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Graphene-Based Artificial Synapses with Tunable Plasticity

HE WANG, NICOLETA CUCU LAURENCIU, YANDE JIANG, and SORIN COTOFANA,

Computer Engineering Laboratory, Delft University of Technology, The Netherlands

Design and implementation of artificial neuromorphic systems able to provide brain akin computation and/or

bio-compatible interfacing ability are crucial for understanding the human brain’s complex functionality and

unleashing brain-inspired computation’s full potential. To this end, the realization of energy-efficient, low-

area, and bio-compatible artificial synapses, which sustain the signal transmission between neurons, is of

particular interest for any large-scale neuromorphic system. Graphene is a prime candidate material with ex-

cellent electronic properties, atomic dimensions, and low-energy envelope perspectives, which was already

proven effective for logic gates implementations. Furthermore, distinct from any other materials used in

current artificial synapse implementations, graphene is biocompatible, which offers perspectives for neu-

ral interfaces. In view of this, we investigate the feasibility of graphene-based synapses to emulate vari-

ous synaptic plasticity behaviors and look into their potential area and energy consumption for large-scale

implementations. In this article, we propose a generic graphene-based synapse structure, which can emu-

late the fundamental synaptic functionalities, i.e., Spike-Timing-Dependent Plasticity (STDP) and Long-

Term Plasticity. Additionally, the graphene synapse is programable by means of back-gate bias voltage and

can exhibit both excitatory or inhibitory behavior. We investigate its capability to obtain different potentia-

tion/depression time scale for STDP with identical synaptic weight change amplitude when the input spike

duration varies. Our simulation results, for various synaptic plasticities, indicate that a maximum 30% synap-

tic weight change and potentiation/depression time scale range from [−1.5 ms, 1.1 ms] to [−32.2 ms, 24.1 ms]
are achievable. We further explore the effect of our proposal at the Spiking Neural Network (SNN) level

by performing NEST-based simulations of a small SNN implemented with 5 leaky-integrate-and-fire neurons

connected via graphene-based synapses. Our experiments indicate that the number of SNN firing events ex-

hibits a strong connection with the synaptic plasticity type, and monotonously varies with respect to the

input spike frequency. Moreover, for graphene-based Hebbian STDP and spike duration of 20 ms we obtain

an SNN behavior relatively similar with the one provided by the same SNN with biological STDP. The pro-

posed graphene-based synapse requires a small area (max. 30 nm2), operates at low voltage (200 mV), and

can emulate various plasticity types, which makes it an outstanding candidate for implementing large-scale

brain-inspired computation systems.
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plasticity, STDP, LTP, LTD
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1 INTRODUCTION

The human brain is a high performance natural computation system, which comprises billions
of neurons and trillions of synapses. Its unique and attractive properties, e.g., energy efficiency,
real-time reaction, robustness, suitability for complex task solving and highly parallel informa-
tion processing ability, spurred the development of a disruptive computing paradigm, the Neu-

romorphic Computing (NC) [35]. In the past decades many efforts have been made to develop
brain-inspired computation paradigms [15, 25, 29, 30] and biologically inspired neuromorphic sys-
tems [1, 8, 14, 37] based on artificial neurons and synapses. The development of NC promoted
research aiming at understanding the brain’s fundamental operational principles and achieving
human-brain-comparable computation ability.

The synapse, which is the most abundant components in neural systems, is a junction con-
necting two neurons and sustaining the information transmission between them. The synaptic
transmission efficiency is variable and appears as the potentiation or depression of the transmit-
ted signals [10, 20]. The synaptic transmission efficiency strengthening or weakening is known as
synaptic plasticity, which is believed to be the basis of learning and memory in human brain. From
synaptic behavior point of view, an artificial synapse ought to implement two basic functionalities:
(i) Spike-Timing-Dependent Plasticity (STDP), which changes the transmission efficiency de-
pending on the relative timing difference between the pre-synaptic and post-synaptic spikes [11],
and (ii) Long-Term Plasticity in its two flavours, i.e., Long-Term Potentiation (LTP) and Long-

Term Depression (LTD), which is a persistent synaptic transmission efficiency change [5].
Since there are trillions of synapses in the nervous system that are essential for supporting

the human brain complex functionality, designing and implementing artificial synapses for any
large-scale biological-inspired computation systems received massive attention. In most state-of-
the-art neuromorphic systems, the artificial synapses are implemented with complex CMOS cir-
cuitry [6, 19, 36, 39]. However, as CMOS scaling is approaching atomic feature size, which results
in high power consumption and low reliability, CMOS-based synapses bring limitations to scal-
ability, energy efficiency, and integration density of large-scale neuromorphic systems. Besides,
CMOS-based artificial synapses cannot efficiently mimic the analog synaptic behavior. Recently,
emerging resistive switching memory devices [43] attracted interest and have been used to imple-
ment artificial synapses [4, 27, 32, 38]. The obtained artificial synapses exhibit outstanding prop-
erties, e.g., inherently analog behavior, simple structure (one single or a few resistive switching
memory devices for one synapse), and good scalability potential. However, they suffer from tem-
poral and spatial variability of the resistive states and undesired stochastic behavior, which may
cause neuromorphic system instability. They also need to be operated at relatively high voltage,
which precludes the implementation of energy-efficient computation systems.

