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FPGA Acceleration for Big Data Analytics:
Challenges and Opportunities

Joost Hoozemans Johan Peltenburg Fabian Nonnenmacher Ákos Hadnagy
Zaid Al-Ars H. Peter Hofstee

Abstract—The big data revolution has ushered an era with
ever increasing volumes and complexity of data requiring
ever faster computational analysis. During this very same
era, CPU performance growth has been stagnating, pushing
the industry to either scale their computation horizontally
using multiple nodes in datacenters, or to scale vertically
using heterogeneous components to reduce compute time.
However, networking and storage continue to provide both
higher throughput and lower latency, which allows for
leveraging heterogeneous components, deployed in data centers
around the world. Still, the integration of big data analytics
frameworks with heterogeneous hardware components such
as GPGPUs and FPGAs is challenging, because there is an
increasing gap in the level of abstraction between analytics
solutions developed with big data analytics frameworks, and
accelerated kernels developed with heterogeneous components.
In this article, we focus on FPGA accelerators that have
seen wide-scale deployment in large cloud infrastructures.
FPGAs allow the implementation of highly optimized hardware
architectures, tailored exactly to an application, and unburdened
by the overhead associated with traditional general-purpose
computer architectures. FPGAs implementing dataflow-oriented
architectures with high levels of (pipeline) parallelism can
provide high application throughput, often providing high energy
efficiency. Latency-sensitive applications can leverage FPGA
accelerators by directly connecting to the physical layer of
a network, and perform data transformations without going
through the software stacks of the host system. While these
advantages of FPGA accelerators hold promise, difficulties
associated with programming and integration limit their use.
This article explores the existing practices in big data analytics
frameworks, discusses the aforementioned gap in development
abstractions, and provides some perspectives on how to address
these challenges in the future.

Index Terms—Big data, FPGA, accelerator, heterogenous
computing, Apache Arrow, Apache Spark

I. INTRODUCTION

A lot has changed in the world of analytics since the
first database management systems were popularized. Highly
structured data was carefully administered, making it easy
to distill information. Now, the field is confronted with a
quintuple challenge: more data to process, more abstraction
desired, new computationally intensive paradigms (like AI),
and more latency sensitive (interactive) uses. At the same time,
transistor performance improvements are slowing down and
power efficiency becomes a greater and greater challenge.

Meanwhile, recent developments have also presented us
with several new opportunities. Cloud infrastructure has
opened up the use of large compute clusters to a far wider
range of users by allowing more efficient sharing of hardware.
Highly efficient compute units have been designed to target

certain workloads in a highly specialized manner. The memory
hierarchy has been extended with solid state drives and storage
class memory, improving both throughput and latency for
access to large datasets. Similarly, networking technology has
been advancing rapidly, still keeping pace with Moore’s law.

While the performance increase of general-purpose CPUs
is not able to keep up with the advances in their periphery,
reconfigurable logic found in FPGAs provides several unique
strengths that may be able to cope better. For many
applications, FPGAs have the ability to transform and filter
data at the very high data rates that new storage systems can
provide. When attached directly to the network, reconfigurable
logic can provide similar functionality at line-rate with very
low latency, because data no longer needs to traverse various
software layers of the networking and application stack. It
allows users to specialize FPGA accelerators found in cloud
instances to their applications, without the need to replace
hardware. Tailoring the logic mapped on top of the FPGA
fabric allows the construction of custom dataflow computers,
where there is a minimal need to move data back and
forth through the memory hierarchy. Even in cases where
such FPGA designs provide only marginal gains in terms of
throughput, the computations tend to be more power-efficient
because of the reduced data movement and because the FPGA
operates at relatively low clock frequencies.

However, FPGA acceleration still has several challenges.
In spite of efforts to improve the ease of programming,
FPGAs are currently not yet suitable to be used directly
by an audience untrained in circuit design. Very few people
with proper hardware design training are also active in the
field of big data analytics, leading to a scarcity of designers.
Furthermore, the use of FPGAs in cloud instances is currently
still very explicit, requiring FPGA-aware code paths. Also,
data coming from high-level languages running on interpreters
and virtual machines needs to be transformed and copied
sometimes several times during (de)serialization before it can
be used in the accelerator. This often negates any advantage
that can be gained by designing the accelerator in the first
place. Last, there is still no systematic way to address the long
synthesis time for datacenter-class FPGAs (where 12 hours is
no exception) and the relatively long reprogramming delay (in
the order of 100 ms).

In this article, we investigate these challenges and
opportunities and summarize recent progress, and lay out
a roadmap for further improvement. Ultimately, our goal is
seamless integration of FPGAs in cloud infrastructure for big
data analytics. Section II presents a more in-depth background
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of the related topics. Then, Section III discusses recent
developments (opportunities) and missing links (challenges)
for near-future big data analytics systems. Section IV presents
a prototype system that features many of the components
discussed. Section V provides an analysis and evaluation of our
prototype implementation. Section VI provides a discussion of
related work. Finally, Section VII concludes the article.

II. BACKGROUND

A. Heterogeneous computing

Increases in single-thread performance have dropped to less
than 10% per year during the last decade [1] due in part to a
slowdown in Moore’s law. The additional transistors are not
directly translating into raw performance anymore, but instead
into higher core counts and, more recently, more specialized
compute units [2]. Modern processors often contain custom
cores for compression, cryptography, media codecs, etc. These
are better suited to meet the demands of higher performance
at better energy efficiency. Graphics Processing Units (GPUs)
have long been made available as a mainstream accelerator,
targeting very specific (graphics processing) tasks at first but
more recently being applied in a wider variety of workloads.
More accelerators have been introduced, e.g. to target machine
learning (Google’s TPU [3]), or more irregular massively
parallel applications (Graphcore’s IPU).

In heterogeneous computing, parts of the workload are
appropriately divided among multiple different but more
specialized and efficient components than just the general-
purpose CPU. Not every application will have a compute fabric
that provides a perfect match for it. FPGAs, however, create
the opportunity to design a custom hardware implementation
for a specific application with a fast time-to-market.

