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Time-Domain Analysis of Thin-Wire Structures
Based on the Cagniard-DeHoop Method of
Moments

Martin étumpf, Senior Member, IEEEloan E. LagerSenior Member, IEEE
and Giulio Antonini,Senior Member, IEEE

Abstract—Thin-wire structures in the presence or absence of of a wire antenna in the form of aiV-port network (see [4,
a ground plane are analyzed numerically in the time domain Chapters 4 and 5]). Since the product of two frequency-domain
(TD) with the aid of the Cagniard-DeHoop method of moments  ,n¢tions corresponds to the time convolution in the original
(CdH-MoM). It is demonstrated that the TD solution of such . . . . .
problems can be cast into the form of discrete time-convolution domaln, the time-domain (TD_) generallzed_ representatlon_ of
equations. Under the assumption of piecewise linear space-time@ Wire antenna can be cast into the TD discrete-convolution

axial current distribution, the elements of the TD impedance form

array are derived analytically in terms of elementary functions.

Their approximations applying to multi-conductor transmission Z L Iy =V, 2)
lines are discussed. lllustrative numerical examples validating the &

TD solution are presented. . . . . .
where indicesm and k refer to instants in a time window

SIS ; of observation. The development of such TD network repre-
antenna, transmission line (TL), Cagniard-DeHoop method of . . . . .
moments, marching-on-in-time _ technique, time-domain (TD) sentations concerning thin wire structures (in the presence or
analysis. absence of a ground plane) is exactly the main objective of
this article.
The thin-wire problems under consideration are solved here
|. INTRODUCTION with the help of the Cagniard-DeHoop method of moments
HE performance of a linear-antenna array [YCdH-MoM) [5], recent applications of which can be found
Sec. 14.11.1] consisting of a set of conducting [6]-[8], for instance. Regarding its novelty, the outcomes
wires, possibly in the presence of a metal plane [1, Sec. 6.6},this work are not limited to a thin conductor located just
can be analyzed through electric network representations gbove the reference plane. In this sense, the present work can
Sec. 8.7.1]. The pertaining input and mutual impedancess understood as an extension of Ref. [7], where the CdH-
as well as its electromagnetic (EM) radiation and scatterimgoM is applied to a single transmission line (TL). In con-
characteristics, are functions of the electric current inducegést to the widespread approach relying on finite-difference
in the antenna-array’s wire elements (see [2, Sec. 8.6] and gpproximations of the differential operator in the starting
Sec. 1.1]). A versatile numerical tool suitable for achievingtegro-differential equation (see [9]-[12] [13, Sec. 2.3.3]), the
this distribution is widely known as the method of momentsroposed TD solution is free of such approximations. As a
[4, Chapter 4]. Under the assumption of sinusoidally in timgatter of fact, as the EM scattering problem analyzed in this
varying EM fields, this solution procedure leads to a systestticle is formulated via the EM reciprocity theorem of the
of equations, say time-convolution type [14, Sec. 28.2], the introduced TD result
. 0-V can be viewed as an “exact weak” solution for the piecewise-
- I=V, @ : . :
linear space-time basis. Moreover, since the elements of the
thus interrelating the (frequency-domain) axial electric cupertaining TD impedance arrays are expressed merely in
rents, I, with the excitation voltagey’, via the impedance terms of elementary functions, their filling is computationally
array, Z, at a fixed frequency of analysis. In this mannegffortless. For alternative numerical approaches allowing the
the numerical solution offers an enlightening representati@xtraction of the TD impedance in an (almost) explicit form
3 we refer the reader to [15]-[19], for example. These numerical
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antennas is described by (real-valued and positive) scajars
and o implying the EM wave speed; = (eopg) /2 > 0,
and EM wave impedancg, = 1/Y, = (uo/€0)'/? > 0.