Graphene, a two-dimensional carbon atom honeycomb lattice, has lately emerged as one of
the most prominent post-Si forerunners, as it exhibits a wealth of outstanding properties, e.g.,
low power consumption, ballistic transport, ultimate thinness, inherently analog nature, and bio-
compatibility [2, 3, 17]. Due to its unique properties, graphene-based devices have been utilized
for Boolean logic gate implementations [26, 33, 42]. Moreover, previous work on graphene-based
synapses demonstrated that graphene-based devices can emulate synaptic plasticity. In [44], the
authors demonstrated various synaptic plasticities, however, their proposed artificial synapses
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operate with quite large back-gate voltage (20 V, 40 V) and input signals (2 V), which makes
them power hungry and inappropriate for energy-effective implementations. Moreover, the
obtained synaptic transmission efficiency change is extremely small (<0.01%) and only restricted
synaptic plasticity types are provided. In [41], a graphene-based synapse is proposed that relies
on changing the Li ion concentration between graphene layers to control the device conductance.
This synapse endows low-power switching ability, low variability, and is potentially suitable
for large-scale implementations. However the reported conductance change is small (<2%) and
the considered spikes timing difference around 1000 ms is significantly different from the one
observed in natural synapses (≈80 ms).

In this article, we propose a generic graphene-based artificial synapse structure, which con-
sists of a single-layer Graphene Nanoribbon (GNR) on top of an insulating material with a doped
substrate serving as a back-gate. The current flow in the GNR channel is induced by applying a
drain-to-source bias voltage. The synaptic transmission efficiency, which is reflected as the conduc-
tance of the proposed synapses, can be modulated by means of external voltages, e.g., via two top-
gates and one back-gate. To mimic the synaptic behavior, we consider two fundamental synapse
functionalities, i.e., STDP and Long-Term Plasticity. By carving the GNR geometries and contact
topologies of the proposed structure, we successfully obtain various synaptic plasticity, including
balanced Hebbian STDP, potentiation biased anti-Hebbian STDP, balanced anti-Hebbian STDP, po-
tentiation biased anti-Hebbian STDP, Long-Term Potentiation, and LTD. We also demonstrate that
the same device can emulate both excitatory and inhibitory synaptic behaviors by simply changing
the back-gate voltage. The GNR device is biased at 0.2 V and operates on 110 mV inputs, which
is consistent with measured biological synapses data and makes it operation compatible with nat-
ural neural matter. Besides, by applying input spikes with different spike duration, the proposed
synapses can emulate STDP with varying potentiation/depression time scale without affecting the
obtained amplitude of the synaptic transmission efficiency change. We obtained a maximum 30%
synaptic weight change and potentiation/depression time scale range from [−1.5 ms, 1.1 ms] to
[−32.2 ms, 24.1 ms]. Furthermore, we explore the effect of proposed synapse at the Spiking Neu-
ral Network (SNN) level by performing NEST [16]-based simulations of a small SNN implemented
with five leaky-integrate-and-fire neurons connected via GNR-based synapses. Our experiments
indicated a strong connection between the synaptic plasticity type, i.e., Hebbian and anti-Hebbian,
and the number of firing events in the network. Moreover the number of SNN output firing events
monotonously varies with respect to the input spikes frequency. For graphene-based Hebbian
STDP and spike duration of 20 ms we obtained an SNN behavior relatively similar with the one
provided by the SNN with biological STDP.

The proposed design and synaptic plasticity emulation methodology is generic and our simu-
lation results suggest that by changing the GNR shape and contact topologies various synaptic
plasticities can be obtained, potentially beyond the six reported cases. Given that the proposed
graphene-based synapse has a small footprint (30 nm2), operates in the hundred-millivolt range,
and is versatile from the synaptic behavior point of view, we strongly believe that it can be an
outstanding candidate for implementing large-scale energy efficient neuromorphic systems.

The remainder of this article is structured as follows: Section 2 presents the underlying concepts
about synapse and synaptic plasticity, and introduces the proposed graphene-based synapse struc-
ture. In Section 3, we describe the simulation model for graphene electronic transport properties
calculation, and the simulation setup and employed methodology. In Section 4, we present the ob-
tained simulation results, investigate the impact of different spike duration on synaptic plasticity,
and explore the effect of synaptic plasticity on neural networks behavior. Section 5 concludes the
article.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 4, Article 50. Publication date: June 2021.
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Fig. 1. Synapse-based signal transmission.

2 SYNAPTIC PLASTICITY AND GRAPHENE SYNAPSE

In this section, we present the fundamental concepts underlying synaptic plasticity and then in-
troduce the proposed generic graphene-based synapse.

2.1 Synapse and Synaptic Plasticity

Synapse is the most abundant component in human brain, which serves as the junction connecting
two neurons. In order to explain how a synapse affects the information transmission between
neurons, a small Neural Network (NN) is depicted in Figure 1. This NN consists of three spiking
neurons connected via two synapses. The post-synaptic neuron Ni collects signals (pre-synaptic
spikes S j and Sk ) from pre-synaptic neurons Nj and Nk , and when the cumulated signals exceed
a certain firing threshold, neuron Ni generates an output signal (post-synaptic spike Si ), which
transmits through all its terminations. From the synapse functionality point of view (consider
the synapse connecting neurons Nj and Ni ), there are: (i) two input signals: pre-synaptic spike
S j , which is output spike of neuron Nj and post-synaptic spike Si , which is the output spike of
neuron Ni , and (ii) one output signal Sout

j , which will be transmitted to neuron Ni . The synaptic

transmission efficiency (synaptic weight) is a function of the two input spikes, denoted as Wji =