B. FPGA computing

While FPGAs have been commonplace in certain
application domains, and have been widely used for testing
and prototyping ASIC designs, recent offerings from vendors
(e.g. [4], [5]) are specifically targeting datacenters and cloud
infrastructures.

There is roughly an order of magnitude overhead in
both clock frequency and area compared to full-custom IC
designs [6], since more transistors are required to implement
the same function, due to the reconfigurable nature of the
underlying FPGA fabric. In spite of this, FPGAs are becoming
an important element in the datacenter strategies of several
large cloud providers because often there is still potential for
higher performance and/or higher energy-efficiency [7].

This potential comes from several factors:
• Custom datatypes (no need to use a 64-bit ALU for

incrementing indexes that would only need a few bits)
• Custom memory hierarchies and connectivity (placing

local memories in the most suitable location and
providing a more optimal organization)

• No instructions (this means saving caches and memory
bandwidth, and it also means no logic required for
instruction decoding etc.)

• Very deep pipelining (dataflow designs can have pipeline
depths of thousands of stages, all of which are performing
useful work at all times)

• Abundant parallelism (pipelines can be duplicated as long
as there is FPGA logic available)

• Low clock frequencies (resulting in significant reduction
in power consumption)

These factors contrast sharply with a general-purpose
processor, which spends the majority of energy and
logic moving data around between cores, caches and
registers, decoding instructions and resolving dependencies.
In comparison, a much larger fraction of FPGAs logic
can be utilized for actual operations in a dataflow fashion,
minimizing data movements between subsequent compute
steps (performed by adjacent compute units on the chip).

However, FPGAs also have a number of drawbacks.
Compared to CPUs and GPUs, the development cycles are
much longer and require logic design expertise. Furthermore,
synthesizing a design for an FPGA can take many hours. The
benefits are further reduced when implementing control-heavy
and highly complex algorithms.

1) Programming practices: The adoption of this new form
of compute fabric has been slow, mainly because of the
difficulty associated with programming. The traditional way
of programming an FPGA is by using an RTL language, such
as VHDL or Verilog, developed to design ASICs. This is
a tedious and time-consuming process that requires a very
specialized set of skills and knowledge. High-Level Synthesis
(HLS) aims to decrease both design time and the level
of knowledge required (targeting more traditional software
developers by using the C/C++ programming language).
However, studies show that the decrease in time to achieve
a first functional design is often paired with an increase in
time required to tune for high performance. Additionally,
unlike conventional compilers for CPUs that now typically
outperform hand-written assembly code, HLS compilers still
tend to achieve a lower quality result (in terms of performance
and FPGA resource utilization) compared to a hand-written
RTL version [8]. This could partially be attributed to the
mismatch between the programming paradigm and the FPGA
fabric. The imperative programming paradigm targets a single
sequential machine with a large uniformly accessible memory
and aims to provide it with an explicit instruction every
cycle (temporal programming). The FPGA fabric, on the other
hand, is by nature a spatial resource. Instead of instructions,
programming an FPGA requires specifying the placement of
the operations and connections between them. The ‘program’
is executed implicitly by simply flowing data through the
circuit (hence the term ‘dataflow’ computing).

There exist efforts at various levels of abstraction aiming
to provide a more suitable programming method for FPGAs,
from high-level parallel constructs [9] to dataflow-oriented
[10] and from adding a timing-agnostic layer to an RTL
language [11] to using a functional language [12] for circuit
generation.

2) Integration: There are two facets to discuss in terms
of integration: 1) how to integrate newly created circuits
into existing designs and provide re-usability between these
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designs, and 2) how the custom-designed FPGA circuits can
be employed by software. Although it might seem to be just a
matter of practicality, the amount of time a developer needs to
spend on integration is alarmingly large. The time a designer
needs for writing the actual compute kernel that will perform
the operations is, even when considering an RTL design
method, not that long. However, the amount of time needed
to implement and debug the communication between all the
components (both hardware and software) can be considerable.

Luckily, both vendors and the open source community have
spent a great deal of effort to provide infrastructure aiming to
alleviate this. For example, Gaisler’s GRLIB provides open
source IP cores for various components needed in a SoC
environment, with a bus infrastructure that is easy to interface
with. More recently, ARM’s Advanced Xtensible Interface
(AXI) has become the de-facto bus standard for creating or
connecting to existing IP cores, and is supported by FPGA
vendor tool-chains.

Although AXI has been a big help in standardizing
hardware interfaces, it is still a primarily byte-oriented
protocol developed for hardware designs, which means that
1) it is not very accessible for software developers and 2)
custom glue logic is almost always necessary to integrate
existing IP blocks into new designs or the other way around.
As it turns out, the effort of creating glue logic, including for
example arbitration and buffering (finding optimal buffer sizes
in dataflow graphs is a research topic in itself [13]), is not to
be underestimated.

In terms of software integration, the datacenter accelerator
cards provide additional infrastructure in the form of a ‘shell’,
which communicates with a standard driver so that designers
only need to provide a set of interfaces on their hardware
components and can subsequently communicate with them
through a software API.

C. Performance scaling
Figure 1 shows how performance of I/O technologies is

scaling versus that of main memory (DRAM). It provides
two insights that are necessary to illustrate the upcoming
challenge in performance scaling: Bandwidths provided by
networking and storage technologies are both scaling very
rapidly, especially since the introduction of solid-state storage
devices such as SSDs. DRAM, however, is not able to deliver.
Where networking and storage performance is scaling at rates
similar to Moore’s law, the throughput delivered by DRAM
has been doubling roughly every 26 months, and this rate is
decreasing.

Adding more processor cores will not solve this problem.
One could already argue that CPU core counts are unable
to scale with Moore’s law because of the additional logic
needed for caches and inter-core communication. The more
pressing matter is that all those cores will not be able to access
data in main memory fast enough. The result is that “The
poor processor is now getting sandwiched between these two
exponential performance growth curves of flash and network
bandwidth” [14].

In the upcoming years, this discrepancy can be mitigated
by scaling out; distributing the growing data volumes over
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Fig. 1: Performance scaling of DRAM plotted versus storage
and networking in terms of bandwidth (BW) [15].

increasing numbers of servers. However, since there is a
continuous difference in scaling, this solution will not be
viable for long. It seems inevitable that high-performance
datapaths with CPUs in them will have to be designed around
better alternatives.