The presence of the wires is accounted for via the scattered
EM field (denoted by) that is hence defined as the difference
between the total and excitation EM fields. The problem will
be formulated through the TD Lorentz EM reciprocity theorem
[14, Sec. 28.2]. Its application to the (actual) scattered and
(computational) testing field states leads to (cf. [7, Eq. (2)])

Do {60,#0}

Infinite Ground Plane

0a)2
/ ETA(z,a,t) *, Iz, t)dx
r=—40A/2

Fig. 1. Thin-wire antennas above a ground plane. zo+Llp /2
+/ ETA(x, |yo|, t) *, IS8 (x, t)dx
x=zo—LpB/2
Sec. lll, the pertaining TD interaction integrals are represented £a/2
through complex slowness integrals. In Sec. IV, the space- =/ ) /QES(%&, t)*, 154, t)dz, (3)
z=—LlA

time distribution of (unknown) axial currents is expanded
in a piecewise-linear manner, which through the use of thgg
Cagniard-DeHoop inversion technique [20] leads to closed-
form expressions for the pertaining TD impedance arrays. For
readers’ convenience, analytical details of the joint inversion/
procedure are briefly summarized in the Appendix. lllustrative £a/2
numerical results and their validation are presented in Sec. V. +/ ETB () |yol, t) %, 54 (x, t)dx
Finally, conclusions are drawn in Sec. VI. e=—ta/2

J)o-‘réB/Q
EVB(z a,t)x, I98 (z, t)dx

z=z9—LpB/2

@otls/2 S T;B
Il. PROBLEM DEFINITION _/m—$OZB/2E (@, a, ), I75 (x, t)dz, (4)
The analyzed problem is shown in Fig. 1. Here, the position
is specified by the coordinatés, y, 2} with respect to a Carte- Where I*4(z,¢) and I%%(z,t) denote the (unknownjpx-
sian reference frame with the origil and the standard baseial currents induced inl'4y and I'p, respectively, and
{i4,1y,1.}. The time coordinate is denoted Iy The time- IT““’B(x,t) are the pertaining testing currents. Furthermore,
convolution operator is,. The Heaviside unit-step function is E7:*%(x, o,t) denotes the (axiatomponent of) the testing
H(t) and the impulsive Dirac-delta distribution is denoted bglectric-field strengths as generated by the testing currents,
5(t). ITAB (g, 1), respectively, and = o(y,2) = (y* + 22)Y/2.
The problem configuration consists of a set of mutuali§ymbolically, the TD reciprocity relations (3) and (4) can be
parallel wire antennas. Their radius,> 0, is assumed to be cast into the matrix form
relatively small such that the “reduced form” of Pocklington’s 7 7 T v
equation can be adopted [21]. In this thin-wire formulation, the [ an | Zas ] %, { A } - [ A } ,
electric currents at the end faces of the cylindrical wire antenna Zpa | Zps Is Vi

are r_leglected, thqs reducing. the_ _original surface eIeCtrlﬁherethe diagonal sub-arrayg 44 and Z 5 represent the
field integral equation to the simplified 1-D one that can %cal interactions on wireg", and T's, respectively, while
solved for the electric current concentrated essentially along 5 and Zp4 describe the remote interactions frofy

Fhe wire’s axis. We shall analyze _bo_th_ the set of thin WIES Tz and vice versa. A straightforward generalization of
in the presence or absence of the infinite perfectly electrlca_H;(e matrix system allows the handling of a larger system of
conducting (PEC) plane. If present, the ground plane ocCupigga|ly parallel wire antennas. The pertaining TD interaction
{—00 <@ <00, —00 <y <00, =2 —6/2 < 2 < —2+5/2} integrals are further represented by complex slowness inte-

with zo > 0. To describe the self- and mutual-interactions in g.o\5 - syhsequently, these integrals will be transformed back
general system of parallel wires it is sufficient to analyze tf{g the TD using the CdH technique.

transient EM response of two wires. Therefore, without any

loss of generality, we shall further consider two wire antennas

occupyingl'y = {—€4/2 < x < la/2,y = 0,2 = 0} [1l. COMPLEX SLOWNESSREPRESENTATIONS

andT'p = {—63/2 < xr—29 < 63/2,1/ = Yo,2 = 0}

(see Fig. 1). Hence, the thin wires are located at the heightThe property of causality and the time invariance of the
20 > 0 above the ground plane (if present) and at the distangeoblem configuration is accounted for by the use of the one-
lyo| > O far apart. The EM field coupling between two nonsided Laplace transformation

parallel wires is tractable via the CdH-MoM too, but this -

extension is outside the scope of the present work. The linear, E(x,0,5) = / exp(—st)E(, o,t)dt, (6)
homogeneous isotropic and lossless medium surrounding the t=0

®)



with {s € R;s > 0}. In the next step, the wave slownes&At; k=1,2,---, M}, whereAt > 0 denotes the time step.