f (S j , Si ). In general, the transmission efficiency is plastic and can either strengthen or weaken
the signals transmitted via the synapse. This property is known as synaptic plasticity, which is
fundamental synaptic functionality and is believed to be the basis of learning and memory in
human brain. There are two types of basic synaptic plasticity: STDP and Long-Term Plasticity
(including Long-Term Potentiation (LTP) and Long-Term Depression (LTD)). STDP is a widely
used Hebbian synaptic learning rule [9], which suggests that synaptic weight changes according
to the relative timing difference between pre-synaptic spike and post-synaptic spike. When the pre-
synaptic spike arrives at the synapse shortly before the post-synaptic spike, the synaptic weight
increases, and this may lead to a persistent efficiency increase (LTP); otherwise, the synaptic weight
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Fig. 2. Biological synapse STDP measured data [7].

decreases, and this may lead to a persistent efficiency decrease (LTD). When the two spikes are very
close in time, i.e., very small timing difference, a large synaptic efficiency change occurs. Figure 2
depicts a standard STDP behavior based on biological measured data [7]. ΔW denotes the synaptic
weight change and Δt denotes the spike timing difference. We denote by tpr e and tpost , the arrival
time of pre-synaptic spike and post-synaptic spike, respectively. Thus, the spike timing difference
is calculated as Δt = tpost − tpr e . Even though the biological synaptic weight change behavior
illustrated in Figure 2(a) exhibits stochasticity, a widely accepted STDP interpolating model is as
follows:

ΔW (Δt) =
{
A+ · exp(−Δt/τ+), for Δt > 0

−A− · exp(Δt/τ−), for Δt < 0,
(1)

where A+ and A− are parameters affecting the amplitude of synaptic weight change, and τ+ and
τ− are time constants reflecting the time scale in which the potentiation and depression occurs.

2.2 Graphene-Nanoribbon-Based Synapse

The proposed graphene-based synapse generic structure is illustrated in Figure 3(a) and consists of
a single-layer Graphene Nanoribbon (GNR) located on top of an insulating material and a doped
substrate serves as back-gate. When a drain-to-source bias voltage Vd − Vs is applied, the GNR
constitutes a conduction channel. By shaping the GNR sheet geometry and contact topologies as
well as by applying external voltages (e.g., via top-gates and back-gate), the GNR conductance
G can be modulated. Figure 3(b) depicts a conductance map (conductance vs. applied voltage)
example of the proposed graphene-based synapse generic structure.

From the synaptic behavior point of view, the two top-gates are used for applying synaptic in-
put spikes, e.g., pre-synaptic spike is applied to top-gate-1 and post-synaptic spike to top-gate-2,
corresponding toVд1 andVд2 in Figure 3(a), respectively. The synaptic plasticity is reflected by the
induced GNR conductance change, and the output spike current is represented by the drain-to-
source current, which corresponds to the synaptic output spike Sout

j in Figure 1. A key element

in our proposal is the fact that, as experimentally observed, graphene-based device inherently ex-
hibits interface traps [17], which are usually caused by defects in the top-gate oxide, and charges
can be trapped from graphene to the interface or released. These trapping and deptrapping phe-
nomena affect the top-gates conductance modulation ability, and as such, when applying an input
spike the graphene-based device conductance and output current will depend on the cumulated

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 4, Article 50. Publication date: June 2021.
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Fig. 3. (a) Graphene-based synapse structure and (b) its conductance map.

previous activities in the artificial synapse. This dependence can be naturally utilized to imple-
ment time-varying synaptic plasticity, e.g., STDP, LTP, and LTD. By carving the GNR geometry,
the synapse conductance can be modulated such that it reflects a certain functionality. Thus, for
every GNR topology a different conductance map can be obtained. As STDP weight change is re-
flected by the change of the device conductance, with different conductance maps we can have
different STDP types. Furthermore, the GNR topology affects as well the trapping mechanism
which is fundamental in inducing plasticity.

In Section 4, we demonstrate that by: (i) Shaping the GNR into non-rectangular forms as well as
changing the contact topologies, various synaptic plasticities can be obtained, which is not the case
for previously proposed rectangular graphene-based synapses [44]; (ii) Changing the back-gate
voltage, we can emulate both excitatory and inhibitory synaptic behavior with the same graphene-
based device; and (iii) Applying input spikes with different duration, the graphene-based synapse
can emulate STDP with varying potentiation/depression time scale without affecting the amplitude
of synaptic weight change.

3 SIMULATION FRAMEWORK

In this section, we present the simulation model for computing electronic transport properties of
the proposed graphene-based synapse, and describe the simulation setup and employed method-
ology to emulate the desired synaptic plasticity (the GNR conductance change).

3.1 GNR Electronic Transport Simulation Model

In order to compute the GNR electronic transport properties, we utilize the Tight-Binding approach
to represent the system Hamiltonian, the Non-Equilibrium Green Function (NEGF) quantum trans-
port model to solve the Schrödinger equation, and the Landauer-Büttiker formalism to derive the
GNR current and conductance [12, 13].

