE COMPLEXITY OF THE HEURISTIC ALGORITHM

In this section we consider the complexity with the heuristics implemented. The upper bounds we
find scales as O

(
n2 log(n)

)
for an arbitrary repeater chain, where n is the number of elementary

links in the repeater chain. As discussed in the main text, the optimisation can be simplified for the
scenario of a repeater chain where every node has exactly the same parameters and the distance
between each of the repeaters is equal. For such a symmetric repeater chain, we find a scaling of
O

(
n log(n)

)
.

Let us first briefly discuss the effects the heuristics have on the complexity, before upper bound-
ing the number of schemes. First off, we note here that in the worst-case scenario, all the schemes
are incomparable, leading to no pruning. Secondly, the coarse-graining of the fidelity and proba-
bility imposes an upper limit on the considered schemes. The coarse-graining fixes the maximum

stored schemes to be d (1−Fthreshold)
εF

ed (1−pmin)
εp

e per (multi-hop) link. For instance, the number of

schemes for elementary pair generation does not change with the heuristic, namely it remains

n |E | · rdiscr in total. However, at most d (1−Fthreshold)
εF

ed (1−pmin)
εp

e of these are stored per elementary

link.
Let us now consider swapping. The algorithm restricts the creation of scheme on a multi-hop

link of length i (equivalently, a link requiring i hops) to swapping two links of length i
2 ± log(i −1),

leading to at most 2blog(i −1)c + 1 different options, see equation 4.5. The banded swapping
heuristic further reduces swapping to schemes that verify equation 4.6 from the main text,∣∣∣∣ log(F1)

i1
− log(F2)

i2

∣∣∣∣≤ εswap .
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This equation becomes in the asymptotic limit

F1

F2
≤ exp

(
i ·εswap

2

)
,

since i1 ∼ i2 ∼ i
2 , and where we have assumed without loss of generality that F1 ≥ F2. Now note

that Fthreshold ≥ 1
2 , which implies that 1

2 ≤ F1
F2

≤ 2. We thus have that, in the asymptotic limit,
the banded swapping heuristic becomes void if εswap is fixed. This means that asymptotically the

algorithm considers the full rdiscr · (1−Fthreshold)2(1−pmin)2(
εF εp

)2 schemes for swapping.

The last heuristic is banded distillation. For a fixed distillation protocol, it reduces the num-

ber of schemes for performing distillation to at most 2 · d εdistill
εF

ed 1−pmin
εp

e. Since there are in total

d (1−Fthreshold)
εF

ed (1−pmin)
εp

e stored schemes, we find the following upper bound on the considered

schemes for distillation for a single (multi-hop) link, 2 · rdiscr · |D| ·m · εdistill(1−Fthreshold)(1−pmin)2(
εF εp

)2 .

We have removed here and in what follows the ceiling functions, since we are interested in the
asymptotic complexity and increasing readability.

Combining the previous arguments, we find the following upper bound:

n |E | · rdiscr + rdiscr

n∑
i=2

(n − i +1) ·
((

2 · blog(i −1)c+1
) · |S | ·

(
1−Fthreshold

)2 (
1−pmin

)2(
εF εp

)2

+ 2 ·m · |D| · εdistill
(
1−Fthreshold

)(
1−pmin

)2(
εF εp

)2

)

= rdiscr

(
n |E |+

(
1−Fthreshold

)(
1−pmin

)2(
εF εp

)2

n∑
i=2

(n − i +1) · |S | · ((2 · blog(i )c+1
)(

1−Fthreshold
)+2 ·m · |D| ·εdistill

))

∼ rdiscr

(
n |E |+

(
1−Fthreshold

)(
1−pmin

)2(
εF εp

)2

(
2
(
1−Fthreshold

) · |S | ·n2 log(n)+2 ·m · |D| ·εdistill ·
n2

2

))

= rdiscr

(
n |E |+n2

(
1−Fthreshold

)(
1−pmin

)2(
εF εp

)2

(
2
(
1−Fthreshold

) · |S | · log(n)+m · |D| ·εdistill
))

.

We observe that the algorithm is O
(
n2 log(n)

)
, where the pre-factor is given by

2 · |S | · rdiscr

( (
1−Fthreshold

)(
1−pmin

)
εF εp

)2

. (4.20)

In the case of a symmetric repeater chain (i.e. every node has exactly the same parameters and
the distance between each of the repeaters is equal) we can simplify the optimisation by exploiting
the symmetry. That is, the optimisation done over a (multi-hop) link of length i only needs to
be done once, as opposed to n − i + 1 times in the general setting. Furthermore, there are only⌊

log(i −1)
⌋+1 unique ways to perform swapping. The number of schemes is then upper bounded

by
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|E | · rdiscr + rdiscr

n∑
i=2

(
b(log(i −1)c+1

) · |S | ·
(
1−Fthreshold

)2 (
1−pmin

)2(
εF εp

)2

+2 ·m · |D| · εdistill
(
1−Fthreshold

)(
1−pmin

)2(
εF εp

)2

)

∼ rdiscr · |E |+ rdiscr ·
(
1−Fthreshold

)(
1−pmin

)2(
εF εp

)2

((
1−Fthreshold

) · |S | ·n log(n)+n ·m · |D| ·εdistill
)

.

We observe that for the symmetric scenario, the algorithm is O
(
n log(n)

)
, where the pre-factor is

given by rdiscr · |S | ·
(

(1−Fthreshold)(1−pmin)
εF εp

)2
. As mentioned before, the algorithm developed sup-

ports both the general and symmetric case.

4.6.3. ANALYSIS OF THE HEURISTICS
The algorithm detailed in this chapter uses four different parameters to reduce the search space
of the optimisation, namely εF , εp , εswap, and εdistill, see 4.2.4. The parameters εF and εp are
responsible for the coarse-graining in the algorithm, while the parameters εswap and εdistill gov-
ern the restrictions on the states used for swapping an distillation, respectively. In this section we
investigate the heuristics and how they affect the algorithm runtime and accuracy of the optimi-
sation, which we use to settle on values for εF , εp , εswap, and εdistill. The objective here is to find
a good trade-off between the algorithm runtime and the accuracy of the algorithm. We first inves-
tigate the coarse-graining - i.e. we vary εF and εp . Afterwards, we investigate the effects of εswap
and εdistill on the optimisation results. Finally, we compare the banded swapping heuristic with
the naive heuristic, i.e. where we require the two states to be close in fidelity.
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Figure 4.21: Optimised schemes for a distance of 15 kilo-
metres using a single node with the IP parameter set 2
(see Table 4.2) for several different pairs of εF and εp .
Note that as εF and εp approach zero, the curves con-
verge.
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Figure 4.22: The runtime of the algorithm for the opti-
misations performed in Fig. 4.21. Notice the logarithmic
scale, indicating the strong growth rate as εF and εp be-
come smaller.

We first vary εF and εp simultaneously when optimising over schemes for a distance of 6
kilometres and a single repeater with the IP parameter set 2, of which the results can be seen in
Fig. 4.21 and 4.22. As expected, there is a trade-off between the accuracy of the algorithm and
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(a) Optimisation results with banded swapping
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0.1 and 0.2 is minimal, differing only slightly for
very low fidelities.
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Figure 4.23: Optimised schemes for a distance of 300 kilometres using four intermediate nodes with the IP
parameter set 4 (see Table 4.2) for several different pairs of εswap and εdistill. Note that the curves converge in
a significantly poorer fashion than in Fig. 4.23a.

its running time as εF and εp are varied. While a good trade-off between the accuracy and the
runtime depends on each specific case, we use these results to settle in this chapter for εF = 0.01
and εp = 0.02. We settle for these parameters since the important characteristics of the generation
time as a function of the fidelity appear to be similar when a more fine-grained optimisation is
implemented, without the runtime becoming infeasible.

In Figs. 4.23a and 4.23b we perform an optimisation for several different values of εswap and
εdistill, using parameter set 4 with four intermediate nodes for a distance of 300 kilometre. In
Fig. 4.23a we use the banded swapping heuristic (see equation 4.6), while in Fig. 4.23b we only
swap between states that are εswap-close in fidelity. We observe that the optimisation results in
Fig. 4.23b are significantly worse than those in Fig. 4.23a, while Fig. 4.24 indicates that the run-
times are comparable for both heuristics. We use these results to settle on εswap = εdistill = 0.05.
Furthermore, we find that the heuristic plays primarily a role for smaller fidelities. This implies
that only for small fidelities there is a benefit in swapping between states with disparate fidelities.

4.6.4. AVERAGE NOISE DUE TO STORAGE
Here we discuss the average noise induced when repeating a protocol with success probability
p until success or until a maximum number of r attempts. Denote the quantum channel corre-
sponding to storing for a single round byΛ. The average noise channel E [Λ] corresponds to having

the channelΛ◦Λ . . .◦Λ︸ ︷︷ ︸
r− j

with probability
p(1−p) j−1

1−(1−p)r for 1 ≤ j ≤ r . Note that we can calculate the av-

erage channel instead of the average density matrix at the output, due to the linearity of quantum
channels.

We consider two types of noise in this chapter, depolarising and dephasing. These types of
noise occur naturally in quantum information processing systems, and have the following expo-
nential behaviour,
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Figure 4.24: Algorithm runtimes for several different values of εswap and εdistill. The right, solid bars are for the
optimisation with the heuristic for swapping found in Eq. 4.6, while the left, hatched bars are for the optimi-
sation where we only swap between states that are εswap-close in fidelity. We observe that both heuristics lead
to approximately the same runtime behaviour, while the results with the banded swapping heuristic are closer
to optimal.

Nd (ρ) = e
− t
λd ρ+

(
1−e

− t
λd

)
I

2
, (depolarising)

NZ (ρ) = 1+e
− t
λZ

2
ρ+ 1−e

− t
λZ

2

I

2
, (dephasing)

Thus, if we want to calculate the average amount of noise for depolarising and dephasing, it

suffices to calculate the average of e−c·(k− j ) with probability distribution
p(1−p) j−1

1−(1−p)r , j = {1, . . . ,r },

where c ≡ Tattempt
Tdepol/deph

quantifies the noise experienced in a single attempt for depolarising and de-

phasing, respectively. We find thus that the average channels correspond to having the exponential
terms in the above channels set to

E
[

e−c·(r− j )
]
=

r∑
j=1

p
(
1−p

) j−1

1− (1−p)r ·e−c·(r− j )

= pec ((
1−p

)r −e−cr )(
1− (

1−p
)r )(

ec
(
1−p

)−1
) . (4.21)

Finally, the decay in the success probability for retrieving a state from a memory for MP plat-

forms is given byE
[

e−c·(r− j )
]

, where c = Tattempt
Tcoh

.