representation is introduced It is noted that the uniform discretization is not mandatory, but
ico its use simplifies the resulting TD solution. Subsequently, the
E(z,0,5) = (s/27ri)2/ exp(—skx)dk induced electric currents along the thin wires are expanded in
. w=—ico terms of spatial and temporal basis (triangular) functions
X exp(—soy E(k, 0,z s)do, ©) ) Na M n
/c,}ioo (Feou) B ) i) = 30 ST Al @) A (), (12)
in which x and ¢ are the wave-slowness parameters in the n=1k=1
- and y-direction, respectively. Note that this representation B NatNe M 0]y In
entailsd, — —sx andd, — —so. Using Egs. (6) with (7), (1) ~ Z Z’k AP (@) A (1), (13)
the interaction terms in the TD reciprocity relations (3) and n=Na+lk=1

(4) can be expressed through complex-slowness integrals. fi@lere " denotes the (yet unknown) electric-current coeffi-
instance, the local interaction integral &ny in the presence cients, and the basis functions can be specified by

of the PEC ground plane can be written as A i
t A Al () = 14+ (z—xn)/ Or = € [Tn—1,Ty] (14)
/ ETA(z,a,s) 5 (x, s)dz 1—(z—zn)/A forz €z, znq],
r=—4LA/2
: 1+ (t—tgp)/At forte [tk—htk]
4 100 . . Ar(t) = 15
- _%% A2 (k) ITA (K, 5) %4 (=K, 5)dk +0 {1 —(t—tg)/At  forte [t tgs1] (49
0 K=—1i0c0
g [ioo exp|—sTo(#, o)a] — exp[—2sTo(k, 7)) Next, the testing current is chosen to show the rectangular
7/ : : do, spatial distribution and the impulsive behavior in time. Ac-
27 Sy oo 2sTg(k, o)

®) cordingly, we write

where Ty (k,0) = [Q2(k) — 02]1/2, with Re(y) > 0, and  TA(z, 1) — {5(t) forz € lvs —Aa/2,05 + Aa/2]
02(k) = 1/c — k2. Furthermore, for the (transform-domain) 0 elsewhere,
axial testing field we used (16)

ETA(k, 0,5) = —(sZo/co) Q2 (k)54 (k, 5)G(k, 0, 5), forall = {1,---,Na}, and
) [T ) — {5@) for z € [zs — Ap/2, 25 + Ap/2]

for o = a and the modified Bessel functions in the pertaining 0 elsewhere,
Green’s function, viz (17)
G(r,0,5) = Ko[sQo(x)o(y, 2)] /27 forall S = {Ns+1,---,Na+ Np}. Now, making use of

— Ko[sQ0(r)o(y, z + 220)] /2, (10) the tr_ansform-domain counterparts of Egs. (12), (13) and (16),
(17) in the complex-slowness integral representations of the

were expressed through their integral representations (see [Réraction integrals (see Egs. (8) and (11)), we end up with
(9.6.23)]). In a similar fashion, the corresponding remotg, Eq. (12)]

interaction fromI"4 to I'g can be described by m
zo+lp/2 ~ ~ (Zm—k-‘rl - 2Zm—k: + Z’rn—k—l) ° Ik = Vma (18)
/ ETA(x, a,8) 158 (2, s)dx ;;
Izwo_ZeBm i whereZ, = Z(t;) represents a 2-l{N4+Ng)x (Na+Np)]
— %20 % RO2 (1) ™A (1, ) 5B (— s, 5)drs TD impedance array at = t;, I denotes a 1-D(N +
o 271 J = ioo Ng) x 1] array of the (unknown) electric-current coefficients,
s [ exp(—s )1 - eXP[_QSFO(“»U)ZO]d (11) i), and,V,, is a 1-D[(Na + Np) x 1] excitation-voltage
271 Sy oo LT 2sTg(k,0) 7 array att = t,,. The elements of the excitation array pertaining

iR2 given excitation-field distribution, sa&y°(z, a,t), follow
upon evaluating the TD interaction integrals on the right-hand
side of the TD reciprocity relations (3) and (4). This can be
done by enforcing the explicit-type boundary condition on
. . . _ the wire's surface E%(z, a,t) = —E°(x,a,t), and using the