D. Big data analytics

As vertical scaling (adding compute resources to a single
node) is not able to satisfy the growing demands for
performance, horizontal scaling is becoming the new approach
for tackling very large datasets. Various frameworks that hide
the complexity of distributing storage and computations over
large numbers of nodes (for example, Spark and Hadoop)
quickly grew in popularity. One of the more challenging
aspects that these frameworks take care of is resiliency that
is needed for this distribution - in some cases this even
made it possible to use commodity hardware as opposed
to costly server-grade systems. The other catalyst fueling
the adoption was the ease of programming. The popular
frameworks provide very high-level programming interfaces
to their users, making large compute clusters accessible to
data scientists without needing lots of programming expertise
in programming distributed systems.

1) Programming practices: In contrast to the days of C
programming, when very expensive computers were shared
by many programmers who were writing highly optimized
code, computing hardware has become relatively cheap and
programmers relatively expensive. Big data frameworks have
made it easy to increase performance by simply adding more
nodes. In combination with the increasing importance of time-
to-market, this has resulted in the emphasis being placed on
productivity and ease of programming, while relying on adding
hardware for achieving performance (instead of optimizing
code).

Programming productivity is achieved by using modern
languages employing increasingly high levels of abstraction.
Figure 2 shows an example of a Spark program using its
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val textFile = sc.textFile("hdfs://...")
val counts = textFile.flatMap(line => line.split(" "))

.map(word => (word, 1))

.reduceByKey(_ + _)
counts.saveAsTextFile("hdfs://...")

Fig. 2: Code for Word Count, a well-known example
application counting words with Apache Spark and Scala, from
https://spark.apache.org/.

Resilient Distributed Dataset API. The input file can be
TeraBytes in size, distributed across several nodes, but this
is all hidden from the user. These abstractions come at
a cost; they move the computation further away from the
bare metal. The consequence is twofold. First the often
virtualized runtime environments of modern programming
languages (for example, Spark uses Scala, which runs in
a Java Virtual Machine) generally achieve less performance
than languages compiled to native machine code (although
concepts such as Just-In-Time compilation and the use of
highly optimized libraries have at least partially addressed
this). Second, the data itself is encoded in a way that is specific
to the particular compute environment/programming language.
While the execution performance limitations of interpreted
languages can be largely mitigated, memory management
presents a greater challenge, especially in the context of
acceleration [16].

Figure 3 shows that about 80% of the frameworks rely
on languages that use some form of automatic memory
management. This means that many types of data that would
have a very straightforward organization in C/C++ would
be wrapped in an object (that would, for example, include
reference counts for garbage collection). To send an array
of these objects to a different analytics framework or to an
accelerator, each one would need to be unwrapped and placed
into an intermediate array with an encoding that the other party
understands (serialization), followed by the reversed process
on the other side (deserialization). This could be needed when
using different frameworks or languages for certain parts of
the computation.

Java 56.0%

Python

9.1%

C++
9.1%

JavaScript6.7%

C
5.6%

Scala

4.5%

Go

4.1%

Others

4.9%

28 576 274
total lines of

code analyzed

Fig. 3: Programming languages used by 52 various open
source big data analytics projects [17].

2) Integration: The use of specific internal data
representations makes integration of heterogeneous compute
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(a) (De)serialization and copies are needed for interoperability
between analytics frameworks, because every tool or platform uses
its own data representation.
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(b) Apache Arrow specifies a unified representation, preventing the
need for (de)serialization and copies, allowing multiple tools or
frameworks to operate on the same data.

Fig. 4: The benefits of a unified data representation such as
Apache Arrow.

units difficult, because the data needs to be extracted and
stored in a format that every accelerator can understand. This
may be one of the reasons that adoption of heterogeneous
accelerators in analytics has been slow in general, even for
GPUs. Even though GPUs have been gaining popularity in
datacenters for a variety of workloads including machine
learning, there is only a handful of efforts in integrating
them into analytics frameworks and supporting them in the
mainline code repositories of popular open source frameworks
such as Spark. Several research and non-upstream versions
exist, but companies will (understandably!) be very cautious
in deploying these in production.

E. Apache Arrow

A number of industry and academic efforts aim to
address the overhead associated with data serialization and
deserialization that is needed for interoperability. In this paper
we focus on the Apache Arrow project, which proposes that
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no matter how you program your application, the data should
be represented the same way in memory. This way, data does
not need to be (de)serialized when passed between different
software technologies (e.g. Java and Python).

In addition, the format uses a column-oriented layout as
opposed to the row-oriented layout used in traditional systems.
Although the choice to organize tables in a row- or column-
oriented fashion has pros and cons depending on the way
it is accessed (e.g. retrieving a full row of data is very
efficient using a row-oriented format, but requires several
random memory accesses in a columnar format), in the context
of data analytics storing the data in a columnar format
where data of the same type is stored contiguously has a
number of advantages [18]. The first advantage is that this
allows computations on this data to take advantage of SIMD
instructions that are supported in most contemporary hardware.
Several values are loaded into wide SIMD registers in the
CPU, after which operations can be performed on all of
them simultaneously using a single instruction. The Gandiva
execution engine that targets Arrow-formatted data makes
use of the LLVM compiler framework to generate highly
optimized SIMD code for CPUs using JIT compilation.

The second advantage of using a columnar format is that it
allows to send buffers of data containing a column of values
of the same type to accelerators such as GPUs and FPGAs.
This allows these columns to be streamed into functional
units in a straightforward fashion, without the need for
decoding values from a row-oriented buffer of entries that can
contain complex, nested and even variable-length datatypes.
Whereas row-oriented formats continue to be commonplace
in transactional systems (that need to process frequent record
updates), analytics systems tend to work in a column-oriented
fashion.

To summarize, Apache Arrow not only facilitates
interoperability between software, but also between different
types of compute hardware.

III. OPPORTUNITIES AND CHALLENGES

In our view, the success of an analytics system in the
near future will revolve around leveraging a number of key
properties listed in Table I. In the following sections, we
will discuss recent developments in the areas of Hardware,
Programming and Runtime, that we believe will provide
opportunities for building these systems. Then, we will provide
views on current efforts to address challenges or missing links
in the field.