4.6.5. MODELLING OF ELEMENTARY PAIR GENERATION FOR MP PLATFORMS
Here we detail the calculations performed to derive the analytical form of the resultant state during
elementary pair generation for MP platforms, and the success probability (see equation 4.22). We
first discuss the effects of the losses on the state emitted by the PDC sources. Secondly, the Bell
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state measurement and the resulting post-measurement state are discussed. We will close with a
brief discussion on the post-selection of having zero photons. We model all losses in the setup as
a pure-loss channel. Since we restrict ourselves to at most two-photon excitations in each mode,
we truncate the Kraus operators from [74] to the {|0〉 , |1〉 , |2〉} subspace and find the explicit matrix
form of the truncated Kraus operators. They are

A0 =
1 0 0

0
√

1−γ 0
0 0 1−γ

 , A1 =

0
p
γ 0

0 0
√

2
(
1−γ)

γ

0 0 0

 , A2 =
0 0 γ

0 0 0
0 0 0

 ,

where γ = 1−η is the loss parameter. Note that, even after truncation, these Kraus operators still

form a channel since
∑2

i=0 A†
i Ai = I. We now let four such channels act on the state

|ψNs 〉 =
p

p0 |00,00〉+
√

p1

2
(|10,01〉+ |01,10〉)+

√
p2

3
(|20,02〉− |11,11〉+ |02,20〉) ,

where the early and late photonic modes in the direction towards the memory each evolve un-
der a truncated pure-loss channel with parameter γ1, and similarly for the two modes going to-
wards the beamsplitter station with parameter γ2. This results in a state ρ(Ns ,γ1,γ2)a0a1b0b1

be-
tween the memory and the photon just before the beamsplitter. The same situation holds for the
other PDC source, such that the total state just before the beamsplitter is ρ(Ns ,γ1,γ2)a0a1b0b1

⊗
ρ(Ns ,γ1,γ2)c0c1d0d1

, where we have assumed the prepared states have equal mean photon num-
ber and experience equal losses. Instead of applying the unitary corresponding to the beamsplit-
ter and then applying the POVMs for the detectors, we can apply the inverse of the beamsplitter
unitary on the POVMs corresponding to success. Since we assume photon number resolving de-
tectors, we find our POVM elements corresponding to success to be

Ia0a1 ⊗|Ψ+〉〈Ψ+|b0c0
⊗|Ψ+〉〈Ψ+|b1c1

⊗ Id0d1
,

Ia0a1 ⊗|Ψ−〉〈Ψ−|b0c0
⊗|Ψ+〉〈Ψ+|b1c1

⊗ Id0d1
,

Ia0a1 ⊗|Ψ+〉〈Ψ+|b0c0
⊗|Ψ−〉〈Ψ−|b1c1

⊗ Id0d1
,

Ia0a1 ⊗|Ψ−〉〈Ψ−|b0c0
⊗|Ψ−〉〈Ψ−|b1c1

⊗ Id0d1
.

We find that the post-measurement states for each of these POVM element is equivalent up to local
unitaries, such that we only have to consider the first one. While one could call the whole process
described so far elementary pair generation, the state will have a fidelity equal to half or less for
any Ns > 0. The reason for this is that there has not been any post-selection on detecting a valid
click pattern on the detectors when performing, say, Bell state measurements. For this reason, we
apply the following POVM to post-select on having non-zero photons at each side of the memory,

Ia0a1b0b1
− (|00〉〈00|a0a1 ⊗ I+ I⊗|00〉〈00|d0d1

−|0000〉〈0000|a0a1d0d1

)
.

The resultant state is too cumbersome to report here, but can be found in the accompanying Math-
ematica and Python scripts. We find the success probability to be given by

psucc = 4 ·pbsm ·pnon-zero photons

= 4 ·η2 3p2
1 −4

(
4η−3

)
p1p2 +4p2

(
1+ (

3−8η+4η2))
24

·p2
app

(
p1 +4

(
η−1

)
p2

(
papp −2

))(
3p1 +4

(
η−1

)
p2

(
papp −2

))
4p2 +

(
p1 +

(
2−4η

)
p2

)(
3p1 +

(
6−4η

)
p2

) . (4.22)
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4.6.6. THE INTERPLAY BETWEEN THE NUMBER OF MODES AND THE FIDELITY

FOR MP PLATFORMS
Here we investigate the interplay between the number of modes, the fidelity, and the losses in
the fibre for MP platforms. We assume here that the only source of noise is from the PDC source,
and there are no or negligible losses locally. We take the state derived in the previous section (but
which is too cumbersome to report here), and set papp = 1. The fidelity of the resultant state is
then calculated to be

F = 3

4(η−1)2Ns
4 +24(η−1)2Ns

3 +4
(
9η2 −20η+11

)
Ns

2 −24(η−1)Ns +3
.

Solving for Ns , we find that

Ns = 1

2

(√
−9ηF +5F +2

p
F (F +3)

F −ηF
−3

)
.

Let us now input the above relation into equation 4.22 where we set p1 and p2 according to
equations 4.10. We find a success probability of

p =
32η2

(√
−9Fη+5F+2

p
F (F+3)

F−Fη −3

)2

F

(√
−9Fη+5F+2

p
F (F+3)

F−Fη −1

)6
. (4.23)

Since we need on the order of 1
p modes, we find that we need on the order of

1

p
=

F

(√
−9Fη+5F+2

p
F (F+3)

F−Fη −1

)6

32η2

(√
−9Fη+5F+2

p
F (F+3)

F−Fη −3

)2
=

F

(√
2
p

F (F+3)
F +5−1

)6

32η2
(√

2
p

F (F+3)
F +5−3

)2
+O

(
η−1

)

modes to achieve a fidelity of F for η≈ 0. The η2 = exp
(
− L

L0

)
term in the denominator is given

by the total losses of the fibre. The contribution due to the fidelity is then given by

F

(√
2
p

F (F+3)
F +5−1

)6

32

(√
2
p

F (F+3)
F +5−3

)2
= 32

(1−F )2
+O

(
(1−F )−1

)
.

We thus find that the number of minimum required modes scales as e
L

L0

(1−F )2 , where L is the

internode distance.
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4.6.7. THE EFFECT OF EFFICIENCY DECOHERENCE FOR MP PLATFORMS
In this section we explore the effects the exponential decrease of the output efficiency has on the
ability of performing schemes with probability greater than pmin. While for information process-
ing platforms it is always possible to achieve any success probability by performing as many at-
tempts r as required, this is not the case for MP platforms due to the decrease in output efficiency
over time. Here we derive conditions on the efficiency coherence times of the memories for a given
pmin, generation time T and success probability p of the underlying schemes, such that pmin can
be achieved.

Since there are two memories used for state storage, the success probability of emitting both
states again is modelled as given by

psingle success =
(
1− (

1−p
)r ) ·E[

e−(c1+c2)·(r− j )
]

= pe(c1+c2) ((1−p
)r −e−(c1+c2)r )

e(c1+c2)
(
1−p

)−1
. (4.24)

We are interested in when the above quantity cannot be larger than pmin. To this end, we take
the derivative of equation 4.24 with respect to r and set it to zero to find the maximum value of
success probability. Setting c = c1 + c2, we find

ec p
(
ce−cr + (1−p)r log

(
1−p

))
ec (1−p)−1

= 0 ,

→ r =
c − log

(
− ec log(1−p)

c

)
c + log

(
1−p

) . (4.25)

However, since r needs to be an integer equal to or greater than one, we choose the ceiling or floor
of equation 4.25, whichever maximises the resultant psucc. Furthermore, since we cannot per-
form distillation, our main concern is the drop in success probability after performing a Bell state
measurement. This motivates us to set p = 1− 1

2N+1 [50, 62, 93, 100, 164]. Setting equation 4.24
equal to pmin = 0.9, we numerically find that N = 0 gives c ≈ 0.023, N = 1 gives c ≈ 0.053, N = 2
gives c ≈ 0.101 and N = 3 gives c =∞. Obviously, the assumption here is that the initial success
probability is given by 1− 1

2N+1 , which is not true due to other losses in the system. However, it
is clear that increasing N can increase the total time significantly during which entanglement can
be generated in a near-deterministic fashion. In particular, we find that the sum of the reciprocals
of the efficiency coherence times of the memories should be at least 1

c times the generation time
of a scheme for MP platforms to successfully generate entanglement near-deterministically. This
results in factors of approximately 43, 19 and 10 times the generation time for Bell state measure-
ment success probabilities of 1

2 , 3
4 and 7

8 , respectively.

4.6.8. ADDITIONAL OPTIMISATION RESULTS
This section contains the additional figures mentioned in the main text.

First, we compare the optimisation results of the full optimisation with an optimisation over
BDCZ schemes only in Fig. 4.25. BDCZ schemes are those schemes that for each connection and
distillation step only combines two schemes that have used the same sequence of protocols, as
in [20, 48]. We consider an asymmetric repeater chain with three intermediate nodes over a dis-
tance of 200 kilometre. We model the behavior of the intermediate nodes with parameter set 4 and
Alice and Bob with parameter set 2 (see Table 4.2). The full optimisation yields schemes that can
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achieve faster generation rates (by approximately a factor of 10) than achievable with the BDCZ
schemes.

Second, we consider two visualisations (Fig. 4.26 and 4.27) of the schemes found for a distance
of 800 kilometres with a combination of IP and MP platforms using parameter sets 4 (see Tables
4.2 and 4.4) and ten intermediate nodes. Finally, Fig. 4.28 contains the results found while per-
forming a parameter exploration for total distances of 200, 400, 600 and 800 kilometres, using ten
intermediate nodes for information processing platforms.
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Figure 4.25: Comparison between the optimisation results of the full optimisation with the optimisation over
BDCZ schemes. We consider a repeater chain over 200 kilometres with three intermediate nodes. The parame-
ters used are parameter set 4 for the intermediate nodes and parameter set 2 for Alice and Bob. BDCZ schemes
are those schemes that only perform swapping and distillation between two schemes that have used the same
sequences of protocols. Contrary to the comparison with BDCZ schemes in [77] we allow for an optimisation
over the different ways of generating elementary pairs, i.e. we vary the number of attempts r and the θ param-
eter. We observe that the schemes found with the full optimisation outperform BDCZ schemes, achieving a
faster generation time by a factor of ∼10, and extending the maximal achievable fidelity by a small margin.
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Figure 4.26: Visual representation of the scheme with the lowest non-trivial achieved fidelity for a distance of
800 kilometres with a combination of IP and MP platforms using parameter sets 4 (see Tables 4.2 and 4.4) and
ten intermediate nodes/eleven hops. Elementary pair generation is indicated by EPG, and the mean photon
number used is indicated by the Ns .
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Figure 4.27: Visual representation of the scheme that achieves a fidelity of F = 0.9605 in time T = 17.7 millisec-
onds (indicated by the cross in Fig. 4.20), for a distance of 800 kilometres with a combination of IP and MP
platforms using parameter sets 4 (see Tables 4.2 and 4.4) and ten intermediate nodes/eleven hops. Elementary
pair generation is indicated by EPG, and the mean photon number used is indicated by the Ns . The structure
of the scheme is non-hierarchical, which can most clearly be seen in the final swap operation, which happens
between two multi-hop links of lengths four and nine.
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Figure 4.28: Optimisation results for total distances of 200, 400, 600 and 800 kilometres, using ten intermediate
nodes. We use IP parameter set 2 as a baseline, where we set the gate fidelities to be 0.99, 0.995 and 0.999 in
the first, second and third column respectively. We set the coherence times Tdeph, Tdepol to 10, 50 and 100
seconds in the first, second and third row, respectively.
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REDUCTION
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Gijswijt and David Elkouss

Entanglement distillation is an essential building block in quantum communication protocols. Here,
we study the class of near-term implementable distillation protocols that use bilocal Clifford opera-
tions followed by a single round of communication. We introduce tools to enumerate and optimise
over all protocols for up to n = 5 (not necessarily equal) Bell-diagonal states using a commodity
desktop computer. Furthermore, by exploiting the symmetries of the input states, we find all proto-
cols for up to n = 8 copies of a Werner state. For the latter case, we present circuits that achieve the
highest fidelity. These circuits have modest depth and number of two-qubit gates. Our results are
based on a correspondence between distillation protocols and double cosets of the symplectic group,
and improve on previously known protocols.

This chapter has been adapted from the following publication: arXiv:2103.03669. K. Goode-
nough contributed by setting up and supervising the corresponding bachelor project, co-writing
the manuscript and implementing the code.
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5.1. INTRODUCTION
The distribution of entanglement in Chapter 4 was in most cases dependent on the ability to distill
entanglement. That is, the capability to turn a number of entangled states into (usually) a smaller
number of states which are more strongly entangled (see [47] for a review). However, the only
type of distillation protocols considered there were based on DEJMPS protocols [42]. A natural
question arises, can one do better than DEJMPS protocols, especially with experimentally relevant
constraints?