To solve the reciprocity relations numerically, the spac@hosen testing-current space-time distributions. Thanks to their
time solution is discretized. Hence, the thin-wire antennas simple form (see Egs. (16) and (17)), the excitation elements
and'p are divided intoN4 + 1 and Np + 1 segments, S0 can be for the majority of standard excitation mechanisms
that their partitions are\I'y = {2, = —(4/2+nAa,y = expressed in closed form. In order to cast the resulting time-
0,z=0}forn={1,---,Napwith Ay = £4/(Na+1),and convolution system of equations (18) into the form of Eq. (2),
AlﬂB{: {zn—20 = —4B/Q+(?—NA)AB,Z/ = yo,? =0} fc;r one may substitute
n={Na+1,--- ,Na+ Np}, whereAp = lp/(Np + 1).
Likewise, the time axis is discretized uniformly vig, = Z,=Zp1 =22, + 24, (19)

The remaining interaction integrals can be represented in
same manner.

IV. TIME-DOMAIN SOLUTIONS



which, as a matter of fact, represents the central second-ordérreciprocity represented b)Z[S ”]( t) = Z[” S]( t) for all
difference [22, (25.1.2)]. Solving then the system of equatiots= {Ns + 1,--- ,N4 + N}, n={1,- NA} and¢ > 0.
with the aid of the marching-on-in-time technique, we get the If the thin-wire antennas are relatively close to the ground

following step-by-step updating scheme plane, which is an underlying assumption of the standard TL
S theory (e.g. [5, Sec. 11.1] and [24]), approximation (33) can
1. —z-1. [V _ =z . Ik} (20 be used to further simplify the TD impedance array. Indeed,
"o " st =mek ’ in such a case, we arrive at

for all m = {1,--- , M}. The closed-form expressions for the ZEm @) L AZCA [\I,(x[s-,n] + 3AA/2, t)

(elements of the) TD impedance array, expressed in terms of (5] CoAlAA

the TD generic function (32), will be next given separately ~ — 3 (™™ + A4 /2,8) + 30 (!5 — A4 /2,1)

for the cases with and without the ground plane. Thanks to  _ (g[S _ 3AA/27t)}’ (26)

the exact evaluation of the TD interaction integrals, the filling _
of the TD impedance array takes typically a few seconds & all S = {1,---, Na} with n = {1,--- Na}, where
a standard PC and the resulting marching-on-in-time scherae = (Zo/2)log(2z0/a) is the characteristic impedance of

(20) vields stable and accurate TD electric-current responsé¢ TL above the PEC ground and the TD functidnz, ¢)
is given in the Appendix by Eq. (34). As a matter of fact,

this result fully complies with the CdH-MoM analysis of TLs

reported in a previous work [7, Eq. (14)]. Upon replaciAg
In the presence of the ground plane, the local interactiowsth B in Eq. (26), a similar expression for the approximate

onT'4 can be described by the TD impedance sub-a&fay, 7\l (1) can be readily obtained. If, in addition, the TLs are

A. Antennas in the Presence of the Ground Plane

(see Eq. (5)). Its elements can be expressed via relatlvely close to each other, their mutual EM coupling can
n Zo . be characterized by
Z55(1) = — 25 (38.4/2,0.) - 7,
CoALAA ZBngy & 24 [xp(ﬂsm] +Ap +Aa/2,t)
=[S,n] COAtAB
—-3= (AA/za Oa t) ) (21)
— (2l + Ap — Ay /2,t) — 20 (25" 4 A, /2,1)
forall S={1,--- ,Na} withn={1,--- , N4}, where n 2\1,( CAA/20) + \I](l,[S,n] CAp+AA/2H)
2Em(A, y, 1) WS Ap— AL, t)} 27)

_ [S,n] _ [S,n]

=T(z +Ay,a,t)—Y(z + Ay, 220,t) forall S ={1, -+ ,Natwithn={Ns+1,--- ,Ns+ Nz},

- [T(x[s’”] —Ay,a,t) = TP — Ay, 220,8)|, (22) where Zy = (Zo/27)log|(y3 + 423)/|yol]. Finally, the TL
approximation onJ[BA }( t) can be found from Eq. (27) using

In Eq. (22) we usedz®" = x5 — z, and recall that the property of reciprocity, again.
Y(z,y,z,t) is given by Eq. (32) A similar expression applies
to the local interactions ofi g, viz B. Antennas in the Absence of the Ground Plane
(S] Zo (Som] The presence of the ground plane can be accommodated
Zgp ()= m[ (3Ap/2,0,1) by the method of images. Consequently, the TD expressions
0 B . applying to the configuration without the ground plane can
3E" (AB/Q’O’t)}v (23) be derived from Egs. (21)—(25) upon removing the image-

source contributions. Pursuing this line of reasoning, we get

for all S = {Na+1,---,Na+ Np} with n = {Na + Hcf. Eq. (21))