A. Opportunities: Recent developments in big data analytics
systems

1) Hardware: In the area of computer hardware, recent
developments have included several new components and
interconnect technologies that will allow executing parts of
the workload in the location and compute fabric that are most
suitable for it.

TABLE I: Key system properties

H
ar

dw
ar

e

• Heterogeneous (various types of compute fabric)
• Uniform memory access
• Accelerated storage and networking

Pr
og

ra
m

m
in

g

• Spatial (functional, declarative, etc.) programming
paradigms

• Graph representation (DAG) of the application should be
scheduled optimally for the (heterogeneous) hardware

• Allow easy integration of user-designed accelerators
• Allow acceleration using IP libraries
• A single common representation of data in memory (no

serialization)

R
un

tim
e • Monitor performance of running tasks

• Optimize performance by 1) synthesizing new
components and storing them in the IP library, 2)
updating parameters of accelerators according to the
changing data characteristics

Heterogeneous compute fabrics: In addition to the
general-purpose GPU offerings that have become popular in
recent years, FPGA-based datacenter accelerator cards have
been introduced that can be integrated into existing servers [4].
In the near future, these accelerators will contain several types
of compute fabric, including not only reconfigurable logic but
also digital signal processing units, scalar processors and a
grid of VLIW processors connected by a Network-on-Chip
[19].

FPGA Overlays: As synthesis can take several hours
especially for larger FPGAs, using a programmable overlay
can provide a middle ground between performance and
compilation time. An overlay is a fixed FPGA design
containing compute elements that are highly optimized for a
specific application or application domain. These elements can
be programmed, and are typically supported by a compiler
or other tool-chain that does not require synthesis. Notable
examples are the Catapult project [20] that accelerated the
Bing search engine in 2012 and various machine learning
accelerator overlays such as the Deep Learning Processing
Unit (DPU) overlay available in Xilinx’ Vitis toolset [21].

Accelerators attached to storage and networking: The
IBM Netezza system placed FPGAs between memory and
storage to do (de)compression and pre-processing [22]. Similar
hardware is now commonly available for custom use, in the
form of storage-attached FPGA cards such as the Nallatech
250SoC [23], and ‘smart’ SSDs available from Samsung
[24]. On the networking side, SmartNICs provide custom
programmable acceleration and virtualization without the need
for the CPU to intervene [25]. These technologies will be key
in helping the CPUs cope with the increasing throughput from
storage and memory.

Interconnect: For some workloads, connecting an
accelerator via PCIe is sufficient, if copying buffers can be
overlapped with computation. However, many workloads that
could otherwise be accelerated are bound by the limited
bandwidth and the high latency. Additionally, if the CPU needs
to orchestrate all transfers, latency can become very high for
all but the most straightforward memory access patterns.

Next-generation interfaces such as CXL and OpenCAPI
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provide transparent, coherent access to main memory, making
accelerators a peer of the CPU instead of a second class
citizen. The current revision of OpenCAPI (3.0) provides
throughput up to 25.6GB/s at a latency of 378 ns [26, p40].

High-Bandwidth Memory (HBM): As FPGAs have
limited on-chip memory capacity, buffering enough data can
be challenging. Current FPGAs have HBM integrated in the
same package, providing several GBs of memory that can be
used to buffer large chunks of data. HBM can be accessed
by several ports simultaneously, allowing it to feed data into
parallel kernels without using precious on-chip FPGA memory
resources [27].

2) Programming: In spite of the gap between rising levels
of abstraction and increased difficulty to design low-level
accelerators, there are some developments that can aid in
programming near-future analytics systems.

Parallel programming: Although many efforts in the area
of parallel programming have not yet proven to be a silver
bullet, and likewise OpenCL did not turn out to be the fit-
for-all solution for programming accelerators, we do believe
that certain properties of the workloads and the approaches in
programming in the big data world provide some opportunities
for acceleration. First, we note that a cluster is inherently
very spatial in nature, bringing it conceptually closer to the
FPGA. This is reflected in the way they are being programmed;
declarative (SQL) and functional aspects (Scala) are being
used pervasively. MapReduce, a highly popular programming
model, maps very naturally to a spatial resource such as a
cluster but also to FPGAs [28].

In the meantime, optimization frameworks such as Halide
[29], initially developed for image processing, and TVM [30]
targeting machine learning, have taken the route of separating
the specification of functionality from the implementation (the
schedule). The actual code is generated for the target platform,
allowing design-space exploration and keeping platform-
specific optimizations outside of the base program. Taking this
concept a step further, efforts such as LIFT & ELEVATE [31],
Temporal to Spatial (T2S) [32] and HeteroCL [33] propose a
separate mechanism to describe the mapping of the program
onto the target platform and the optimizations.

Distributed computing: Analytics frameworks distribute
data over a large number of nodes in a resilient way, both in
storage and computing [34].

Dataflow representation: Analytics frameworks represent
applications as a Directed Acyclic Graph (DAG), which can
be used by a scheduler to analyze which parts of the program
to execute where. The DAG-representation is a much closer
match for the dataflow-oriented nature of FPGAs.

Unified memory layout: By using Apache Arrow, the
memory of an analytics program can be accessed by all types
of compute fabric without needing to copy or convert.

3) Runtime: Fletcher [35] allows FPGAs to be integrated
with big data frameworks, as long as the Arrow unified
memory layout is used. As depicted in Figure 5, it generates
interfaces based on the schemas of the data. The schema
describes the layout of a table, including for example the
columns and datatypes.

During runtime, the data is organized in ‘chunks’ of tables
named RecordBatches in Arrow terminology. Fletcher hides
the complexity of having to translate the streams of elements
from the RecordBatches to actual memory addresses in the
host main memory (or worse, in DRAM on the FPGA board),
and requesting the needed transfers. As a result, the kernel
developer can work on the level of streams of datatypes such
as strings and integers, instead of byte values.