Our goal in this chapter is to answer the above question. In particular, we aim to find pro-
tocols where Alice and Bob use a small number of entangled states [51, 142], and require only
a single round of communication after performing their local operations [142]. The above class
of distillation protocols were first considered in [142], where they were called measure and ex-
change protocols. The semidefinite programming bounds found by Rozpedek et al. [142] allow to
bound the optimal performance of measure and exchange protocols. Moreover, in some particu-
lar cases the existing protocols meet the bounds allowing to establish their optimality. Regarding
the design of protocols, a heuristic procedure called the seesaw method allows to improve existing
protocols [142]. More recently, Krastanov et al. investigated a genetic optimisation method for a
subset of these protocols [87] and evaluated them including noisy operations.

Here, complementary to previous work, we find a systematic procedure to obtain good mea-
sure and exchange protocols.

To this end, we narrow down our investigation from general measure and exchange protocols
to a practically relevant subset of protocols and states. Namely, we consider the distillation of
Bell-diagonal states, where we use arbitrary bilocal Clifford circuits and measure out all but one
of the qubit pairs. The measurement results are communicated between Alice and Bob, and the
protocol is deemed successful if all pairs had correlated outcomes. We call this class of protocols
bilocal Clifford protocols for short. This class of protocols includes a number of relevant protocols
considered before in the literature [11, 20, 42, 46, 48, 54, 87, 144, 169].

The restriction to bilocal Clifford protocols and Bell-diagonal states allows us to reduce the
finding of all bilocal Clifford protocols to enumerating all (double) cosets Dn \Sp(2n,F2)/Kn . Here,
Sp(2n,F2) is the symplectic group over the field with two elements F2, Kn is the (possibly trivial)
subgroup that preserves the input states and Dn is the distillation subgroup, which is the set of
operations that leave both the success probability and fidelity invariant. One of our contributions
in this work is to characterise this subgroup in terms of its generators and its order. We consider
two cases for the input states - general input states (i.e. trivial symmetry group) and the n-fold
tensor product of Werner states. For general input states, we find all protocols for up to n = 5 en-
tangled pairs. For an n-fold tensor product of Werner states, we describe an algorithm that finds
a complete set of double coset representatives. This allows us to optimise over all bilocal Clifford
protocols when distilling an n-fold tensor product of a Werner state for n up to 8 pairs.

We find that for n = 2,3 copies of a Werner state, the highest fidelity out of all bilocal Clifford
protocols is achieved by protocols studied before in the literature. For n = 4 to 8, we find increased
fidelities over previously considered distillation schemes. Furthermore, we find explicit circuits
achieving the highest fidelity out of all bilocal Clifford protocols, see Appendix 5.8.5. These circuits
have comparable depth and number of two-qubit gates as previously studied protocols, highlight-
ing also the practical feasibility of our findings.

This chapter is structured as follows. In Section 5.2 we describe the preliminaries and notation
needed throughout the chapter. Section 5.3 explains bilocal Clifford distillation protocols and how
the optimisation over such protocols can be rephrased as an optimisation over elements from
the symplectic group Sp(2n,F2). In Section 5.4 we characterise the distillation subgroup Dn . In
Section 5.5 we prove a further reduction of our search space when the state to be distilled is an
n-fold tensor product of a Werner state. In Section 5.6 we present our optimisation results. We
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end with conclusions and discussions in Section 5.7.

5.2. PRELIMINARIES
We begin by setting some relevant notation. The field with two elements is denoted by F2. We use
the notation Ui to denote a single-qubit operation on qubit i . The single-qubit operations that we
use are the Pauli gates (I , X , Y and Z ), the Hadamard gate (H) and the phase gate (S). Moreover,
we denote by CNOTi j a controlled-NOT operation with control qubit i and target qubit j , by CZi j
a controlled-Z operation between qubits i and j and by SWAPi j the operation that swaps qubits i
and j .

5.2.1. PAULI GROUP AND CLIFFORD GROUP
The Pauli matrices are defined as

I =
[

1 0
0 1

]
,

Y =
[

0 −i
i 0

]
,

X =
[

0 1
1 0

]
,

Z =
[

1 0
0 −1

]
.

(5.1)

The Pauli group with phases on n qubits P n consists of all 2n × 2n matrices of the form λP1 ⊗
·· · ⊗Pn with λ ∈ {±1,±i } and Pi ∈ {I , X ,Y , Z } for all i ∈ {1, . . . ,n}, together with standard matrix
multiplication. Of particular interest to us is the Pauli group without any phase factors, Pn ∼=
P n /〈i I⊗n〉. Here 〈i I⊗n〉 is the subgroup generated by i I⊗n . We will call this the Pauli group for
short. An element of the group Pn is referred to as a Pauli string (of length n). The order of Pn
equals |Pn | = 4n .

An important class of gates in quantum information theory are the so-called Clifford gates [60].
Circuits composed of Clifford gates are efficiently classically simulable, yet can be used to create
complex quantum states, which are used for example in stabiliser error correction. The Clifford
gates on n qubits form a group Cn , and each C ∈ Cn induces an automorphism f : P n → P n on
P n by conjugating each element with C , i.e. f (P ) =C PC †. The Clifford group Cn is generated by
Hadamard- (Hi ) and phase (Si ) gates on each qubit (1 ≤ i ≤ n) and CNOT gates between every pair
(i , j ) of qubits. In matrix representation, these gates are given by

H = 1p
2

[
1 1
1 −1

]
, S =

[
1 0
0 i

]
, (5.2)

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (5.3)

5.2.2. BINARY REPRESENTATION OF THE PAULI AND CLIFFORD GROUP
The elements of the Pauli group and the Clifford group can be described in terms of binary vec-
tors and matrices, respectively. To see this, we first introduce the following notation for the Pauli
matrices.

τ00 = I , τ10 = X , τ11 = i Y , τ01 = Z . (5.4)

We extend this notation to tensor products of Pauli matrices as follows.

τa := τv1w1 ⊗·· ·⊗τvn wn , a =
[

v
w

]
, v, w ∈ Fn

2 , (5.5)
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where v = [
v1 v2 ... vn

]T
and w = [

w1 w2 ... wn
]T

. As mentioned in Section 5.2.1,
the global phase factors are not important in the context of this chapter, so an element λτa , λ ∈
{±1,±i }, of P n can be represented by the binary vector a ∈ F2n

2 . The multiplication of the elements

of P n corresponds then to the addition of the binary vectors.
For any C ∈Cn , the conjugation map f corresponds to a linear map on the set of binary vectors

(and thus on P n ). The map f is an automorphism, and thus preserves the commutation relations
of the elements of P n . To see what this implies for the linear transformation in the binary picture,
let a,b ∈ F2n

2 . Then

τaτb = (−1)bTΩaτbτa , (5.6)

whereΩ=
[

0 In
In 0

]
. A proof of this formula can be found in Appendix 5.8.1.

Let M denote the linear transformation corresponding to conjugation by C . It follows from
Equation 5.6 that

τM aτMb = (−1)(Mb)TΩM aτMbτM a . (5.7)

By Equation 5.6, we know that τa and τb commute iff bTΩa = 0 and anti-commute iff bTΩa =
1. In order to preserve the commutation relations, it must then hold that bTMTΩM a = bTΩa for
all a,b ∈ F2n

2 , so MTΩM = Ω. The matrices M that satisfy this condition thus preserve the so-

called symplectic inner product ω(a,b) ≡ aTΩb between any two a,b ∈ F2n
2 . These matrices form

a group known as the symplectic group over F2, denoted by Sp(2n,F2). The order of the symplectic
group over F2 is well-known [3] to be equal to

|Sp(2n,F2)| = 2n2 n∏
j=1

(4 j −1). (5.8)

The symplectic complement of a subspace V of F2n
2 is defined as the set of elements of F2n

2
that have zero symplectic inner product with all elements from V ,

V ⊥ = {a ∈ F2n
2 |ω(a,b) = 0 ∀b ∈V } . (5.9)

The symplectic complement satisfies the following property,(
V ⊥)⊥ =V . (5.10)

Calculations involving a symplectic matrix M can often be simplified by writing it as a block

matrix M =
[

A B
C D

]
, with A,B ,C ,D ∈ Mn×n (F2). From the condition MTΩM =Ω it follows that

the blocks satisfy

BTD +DTB = 0,

ATC +CT A = 0,

ATD +CTB = In .

(5.11)

Moreover, the inverse of M is given by

M−1 =
[

DT BT

CT AT

]
. (5.12)

Let φ : Cn → Sp(2n,F2) be the function that maps every Clifford gate to the corresponding
symplectic matrix. This map is a surjective group homomorphism [38]. The symplectic group
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1)⊗n
i=1ρi

A

B

C T

C †

2)

|Φ+〉⊗n
A

BNP

C T

C †

3)

|Φ+〉⊗n
A

BNPC C †

4)

|Φ+〉⊗n
A

BNP̃

Figure 5.1: Schematic description of how bilocal Clifford circuits map n-qubit bipartite systems to n-

qubit bipartite systems. From 1) to 2), we rewrite the state as ⊗n
i=1ρi = (I ⊗N )

(
|Φ+〉⊗n

)
, where N (·) =∑

P∈Pn pP P (·)P †. In 3), we use the fact that AT ⊗ I |Φ+〉⊗n = I ⊗ A |Φ+〉⊗n for any 2n × 2n matrix A [175].
For 4), we use the fact the Cliffords act on the group of Pauli strings Pn .

Sp(2n,F2) is thus generated by the images of a generating set of the Clifford group Cn underφ. The
symplectic forms of the Hadamard, phase and CNOT gates, which generate the Clifford group, can
be calculated using the following lemma [103].

Lemma 5.2.1. For the following Clifford gates C , multiplying any M ∈ Sp(2n,F2) from the right by
φ(C ) has the following effect on M:

C = Hi Swapping columns i and n + i

C = Si Adding column n + i to column i

C = CNOTi j Adding column j to column i and adding column n + i to column n + j

Similarly, multiplication from the left has the following effect on M:

C = Hi Swapping rows i and n + i

C = Si Adding row i to row n + i

C = CNOTi j Adding row i to row j and adding row n + j to row n + i

5.3. BILOCAL CLIFFORD PROTOCOLS
This section covers the structure of the distillation protocols that are considered in this chapter.
We consider a system consisting of two parties, Alice and Bob, that share n entangled two-qubit
states. We focus on states that are diagonal in the Bell basis. Bell-diagonal states naturally arise
with realistic noise models such as dephasing and depolarising. Moreover, any bipartite state can
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be twirled into a Bell-diagonal state while preserving the fidelity [12]. Bell-diagonal states can be
written as

ρ = pI |Φ+〉〈Φ+|+pX |Ψ+〉〈Ψ+|
+pY |Ψ−〉〈Ψ−|+pZ |Φ−〉〈Φ−| . (5.13)

The indices of the probabilities arise from the following correspondence between the Bell states
and the Pauli matrices.

|Φ+〉 = 1p
2

(|00〉+ |11〉) = (I ⊗ I ) |Φ+〉 ,

|Ψ+〉 = 1p
2

(|01〉+ |10〉) = (I ⊗X ) |Φ+〉 ,

|Ψ−〉 = 1p
2

(|01〉− |10〉) = (I ⊗ i Y ) |Φ+〉 ,

|Φ−〉 = 1p
2

(|00〉− |11〉) = (I ⊗Z ) |Φ+〉 .

(5.14)

Equation (5.14) gives rise to a bijective mapping from the Bell states |Φ+〉, |Ψ+〉, |Ψ−〉 and |Φ−〉 to
the Pauli matrices I , X , Y and Z , respectively. We denote a tensor product of n Bell-diagonal states
by a tensor product of Pauli matrices, e.g. |Φ+〉⊗ |Ψ+〉⊗ |Ψ−〉⊗ |Φ−〉 is denoted by I ⊗X ⊗Y ⊗Z .