1,--+,Na+ Np}. Furthermore, the remote interactions fro
'y to I'p is described by Z[S n] (t) = Zo [T(x[sm] +3A,4/2,0,a,t)
Z CoAtAA
Z[S n]( t) = C()ATB[ =51 (Aa/2 4+ Ap,yo,t) — 37 (@M £ AL/2,0,a,t) + 3T (215 — A4/2,0,a,1)
Sn
2 (A /2,0, 1) + EU( A4 /2~ Ay, 1)], 2a)  — TETT —384/2.0.0 ). (28)

forall S = {1,--- ,N4} with n = {1,--- | Na}. Further-
more, the remote interaction between two thin-wire antennas
located inDy is described by (cf. Eq. (24))

forall S ={1,--- ,Na} withn={Ns+1,--- ,Ns+ Ng}.
Finally, sub-array describing the remote interactions fiom
to I' 4 immediately follows as

Z[éSAn] (t) = Zo 25 Ap/2+ Aa,yo,t) Zl[fén] t) = CoAZﬁB {T(x[sm] +Ap+A4/2,90,0,1)
0AtAA Y@ 4 Ap — A/2,50,0,1)
_ ZE[S,n](AB/Q,yo, t) + E[Sv”](AB/2 — AA,yO,t)}, (25) — 2T (x [Sn] 4 A4/2,90,0,t) + 2T( — Au/2,90,0,t)
forall S={Ns+1,--- ,Na+Nglandn={1,--- ,Na}t. + Y5 —Ap+A4/2,90,0,1)
Alternatively, owing to the self-adjointness of the surround- (x[gm] — Ap = Aa/2,50,0,8)], (29)

ing medium [23, Sec. 1.4.1], one may invoke the property
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0.5} ‘ ] =~ -1 : [a/04 = 1/500]
_2,
0 1 2 3 4 5 6 0 1 2 3 4 5 6
t/ty t/ty
Fig. 2. Excitation voltage pulse shape. Fig. 3. Electric-current response of the thin-wire antennéhe absence of

the ground plane.

forall S ={1,--- ,Na} withn={Ns+1,--- ,Ns+ Np}.

Using the replacementd « B, similar expressions can becurrent responses of the antenna from the previous example,
found at once for the local interactions b and the remote but now in the presence of ground plane. The distance of the
interactions fronT'; to I' 4. For the sake of conciseness, theswire from the ground plane is firsty /¢4 = 1/5. Figure 4a
expressions are omitted. shows the resulting pulse shapes as calculated using (21)
(CdH-MoM) and its TL approximation (26) (CdH-MoM-TL)
with N4 = 49 and M = 601, again. Apparently, since the

o i . relative height of the thin-wire antenna above the ground plane,
The validity of the presented CdH-MoM numerical SOIUt'O%/COtW = 2/5, is not sufficiently small, the TL approximation

will be demonstrated on numerical examples. Throughout (i€t appropriate in this case. But, the full CdH-MoM solution
examples that follow, the transmitting thin-wire antenfia, grees with the FIT based solution well, again. Owing to
is activated via a voltage pulse applied to a relatively narroye hresence of image-source contributions (cf. Egs. (21) and
gap located at its center at = 0. As the excitation pulse (;g)) the inclusion of the ground plane approximately doubles
shape, we take the bipolar triangular pulse [7, Ed. (28)]  he time to fill the TD impedance array.