Specifically, the GNR channel is described by a Hamiltonian matrix H = H0 +U , which models
the interactions between neighbor carbon atoms via H0 and external potentials (e.g., top-gate and
back-gate voltages) via U . The interaction matrix H0 is constructed as follows:

H0 =
∑
i, j

ti, j |i〉 〈j | , (2)

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 4, Article 50. Publication date: June 2021.
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Fig. 4. Equivalent circuit for graphene-based device.

where ti, j =

{
τ , if atoms i and j are adjacent

0, otherwise.
(3)

In the simulation, we account for the first nearest-neighbor interaction with τ = −2.7eV . The
potential distribution profile U is calculated by solving a 3D Poisson equation self-consistently
with finite difference method.

As the interface traps cause an equivalent shift of the gate voltage, denoted as ΔVд [45], we
update the potential distribution profile U with Vд + ΔVд when solving the 3D Poisson equation.
Figure 4 illustrates the equivalent circuit for the proposed graphene-based device in Figure 3(a),
where Cox is the top-gate oxide capacitance, Cq the GNR channel quantum capacitance, and Cit

the capacitance caused by interface traps. When applying a piece-wise linearVд (the GNR channel

potential changes form V t1
c at time moment t1 to V t2

c at time moment t2), the interface traps
charges can be calculated as:

Qit(t) = Cit ·
[(
V t1

c + α · t − α ·τ ) + e−
t

τ · (α ·τ −V t1
c +V

t1
it

)]
, (4)

whereV t1
it is the accumulated voltage drop onCit at time moment t1, τ is the trapping/detrapping

time constant, and α is the Vc ramp slope from t1 to t2.
Along the GNR transport direction, the source and drain contacts with different electrochem-

ical potential sustain the channel conduction. The interaction between the two contacts can be
modeled via the self-energy matrices Σ1 and Σ2, respectively. After H and Σ1,2 are calculated, the
transmission function T (E), which models the possibility of one electron being transmitted be-
tween the source and drain contacts, can be computed as a function of energy:

T (E) = Trace
[
Γ1 GR Γ2 G

†
R

]
, (5)

where

GR (E) = [EI − H − Σ1 − Σ2]−1, (6)

Γ1,2 = i
[
Σ1,2 − Σ†

1,2

]
. (7)

The channel current is derived based on the Landauer formula:

I =
q

h

∫ +∞

−∞
T (E) · (f0(E − μ1) − f0(E − μ2)) dE, (8)
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Fig. 5. Spikes timing difference indication.

where f0(E) denotes the Fermi-Dirac distribution function at temperatureT , and μ1,2 represent the
source and drain contacts electrochemical potential.

Finally, the GNR conductance can be calculated as:

G =
I

Vd −Vs
. (9)

3.2 Simulation Setup and Methodology

In order to emulate STDP behaviors, the pre-synaptic spike and post-synaptic spike are applied to
Vд1 and Vд2, respectively. As exemplified in Figure 5, when the pre-synaptic spike arrives before
the post-synaptic spike, the spike timing difference Δt > 0, and Δt < 0 when they arrive in
inverse order. We defineTfirst as the arrival time of the first arriving spike andTsecond as the arrival
time of the second arriving spike. We assume that the applied input spikes lay into 70 mV to
180 mV voltage range and a spike duration of 2 ms. When no spike arrives, the two top-gates are
subjected to 70 mV voltage, mimicking the rest potential in biological spike trains. Thus, for the
different timing difference of spikes, the voltages applied on two top-gates varies at that specific
time moment, causing a time-varying conductance change. Additionally, the long-term plasticity
behavior is naturally captured by charge trapping/detrapping phenomena.

In Figure 6, the GNR dimension and contacts topologies are graphically defined. Specifically,
W and L represent the GNR sheet width and length, PVд1 indicates the distance between top-
gate-1 and the drain contact, PVд2 indicates the the distance between top-gate-2 and the source
contact, while WVд1 and WVд2 signify the width of top-gate-1 and top-gate-2, respectively. Note
that a = 0.142 nm denotes the distance between two adjacent carbon atoms. Concerning the traps
caused hysteresis, we assume a density of interface traps 2.363 × 1013cm−2(eV )−1, and the trap-
ping/detrapping time constant is set to 1 ms [28, 31].

To identify a GNR topology that is able to provide support for a targeted plasticity, we perform
a Design Space Exploration (DSE) by changing GNR dimension, shape, widths and positions
of the two top-gates, and back-gate voltage. For each relevant Δt value, we apply a pair of spike
trains (pre-synaptic spike and post-synaptic spike) to the two top-gates and measure the synaptic
weight change ΔW (the difference between GNR conductance values at time moments Tfirst and
Tsecond, where Tsecond − Tfirst = |Δt | as illustrated in Figure 5). We assess the resemblance of the
obtained synaptic weight change with the desired ΔW (Δt) plasticity and, if this is not satisfactory,
we continue DSE by changing the GNR topology parameters.
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Fig. 6. GNR dimensions and contacts topology.

Table 1. GNR Synapses Topologies

Plasticity Type W [a] L [a] PVд1 [a] WVд1 [a] PVд2 [a] WVд2 [a]

Hebbian STDP 23 25
√

3 9
√

3 3
√

3 2
√

3 6
√

3

LTP-biased Hebbian STDP 29 30
√

3 3
√

3 3
√

3 10
√

3 3
√

3

anti-Hebbian STDP 29 30
√

3 3
√

3 6
√

3 7
√

3 6
√

3

LTP-biased anti-Hebbian STDP 23 25
√

3 9
√

3 3
√

3 2
√

3 3
√

3

4 GRAPHENE-BASED SYNAPSES EVALUATION

In this section, we evaluate the capability of the proposed graphene-based synapses to emulate
various plasticity types and investigate how input spike duration affects the achieved synaptic
plasticity. Finally, we explore the effect of the obtained synaptic plasticity on the behavior of an
example spiking neural network.