We generalise the notation of equation (5.13) and denote by pP the probability that the sys-
tem is in the state described by P ∈ Pn . In the subscript we will not explicitly denote the tensor
product, e.g. pX Y denotes the probability that the system is described by X ⊗Y . The initial state
of the protocol consisting of n entangled two-qubit states can thus be fully described by the set of
probabilities Q = {pP1P2...Pn : Pi ∈ {I , X ,Y , Z }}. We refer to such a system as an n-qubit bipartite
system.

5.3.1. BILOCAL CLIFFORD CIRCUITS
The first step of the protocol is to apply the bilocal Clifford operations. That is, if Alice applies a
Clifford operation C̃ ∈Cn to her qubits, then Bob applies C̃∗, the entry-wise complex conjugate of
C̃ , to his qubits (see Fig. 5.1). This leads to a permutation of the set Q. In particular, each element
pP of Q is mapped [175] to pC̃TPC̃∗ , or equivalently, pC PC † , where we defined C = C̃T ∈ Cn . We
denote the probabilities that describe the permuted state by p̃P1P2...Pn .

We note here that the most general permutation on Q by local unitaries consists of applying
bilocal Cliffords followed by a Pauli string applied to either Alice or Bob’s side [38]. These Pauli
strings can be used to reorder locally the coefficients of the states.

Since (bilocal) Clifford operations form a group, the Clifford group has a group action on Q.
The (normal) subgroup of the Clifford group that fixes Q point-wise does not change any of the
statistics, and is thus not of interest to us. This subgroup consists of all Pauli strings, and quotient-
ing out the Cliffords by this subgroup leads to the symplectic group (over F2), Sp(2n,F2) [37, 38].
We can thus describe a bilocal Clifford operation by an element M ∈ Sp(2n,F2). To simplify nota-
tion, we sometimes slightly abuse the notation and denote by C ∈ Sp(2n,F2) the symplectic matrix
corresponding to conjugation by C ∈Cn , but it should be kept in mind that always the symplectic
matrix M is meant.

5.3.2. MEASUREMENTS AND POSTSELECTION
In the second step, Alice and Bob perform measurements in the computational basis on n −1 of
their qubits. Alice and Bob report their results to each other using classical communication. If
the outcomes are equal, they keep the state that was not measured. In this case, the protocol is
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called successful. If the outcomes are not equal, they discard all states, and the protocol is not suc-
cessful. The prototypical example of such a protocol is the DEJMPS protocol [47]. In the DEJMPS
protocol, two bilocal single-qubit Clifford rotations are performed on two Bell-diagonal states, af-
ter which a bilocal CNOT is performed between the two pairs. Then, both qubits of one of the
pairs is measured in the computational basis, after which they are post-selected on classically cor-
related outcomes. The probability that a protocol is successful is equal to the probability that all
measured states are either in the |Φ+〉 or in the |Φ−〉 state, which correspond to the I and Z Pauli
matrix, respectively. This can be seen by the fact that these two states yield correlated outcomes
when both sides are measured in the computational basis. The success probability of the protocol
is thus equal to

psuc =
∑

P1∈{I ,X ,Y ,Z },
Q j ∈{I ,Z }

p̃P1Q2...Qn , (5.15)

where we used the convention that the first two-qubit state is not measured. Moreover, the fidelity
of the remaining state and the |Φ+〉 state is equal to

Fout =
∑

Q j ∈{I ,Z } p̃I1Q2...Qn

psuc
. (5.16)

To simplify notation in the rest of this chapter, we introduce the following two definitions.

Definition 5.3.1. The base of an n-qubit bipartite quantum system is given by

B = {I1 ⊗Q2 ⊗ ...⊗Qn ∈Pn : Q j ∈ {I , Z }

∀ j ∈ {2, ...,n}}.

In the binary representation, the elements of the base are the vectors b satisfying equation
(5.17).

b =
[

v
w

]
, v, w ∈ Fn

2 , v = 0, w1 = 0. (5.17)

Definition 5.3.2. The pillars of an n-qubit bipartite quantum system are given by

P ={P1 ⊗Q2 ⊗ ...⊗Qn ∈Pn : P1 ∈ {I , X ,Y , Z },

Q j ∈ {I , Z } ∀ j ∈ {2, ...,n}}.

The elements of the pillars are represented by the binary vectors p satisfying equation (5.18).

p =
[

v
w

]
, v, w ∈ Fn

2 , vi = 0 ∀i ∈ {2, ...,n}. (5.18)

The naming of the base and pillars is made clear when the probabilities pP are ordered in an
n-dimensional hypercube, where each dimension corresponds to a qubit pair, see Fig. 5.2.

Using these definitions, equation (5.15) can be rewritten as

psuc =
∑

P∈P
p̃P , (5.19)

and equation (5.16) as

F =
∑

P∈B p̃P∑
P∈P p̃P

. (5.20)
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Figure 5.2: Probabilities that describe the state of a 2-pair system (left) and a 3-pair system (right). The light
grey rectangles/cylinders highlight the probabilities that correspond to the pillars. The darker circles highlight
the probabilities that correspond to the base. For the 3-pair system we have labelled here only the coefficients
that are on the front, right and top face.

|φ〉 ≈ |φ〉
|0〉

|0〉

n ...
C NP C †

Figure 5.3: Equivalence between bilocal Clifford protocols and a subset of error detection schemes. This circuit
detects as errors the set of Pauli strings that do not end up in the pillars after applying the Clifford circuit C .

The fidelity and success probability are referred to as the distillation statistics.

In the binary picture, the distillation statistics can be calculated using the inverse of the sym-
plectic matrix, which can be efficiently calculated using 5.12. Let M be the symplectic matrix cor-
responding to a permutation P 7→C PC †, C ∈ Cn . We wish to determine which binary vectors are
mapped to the vectors corresponding to the base and the pillars by M . Since M permutes the bi-
nary vectors, this is equivalent to determining where the base and pillar vectors are mapped to by
M−1.

Finally, there is a direct analogy between our optimisation over bilocal Clifford protocols, and
quantum error detection schemes of the form shown in Fig. 5.3. Such schemes will detect as errors
the set of Pauli strings that do not end up in the pillars after applying the Clifford circuit C . We will
not pursue this further in this thesis, however.
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5.4. PRESERVATION OF DISTILLATION STATISTICS
In many relevant cases, the distillation statistics from equations (5.19) and (5.20) are the relevant
parameters for quantifying an entanglement distillation protocol. Furthermore, there exist non-
identical bilocal Clifford circuits which result in the same distillation statistics. To find all bilocal
Clifford protocols, it is thus sufficient to find a representative bilocal Clifford protocol for each
unique tuple of distillation statistics. In this section we characterise these representatives for gen-
eral input states.

First, we specify the set of Clifford operations that preserve the distillation statistics. We denote
this set by Dn . Now observe that Dn is a subgroup of Sp(2n,F2). Moreover, let M ∈ Sp(2n,F2) and
consider the corresponding distillation protocol. We can freely add or remove elements from Dn
at the end of this protocol, without changing the fidelity and the success probability. That is, all
elements in the right coset Dn M = {DM : D ∈ Dn } yield the same distillation statistics. Instead of
optimising over all possible Clifford circuits it thus suffices to optimise over the right cosets of Dn
in Sp(2n,F2).

5.4.1. RELATING THE PRESERVATION OF THE BASE AND PILLARS

In this section we explain the relation between the base and the pillars, which were introduced in
definitions 5.3.1 and 5.3.2, respectively, and the distillation subgroup Dn .

From equations (5.19) and (5.20) it can be observed that for a general initial state, the oper-
ations that preserve the distillation statistics are precisely those operations that leave simultane-
ously both the base and pillars invariant. In the following lemma it is proven that invariance of the
base implies invariance of the pillars, and vice versa.

Lemma 5.4.1. Let Q be an n-qubit bipartite quantum system with base B ⊆ F2n
2 and pillars P ⊆

F2n
2 . Let π : F2n

2 → F2n
2 , π(a) = M a, with M ∈ Sp(2n,F2). Then π[B] =B ⇐⇒ π[P] =P .

Proof. We first prove π[B] = B =⇒ π[P] = P . For this, we first show that the pillars form the
symplectic complement of the base, i.e. B⊥ =P (see equation (5.9)). Recall from equation (5.17)

that b ∈ B can be written as b =
[

vb wb
]T

with vb = 0 and wb
1 = 0. Note that B is a subspace of

F2n
2 . The symplectic inner product between b and a ∈ F2n

2 , is equal to vb ·w a + v a ·wb , where ·
indicates the standard vector dot product. This is equal to zero for all b ∈ B if and only if v a

i = 0
for all i ∈ {2, ...,n}, so iff v ∈P .

Let b ∈B and p ∈P . Thenω(b, p) = 0, and since M ∈ Sp(2n,F2n
2 ), we have thatω

(
π(b),π(p)

)=
0 as well. Since by assumption π(b) ∈ B, it follows that π(p) ∈ P . Finally, since π is an automor-
phism, we know that it is bijective and thus π[P] =P .

For the other direction, we use the fact that P⊥ = B, see equation (5.10). Then, the above
argument can be repeated with B and P interchanged to conclude that π[B] = B ⇐⇒ π[P] =
P .

From Lemma 5.4.1 we conclude that the operations that preserve the distillation statistics for
arbitrary input states are precisely the operations that leave the base invariant. We use this obser-
vation to characterise the subgroup Dn that preserves the distillation statistics. In the trivial case
that n = 1, we have D1 = Sp(2,F2). In this case, the only base element is the identity I , which is
always mapped to itself under an automorphism. For all n > 1, however, Dn is a proper subgroup
of Sp(2n,F2). Consider for instance the Hadamard gate on the second qubit, which is an element
of Sp(2n,F2). This gate induces the swap of X2 and Z2 and hereby changes the base.
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5.4.2. GENERATORS OF SUBGROUP PRESERVING DISTILLATION STATISTICS
The goal of this section is to characterise the distillation subgroup Dn . In particular, we find the
distillation subgroup in terms of a generating set Tn .

Lemma 5.4.2. The distillation subgroup is generated by the set Tn , i.e. Dn = 〈Tn〉, where

Tn = {H1,S1, . . . ,Sn } ∪
{

CNOTi j | 1 ≤ j < i ≤ n
}
∪

{
CNOTi j | 2 ≤ i < j ≤ n

}
. (5.21)

Proof. By inspection, each element of Tn preserves the base, so by Lemma 5.4.1 we have that

〈Tn〉 ⊆ Dn . For the other inclusion, let M =
[

A B
C D

]
∈ Dn . We show that we can reduce such

an arbitrary M to the identity matrix by left-multiplication by elements in 〈Tn〉, see Lemma 5.2.1.
First, note that if M ∈Dn , then by definition M [B] ⊆B and M [P] ⊆P . In the binary picture this
implies that

Bi j = 0 if (i , j ) 6= (1,1), D12 = ·· · = D1n = 0.

Since M has full rank, we cannot have B11 = D11 = 0. Hence, by multiplying M from the left by
I , H1 or H1S1, we may assume that B11 = 0 (such that B = 0) and D11 = 1.

That M has full rank implies that the last n columns of M are linearly independent. By using

CNOT gates from
{

CNOTi j | 1 ≤ j < i ≤ n
}
⊆ Tn and

{
CNOTi j | 2 ≤ i < j ≤ n

}
⊆ Tn , the D subma-

trix can be reduced to the identity matrix.
Since D = I and B = 0, it follows from 5.11 that A = I and C is symmetric. For 1 ≤ j < i denote

Si j := (S j CNOTi j )2 ∈ 〈Tn〉. Left-multiplication by Si j corresponds to adding row i to row n + j
and adding rows i and j to row n + i . Note that this preserves the fact that A = D = I and B = 0.

For j = 1, . . . ,n − 1 (in this order), we can multiply M from the left by elements from {S j }∪
{Si j | i > j } ⊆ 〈Tn〉 to ensure that C j i = 0 for all 1 ≤ j ≤ i ≤ n. This implies that C is strictly lower
triangular. But if C is strictly lower triangular and symmetric, C = 0. This implies that M = I .