Vo(t) = (2Vi/tw) [t H(t) — 2(t — tw/2)H(t — ty/2) On (’;helothertﬂand, if th_e ar:tenna is re_zlati\élél) close to rhe

ground plane, the approximate expression can replace
+2(t = 3t /2)H(t — 3tw/2) — (t_2tW)H(t_2tW)](’30) Egs. (21) to estimate the current distribution in a speedy
manner. This observation is exemplified in Fig. 4b, where the

with coty /f4 = 1/2 and the unit amplitudé,, = 1.0V (see current responses are calculated £gy¢4 = 1/20. Since we
Fig. 2). keepcoty /¢4 = 1/2, the height of the wire is a tenth of the

In the first example, we calculate the self-response ekcitation pulse’s spatial support now, i.&/cot, = 1/10.
a single thin-wire antennd4 located in the unboundedWhile the CdH-MoM solution and its TL approximation then
surrounding space in the absence of the ground plane. W#verge to each other, the use of the TL approximation
take a/f4 = 1/500, implying a/cot, = 1/250, so that the is owing to its simplicity computationally more efficient. In
thin-wire assumption is safely met. The electric-current puléke actual case withvy = 49 and M = 601, the TL
calculated using the TD impedance array from Sec. IV-B @&pproximation was abostx faster compared to the full CdH-
shown in Fig. 3. For validation purposes, the problem has alst®M solution. Finally, it is noted that this TD result can be
been analyzed with the help of the finite-integration techniqualidated with the aid of the pertaining TD analytical solution
(FIT) as implemented in CST Microwave Stufio It can based on the standard TL theory (see [5, Eq. (17.26)]). The
be seen that the calculated pulse shapes correlate well. Tiserepancies between the CdH-MoM-TL solution and the
total computational time of a demonstrational (non-optimize@jnalytical one can be attributed to inevitable accumulated and
MATLAB code with N4 = 49 and M = 601 grid points was space-time discretization errors. It has been verified that the
about6 s, with approximately2/3 of the time being used for correlation between the results can be improved by using a
filling the TD impedance array anty3 for the marching-on- denser discretization of the solution domain.
in-time scheme (20). On the other hand, the correspondindn the third example, we shall analyze the pulsed EM field
CST simulation took abow0 minutes. All simulations were signal transfer between two thin-wire antenrag,andl g, lo-
conducted on a standard Intel(R) Core(TM) i7-2600 CPU 3.4fted at the heighty /¢4 = 1/20 above the ground plane. The
GHz platform with 16.0 GB RAM. transmitting antennd, 4, remains the same as in the previous

In the second example, the TD expressions presentedsienarios. The receiving antenfiagz, of lengthlp = £4/4
Sec. IV-A are employed to calculate the gap-excited, electig at its center loaded by a resistor & = 100(. The

V. ILLUSTRATIVE NUMERICAL EXAMPLES
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Fig. 4. Electric-current response of the thin-wire antenna in the presencemy. 5. \oltage pulses induced across the load of the receiving antenna. (a)
the ground plane. (aJo/£a = 1/5; (0) z0/£a = 1/20. Pulse shapes computed via the CdH-MoM, its TL approximation and FIT; (b)
Influence of the receiving wire’s length on the voltage response.

distance distance between the antennag j$4 = 1/5 with
zo = 0. As their radius we take /¢4 = 1/1000. The voltage
induced across the load of the receiving antenna has b
calculated via the impedance arrays (21)—(25) (CdH-Mo
as well as using their TL approximations (26) and (27) (Cd
MoM-TL) with Ny = 39, Ng = 19 and M = 1201. The
calculated pulses are shown in Fig. 5a. Despite the relatively
small distance from the ground plan®,/cyt,, = 1/10, their
relative distanceyy/cotw = 2/5 is not sufficiently small to VI. CONCLUSION
justify the approximation made in Eq. (27). Consequently, the
CdH-MoM-TL approximation that predicts an instantaneous
voltage response is not accurate. But, a good correspondencéhe CdH-MoM has been applied to analyze the EM tran-
of the full CdH-MoM solution with the FIT based one issient response of (a system of) thin-wire antennas in the
achieved, again. In this case, the total computational tirpeesence or absence of the ground plane. It has been demon-
of the CdH-MoM simulation amounted to aboRds, out of strated that such antenna configurations can be represented
which approximately2/3 were spent to fill the TD impedancethrough a set of discrete time-convolution equations. Closed-
array andl/3 to carry out the marching-on-in-time schemeform analytical expressions for the pertaining TD impedance
again. The TD impedance array can be filled roughk/faster arrays have been derived analytically with the aid of the CdH
using the TL approximation. technique. The thus obtained elements of TD impedance arrays
Since the evaluation of the TD impedance array is vegre expressed in terms of elementary functions only, which
fast, the presented CdH-MoM approach lends itself to beimgakes their implementation and evaluation in any computing
used in design optimization procedures or/and parametenvironment such as MATLAB virtually effortless. Their ap-
studies of ultra-wide-band wireless interconnects (e.g. [2Ffoximations pertaining to multi-conductor transmission lines
[26]). A simple parametric analysis is presented in Fig. Shye discussed. lllustrative numerical examples were presented
where we demonstrate the influence of the receiving wiregsd validated using a commercial 3-D EM computational tool.