B. Missing links

1) Hardware: We recognize a large and rapidly increasing
discrepancy between the high-level software and the low-level
hardware. In software, complex datastructures are common
with data stored in datatypes of possibly variable length (e.g.
strings), using arrays that could even be nested. In contrast,
AXI interfaces used in hardware provide a very simplistic way
to transfer sequences of bytes, either in a memory-mapped or
streaming fashion. It is up to the design to create a mapping
between these, extracting the relevant data using custom glue
logic that will likely change between applications.

A recently introduced specification called Tydi (Typed
Dataflow Interfaces) [37] aims to address this discrepancy.
With file formats specifying data layout on disk and Apache
Arrow specifying data layout in memory, the Tydi standard
specifies data layout ‘on the wire’ in digital hardware.

2) Programming: Ideally, accelerator kernels should
be generated from the application’s execution graph.
Alternatively, a designer should be able to develop and
integrate such a component quickly. One could envision a
library of such components, where the transformations that
each is capable of is known to a scheduler. This scheduler can
then recognize whether certain parts of the execution graph
already have an accelerated implementation available in the
library.

An open question remains on what granularity to generate
and store these components, particularly regarding the
synthesis times associated with large FPGAs. Although
big data applications can exhibit extensive runtimes, a
latency of several hours to generate a bitstream may still
prove prohibitive. Design choices include storing complete
bitstreams or making use of partial reconfigurability in
combination with an on-FPGA Network-on-Chip structure.

3) Runtime:
Partitioning and mapping: With the ability to design

kernels to accelerate parts of an analytics application,
comes the need to detect which parts to accelerate. For
a heterogeneous system to be truly holistic, the scheduler
responsible for this mapping needs to take into account not
only the application graph in terms of transformations to be
applied to the data, but also the amount and location of this
data. If accelerating a subgraph or operation on a hardware
accelerator means that communication overhead will become
a limiting factor, a different partitioning should be considered.

Design-Space Exploration (DSE): Having more
parameters means having more choices and in this context
this means that the design space increases in size. Scheduling
the DAG is only one aspect of the problem. When instantiating
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Fig. 5: Overview of the Fletcher HW data interface generator to integrate FPGAs with big data frameworks [36].

a kernel on an FPGA, there is a myriad of choices to be
considered, such as the parallelism within each component
versus the number of instances [38], the interface widths
between them, tiling [39], etc.

Monitoring and auto-adaptation: Big data applications
can run for extended amounts of time and the characteristics
of the data can vary during this time. Based on these
changing characteristics, the system parameters that were
chosen by the DSE may no longer be optimal. Therefore, a
runtime monitoring and adaptation loop can prevent operating
in a mismatching configuration for extended periods of
time. By sampling performance counters on the interfaces
between kernel components, the runtime can identify which
components and interfaces are over/underutilized and trigger
a reconfiguration accordingly.

IV. FPGA-ACCELERATED BIG DATA SYSTEM

For the purpose of demonstration, we have implemented a
proof-of-concept that incorporates many of the key elements
highlighted in the previous section. The system is based on
the popular Apache Spark framework on the software side,
and on an OpenCAPI-based POWER9 platform with Xilinx
VU37P FPGA on the hardware side. First, we will provide
a high-level description. Then, we will discuss the system in
terms of how it can be programmed, and how its components
were integrated.

A. Architecture

The goal of our envisioned system is to provide seamless
integration of FPGA accelerated applications in scale-out
frameworks for big data analytics, such as Apache Spark.
So far, we have illustrated the various gaps, mostly in
programming and integration, that need to be closed to achieve
this goal. A conceptual depiction of our proposed approach is
shown in Figure 6.

On the left side of the figure, various computational steps
of an analytics application are shown, represented as a DAG,
consisting of multiple stages. Each stage performs a certain
set of transformations on the data, until it is required to obtain
data from partitions that may not be locally available (i.e. the
data sits on other nodes). In the figure, the shuffle is required
by the ReduceByKey transformation, which must gather all
data items with the same key. As these items may be spread
out over various partitions sitting on various cluster nodes,
this transformation is called a wide transformation. Spark
is especially good in taking care of many issues related to
wide transformations, essentially dealing with general issues
of scaling out computation over multiple nodes. Some related
features are:

• Partitioning large data sets over multiple nodes.
• Distributing and optimizing descriptions of the desired

computations.
• Scheduling the desired computations on all nodes.
• Recovering from node failures, through its resilience

features.
• Offering an extensive set of libraries with algorithm

implementations that perform better at scale.
Because such issues are dealt with by Spark itself, our

system focuses only on improving transformations that are
narrow, i.e. all data required for the computational steps is in
a data partition local to the node that hosts the accelerator.

In our proposed system, the scheduler analyzes the DAG
to see whether there are (parts of, or sub-)stages that can be
efficiently accelerated on FPGA. It does so by searching a
library that contains models of components that can implement
the same parallel pattern and elemental function, depicted
in the top-right corner of Figure 6. In the example, the
Map pattern is applied, transforming each element in the
dataset consisting of strings by applying the elemental function
x→ {x, 1}. In other words, a string is transformed into a tuple
of the string and the integer 1. There is a component model in
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Fig. 6: Overview of a big data analytics system with transparent FPGA offloading. Conceptually, the input and output
recordbatches can be streamed in from main memory but also directly from storage, network or other accelerators.

the library that implements the Map pattern, with the elemental
function ‘tuplicating’ the element with a constant.

Because the previous transformation (the FlatMap) also
has a hardware implementation, the synthesis stage can
compose components according to the longest possible
acceleratable part of the DAG within a single stage, to end
up with a hardware accelerator design such as illustrated in
the bottom-right corner of Figure 6. If the FPGA is directly
attached to storage, it can absorb the file loading step and
perform the first parts of the computation before any data has
touched main memory yet (similar to predicate pushdown in
database systems). Furthermore, OpenCAPI allows peripheral
devices (I/O and accelerators) to transfer data between each
other without going through main memory. That means that
for example a network adapter could send data directly to an
FPGA accelerator card.