4.1 Spike-Timing-Dependent Plasticity and Long-Term Plasticity

In order to evaluate the ability of the proposed graphene-based synapse to emulate various plastic-
ity types, we considered four different STDP types underlying balanced and potentiation dom-
inated learning [18, 22]: Hebbian STDP with balanced LTP and LTD (Figure 7(a)), LTP-biased
Hebbian STDP (Figure 7(d)), anti-Hebbian STDP with balanced LTP and LTD (Figure 8(a)) and
LTP-biased anti-Hebbian STDP (Figure 8(d)). The GNR topologies (overall GNR width and length
as well as the widths and positions for two top-gates) for the considered STDP types as determined
by means of DSE are summarized in Table 1, where all values are expressed in term ofa = 0.142 nm,
which is the distance between adjacent carbon atoms in a graphene unit cell. The GNR shapes for
the four considered cases are depicted in Figures 7(b) and 7(e) and Figures 8(b) and 8(e), which
capture their actual dimensions in term of carbon atoms.

Figure 7(b) depicts the obtained GNR shape for Hebbian STDP with balanced LTP and LTD
plasticity, with drain-to-source bias voltage Vd = 0.2 V and back-gate voltage Vback = 0 V.
The simulated synaptic weight change (conductance change) as presented in Figure 7(c) has a
good resemblance with the ideal Hebbian STDP with balanced LTD and LTP behavior trend
(Figure 7(a)). One can observe that the range of the obtained synaptic plasticity change is around
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Fig. 7. GNR synapse shapes and obtained plasticity corresponds to Hebbian STDP and LTP-biased Hebbian

STDP.

30%. To properly evaluate the obtained synaptic behavior, we define the STDP potentiation and
depression time scale ( t+ and t−, respectively) as the spikes timing difference Δt range in which
the corresponding synaptic weight change ΔW is significant, i.e., larger than 0.1%. Thus, when
for t− < Δt < t+ the synaptic weight change |ΔW | > 0.1%. For the simulated Hebbian STDP,
we obtain a potentiation time scale t+ = 2.6 ms and depression time scale t− = −2.5 ms, which
indicates that the synaptic weight change is tiny when the spikes timing difference is beyond this
range([−2.5 ms, 2.6 ms]). We further investigate how different input spikes duration affects the
obtained STDP potentiation/depression time scale in 4.2.

Figure 7(e), Figure 8(b), and Figure 8(e) illustrate the obtained GNR shapes for LTP-biased Heb-
bian STDP, anti-Hebbian STDP with balanced LTP and LTD, and LTP-biased anti-Hebbian STDP,
respectively. In all these cases, the drain-to-source bias voltage is Vd = 0.2 V and the back-gate
voltageVback = 0 V. For LTP-biased Hebbian STDP, the simulated synaptic plasticity in Figure 7(f)
is temporally asymmetric, and we observe that the amplitude of synaptic weight potentiation is
about 3 times larger than synaptic weight depression, which results in a LTP-biased behavior. Com-
pared with the amplitudes obtained for Hebbian STDP with balanced LTP and LTD, the amplitudes
in this case are relatively smaller. For obtained anti-Hebbian STDP with balanced LTP and LTD
in Figure 8(c), the synaptic weight potentiation amplitude is around 2.5% while the depression
amplitude is around 1.5%, which is approximately symmetric and exhibits a good resemblance
with the ideal behavior depicted in Figure 8(a). As for the simulated LTP-biased anti-Hebbian
STDP in Figure 8(f), the synaptic weight potentiation amplitude is about 30% while the depres-
sion amplitude is about 5%, thus exhibiting the obvious LTP-biased behavior. Note that for these
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Fig. 8. GNR synapse shapes and obtained plasticity corresponds to anti-Hebbian STDP and LTP-biased anti-

Hebbian STDP.

three cases (LTP-biased Hebbian STDP, balanced anti-Hebbian STDP and LTP-biased anti-Hebbian
STDP), the obtained plasticity has similar STDP potentiation/depression time scale which is around
[−2 ms, 2 ms].

A synapse can either exhibit excitatory behavior (i.e., synaptic weight potentiation when the
pre-synaptic spike arrives before post-synaptic spike) or inhibitory behavior (i.e., synaptic weight
depression when the pre-synaptic spike arrives before post-synaptic spike). To emulate excita-
tory and inhibitory synaptic behaviors, traditional artificial synapses need two different designs.
With the proposed graphene-based synapses, we are able to obtain both excitatory and inhibitory
synaptic behaviors with the same graphene-based device by changing the back-gate voltage. For
instance, the GNR synapse shape illustrated in Figure 7(b) exhibits an excitatory synaptic behav-
ior. By simply changing the back-gate voltage from 0 V to −0.15 V while keeping the GNR shape,
contact topologies, and applied voltages identical, the inhibitory synaptic behavior is obtained as
depicted in Figure 9(a). Similarly, the GNR shape depicted in Figure 8(e) exhibits an inhibitory
synaptic behavior. By simply changing the back-gate voltage from 0 V to −0.05 V, the correspond-
ing excitatory synaptic behavior is obtained as illustrated in Figure 9(b).