5.4.3. ORDER OF THE DISTILLATION SUBGROUP
As noted before, for general input states it is sufficient to only consider the right cosets of Dn
in Sp(2n,F2). To see how much looking at cosets of Dn in Sp(2n,F2) limits the search space of
protocols, in this section a formula for the order of Dn is presented and proved. As mentioned
earlier, in the trivial case that n = 1 we have D1 = Sp(2,F2), and thus |D1| = |Sp(2,F2)| = 6. For n ≥ 2
the order of Dn is given in Theorem 5.4.3.

Theorem 5.4.3. For an n-to-1 distillation protocol, with n > 1, the order of Dn is given by

|Dn | = 6 ·2n2−1
n−1∏
j=1

(2 j −1).

Proof. First note that D ∈Dn is fully determined by how it maps each of the standard basis vectors
{ei : i ∈ {1, ...,2n}} of F2n

2 . We count how many transformations of the standard basis vectors are
possible.

Let us start by looking at e2n . This is a base element, thus it must again be transformed to a
base element, because D preserves the distillation statistics. There are 2n−1 base elements, but
the identity element, the zero vector, is always mapped to itself by D . Thus there are 2n−1 −1 pos-
sibilities for the transformation of e2n . That all transformations are indeed possible, is proved by
giving a construction. Suppose that e2n is mapped to a base element b ≡ De2n ∈B. We show that
b can be transformed to e2n through left multiplication by elements of Dn . The transformation
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from e2n to b can then be obtained by taking the product of the inverses of these generators in
reverse order. For this, recall that the action of left multiplication by Hadamard, phase and CNOT
gates was given in Lemma 5.2.1.

Note that b1, ...,bn+1 = 0. The vector b can be transformed to e2n by taking the following steps.

1. If b2n = 0, apply a CNOTni ∈ Dn gate with i chosen such that bn+i = 1. Note that there
always is a i such that this is possible, because otherwise b is the zero vector, which corre-
sponds to the identity element I⊗n .

2. For all i ∈ {2, ...,n} with bn+i = 1, apply a CNOTi n ∈Dn gate.

Steps 1 and 2 are visually summarised below.

b =



0
0
0
0
·
·


1−→



0
0
0
0
·
1


2−→



0
0
0
0
0
1

= e2n

Given the transformation of e2n by D , we now wish to determine the number of possible trans-
formations for en . We know that left multiplication by D preserves the symplectic inner product.
Hence, since ω(en ,e2n ) = 1, it must hold that ω(Den ,De2n ) = 1. Observe that for every non-zero
element a ∈ F2n

2 , exactly for half of the elements of F2n
2 the symplectic inner product with a is equal

to one1. Thus there are
|F2n

2 |
2 = 4n

2 = 22n−1 possibilities for the transformation of en .
We show that each of those transformations can indeed be achieved. Suppose that D has

mapped en to a vector c ≡ Den ∈ F2n
2 . Because ω(Den ,De2n ) = 1 and De2n is a base vector, we

know that there is at least one i ∈ {2, . . . ,n} such that ci = 1. Since we can always apply a CNOTi n ∈
Dn gate, which does not affect the vector e2n , we can assume without loss of generality that cn = 1.
Now c can be transformed to en without affecting e2n by taking the following steps.

3. For all i with ci = 1 apply a CNOTni ∈Dn gate.

4. For all i 6= n with cn+i = 1, apply a CZi n ∈Dn gate. This operation results in the addition of
row i to row 2n and the addition of row n to row n + i . Note that this operation leaves the
base invariant, so indeed CZi n ∈Dn .

5. If c2n = 1, apply the gate Sn ∈Dn on qubit n.

Steps 3 to 5 are visually summarised below.

c =



·
·
1
·
·
·


3−→



0
0
1
·
·
·


4−→



0
0
1
0
0
·


5−→



0
0
1
0
0
0

= en

Thus indeed, given the transformation of e2n , there are 22n−1 possible transformations of en .
Combining this with the number of transformations of e2n , we find that there are 22n−1(2n−1 −1)
possible transformations for en and e2n together.

1Let a ∈ F2n
2 , such that ak = 1. Then the vectors a′ ∈ F2n

2 satisfying ω(a, a′) = 1 can be constructed by choosing
a′

j ∈ {0,1} randomly for j ∈ {1, . . . ,2n} \ {n +k} and then choosing a′
n+k ∈ {0,1} such that ω(a, a′) = 1.
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The elements of Dn that leave en and e2n invariant form a subgroup that is isomorphic to
Dn−1, with the number of cosets in Dn equal to 22n−1(2n−1 −1). Thus

|Dn | = 22n−1(2n−1 −1)|Dn−1|.

By induction on n it follows that

|Dn | = |D1|
n∏

j=2
22 j−1(2 j−1 −1)

= 6 ·2
∑n

j=2(2 j−1) n∏
j=2

(2 j−1 −1)

= 6 ·2n2−1
n−1∏
j=1

(2 j −1).

The following corollary is a direct consequence of Theorem 5.4.3.

Corollary 5.4.4. The index of Dn in Sp(2n,F2) is given by

[
Sp(2n,F2) : Dn

]= 1

3
(2n −1)

n∏
j=1

(2 j +1).

Proof. Recall that |Sp(2n,F2)| = 2n2 ∏n
j=1(4 j −1). As a result,

[
Sp(2n,F2) : Dn

]= |Sp(2n,F2)|
|Dn |

=
2n2 ∏n

j=1(4 j −1)

6 ·2n2−1 ∏n−1
j=1 (2 j −1)

=
∏n

j=1(2 j −1)(2 j +1)

3
∏n−1

j=1 (2 j −1)

= 1

3
(2n −1)

n∏
j=1

(2 j +1).

For comparison, we list the values of |Sp(2n,F2)| and [Sp(2n,F2) : Dn ] in Table 5.1 for n =
2,3,4,5.

2 3 4 5

|Sp(2n,F2)| 720 1451520 47377612800 24815256521932800

[Sp(2n,F2) : Dn] 15 315 11475 782595

Table 5.1: Values of |Sp(2n,F2)| and [Sp(2n,F2) : Dn ] for n = 2,3,4,5.
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5.4.4. FINDING A TRANSVERSAL
In this section, we briefly describe a way to find a transversal for the cosets of Dn in Sp(2n,F2). A
transversal is a set that contains exactly one element for each of the cosets. Once this transversal
is found, it can be applied to an arbitrary n-qubit input state to calculate all possible distillation
statistics that can be achieved using bilocal Clifford circuits. From this set of distillation statistics,
the optimal protocol based on any optimality criterion can be selected.

In order to find a transversal, random elements from the symplectic group Sp(2n,F2) are sam-
pled. A sampled element is added to the set of representatives if the corresponding coset is not yet
represented in this set. Recall that two elements belong to the same coset if they result in the same
distillation statistics (for a general input state). This is the case if and only if the same Pauli strings
are mapped to the base. More formally, consider an n-qubit pairs bipartite system with base B in
the binary picture. Let M1, M2 ∈ Sp(2n,F2). Let V denote the set of binary vectors that are mapped
to the base by M1 and let W denote the set of binary vectors that are mapped to the base by M2.
Then M1 and M2 belong to the same coset if and only if V =W . Because M1 and M2 permute the
binary Pauli vectors, this is equivalent to M−1

1 [B] = M−1
2 [B].

The sampling is continued until the set of representatives has size [Sp(2n,F2) : Dn ]. Note that
finding a transversal in the way described in this section is equivalent to the coupon collector’s
problem. Hence, it has expected running time O ([Sp(2n,F2) : Dn ] log[Sp(2n,F2) : Dn ]).

5.5. REDUCTION FOR n COPIES OF A WERNER STATE
Here we describe our reduction of the search space when the input state is an n-fold tensor prod-

uct of Werner states. A Werner state has coefficients pI = Fin, pX = pY = pZ = 1−Fin
3 , and its n-fold

tensor product is highly symmetric — it is left invariant under any element of Kn , where

Kn = 〈 {SWAPi j }1≤i< j≤n ∪ {Hi }n
i=1 ∪ {Si }n

i=1 〉.
We leverage this symmetry by noting that the distinct distillation protocols correspond to the

double cosets Dn \Sp(n,F2)/Kn , similar to our argument before for right cosets for general in-
put states. In this section, we describe how one can rewrite an arbitrary symplectic matrix M to
another symplectic matrix M ′ of a specific form, which is in the same double coset as M . Such
a representative M ′ of the double coset has a smaller number of free parameters, reducing the
search space significantly.

Lemma 5.5.1. Let M ∈ Sp(2n,F2). There exists M ′ in the double coset Dn MKn that is of the form

M ′ =
[

A B

0 AT

]
, A =


1 0

a In−1

 , B =


0 bT

b E+baT

 ,

where a,b ∈ Fn−1
2 and E ∈ F(n−1)×(n−1)

2 is symmetric with zeroes on the diagonal.

Proof. Let M ′ ∈Dn MKn be such that

M ′
i j = δi j for (i , j ) ∈ [n]× {2, . . . ,k} (5.22)

with 1 ≤ k ≤ n as large as possible. Note that for k = 1 the condition is trivially fulfilled.

Claim: k = n.
Proof of claim. Suppose that k < n. Then M ′

k+1,k+1 = 0, otherwise we can use row operations on

M ′ (left-multiplication by matrices CNOTk+1,i ∈Dn ) to obtain M ′
i ,k+1 = δi ,k+1 for all i ∈ [n] while

keeping (5.22), contradicting the maximality of k.
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Note that the above condition M ′
k+1,k+1 = 0 needs to hold after applying operations to M ′ that

preserve the form in equation (5.22). Thus, by permuting rows in {k +1, . . . ,n} (left-multiplication
by matrices SWAPi j ∈Dn ) or permuting columns in {1,k +1, . . . ,n} (right-multiplication by matri-
ces SWAPi j ∈ Kn ) we deduce that M ′

i j = 0 for (i , j ) ∈ {k +1, . . . ,n}× {1,k +1, . . . ,n}. Since we can

swap column i and n + i by multiplying from the right with Hi ∈ Kn , we also have M ′
i j = 0 for

(i , j ) ∈ {k +1, . . . ,n}× {n +1,n +k +1, . . . ,2n}. To summarise, we have

M ′
i j = 0 for i ∈ {k +1, . . . ,n}

and j ∈ [2n] \ {n +2, . . . ,n +k}

M ′
i j = δi j for i ∈ {2, . . . ,k} and j ∈ {2, . . . ,k}.

Since rows k + 1, . . . ,n must have zero symplectic inner product with rows 2, . . . ,k, it follows that
rows k +1, . . . ,n must in fact be equal to zero. Since M ′ has full rank, this implies that k = n. ■

Consider the first row of M ′. We have M ′
1, j = 0 for j = 2, . . . ,n. If M ′

1,1 = M ′
1,n+1 = 0, then the

fact that this row has zero symplectic inner product with rows 2, . . . ,n implies that the first row is
equal to zero, which is not possible as M ′ has full rank. So by multiplying from the right by I , H1,
or S1H1 which are in Kn , we may assume that M ′

1,1 = 1 and M ′
1,n+1 = 0.

Writing M ′ = [ A B
C D

]
, we see that A and B have the following form:

A =


1 0

a In−1

 , B =


0 dT

b E ′

 .

Since row 1 has zero symplectic inner product with rows 2, . . . ,n, it follows that d = b. Note that for
1 ≤ i < j ≤ n−1 the symplectic inner product of rows i+1 and j+1 is equal to ai b j +E ′

j i +a j bi +E ′
i j .

Since this inner product is zero, the matrix E := E ′ +baT is symmetric. By multiplying from the
right by Hi Si Hi ∈ Kn (i = 2, . . . ,n) if necessary, we may set the diagonal elements of E ′ such that
the diagonal elements of E are zero.