It may happen that a certain design was previously
synthesized to an FPGA bitstream, in which case the FPGA
can be quickly reconfigured by loading the bitstream from
a cluster-wide library or cache. If it was not previously
synthesized, or if some synthesis-time parameters change, it
must be resynthesized. We stipulate that in large clusters,
the overhead of doing the full fledged FPGA synthesis is
relatively low, because it only has to happen on one node out

of potentially thousands. Furthermore, we also stipulate that
workloads in big data clusters are often either long-running,
or recurrent, and as such, the latency of bitstream synthesis
may not pose as much of a problem as in other application
domains.

After the correct bitstream has been obtained, the scheduler
transforms the DAG into an FPGA-accelerated version, where
the sub-stage that was implemented in the synthesized
hardware accelerator is replaced by a software function that
properly interfaces the data into the synthesized accelerator.

In a more advanced setup, the synthesized accelerator
would be profiled to measure whether it actually speeds up
the computation, such that it could be unloaded when the
computation is not faster. In addition, the scheduler should
take into account data movements and consider transforming
the DAG to place accelerated transformations together. These
efforts are left for future work.

We finally emphasize that describing the DAG (as a software
programmer would), is closer to dataflow programming than
traditional imperative programming, even though it is captured
in languages that may also be used in the imperative style. This
is useful for our system, because it allows many sorts of sub-
stages to be easier to synthesize, as hardware dataflow designs
can follow the structure of the DAG.
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B. Programming practices

For the high-level programming patterns from the Spark
program to be synthesized to an FPGA, the following elements
are needed:

• The datasets residing in Spark need to be accessible by
the FPGA accelerator kernel. As discussed, this can be
done by using the Apache Arrow format for the data sets
(i.e. the RecordBatches) in memory, in turn leveraging
Fletcher to generate streaming hardware interfaces for the
hardware kernel implementation.

• Once on the FPGA, the data needs to flow between
the components implementing the DAGs transformations.
Since the data may be complex and dynamically sized,
a mechanism is required to consistently represent and
transport such data structures over hardware streams.
The recently introduced Tydi work aims to address
this issue. It introduced an interface specification for
streaming complex and dynamically sized data structures
in hardware.

• The components that implement the parallel patterns (e.g.
Map) and the elemental function that is to be performed
on each element (e.g., the ’tuplication’ function), need
to be generated and properly connected according to the
DAG.

We implemented a hardware description language called
Tydal [40], aimed towards structural hardware design with
streaming components adhering to the Tydi specification.The
Tydal language contains template components that implement
the same types of parallel patterns found in many
modern cluster computing frameworks such as Spark.
Current implementations of template components include
Map, FlatMap, Reduce, and Filter. Other elementary
operations known from streaming dataflow designs are also
included, for example clone (to duplicate a stream), split (to
extract members of stream with a compound element type
into separate streams), and (de)mux. All constructs support
the transfer of multiple primitive elements per handshake over
their interfaces to be able to scale throughput of the design.
More coarse-grained parallelism, by instantiating multiple
parallel units, is supported by the language, but automating
this is left for future work.

The template components are re-used in the proposed
approach to implement hardware structures similar to the
Spark DAG to be accelerated. This is done by instantiating the
template matching the parallel pattern used in the Spark DAG,
together with the appropriate elemental function found in the
hardware transformation library. This automated mechanism
can re-use the back-end of the language, which is currently
written in Rust, to construct the hardware structure necessary
to implement the sub-stage of the DAG.

An example of how the Reduce parallel pattern hardware
template can be implemented is shown in Figure 7. In Tydi,
components operating on streams are called streamlets. Tydi
specifies a type system that allows to express complex and
dynamically sized data types (e.g. sum or product types of
dynamically-sized lists) flowing over streams, which form
the interfaces of such streamlets. There is also a notion of

Text

a
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Funct ion 

Component

b c

Input  St ream< T, d ? 1>

Part ial 
reduct ion 

result

Memory

Output  St ream< T>

Reduce

Fig. 7: Hardware architecture of component template for the
reduce parallel pattern. Mux a initially splits two operands
over the two inputs of the Elemental Function Component. If
a partial result is too large to fit in whatever local FIFO size
is chosen, it must spill to memory in case it is a dynamically
sized data structure (for example, when the type to reduce is a
string, i.e. T = list < char >). Mux b is optional, but allows
for an initial value of the partial result to be set from the input.
Demux c is required when there is no additional operand on the
input, while the partial result has already begun streaming to
the Memory Spilling FIFO before the last input is handshaked.

dimensionality, denoted by d, to form dynamically-sized lists
(d = 1), lists of lists (d = 2), etc. To perform the reduce
transformation, it is required that the input dimensionality is
at least one, such that the elements of the outermost dimension
can be reduced using the elemental function component. The
elemental function component only has to implement the
reduction for two operands (e.g. an addition of two integers,
with d = 0, a string concatenation where strings are a list
of characters, i.e. d = 1). The whole parallel reduction can,
for a single instance of the elemental function component,
be implemented using the Reduction template component. In
its most generic form, the Reduction template uses several
multiplexers, allowing operands to stream in from the same
interface, but split up to both elemental function component
inputs. Because the first operand (essentially the first partial
result) must be streamed in before the second one can be
streamed in, it is required that it is temporarily stored in a
FIFO, until the second operand has become available.

Since data can be dynamically sized and overflow the
chosen dimensions of the FIFO holding the partial result, there
must be some mechanism by which the dynamically sized
data structure can spill to a larger memory, for example an
on-board DRAM. Spilling could also be necessary if it is not
possible to keep all needed intermediate data on-chip. The
goal of Tydi is to stream data directly between components,
to facilitate creating a fully pipelined dataflow design, but in
certain complex cases it could be necessary to stream data to
and from memory. In such cases, a DMA interface may be
generated by Fletcher, since in our setup, all data structures
adhere to the Arrow type system. Making sure data fits in a
node’s memory is a task of the task distribution step in typical
analytics frameworks. For a detailed description of the design
and implementation of templates for other parallel patterns,
we refer the reader to [40].
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C. Integration

At the time of writing, Spark does not yet support
Arrow directly, although this has been stated as a long-
term development goal. However, limited support for
columnar processing was added recently, by means of the
ColumnarBatch data structure (that is equivalent to Arrow’s
RecordBatch). This allows column-oriented implementations
to be defined for physical operators to operate on batches
of columnar data. Not many of such operators currently
exist, but one example is the Parquet reader. The scheduler
has support to combine row-oriented and column-oriented
operators, and can insert conversions if necessary. An example
of this can bee seen in Figure 8, showing a physical plan
(which we will explain in more detail later) where the
FileSourceScanExec uses the column-oriented Parquet
reader, necessitating a conversion to the row-oriented format
to allow Spark to perform all the other operations (for which
no columnar implementations exist yet).