Beside STDP, Long-Term Plasticity (LTP) is a fundamental synaptic functionality, which is be-
lieved as the basis of memory in human brain. To obtain LTP, an identical spike is applied to the
top-gate-1 consecutively while a constant voltage (the rest potential) is applied to top-gate-2. The
applied spikes and the voltage mimicking the rest potential are consistent with the ones used in
STDP simulations. In our experiment, we considered the GNR synapse shapes from Figure 7(b) and
Figure 8(e) and apply an input spike train consisting of identical spike with inter-spike period 1 ms.
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Fig. 9. (a) Corresponding inhibitory synaptic behavior for synapse shape depicted in Figure 7(b), and (b)

corresponding excitatory synaptic behavior for synapse shape depicted in Figure 8(e).

Fig. 10. Output spike current for long-term plasticity. (a) Graphene-based synapse illustrated in Figure 7(b).

(b) Graphene-based synapse illustrated in Figure 8(e).

For each spike, we measure the GNR drain to source current, which represents the output spike
current generated by the synapse (e.g., Sout

j in Figure 1). The long-term potentiation and depres-

sion are obtained by properly changing the back-gate voltage for the two GNR synapse shapes,
respectively. For both GNR synapse shapes in Figure 7(b) and Figure 8(b), LTP is obtained with
back-gate voltage Vback = 0 V and LTD is obtained with back-gate voltage Vback = −0.05 V, as
illustrated in Figures 10(a) and 10(b), respectively.

Our simulation results demonstrate the capabilities of the proposed artificial synapses to emu-
late various types of synaptic plasticity. The design and simulation methodology is generic, more
synaptic plasticity types can be potentially obtained beyond the aforementioned ones. The pro-
posed graphene-based synapses have small area (max. 30 nm2) and operate with low operating
voltage (0.2 V drain-to-source bias voltage and max. 0.18 V input spike voltage), which are de-
sired properties for large-scale neuromorphic computation systems. To get further into our pro-
posed graphene-based synapses, we investigate in the following subsection how input spikes with
different spike duration affect the obtained synaptic plasticity.
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Fig. 11. Simulated STDP with input spike duration (a) 1 ms, (b) 10 ms, and (c) 20 ms.

Fig. 12. STDP potentiation and depression time scale vs. input spike duration.

4.2 Spike-Timing-Dependent Plasticity Time Scale Variation

To investigate the effect of varying input spike duration on obtained STDP, we consider the GNR
synapse in Figure 7(b) and apply input spike with duration of 1 ms, 10 ms, and 20 ms. For each case,
input spikes with the specific duration are applied to the graphene-based synapse and the result-
ing plasticity are recorded. The GNR geometry, contact topologies, drain-to-source biased voltage
and back-gate voltage are identical with the previous STDP simulation. The obtained STDPs are
depicted in Figure 11. The simulated STDP in Figure 11(a) corresponds to spike duration 1 ms. The
obtained potentiation and depression time scale t+ = 1.1 ms and t− = −1.5 ms, which is smaller
than the one obtained with a spike duration of 2 ms. We observe the amplitude of synaptic weight
potentiation and depression is around 20% and −30%, respectively, and are almost identical with
the ones obtained with a spike duration of 2 ms. The obtained STDP for 10 ms and 20 ms spikes
are illustrated in Figures 11(b) and 11(c), respectively. In both the 10 ms and 20 ms cases, the ampli-
tude of the synaptic weight change is around 30%, while the STDP time scale is [−13.3 ms, 11.5 ms]
and [−32.2 ms, 24.1 ms], respectively. The simulation results suggest that the input spike duration
can affect the obtained STDP potentiation/depression time scale, while having little effect on the
synaptic weight change amplitude.

Figure 12 statistically illustrates the relation between the input spike duration and obtained
STDP potentiation/depression time scale, when considering [1 ms, 2 ms, 5 ms, 10 ms, 15 ms,
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Fig. 13. The simulated fully connected SNN and the inter-spike interval distribution of the input spike train.

20 ms] spikes. One can observe an approximately linear relation between the input spike duration
and obtained STDP potentiation/depression time scale. The synaptic weight change amplitudes in
all cases are identical. Thus, we conclude that by changing the input spike duration, the proposed
synapse can achieve STDP with different potentiation/depression time scale without affecting the
amplitudes of synaptic weight change.

4.3 Spiking Neural Network Impact

To get some preliminary understanding on the implication of our proposal at the higher level, we
consider a small SNN with GNR-based synapses and simulate its behavior by means of the NEST
simulator [16]. As illustrated in Figure 13(a), this SNN has a fully connected network topology,
and consists of five leaky-integrate-and-fire neurons connected via synapses. Since, in a given
neural network, the spikes are alike, the form of a single spike doesn’t carry any information,
but the number and timing of spikes matter [21], we concentrate on investigating how the pro-
posed graphene-based synapse affects the SNN’s firing behavior. As a thorough analysis of any
synaptic plasticity influence on the neural network’s behavior is out of the scope of this article,
we restrict the investigation to the cases in which the simulated SNN is constructed with the
biological synapses (as illustrated in Figure 2) [7] and proposed graphene-based synapses. The
plasticity model described in Equation (1) is utilized as standard STDP model in the NEST simula-
tor and we specify synaptic behaviors in SNNs by fitting plasticity data (e.g., biological measured
data and simulation results with graphene-based synapses) with the STDP model for different
cases. For simplicity, we call the SNN with synaptic behavior specified by biological measured data
as SNN with biological STDP, and the SNN with synaptic behavior specified by graphene-based
synapses simulation data as SNN with graphene-based STDP (e.g., SNN with graphene-based Heb-
bian STDP, SNN with graphene-based anti-Hebbian STDP). For the SNN simulation, an input spike
train (with spike times sampled from a Poisson distribution) with a firing frequency of 10 kHz is
applied to all neurons, and the firing events are recorded. Figure 13 depicts the inter-spike inter-
val distribution of the input spike train. Every simulation is performed with one specific synap-
tic behavior, while the other settings are keep consistent. The overall simulation time is set to
500 ms.