Recall from Lemma 5.4.2 that Si j := (S j CNOTi j )2 ∈ Dn for 1 ≤ j < i . Recall furthermore that
left-multiplication of M ′ by Si j amounts to adding row i to row n + j and adding rows i and j to
row n + i . By left-multiplication by elements Si j ∈Dn and Si ∈Dn we may (without changing the
first n rows of M ′) assume that C is a strictly upper triangular matrix. Since the first n columns
of M ′ must have pairwise zero symplectic inner product, this implies that in fact C = 0. Since
ATD +CTB = In , it follows that D = (AT)−1 = AT, where we have used that A is self-inverse.

Note that for any permutation π ∈ Sn−1, we can replace a,b,E by π(a),π(b),π(E) (permuting
both rows and columns) by multiplying M ′ simultaneously from the left and the right by elements
SWAPi j , since SWAPi j is an element of Dn and Kn for 2 ≤ i < j 6= n. Also, we can replace (a,b)
by (b, a) or (a, a +b) by multiplication from the left and right by elements from {S1, H1}. Hence, to
cover all cases, it suffices to enumerate over the triples (a,b,E) where a ≤ b ≤ a+b and E runs over
the adjacency matrices of graphs on n −1 nodes (up to isomorphism).

5.6. OPTIMISATION RESULTS
In the previous sections we have outlined our methods for finding all possible bilocal Clifford pro-
tocols, which were described in Section 5.3. In the following we report our findings, first for up to
n = 5 general Bell-diagonal input states, second for up to n = 8 identical Werner states.



5.6. OPTIMISATION RESULTS

5

139

0.2 0.3 0.4 0.5 0.6 0.7 0.8

psuc
0.7

0.75

0.8

0.85

0.9

Fout

n=2
n=3
n=4
n=5

Figure 5.4: Achievable
(
psuc, Fout

)
pairs for n = 2 to 5 copies of a state with coefficients pI = 0.7, pX = 0.15,

pY = 0.10, pZ = 0.05. The highest achievable pairs are indicated by a solid line for each number of copies. Not
included in the plot are those distillation protocols with fidelity smaller than F = 0.68.

5.6.1. ACHIEVED DISTILLATION STATISTICS FOR GENERAL INPUT STATES

In Fig. 5.4 we show the achievable
(
psuc, Fout

)
pairs for n = 2,3,4,5 copies of a state with coeffi-

cients pI = 0.7, pX = 0.15, pY = 0.10, pZ = 0.05. We also plot the envelope, indicating the best
performing schemes. Moreover, our results for n = 5 clearly show that picking an arbitrary coset
does not give a good protocol in general.

Furthermore, we consider the n = 2 scenario where the two input states are equal, i.e. both
have equal values for the pI , pX , pY , pZ parameters. By comparing all analytic expressions of the
output fidelity as a function of pI , pX , pY , pZ , we find that the DEJMPS protocol achieves the high-
est fidelity out of all bilocal Clifford protocols (see [76] for the details).

While we do not explore this direction, the results can also be applied to less symmetric cases,
i.e. when the n pairs are not the same. This situation is, for example, relevant when states arrive at
different times, and thus experience different amounts of decoherence.

5.6.2. ACHIEVED DISTILLATION STATISTICS FOR n-FOLD WERNER STATES
Here we show our results for the case of an n-fold tensor product of a Werner state. First, we list
the number of cases to check (i.e. the number of triples (a,b,E), see Section 5.5) and the number
of distinct distillation protocols for this scenario in Table 5.2.

2 3 4 5 6 7 8

Cases 2 10 60 561 6358 111540 2917980

Distinct protocols 2 4 12 31 86 303 1131

Table 5.2: Number of cases to check (i.e. the number of triples (a,b,E) and number of distinct distillation
protocols for n identical Werner states.
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Figure 5.5: Comparison between the increase in fidelity Fout −Fin with our optimisation (solid) and concate-
nated DEJMPS protocol (dotted), for n = 2 to 8 identical Werner states with fidelity Fin. Note how the n = 5
concatenated DEJMPS protocol overlaps with an optimised n = 4 protocol.

The number of cases and distinct protocols still rapidly grow with n, but our reduction allowed
to consider all possible distillation protocols for n = 8 in about a day of computer run-time. This
should be compared with a naive optimisation over all elements of the symplectic group — for
n = 8 the ratio between the order of the symplectic group and the number of cases to check is
approximately 2 ·1034.

In order to gauge the advantage of the optimal protocols that we find for Werner states, we
compare them with the class of protocols we call concatenated DEJMPS protocols. These are bilocal
Clifford protocols that are built from multiple iterations of the DEJMPS protocol, see Appendix 5.8.2
for more information. The concatenated DEJMPS protocols form a natural generalisation of the
(nested) entanglement pumping protocols [47].

We first investigate the increase in fidelity Fout−Fin conditioned on the success of the distilla-
tion protocol. We plot the increase in fidelity as a function of the input fidelity Fin for n = 2,3, . . . ,8
in Fig. 5.5. The dotted lines correspond to the concatenated DEJMPS protocols, the solid lines
correspond to the single protocol that achieves the highest output fidelity found with our opti-
misation. For completeness, we show the success probabilities and fidelities for the optimised
protocols for n = 2,3, . . . ,8 in Tables 5.3, 5.4, 5.5 and 5.6 in Appendix 5.8.5.

Let us now discuss Fig. 5.5. First we observe that for n = 2,3, the optimal protocols correspond
to the original DEJMPS [42] and double-selection [54] protocols. However, for n > 3, we find dis-
tillation protocols that outperform the concatenated DEJMPS protocols.

We find that the optimal protocol for n = 4 achieves the same fidelity as the concatenated DE-
JMPS protocol for n = 5, and can be executed with a circuit of the same depth as the concatenated
DEJMPS protocol. This protocol achieves the same distillation statistics as the protocol found with
different means in the recent work from [181].

For n = 5 there is a large gap between the optimised protocols and the concatenated DEJMPS
protocol. We make this now more quantitative by expanding the Fout for high input fidelity Fin ≈ 1.
For n = 5, the concatenated DEJMPS protocol has quadratic scaling in the infidelity,
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Figure 5.6: Comparison between the achieved infidelities 1−Fout with our optimisation (solid) and concate-
nated DEJMPS protocol (dotted), for n = 4 to 8 identical Werner states with fidelity Fin.

1− 2

3
(1−F )2 +O

(
(1−F )3

)
, (5.23)

while the optimised protocol has a cubic scaling in the infidelity

1− 10

9
(1−F )3 +O

(
(1−F )4

)
. (5.24)

This is particularly surprising, since previous protocols with five or less pairs [87] have a scaling
that is at most quadratic in the infidelity. We list the scaling of the found protocols in Table. 5.7.

Next, we investigate the behavior of the protocols for high fidelities Fin ≈ 1. In Fig. 5.6 we plot
the infidelity 1−Fout as a function of the input fidelity Fin. We observe that it is possible to reach
fidelities of around 0.999 using six copies of Werner states with fidelity Fin = 0.9. We do not plot
the results for n = 2,3 since we find no improvements with respect to previous protocols.

We have seen that the optimised distillation protocols are capable of achieving a higher fidelity
than the concatenated DEJMPS protocols. However, the optimised distillation protocols also have
a lower success probability. This motivates us to investigate a metric that combines the success
probability and the quality of the resultant state. As a metric we use the distillable entanglement
rate which we approximate by combining the distillation protocol together with a hashing pro-
tocol [11]. That is, given n entangled pairs, we first perform an n-to-1 distillation protocol and
then use the output as input for the hashing protocol. The rate r at which this procedure produces
maximally entangled state is given by

r =
(
1−H(p)

) ·psuc

n
, (5.25)

where H(p) is the entropy in bits of the probability distribution p = (
pI, pX , pY , pZ

)
corresponding

to the output state. This metric has been used previously and is sometimes called the hashing
yield [87].
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Figure 5.7: Comparison between the achieved rates after distilling and then hashing with our optimisation
(solid) and the concatenated DEJMPS (dotted) protocol. For both cases, we take the envelope of all protocols
on n = 2 to 8 identical Werner states with fidelity Fin.

We plot the comparison between the achieved rate of all found distillation protocols and the
concatenated DEJMPS protocols in Fig. 5.7. We find that for n > 2 and fidelities . 0.78 the optimal
bilocal Clifford protocols achieve higher rates than concatenated DEJMPS protocols. Furthermore,
these protocols achieve a non-zero rate with an input fidelity of ∼ 0.6, as opposed to concatenated
DEJMPS protocols which require a fidelity of ∼ 0.65. On the other hand, fidelities & 0.78 would be
expected for practical distillation, showing that concatenated DEJMPS protocols perform the best
out of all bilocal Clifford distillation protocols for achieving the highest asymptotic rate.

Let us conclude with an investigation of circuits that achieve the highest fidelity for n = 4 to
8. Interestingly, these protocols can be implemented with low-depth circuits. We performed a
search over circuits of the form described in Appendix 5.8.3, to find circuits that achieve the highest
fidelity. We report these circuits in Appendix 5.8.5. For n = 4 to 8, we find a total number of two-
qubit gates of 4, 7, 8, 11 and 13. Furthermore, the corresponding circuit depths are 3, 5, 6, 6 and
7, respectively. For comparison, the circuit from [181] for n = 4 pairs has 4 two-qubit gates and
depth 5. This protocol can be converted to our optimal n = 4 protocol by left-multiplication with
elements in Dn and right-multiplication with elements in Kn . Therefore, both protocols achieve
the same distillation statistics. The protocol from [105] for n = 5 pairs, which achieves the same
distillation statistics as the concatenated DEJMPS protocol, has 4 two-qubit gates and depth 4.

5.7. CONCLUSIONS AND DISCUSSIONS
Our goal in this chapter was to find good distillation protocols requiring modest resources. For
this, we introduced the class of bilocal Clifford protocols which generalises many existing proto-
cols. The protocols in this class require only a single round of communication between the end
parties and the implementation of Clifford gates. Within this class, we leveraged group theoretic
tools to find all distillation protocols for up to n = 5 pairs for general Bell-diagonal states and up to
n = 8 pairs for the n-fold tensor product of a Werner state.

Some of the protocols that we found strongly improve upon the fidelities and rates of previous
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protocols for certain values of the initial fidelity. At the same time, we have shown that concate-
nated DEJMPS protocols, a generalisation of a previous protocol, achieve the highest rate out of
all bilocal Clifford protocols for relevant input fidelities. Moreover, we give explicit circuits for the
optimal protocols for the n-fold Werner state case, with n = 2 to n = 8. These circuits have com-
parable depth and number of two-qubit gates as previous protocols, indicating the experimental
feasibility of the new protocols. If the improved performance holds with noisy operations, then it
will translate in improved forecasts for the performance of near-term quantum networks [105, 167]
or distributed quantum computation [119]. Finally, since we have enumerated all bilocal Clifford
protocols up to n = 5, it is possible to pick and choose the protocol that maximises any figure of
merit for any particular set of input states. Our software can be found at [76].

In this work we considered distilling one entangled pair out of n pairs. The results here could
be extended to n to m distillation protocols by generalising Lemma 5.5.1 and the characterisation
of the distillation subgroup to the case of n to m distillation. Such distillation protocols would
allow for a more refined trade-off between the fidelity and the success probability/rate. Another
interesting avenue would be to generalise the tools to higher dimensional entangled states.



5

144 5. ENUMERATING ALL BILOCAL CLIFFORD DISTILLATION PROTOCOLS

5.8. APPENDIX

5.8.1. BACKGROUND ON BINARY PICTURE
For completeness, we give here more background and derivations on the binary picture used in
this work.