Spark has internal interfaces that can be extended, for
example to implement custom implementations for certain
operations. For the proof-of-concept, the relevant components
were extended with a custom version of the columnar (to
prevent column-row conversion) execution engine of certain
operations, that we are able to accelerate using one of our
kernels. These custom FletcherExec operations call the
Fletcher runtime to execute the corresponding operation on
the FPGA instead of going through normal code generation
and execution on the CPU. In addition, an optimization pass
was added to the scheduler, that traverses the execution DAG
in search of operations or subgraphs that have an accelerated
equivalent available. For the proof-of-concept, there is only
one such function. Left for future work is adding the automatic
synthesis step where the scheduler can also trigger the creation
of a new accelerator.

V. PERFORMANCE EVALUATION

A. Use-case

To evaluate the proof-of-concept, we have implemented
a practical use case in the form of a typical query on a
tabular dataset. The publicly available Chicago Taxi Trips
dataset [41] loaded from a Parquet file is used as input.
Dictionary encoding is disabled, because Fletcher does not
yet support dictionaries. The query involves filtering by taxi
company names using a regular expression, and accumulating
the duration of all of their trips. Figure 8 shows the query on
the left side, the physical execution of this query in Spark,
and the nodes we have selected to accelerate on FPGA.
The optimization pass that was added to the Spark scheduler
transforms the DAG by replacing these nodes with a custom
FletcherExec node that calls the accelerator. The row-
column conversion step is not necessary through the use of
Arrow; the file reader was replaced by the Parquet reader
library function provided by the Arrow library, and the FPGA
accelerator is based on Arrow and Fletcher, as discussed in
previous sections.

The filter and projection step are composed into an
accelerator design using the Tydal language associated with

Tydi, shown schematically in Figure 9. Both the summation
and regular expression are treated as a primitives. They can
be either IP cores, manually implemented by the designer,
and should be available in the component library. For the
sum, a simple VHDL implementation is used. We use a tool
that generates VHDL for the implementation of the regular
expression matcher [42].

The regular expression matcher checks the predicate,
producing a boolean that is in turn used by the
FilterStream component. At an operating frequency of
200MHz (matching the interface frequency of OpenCAPI), it
can process up to 20 characters per cycle. As the company
names in the schema have a maximum length of 40 characters,
the matcher can process a string every 2 cycles or less. The
other components are fully pipelined and can process an
element every cycle. As a result, this accelerator is capable
of processing between 100 and 200 Mrecords/s, depending
on how many records have a name string longer than 20
characters. As the kernel interfaces are 4 bytes wide for the
integer input and 20 bytes wide for the string input, the
theoretical maximum throughput is 4.8GB/s.

Important to note is that the presented Proof-of-Concept
uses only a single instance of the accelerator. Because
the query uses a commutative aggregation operator, it is
straightforward to duplicate it, and distribute the input to them
using an arbiter. This arbiter does need to keep the integer and
string streams synchronized. When processing more complex
queries, multiple instances of accelerators need to be managed
by software. Development frameworks exist with the purpose
of duplicating a kernel design provided by the developer, such
as Fleet [43] and TaPaSCo [44]. As the tool-chain is currently
in a very early prototyping stage, implementing parallel kernel
instances is left as a future development.

B. Performance

Executing the query on the dataset, we measured the
accelerator provides a throughput of 135 M records/s, for this
particular dataset equaling 2.75 GB/s. The area utilization of
the FPGA design is presented in Table II. This kernel can
be duplicated several times, especially considering a large
fraction of the logic will be shared. This design will in practice
saturate the bandwidth of the OpenCAPI interface when using
approximately 8 instances, which will likely fit in the available
FPGA logic.

The most important result is that this performance was
achieved from a very high-level implementation, even while
the tool-chain used is in a very early stage of prototyping. This
gives a reassuring perspective on the ability of the approach
to generate high-performance FPGA circuits from these highly
abstract big data applications.

Resource Used Available Utilization
CLBs 17322 162960 10.63%
LUTs 85193 1303680 6.53%

Registers 101305 2607360 3.89%
BRAM tiles 108 2016 5.36%

TABLE II: FPGA resource utilization.
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In Figure 10, a comparison is plotted of running the query
on a single instance of the FPGA accelerator versus a vanilla
Spark installation running on a single thread. The Spark
framework does not allow differentiating the Parquet reading
from the actual execution (because Spark will interleave these
steps and only perform reads from the file when blocks of
data are being requested by lazy evaluation). However, for
the FPGA-accelerated execution we can see that the actual
execution takes only a small fraction of the total time.

VI. RELATED WORK

As this work touches upon a wide range of subjects, a
discussion of related literature will by no means be complete.
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Fig. 10: Comparing the end-to-end run-time of FPGA-
accelerated Spark to Vanilla Spark (Chicago taxi data regex
use-case using a batch size of 1 million rows, one worker
thread vs. one FPGA kernel instance)

However, we will attempt to mention efforts that have similar
or alternative approaches.

A. Hardware description languages

With very large FPGAs becoming commonplace and multi-
wafer projects falling in costs, exploring highly customized
architectures for applications becomes accessible to a broader
range of developers. With the ability to create new computer
architectures more quickly, comes the desire for tools that can
facilitate this [45].

B. High-Level Synthesis

In the domain of FPGA acceleration, High-Level Synthesis
(HLS) tools have been introduced by vendors to generate
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circuits from C/C++ and OpenCL code. Although this makes
creating an initial solution on FPGA more accessible to
developers with limited hardware knowledge, significant effort
is required to achieve good quality of result. This includes
tuning the source code and adding pragmas to guide the
tools to make sensible design decisions. Recently, FPGA
vendors have introduced their next generation development
tools: Xilinx Vitis [21] and Intel’s oneAPI [46]. They also
lean heavily on a library of accelerated functions but on a
different level than we propose in this work; Vitis and oneAPI
both provide libraries that contain several examples of HLS
implementations that can be easily modified by developers
to suit their specific needs. OneAPI is accompanied with a
new language called Data-Parallel C++, which aims to target
various architectures (including CPUs, GPUs and FPGAs)
from a single implementation.

