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ABSTRACT 

Transit systems are subject to congestion that influences system performance and level-of-

service. The evaluation of measures to relieve congestion requires models that can capture 

their network effects and passengers’ adaptation. In particular, on-board congestion leads to an 

increase of crowding discomfort and denied boarding and a decrease in service reliability. 

This study performs a systematic comparison of alternative approaches to modelling on-board 

congestion in transit networks. In particular, the congestion-related functionalities of a 

schedule-based model and an agent-based transit assignment model are investigated, by 

comparing VISUM and BusMezzo, respectively. 

The theoretical background, modelling principles and implementation details of the 

alternative models are examined and demonstrated by testing various operational scenarios for 

an example network. The results suggest that differences in modelling passenger arrival 

process, choice-set generation and route choice model yield systematically different passenger 

loads. The schedule-based model is insensitive to a uniform increase in demand or decrease in 

capacity when caused by either vehicle capacity or service frequency reduction. In contrast, 

nominal travel times increase in the agent-based model as demand increases or capacity 

decreases. The marginal increase in travel time increases as the network becomes more 

saturated. While none of the existing models capture the full range of congestion effects and 

related behavioural responses, existing models can support different planning decisions. 
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1. INTRODUCTION1 
Transit systems are subject to congestion that influences system performance and level-of-2 
service. Congestion occurs in various elements of the transit network, including passenger3 
congestion at stops, on-board and in walkways and vehicle congestion at stops and4 
infrastructure [1, 2]. Transport planners and operators design and apply strategic and tactical5 
measures to increase service capacity and thus reduce congestion. For example, increasing6 
service frequency and increasing vehicle capacity might have the same consequences on total7 
line capacity but have different implications on service reliability, waiting times and the8 
probability of denied boarding. An inadequate modelling of a congestion-related phenomenon9 
may result in an unrealistic distribution of passenger loads and an underestimation of the10 
generalized travel cost and hence hinder the evaluation of alternative investments. Since11 

congestion relief measures require significant investments, it is crucial to develop models and12 
tools to adequately capture their impacts and assess their benefits. Transit assignment models13 
(TAM) are used for predicting the distribution of passengers over a transit network. This14 
paper is concerned with on-board passenger congestion and how alternative modelling15 
frameworks and tools capture related impacts. Similarly, to car traffic, congestion induced16 
travel externalities on fellow passengers need to be accounted for in TAM since such17 
externalities increase the marginal travel cost.18 

Most previous studies described on-board crowding as a static and deterministic 19 
travel attribute. The impact of congestion was thus considered in terms of the average on-20 
board occupancy rate. Similarly, crowding is often estimated as the ratio between average 21 
supply and average demand [3, 4, 5]. The static notion of congestion implies that the appraisal 22 

of a project that increases line capacity has a uniform impact on on-board crowding without 23 
considering load variations [6]. However, the on-board occupancy level is in reality a random 24 
variable that varies even along a single trip leg. A service that is on average uncongested 25 
could lead to denied boarding in the extremes.  26 

The effects of on-board congestion on passenger travel times are differentiated in this 27 
paper as follows: (a) crowding discomfort – the greater impedance associated with in-vehicle 28 
time. An increasing passenger load will also generate an increase of the discomfort of sitting 29 
passengers; (b) denied boarding – prolonged travel time and dissatisfaction due to the 30 
inability of passengers to enter a vehicle because its occupancy reaches design capacity; (c) 31 
service reliability – inducing longer waiting and in-vehicle times due to the relation between 32 
on-board congestion, dwell time at stops and headways. There is considerable empirical 33 
evidence that these effects induce higher travel impedance [7]. 34 

There is limited knowledge about the implications of various modelling approaches 35 
and their respective consideration of congestion effects on assignment results. The objectives 36 

of this paper are: (1) to review the theoretical foundations of alternative approaches to model 37 
on-board congestion in transit networks; (2) to perform a systematic comparison of the results 38 
obtained by alternative assignment approaches in terms of both travel time and passenger load 39 
distribution under a range of travel demand and service capacity scenarios, and; (3) support 40 
planners and model developers in applying and extending transit assignment tools by 41 

discussing the practical and scientific implications of model capabilities and limitations and 42 
thereof provide recommendations to both planners and model developers communities. In 43 
particular, the congestion-related functionalities of a schedule-based model and an agent-44 
based TAM were studied.  45 

The outline of the paper is as follows: alternative modelling approaches for 46 

congestion in transit are reviewed in Section 2, followed by the presentation of two specific 47 

models that are contrasted in this study (Section 3). The implications of these modelling 48 
approaches under various operational scenarios were analyzed using an example network 49 
presented in Section 4. The results in Section 5 indicate that the models yield significantly 50 
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different flow distributions under certain circumstances. Section 6 concludes the paper with a 1 

discussion of model implications and limitations and their potential to support policymaking. 2 

2. CONGESTION IN TRANSIT ASSIGNMENT MODELS: A REVIEW3 
There is a growing literature on modelling congestion in TAM with a remarkable increase in4 
interest in the last decade, see reviews by Fu et al. [8] and Gentile et al. [9]. Different5 
modelling approaches aimed to account for these effects in order to obtain a realistic6 
distribution of passenger flows over transit services. TAM are conventionally classified into7 
frequency-based and schedule-based models - differing in their network supply representation8 
and their implications on the passenger loading procedure. Passengers are assigned to9 
common line corridors in frequency-based models while schedule-based models assign10 
passengers to specific vehicle trips. For a review of the fundamentals of transit assignment11 

modelling, the reader is referred to Gentile et al. [10]. Most of the developments were made in12 
either accounting for on-board discomfort or considering capacity effects on passengers’13 
queuing. In addition to these two approaches, agent-based simulation models more recently14 
emerged as an alternative approach to TAM. In the following, we will focus on the main15 
modelling features that enable capturing the impacts of on-board congestion on discomfort,16 
denied boarding and service reliability.17 