Firstly, we give a derivation of equation (5.1). Suppose that we have two elements τa ,τb ∈P n ,

with a =
[

v a

w a

]
= [

v a
1 . . . v a

n w a
1 . . . w a

n
]T

and b =
[

vb

wb

]
=

[
vb

1 . . . vb
n wb

1 . . . wb
n

]T
. Then

τaτb = (τv a
1 w a

1
⊗·· ·⊗τv a

n w a
n

)(τvb
1 wb

1
⊗·· ·⊗τvb

n wb
n

)

=
n⊗

k=1
τv a

k w a
k
τvb

k wb
k

.
(5.26)

For all k ∈ {1, . . . ,n}, we have

τv a
k w a

k
τvb

k wb
k
= X v a

k Z w a
k X vb

k Z wb
k

= X v a
k (−1)vb

k w a
k X vb

k Z w a
k Z wb

k

= (−1)vb
k w a

k X v a
k +vb

k Z w a
k +wb

k

= (−1)vb
k w a

k τv a
k +vb

k ,w a
k +wb

k
.

(5.27)

As a result,

τaτb =
n⊗

k=1
(−1)vb

k w a
k τv a

k +vb
k ,w a

k +wb
k

= (−1)
∑n

k=1 vb
k w a

k τv a+vb ,w a+wb

= (−1)vb ·w a
τa+b .

(5.28)

Here vb ·w a is the standard vector dot product. We can rewrite this dot product in terms of
the vectors a and b:

vb ·w a = bTΞa, Ξ=
[

0 In
0 0

]
. (5.29)

Hence, the product of τa and τb is given by

τaτb = (−1)bTΞaτa+b . (5.30)

Combining equation (5.30) for τaτb and τbτa , we finally obtain

τaτb = (−1)bTΞa+bTΞTaτbτa = (−1)bTΩaτbτa , (5.31)

whereΩ=Ξ+ΞT =
[

0 In
In 0

]
. (5.32)

Let C ∈ Cn be a Clifford operation and f : P n → P n , f (P ) = C PC † be the corresponding au-
tomorphism. Let π : F2n

2 → F2n
2 be the representation of f in the binary picture. Let a,b ∈ F2n

2 .

Then we know that Cτa+bC † = (−1)bTΞaCτaτbC † = (−1)bTΞaCτaC †CτbC †. In the binary repre-

sentation, the prefactor (−1)bTΞa does not make a difference. Thus, π(a +b) =π(a)+π(b), so π is
a linear map, and there exists a binary 2n ×2n matrix M such that π(a) = M a for all a ∈ F2n

2 .
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5.8.2. CONCATENATED DEJMPS PROTOCOLS
Here we describe the distillation protocols which we compare our results with. These are all based
on the so-called DEJMPS protocol [42]. The DEJMPS protocol takes two pairs of Bell-diagonal
states, and outputs one state. It performs bilocal single-qubit rotations on both pairs, then a bilo-
cal CNOT, and finally a measurement on one of the pairs where a success is achieved only when
correlated outcomes are observed. It is clear that the DEJMPS protocol is an example of a bilocal
Clifford protocol. The DEJMPS protocol can be generalised to a number of pairs n > 2 by applying
the DEJMPS protocol multiple times.

Since the DEJMPS protocol corresponds to 2-1 distillation, the possible ways of combining the
different pairs correspond to the number of binary trees on n unlabeled nodes for an n-fold tensor
product of input states. Furthermore, for each of the performed DEJMPS protocols (corresponding
to each parent of the binary tree), we consider all possible single-qubit rotations. The concatenated
DEJMPS protocol is then the protocol that has the highest fidelity out of all such protocols, and
is found by calculating the fidelity of each possible configuration. Note that this optimisation
includes well known variants of DEJMPS such as (nested) entanglement pumping protocols [20,
47, 48] or double selection [54].

5.8.3. DISTILLATION CIRCUITS
In this section we are concerned with finding circuits that achieve the highest fidelity for n = 4 to
8 for an n-fold tensor product of a Werner state2.

We first note that one could use techniques for general Clifford circuit decompositions to de-
compose the symplectic matrices of the form in 5.5.1. However, we found that this would in gen-
eral lead to circuits with high depths. Instead, we first find that any distillation protocol has a
circuit in a given form. Then, we randomly generate circuits of that form, until we find circuits
that achieve the highest fidelity, and have small depth.

5.8.4. REDUCING THE CIRCUIT SEARCH SPACE
We use the Bruhat decomposition from [19, 103], which allows to write any Clifford circuit C in
the form C = FW F ′, with F and, F ′ elements of the so-called Borel subgroup3 and W a layer of
Hadamard gates followed by a permutation σ ∈ Sn . The Borel subgroup Bn is generated by Xi ,
Si for 1 ≤ i ≤ n and CNOTi j with 1 ≤ j ≤ i ≤ n. For convenience, we denote such CNOT gates as

CNOT↑ gates. Now note that the Borel subgroup Bn is a subgroup of the distillation subgroup Dn .
This implies that the F part of any circuit in the form C = FW F ′ does not change the distillation
statistics. Thus, any distillation protocol has a corresponding circuit of the form W F ′. Further-
more, since the distillation subgroup Dn contains elements that arbitrarily permute qubits 2 to n,
we can restrict to permutations that are either the identity, or exchange qubit 1 with j . In practice,
we have found that it sufficient to only consider W = H2H3 . . . Hn .

By the results from [19], any element F ′ from Bn can be written as a layer of CNOT↑ gates, a
layer of CZ gates, a layer of phase gates and a layer of Pauli gates. Firstly, the Pauli gates are in the
kernel of φ, and thus can be left out. Secondly, the layer of S gates can be moved to the beginning.
To see this, first note that phase gates commute with CZ gates. Then, since CNOTi j Si = Si CNOTi j
and S j CNOTi j = CNOTi j CZi j Si S j , the layer of S gates can be moved to the beginning. Since
Werner states are invariant under S, the layer of S gates can be removed without changing the
distillation statistics. In the above process of moving the S gates to the beginning, the layer that

2We are not interested in the cases n = 2 and n = 3, since for those cases the concatenated DEJMPS protocols
are optimal.

3We use a different convention from [19, 103], where the target index for the CNOT gates in the Borel subgroup
is larger than the control index.
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only had CNOT↑ gates will now have CZ gates as well. In the binary picture we have the following
identities,

CNOTi j CZkl = CZkl CNOTi j , (5.33)

CNOTi j CZi j = CZi j CNOTi j , (5.34)

CNOTi k CZi j = CZi j CNOTi k , (5.35)

CNOTi k CZ j k = CZi j CZ j k CNOTi k , (5.36)

where the i , j ,k, l are assumed to be distinct, and can be verified using Lemma 5.2.1. By using the
above identities, the CZ gates can be moved through to the original layer of CZ gates.

It is thus sufficient to consider only elements F ′ that consist of a layer of CNOT↑ gates and a
layer of CZ gates. Now, to find circuits we randomly generate circuits consisting of a layer of CNOT↑
gates, a layer of CZ gates, and a Hadamard gate on all qubit except the first. We found several
circuits that achieved the largest fidelity, and choose the one with smallest depth. We report the
found circuits in Fig. 5.8.
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• • H Z

(a) n = 4, #2-qubit gates = 4, depth =
3.

•
• • H Z

• • • H Z

• • H Z

• • • H Z

(b) n = 5, #2-qubit gates = 7,
depth = 5.

•
• • H Z

• • • • H Z

• H Z

• • • H Z

• H Z

(c) n = 6, #2-qubit gates = 8,
depth = 6

•
• • • H Z

• • • • H Z

• • H Z

• • • H Z

• • • H Z

• • H Z

(d) n = 7, #2-qubit gates = 11,
depth = 6.

•
• H Z

• • • H Z

• • • H Z

• • H Z

• • H Z

• • • • H Z

• • • H Z

(e) n = 8, #2-qubit gates = 13, depth =
7.

Figure 5.8: Circuits that achieve the maximum fidelity for n. These circuits are applied by both Alice and Bob,
after which they measure the last n − 1 qubits, and communicate their outcomes to each other. When the
outcomes for all individual qubit pairs are correlated, the distillation protocol was deemed successful.
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5.8.5. ANALYTICAL EXPRESSIONS
We report here the analytical expressions of the fidelity and success probability that correspond
to the found optimal schemes. The input state is an n-fold tensor product of a Werner state with
fidelity F . For completeness, we report here as well the distillation statistics expressed in the infi-
delity ε≡ 1−F , and the scaling of the output fidelity as a function of the infidelity.

n psuc

2 8
9 F 2 − 4

9 F + 5
9

3 32
27 F 3 − 4

9 F 2 + 7
27

4 32
27 F 4 − 4

9 F 2 + 4
27 F + 1

9

5 80
27 F 4 − 80

27 F 3 + 10
9 F 2 − 5

27 F + 2
27

6 128
243 F 6 + 320

243 F 5 − 256
243 F 4 + 16

243 F 3 + 40
243 F 2 − 14

243 F + 1
27

7 2048
2187 F 7 − 128

2187 F 6 + 320
729 F 5 − 796

2187 F 4 − 44
2187 F 3 + 49

729 F 2 − 37
2187 F + 37

2187

8 6656
6561 F 8 − 1024

6561 F 7 + 1664
6561 F 6 − 64

6561 F 5 − 1120
6561 F 4 + 416

6561 F 3 − 4
6561 F 2 − 16

6561 F + 53
6561

Table 5.3: Success probability for the protocols with the highest output fidelity for n = 2 to 8.

n psuc ·Fout

2 10
9 F 2 − 2

9 F + 1
9

3 28
27 F 3 − 1

9 F + 2
27

4 8
9 F 4 + 8

27 F 3 − 2
9 F 2 + 1

27

5 32
27 F 5 − 20

27 F 4 + 10
9 F 3 − 20

27 F 2 + 5
27 F

6 32
27 F 6 − 112

243 F 5 + 80
243 F 4 + 8

243 F 3 − 32
243 F 2 + 10

243 F + 1
243

7 2368
2187 F 7 − 592

2187 F 6 + 196
729 F 5 − 44

2187 F 4 − 199
2187 F 3 + 20

729 F 2 − 2
2187 F + 8

2187

8 6784
6561 F 8 − 51

6561 F 7 − 32
6561 F 6 + 832

6561 F 5 − 560
6561 F 4 − 8

6561 F 3 + 52
6561 F 2 − 8

6561 F + 13
6561

Table 5.4: Product of the success probability and the output fidelity for the protocols with the highest output
fidelity for n = 2 to 8.
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n psuc

2 1− 4
3ε+ 8

9ε
2

3 1−2ε+ 4
3ε

2

4 1−2ε+ 4
3ε

2 − 8
27ε

3

5 1− 14
3 ε+ 28

3 ε
2 − 256

27 ε
3 + 400

81 ε
4 − 256

243ε
5

6 1−5ε+ 32
3 ε

2 −12ε3 + 608
81 ε

4 − 608
243ε

5 + 256
729ε

6

7 1−7ε+ 190
9 ε2 − 944

27 ε
3 + 928

27 ε
4 − 544

27 ε
5 + 1600

243 ε
6 − 2048

2187ε
7

8 1− 23
3 ε+ 244

9 ε2 − 1540
27 ε3 + 6280

81 ε4 − 16832
243 ε5 + 28768

729 ε6 − 9472
729 ε

7 + 4096
2187ε

8

Table 5.5: Success probability for the protocols with the highest output fidelity for n = 2 to 8, expressed in the
infidelity ε≡ 1−F .

n psuc ·Fout Fout

2 1−2ε+ 10
9 ε

2 1− 2
3ε−O

(
ε2

)
3 1−3ε+ 10

3 ε
2 − 4

3ε
3 1− 1

3ε−O
(
ε2

)
4 1−3ε+ 10

3 ε
2 − 44

27ε
3 + 8

27
4

1− 2
3ε

2 −O
(
ε3

)
5 1−5ε+ 92

9 ε
2 − 284

27 ε
3 + 440

81 ε
4 − 272

243ε
5 1− 10

9 ε
3 −O

(
ε4

)
6 1− 17

3 ε+ 122
9 ε2 − 466

27 ε
3 + 992

81 ε
4 − 1112

243 ε
5 + 512

729ε
6 1− 8

9ε
3 −O

(
ε4

)
7 1−7ε+ 190

9 ε2 − 320
9 ε3 + 2936

81 ε4 − 1816
81 ε5 + 5680

729 ε
6 − 2560

2187ε
7 1− 13

27ε
3 −O

(
ε4

)
8 1−8ε+ 259

9 ε2 − 544
9 ε3 + 2180

27 ε4 − 17000
243 ε5 + 27872

729 ε6 − 2912
243 ε

7 + 3584
2187ε

8 1− 8
27ε

3 −O
(
ε4

)
Table 5.6: Product of the success probability and output fidelity (first column) and the scaling of the output
fidelity around ε ≈ 0 (second column) for the protocols with the highest output fidelity for n = 2 to 8. Here
ε≡ 1−F .
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n Fout

2 1− 2
3ε−O

(
ε2

)
3 1− 1

3ε−O
(
ε2

)
4 1− 2

3ε
2 −O

(
ε3

)
5 1− 10

9 ε
3 −O

(
ε4

)
6 1− 8

9ε
3 −O

(
ε4

)
7 1− 13

27ε
3 −O

(
ε4

)
8 1− 8

27ε
3 −O

(
ε4

)
Table 5.7: Scaling of the output fidelity around ε≈ 0 for the protocols with the highest output fidelity for n = 2
to 8, where ε≡ 1−F .