We consider SNN with biological STDP as baseline and then perform simulations for SNN with
graphene-based Hebbian STDP (in Figure 7(c)) and anti-Hebbian STDP (in Figure 8(c)), which

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 4, Article 50. Publication date: June 2021.



Graphene-Based Artificial Synapses with Tunable Plasticity 50:15

Table 2. SNN Total Output Firing Number

Synaptic Plasticity Number[#]

STDP with biological STDP 220
Graphene-based Hebbian STDP (2 ms) 820

Graphene-based anti-Hebbian STDP (2 ms) 80
Graphene-based Hebbian STDP (1 ms) 290
Graphene-based Hebbian STDP (20 ms) 200

Fig. 14. SNN firing events with biological STDP.

correspond to excitatory and inhibitory synaptic behaviors, respectively. Furthermore, graphene-
based Hebbian STDPs obtained with different input spike durations (e.g., spike duration 1 ms in
Figure 11(a) and spike duration 20 ms in Figure 11(c)) are also utilized to perform the simulation.
Table 2 summarizes the obtained total number of firing events for all cases. The graphene-based
synaptic plasticity types are indicated by the applied spike duration in previous GNR simulations,
e.g., graphene-based Hebbian STDP (2 ms) indicates the corresponding plasticity obtained with
input spike duration of 2 ms.

Figure 14 illustrates the simulation results for SNN with biological STDP. The top panel shows
a raster plot for firing events belonging to the five neurons. Each dot in the plot indicates the
occurrence time of one firing event and all dots in the same row belong to the same neuron. The
histogram plot in the bottom panel represents the SNN firing rate at each time moment. As the sim-
ulated SNN has a fully connected topology and inputs are applied to all neurons, the firing events
for all neurons are identical, which can be observed through the same firing events distribution
for the five neurons. As for the firing rate in the histogram plot it exhibits a sparse distribution and
there is no obvious tendency to increase or decrease. The total firing events number in this case is
220.

Figure 15(a) depicts the simulation results for SNN with graphene-based Hebbian STDP (2 ms).
One can observe a dramatic increase of the firing rate during the first 100 ms and then the SNN
keeps a relatively high firing rate until the end. The total firing events number is 820, which is 3.7
times larger than the one obtained in SNN with biological STDP, which suggests that the graphene-
based Hebbian STDP is able to exhibit a significant strengthening effect on the SNN’s firing
events.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 4, Article 50. Publication date: June 2021.



50:16 H. Wang et al.

Fig. 15. SNN firing events with proposed Hebbian STDP and anti-Hebbian STDP.

The simulation results for SNN with graphene-based anti-Hebbian STDP (2 ms) is illustrated in
Figure 15(b). One can observe that the general firing rate is smaller than the aforementioned two
SNN simulations, and it exhibits a sparser firing events distribution. The total firing events number
is 80, which suggests that proposed graphene-based anti-Hebbian synapse can properly emulate
inhibitory synaptic behavior and suppress the SNN’s firing events.

To evaluate the implications of the spike length we perform simulations also for SNNs with
graphene-based Hebbian STDP (1 ms) and with graphene-based Hebbian STDP (20 ms), which
results are illustrated in Figures 16(a) and 16(b), respectively. We observe that, for the SNN with
graphene-based Hebbian STDP (1 ms), there is a gradual increase of the firing rate, and the to-
tal firing events number is 290. Compared with SNN with biological STDP, this graphene-based
synapse can exhibit strengthening effect, but is weaker than the one observed in Figure 15(a).
As for the SNN with graphene-based Hebbian STDP 20 ms, the firing events have sparse distri-
bution and don’t exhibit any strengthening or weakening tendency, which is similar to the re-
sponse of the SNN with biological STDP. As presented in 4.2, graphene-based Hebbian STDPs
with spike duration (1 ms) and 20 ms have identical synaptic weight change amplitude and
the potentiation/depression time scales are different. The firing events observed in these two
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Fig. 16. SNN firing events with proposed Hebbian STDP obtained with different spike duration.

cases indicate that the potential/depression time scale has an obvious influence on the SNN’s
behaviors.

In order to investigate how input spike frequency affects the SNN output firing events, we
consider three different STDP types, i.e., biological STDP, graphene-based Hebbian STDP (2 ms),
and graphene-based Hebbian STDP (20 ms), and vary the SNN input spike frequency from 10 kHz
to 30 kHz. Simulation results are presented in Figure 17 and indicate that the number of SNN
output firing events for all three STDP cases monotonously varies with respect to the input
spikes frequency. Specifically, we observe: (i) an increase of 13% in the SNN output firing rate for
the graphene-based Hebbian STDP (2 ms) and (ii) ≈ 2× increases for both biological STDP and
graphene-based Hebbian STDP (20 ms)). Furthermore, we notice a close resemblance between
the SNN firing rates for the biological and the Hebbian 20 ms STDP cases for all input spike
frequencies, which is consistent with the results reported in aforementioned simulations.