C. Domain-specific hardware generation languages and
frameworks

Several researchers believe that somewhere between
the low-level RTL design languages and the high-level
descriptions, there is a middle ground for describing high-
performance circuitry with reasonable design time. To achieve
this purpose, several languages have been developed such
as CλASH [12], Pyrope [47], TLVerilog [11], and Chisel
[48]. Some of these are embedded Domain-Specific Languages
(eDSL), that extend an existing programming language such
as Scala. eDSLs have the advantage that designs may use any
constructs from the host language, often providing a high level
of abstraction to generate component designs.

There are several frameworks that generate designs from
a higher level description of an algorithm as input. These
frameworks often build upon eDSLs, and usually rely on
vendor synthesis tools (by generating old-fashioned RTL).
Similar to the tools discussed in this work, they often support
parallel patterns [49] such as Map, Fold (reduce), Groupby,
etc. The DeLite tool [50] is a compiler architecture that
can actually generate domain-specific hardware generation
tools. It is built on top of MaxCompiler [10], which takes
care of scheduling the dataflow graph. Spatial [9] is not
only a hardware generation framework but also a full end-
to-end acceleration framework including host runtime and
infrastructure to communicate with FPGA. It includes design-
space exploration functionality to guide the tiling of operations
onto the FPGA fabric. Fleet [43] is another Scala eDSL
offering a massively parallel streaming model for FPGAs.

D. Functional or declarative languages

Functional languages have properties that are believed to
provide a more natural mapping to logic circuits [12]. Besides
CλASH, functional descriptions are used for the input for the
SPIRAL [51] and Lift [52] frameworks. They apply rewrite
rules to lower the high-level sources towards various compute
fabrics, including FPGA. The Elevate language adds to this a
functional DSL to also allow a performance engineer to steer
these transformations in the right direction [31].

In the analytics context, the declarative SQL language has
been prevalent since the heyday of database systems. It has
been used as a source language for generating logic by, for
example, the Glacier project [53], [54].

E. Database acceleration

Accelerating SQL is only a part of the larger area
of accelerating databases. Various types of accelerators
specifically for databases have been proposed. For example,
Netezza placed FPGAs between storage and main memory
to do decompression and a number of pre-processing steps
[22]. Swarm64 accelerates the open source PostgreSQL
using FPGA [55]. Database workloads have several facets
such as (de)compression, joining, filtering, and sorting, each
having very different properties and suitability for FPGA. An
overview of FPGA acceleration of in-memory databases is
given in [56] and [57].

F. Big data frameworks employing accelerators

Although not widely supported yet, various academic and
industrial efforts exist that aim to incorporate heterogeneous
computing (e.g. Falcon computing targeting both GPUs and
FPGAs [58]) or at least a certain type of accelerator into big
data frameworks.

1) GPU: Compared to FPGAs, more work exists on
supporting GPUs from big data frameworks. There are a
number of reasons behind this. First, the GPU accelerator has
been steadily building popularity for a longer period of time
compared to FPGAs, and are more prevalent in datacenters
and supercomputers. Second, they have proven to be very
efficient in workloads related to machine learning. Third,
analytics frameworks, in their turn, often provide very high-
level libraries for machine learning due to its rapidly growing
popularity (an example is MLlib for Apache Spark [59]).
Targeting these high-level libraries directly provides a clear
insertion point for GPUs. Although this approach will require
serialization/deserialization as is discussed in this work, this
approach is taken by several existing efforts [60], [61], [62]

The other approach used is to generate GPU code from
the execution graph, similar to what is done in this work.
The most well-known work is an industry project by Nvidia
called RAPIDS [63], [64], [65]. Academic efforts include
TensorFrame [66] and Spark-GPU [67].

2) FPGA: The open-source Blaze runtime system allows
implementing FPGA-accelerated algorithms for a Spark data
source[68]. Similar to the GPU work targeting high-level
Spark libraries, this does not allow accelerating queries at the
granularity of sub-stages in the execution graph, giving it less
flexibility and only allowing to implement a whole algorithm
on FPGA. The Kestrel Runtime from Falcon Computing [58]
is built on this runtime.

Related efforts taking the same approach as this work
include BigStream [69], which searches the Spark physical
execution plan for FPGA acceleration candidates located in a
bitstream store, and another novel project integrating Intel’s
“Spark Native SQL Engine” [70] with FPGAs [71].
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As mentioned, FPGA usage in cloud instances is currently
very explicit, with clients needing to acquire a full FPGA as
opposed to CPU cycles that are much easier to share with other
users. An overview of efforts aiming to virtualize FPGAs is
presented in [72].

VII. CONCLUSION

In this article, we discussed our views on FPGA accelerators
for near-future big data analytics systems, their challenges and
how to address them, as well as the opportunities and how to
leverage these. We also presented a proposed architecture for
a scalable but still fully programmable system that can be
built using technologies that are currently becoming generally
available. We discussed the current difficulties involved with
designing custom accelerators for FPGAs and how to improve
design re-use and IP core connectivity standardization by using
Tydi and Tydal. We present an analysis and evaluation of an
FPGA-accelerated big data prototype that makes use of several
of the discussed components.

While highly experimental, the prototype is able to generate
a high-performing FPGA circuit from very high-level code
descriptions in Spark. This is made possible by specifically
targeting the big data application domain. This allows
taking advantage of certain properties, including the DAG
representation that is used internally in analytics frameworks
and the highly parallel programming language constructs such
as Map, filter and Reduce. These patterns are very suitable for
large compute clusters, but also map very naturally to a spatial
compute resource such as reconfigurable logic. On a final
note, within the context of Apache Spark and Apache Arrow,
a structured enough environment has been contributed that
allows for the automatic generation of infrastructure for FPGA
accelerators, without losing potential performance advantage.
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