6
CONCLUSION

The research presented in this thesis focused on the problem of entanglement distribution. Simply
put, the two main problems facing (practical) implementation of entanglement distribution over
quantum networks are loss and noise. Quantum repeaters are meant to overcome the effects of
loss, but in practice their implementation always comes at the cost of more incurred noise. This
additional noise can be overcome by the use of entanglement distillation.

In the first two chapters, we focused on the assessment of a basic building block for quantum
networks, a single quantum repeater. We then considered finding schemes for the concatena-
tion of multiple such quantum repeaters, along with the inclusion of basic distillation protocols.
Finally, we considered a systematic way of optimising over a relevant class of (more complex) dis-
tillation protocols.

6.1. SUMMARY OF RESULTS
We summarise here the main contributions of this thesis.

• The cut-off is a tool that allows for the trade-off between the rate and the fidelity of the re-
ceived qubits. The cut-off is easy to implement experimentally, yet allows for an increase
in the secret-key generated in comparison to the no cut-off scenario, especially as the dis-
tance increases. In fact, for the case of a single repeater node as presented in chapters 2 and
3, we observe that it allows for an approximately one-third increase in the total distance
over which non-zero secret-key can be generated. While the cut-off makes the theoretical
analysis of quantum repeaters more complicated, this is outweighed by the practical bene-
fits it provides.

• The number of (near-deterministic) entanglement distribution schemes over linear repeater
chains grows super-exponentially in the number of elementary links. In practice, one can-
not hope to exploit symmetry of the setup to simplify the optimisation. We have proposed a
heuristic optimisation over repeater schemes which runs in polynomial time. The optimi-
sation is general, and can be applied to a wide range of different experimental platforms. We
have found significant improvements (in the sense of higher fidelity and generation rates)
for asymmetric repeater chains when compared with a naive optimisation. Furthermore,
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we have found heuristics on what makes a ‘good’ near-deterministic scheme. In particular,
the banded swapping heuristic relates the fidelities and the distances over which entangle-
ment has been generated for good schemes.

• Entanglement distillation on a small number of copies (∼ 4−8) can achieve higher fidelities
than thought previously, improving on known protocols and naive generalisations thereof.
At the same time, these new protocols can be implemented using bilocal Clifford circuits
(with modest depth and number of two-qubit gates) and a single round of communication
only. Furthermore, all such protocols can be classified for general Bell-diagonal states and
the n-fold tensor product of a Werner state for up to 5 and 8 pairs.

6.2. OUTLOOK
Here we will discuss future research directions relevant to this thesis and, more importantly, the
creation of future quantum networks. We discuss first single quantum repeater setups, building
up to linear repeater chains, and finally concluding with a discussion on (bilocal Clifford) entan-
glement distillation protocols.

6.2.1. SINGLE QUANTUM REPEATERS
Quantum repeaters form an essential building block for quantum networks. The most basic setup
is that of a single quantum repeater node situated between two parties. Demonstrating a proof-of-
principle implementation of a single quantum repeater node forms a vital step towards construct-
ing quantum networks.

There have been several proposals for such a single quantum repeater node. We compared
four different proposals to find which would work best for a proof-of-principle implementation
of a single repeater node. We found that the single-photon scheme was the most suitable candi-
date. One of the benefits of this scheme was that it did not require storage of quantum states over
time. Interestingly, one of the first experimental implementations that has surpassed the secret-
key capacity [108] was essentially the same as the single-photon scheme, and in particular did
not require the storage of quantum states. However, extending such proof-of-principle quantum
repeater schemes to an additional node, let alone multiple, will necessarily require the storage of
states. In this sense, the assessment of quantum repeater schemes/implementations that are more
amenable for scaling up to repeater chains is of importance. At the same time, a detailed analysis
of multi-node repeater chains that involve the storage of states is complicated by the stochastic na-
ture of the operations involved. We expect that a proper assessment cannot be treated analytically,
and will require the simulation of such schemes.

From a scientific point of view, proof-of-principle experiments for quantum repeaters are
valuable - surpassing the secret-key capacity allows one to make a clear statement on the per-
formed experiment. Namely, the implemented setup achieved something that would have been
impossible without a quantum repeater. It is thus not surprising that comparing the performance
of quantum repeaters with the secret-key capacity has been a staple in the quantum information
literature so far. However, after sufficient time proof-of-principle experiments will have become
hopefully more commonplace. At this point in time, quantum repeater setups will evolve to be-
come more of a means to an end. Both theoretical and experimental efforts will then not focus
on surpassing the maximum achievable secret key (or any other practically relevant quantity) per
channel use for direct transmission, but on increasing the secret key (or any other practically rele-
vant quantity) per unit time.
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6.2.2. LINEAR REPEATER CHAINS
For large enough distances, a single repeater will not suffice to meet future entanglement rate re-
quirements. This necessitates the introduction of multiple repeater nodes, leading in the simplest
case to linear repeater chains. In this thesis we considered near-deterministic schemes over linear
repeater chains. Such schemes have the benefit of delivering an entangled state with high proba-
bility at a fixed time. This comes at the cost of increased requirements on the quantum memories,
since states are in general stored longer. This trade-off becomes especially important at the level
of quantum networks, where the failure of generating entanglement within a certain time-frame
will impact other processes in the network. At the same time, near-deterministic schemes will
in general occupy components of the network for a longer time. One could imagine that near-
deterministic schemes would be useful for creating ‘backbones’ in quantum networks - sections
of a quantum network dedicated to generating entanglement consistently at a fixed rate and fi-
delity. In such a backbone, the consistent generation of entanglement between fixed nodes is one
of the most important features.

Furthermore, the relation between schemes being near-deterministic and the practicality of
entanglement distillation is worthwhile to investigate. While entanglement distillation from mul-
tiple states to one state can increase fidelity, all states need to be present. Due to the stochastic
nature of the operations in a network, the states will arrive at different times. The additional ex-
perienced decoherence due to this can quickly make distillation fruitless. This time-delay can be
decreased by using near-deterministic scheme, since the success of such schemes has a small vari-
ance by construction. It is not clear in which cases the trade-off between a smaller variance against
a total larger overhead in waiting time will provide a benefit.

Our optimisation results have been mostly used in a quantitative fashion - that is, results on
the achievable pairs of fidelities and entanglement generation rates for the given experimental
parameters. However, we have also implemented heuristics that restrict the types of considered
schemes, which were inspired by optimisation results without the heuristics. A concrete exam-
ple is given by the banded swapping heuristic, which relates the allowed fidelities and lengths of
the (multi-hop) links. A further investigation of such qualitative statements can inspire design
choices for quantum networks. In particular for (strongly) asymmetric repeater chains it is not
clear whether certain schemes are bad or good a priori. For example, given two (multi-hop) links
of the same length, but different parameters, can statements be made on which link should be pre-
ferred for entanglement distillation? If such statements do not depend in a complicated fashion
on the underlying physical parameters, they could potentially lead to relatively simple guidelines
for designing quantum networks and the operations running on them.

6.2.3. ENTANGLEMENT DISTILLATION PROTOCOLS
Entanglement distillation protocols allow for overcoming the noise incurred in any realistic im-
plementation of a quantum network. For this reason, they form an important part of any future
quantum internet. This motivated the search for new experimentally feasible distillation proto-
cols. We introduced the class of bilocal Clifford protocols, and enumerated/optimised over all
such protocols for up to n = 8 pairs. For more than n = 3 pairs, we found explicit protocols that
achieve higher fidelities than previously known protocols. Importantly, these protocols require
only a single round of communication, and circuits that have both low depth and a small number
of two-qubit gates.

The results found in this thesis can be generalised by distilling to a number of copies m ≥ 1, in-
stead of only distilling to one pair. Furthermore, the results herein could be generalised to the case
where one relaxes the post-selection condition on the measurements. That is, certain observed
patterns of (anti-)correlated outcomes can be counted as a success. This leads to a trade-off be-
tween the success probability and the fidelity. An example of a protocol that falls into this more
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general class is the hashing protocol, which is known to be able to distill certain Bell-diagonal
states to maximally entangled states at a non-zero rate. This protocol has been used in the liter-
ature to assess how well certain tasks can be performed. Exploring a class of protocols which the
hashing protocol belongs to, in both the finite and asymptotic case, would thus be of value.

The techniques employed rely strongly on the input states being Bell-diagonal and the allowed
operations being bilocal Clifford gates. Certain techniques could carry-over to the case of arbitrary
bilocal unitaries on n-fold tensor products of Werner states. In that case, the corresponding dis-
tillation subgroup and the subgroup leaving the states invariant would become infinite. The first
can be seen by noting that the bilocal application of exp(i · t Z ) on any of the measured out regis-
ters commutes with the measurements. The second can be seen by the fact that the n-fold tensor
product of a Werner state is invariant under (at least) the subgroup generated by all possible SWAP
operations and local unitaries. Ideally, the corresponding double cosets would have finite index in
the unitary group on n qubits. This would reduce the optimisation over a continuous set to one
over a finite (but potentially very large) set. Even for infinite index, a characterisation of the double
cosets might still be possible.
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[114] Gláucia Murta, Filip Rozpędek, Jérémy Ribeiro, David Elkouss, and Stephanie Wehner. Key
rates for quantum key distribution protocols with asymmetric noise. Physical Review A,
101(6):062321, 2020.

[115] Kae Nemoto, Michael Trupke, Simon J Devitt, Burkhard Scharfenberger, Kathrin Buczak,
Jörg Schmiedmayer, and William J Munro. Photonic quantum networks formed from NV-
centers. Scientific reports, 6:26284, 2016.

[116] Christian Nguyen, Denis Sukachev, Mihir Bhaskar, Bartholomeus Machielse, David Levo-
nian, Erik Knall, Pavel Stroganov, Cleaven Chia, Michael Burek, Ralf Riedinger, et al. An inte-
grated nanophotonic quantum register based on silicon-vacancy spins in diamond. Physical
Review B, 100(16):165428, 2019.



BIBLIOGRAPHY 167

[117] Christian Nguyen, Denis Sukachev, Mihir Bhaskar, Bartholomeus Machielse, David Levo-
nian, Erik Knall, Pavel Stroganov, Ralf Riedinger, Hongkun Park, Marko Lončar, et al. Quan-
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[141] Filip Rozpędek, Thomas Schiet, David Elkouss, Andrew C Doherty, Stephanie Wehner, et al.
Optimizing practical entanglement distillation. Physical Review A, 97(6):062333, 2018.
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