4.4 Synapses Implementations in Current Technologies

To have a better view of the synapse designs landscape, and investigate in this context the potential
of using graphene-based synapses for large-scale neuromorphic systems, we consider different
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Fig. 17. SNN output firing events number with different input spike frequencies.

technologies, i.e., CMOS, memristor, and evaluate comparatively the synaptic implementations
summarized in Table 3.

From the large-scale implementations’ suitability point of view, we look at the synapse
footprint and operating voltage. Area-wise, the synapse designs based on emerging technologies,
i.e., memristors [24, 46] and graphene [41], have generally compact implementations, and are thus
better equipped than CMOS-based counterparts [23, 34] for a high density of integration. The
proposed GNR synapse design has a 30 nm2 footprint, which is 2 orders and 5 orders of magnitude
smaller than memristor and CMOS designs, respectively. Furthermore, our GNR synapse operates
at low voltage (0.2 V), at least 5× smaller than memristor- and CMOS-based counterparts, which
is essential when striving for brain-akin energy efficiency envelopes. From the functionality point
of view, to emulate abundant enough neural network dynamics, synapse designs require flexibility
for mimicking an enriched repertoire of synaptic plasticities. Memristor and CMOS synapse
designs, in order to adapt to different STDP types, rely on external control signals and additional
circuitry that generates for each STDP type, input spikes with the required shapes [23, 40].
Unlike the aforementioned adaptation approaches, the proposed GNR-based synapse structure
can accommodate various STDP types within a single graphene-based device simply by carving
a different GNR geometry for each STDP type. So, for different plasticity types, we have different
devices, i.e., the same single graphene-based synapse structure but with another GNR geometry.
The fact that the STDP adaptation ability is obtained with the same input spike shapes for all STDP
types and that the entire synaptic functionality can be encapsulated within a single device, makes
the proposed GNR-based synapse structure a versatile modular plug-in component for neural
network implementations. When compared to existing graphene-based synapse designs [41, 44],
our proposal outperforms its counterparts by requiring 30× to 5 orders of magnitude less area and
by straightforward emulation of different plasticity types. The comparison clearly indicates that
the proposed GNR-based synapse, by its low real-estate requirements, small operating voltage,
as well as adaptation versatility to different synaptic plasticity types, exhibits a high potential for
large-scale and functionally diverse neuromorphic computing platform implementations.

5 CONCLUSIONS

In this article, we proposed a generic non-rectangular Graphene-Nanoribbon (GNR)-based
synapse. We demonstrated that by properly changing the GNR shape and contact topologies, and
applying external voltages, the proposed graphene-based synapse is capable of mimicking various
synaptic plasticity types. Moreover, the same graphene-based synapse can emulate both excitatory
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Table 3. Synapse Implementations with Different Technologies

Synapse Type Operating Voltage Area STDP type Adaptation

Biological [7] Spike: [−40, 70]mV - -

CMOS [23] Spike: 1 V - Yes

CMOS [34] Supply:1 V ≈ 1.3 × 107nm2 No

Memristor [24] Spike: [−1, 1]V - No

Memristor [46] Spike: [−5, 1.5]V ≈ 1.0 × 104nm2 No

Graphene [44] Supply:0.1 V, Spike: 2 V ≈ 9.0 × 106nm2 No

Graphene [41] Supply:0.1 V ≈ 9.0 × 102nm2 No

Proposed Design Supply:0.2 V, Spike: 0.18 V ≈ 3.0 × 101nm2 Yes

and inhibitory synaptic plasticity by simply changing its back-gate voltage. We successfully em-
ulated two fundamental synaptic functionalities: Spike-Timing-Dependent Plasticity (STDP) and
Long-Term Plasticity (LTP), including long-term potentiation and long-term depression, which
are foundational for human brain learning and remembering capabilities. Given that we relied on a
generic methodology to identify the appropriate GNR topology for a desired synaptic plasticity our
proposal is by no means restricted to the four STDP types and two LTP types considered in this ar-
ticle. We also investigated the relation between the input spike duration and the synaptic plasticity
potentiation/depression time scale. the simulation results suggested that the proposed graphene-
based synapses can emulate STDPs with various potentiation/depression time scales without
changing the obtained synaptic weight change amplitude. This property makes the proposed
synapse versatile in emulating various plasticity types suitable for different application scenarios.
For the simulated synaptic plasticity cases, we obtained a maximum 30% synaptic weight change
and potentiation/depression time scale ranging from [−1.5 ms, 1.1 ms] to [−32.2 ms, 24.1 ms]. Fur-
thermore, we explored the effect of proposed synapse at the Spiking Neural Network (SNN) level
by performing NEST-based simulations of a small SNN implemented with five leaky-integrate-and-
fire neurons connected via GNR-based synapses. Our experiments indicated a strong connection
between the synaptic plasticity type, i.e., Hebbian and anti-Hebbian, and the number of firing
events in the network. Moreover the number of SNN output firing events monotonously varies
with respect to the input spikes frequency. For graphene-based Hebbian STDP and spike duration
of 20 ms, we obtained an SNN behavior relatively similar with the one provided by the SNN with
biological STDP. The proposed graphene-based synapse has a small area (30 nm2), operates in the
100 mV bias and input range, and can emulate various plasticity types, which is making it a very
promising candidate for large-scale energy-efficient neuromorphic system implementations.
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