é%rﬁgth on the induced-voltage pulse shape. The remaining
nfigurational and excitation parameters were kept the same
is in the previous example.



Cauchy’s theorem and Jordan’s lemma, the indented gth
is deformed into the hyperbolic CdH path, aandG*, along
which —kz + 1y (k) = 7 is met for{r € R;7 > R(u)/co}
with R(u) = (22 + u?0?)'/2. In addition, if = > 0, the
contribution of the pole singularity is taken into account by
adding the integration aroun@. Its evaluation via Cauchy’s
formula is straightforward. Upon combining the contributions
from G and G* and introducing the parameteras the new
variable of integration, we achieved the mapping of the inner
integration fromx to 7. In the obtained integral expression
consisting of integrals with respect toand r, we change the
order of integrations. The thus obtained inner integral with
respectu is carried out analytically, which leads to the integral
resembling the form of Laplace transformation (see Eq. (6)).
Consequently, with the aid of Schouten-Van der Pol theorem
[14, p. 1056] relying on Lerch’s uniqueness theorem [23,
Appendix], the inverse Laplace transform can be effectuated
APPENDIX at once. This leads to a convolution-type integral with respect
GENERIC FUNCTION to 7 that can be evaluated in closed form, again. Pursuing this
approach, we finally arrive at the TD original of (31) in the
rinollowing form

Fig. 6. Complexx-plane.

The generic integral representation has the following for

. 1 exp(skz)
T(xayaz75 = 5 0292 H)fdf{ t 242 _ 52 1/2
17 e, O Y(w,y,2t) = ¢ (c5t* + 0" — 27) log [CO Har ]
y L /ioo exp{—s[—ay—i—Fo(,‘i,U)z]}da7 (31) 0
271 J e oo 2To(k,0) H(z)H(cot — 0)

— 2cot(cit? — 02)1/2} 4rr

for z,y € R, {z € R;z > 0} and{s € R;s > 0}, and
recall thatly (. o) = [23(x) — 0%]"/2, with Re(I1) > 0, and 22 2 oy [ ot + (5 — o)
0%(k) = 1/ —k?. Next, Ko denotes the integration path that — ¢ (cGt” + 0" — 7) log R+ 7]

is indented to the right with a semi-circular arc with center at

the origin,x = 0, and a vanishingly small radius (see Fig. 6).

— 2cot(c2t? — 0%)Y2 + 4z| (cot — R/Q)}

To transform (31) back to the original domain, we shall sen(z)H(cot — R)
pursue the approach used in [5, Appendix G], for instance. X ,
The inversion procedure starts with the transformation of 8
the inner integral with respect to. In the first step, its where R = (2% + 0?)'/2, o = (y* + 2?)"/? andsgn(z) =
integrand is first continued into the complexplane away 2H(x)— 1. With reference to the standard TL theory assuming
from Re(0) = 0. Consequently, using Cauchy’s theorem and relatively small conductor’s height over the ground plane, it
Jordan’s lemma, the integration contour in the comptex can be observed that
plane is deformed into the so-called CdH path along which 1L log(220 /a
—oy+To(k,0) = UQQ/()(KJ) is satisfied for al{u € R;u > 1} T(z,0,a,t) = T(x,0,22,t) ~ %W(%ﬂ’ (33)
with o = (y? + 2%)/2. Solving the latter equation fos,
we obtain ; param)etrization of the CdH hyperbolic path, sg)? 204 0anda < z, where [7, Eq. (17)]
C U C*, where* denotes the complex conjugate. It is noted U(x,t) = %(Cgﬁ — xQ)H(a:)H(t), (34)
that the CdH path intersects Im(o= 0 at o(u = 1) = _ .
—(y/0)Q0(x). Therefore, since we assume that> 0, the for all z € R andt € IR{ These results are us_ed_ in the main
CdH path cannot not intersect the horizontal branch cift to construct TD impedance arrays pertaining to various
extending along{Qo(x) < |Re(0)| < oo, Im(c) = 0}. In the thin-wire antenna configurations.
subsequent step, the integrations alGrendC* are combined
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