Already in their seminal work that introduced the concept of optimal strategies, 18 
Spiess and Florian [11] suggested an implicit way to account for congestion effects by 19 
assigning link travel times as an increasing function of the corresponding passenger flow. 20 
This approach was then adopted by later studies [12, 13]. An iterative network loading 21 
process is required in order to redistribute passenger demand and obtain equilibrium 22 

conditions. Similarly, to traffic assignment models, static TAM do not guarantee that capacity 23 
is not exceeded as all passenger demand is loaded to the network even if it cannot be absorbed 24 
by the capacity available. 25 

The abovementioned studies accounted for the impact of congestion by assigning 26 
longer in-vehicle times. Alternatively, the congestion effect could be considered through 27 
assigning weights to waiting times by computing the effective frequency [14, 15]. This 28 
implies shifting the travel impedance caused by congestion from links to nodes. The former is 29 
more adequate for capturing on-board discomfort, which most value-of-time studies found to 30 
be directly proportional to in-vehicle time [7]. In contrast, the latter is arguably more 31 
appropriate for capturing denied boarding and the reliability effects attributed to congestion. 32 
Unlike car traffic, the effect of congestion induces an asymmetric cost due to vehicle capacity 33 

constraints. Note that similarly to the flow-capacity ratio method, the effective frequency 34 
method discourages passengers from choosing saturated links, but it does not, however, 35 
guarantee that the capacity will not be exceeded. An infinite penalty when exceeding capacity 36 
was introduced in both schedule- and frequency-based TAM [16, 17]. Cepeda et al. [17] 37 

applied a capacitated equilibrium static transit assignment model for the Stockholm transit 38 
network. The iterative process reduced the number of oversaturated links but retained flow-39 
over-capacity ratios exceeding one without reaching a feasible flow distribution. This is 40 
especially important for highly saturated networks where capacity constraints are binding for 41 
important network elements.  42 

The effective frequency method may result in unrealistically long travel times due to 43 
the static representation of service capacity. Modelling extensions addressed this limitation by 44 

considering the share of passengers that will fail to board a network line. In the case of a 45 
frequency-based model this is performed by constructing a quasi-dynamic model where the 46 
share of passengers that exceeds the residual capacity of the respective time period is 47 
transmitted to the next period [18, 19]. The effect of on-board discomfort and capacity 48 
constraints can be modelled by the simultaneous introduction of in-vehicle and waiting time 49 

delay components [20]. Applying the same approach in schedule-based models can guarantee 50 
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that capacity constraints are satisfied at the individual vehicle level by introducing new arcs 1 
between successive vehicle trips [21, 22]. The impact of priority rules was modelled by 2 
introducing a bottleneck queue model for representing the FIFO queuing process and derive 3 
the excessive queuing time [23, 24].  4 

Similarly, to the discriminative effect of capacity constraints, the on-board 5 
discomfort effect does not affect all passengers uniformly as implied by the aforementioned 6 
flow-capacity ratio method. Fail-to-sit probability was therefore introduced to satisfy the set 7 
of priority rules and the seat capacity constraint [25, 26, 27]. 8 

TAM often assume that service is perfectly reliable although already early 9 
contributions highlighted that this is an important limitation, which is inconsistent with both 10 
analytical and empirical studies [11]. Latter developments of TAM have contributed to the 11 

refinement of relaxation of some of these assumptions by sampling service attributes 12 
assuming that they are independently distributed [28]. However, service reliability propagates 13 
dynamically in transit systems with the bunching phenomenon being the most noticeable 14 
phenomenon [27]. Moreover, congestion reinforces this process [30].  15 

The schedule-based approach facilitates the modeling of congestion effects at the 16 
individual vehicle trip rather than on a common corridor. However, similarly to frequency-17 
based models, it has a limited capability to capture the dynamics of service reliability and its 18 
evolution along the line. Furthermore, the static and aggregate representation of passenger 19 
demand prevents the consideration of en-route travel decisions at the individual level. A 20 
review of TAM concluded that the main challenges are dealing with supply uncertainties and 21 
adaptive user decisions. They identified the dynamic loading process and the agent-based 22 

simulation as two potential approaches [31].  23 
Agent-based simulation models facilitate the dynamic representation of individual 24 

passengers and the emergence of congestion effects based on numerous inter-dependent local 25 
decisions. This makes these models particularly suitable for modelling congestion effects. 26 
Agent-based models were developed and applied for modelling the circulation of passengers 27 
at stops and on-board [32, 33]. However, the development of agent-based TAM is only in its 28 
early stages. Toledo et al. [34] presented a transit simulation model that models the interaction 29 
between traffic dynamics, transit operations and passenger demand. They demonstrated that 30 
the model is capable of emulating the bunching phenomenon. On-board occupancy on each 31 
transit vehicle is updated throughout the simulation, and capacity constraints are explicitly 32 
enforced. The modelling of passenger flow and service unreliability propagation allows 33 
capturing the dynamic congestion effects and support appraisals of capacity investments [35]. 34 

Previous studies have shown that accounting for on-board congestion effects yields 35 
significantly different assignment results [17, 26]. Whilst commercial TAM software 36 

packages such as TransCAD, EMME and VISUM include the option to account for capacity 37 
using variants of the flow-capacity ratio multiplier and effective frequency techniques, recent 38 
advances in TAM enable the representation of dynamic congestion effects. As the literature 39 
review clearly demonstrates, previous studies have made significant advances in modelling 40 
congestion in TAM, while embarking on distinctive modelling approaches. This recent 41 

growth in literature on diverse methods to model congestion in TAM calls for a methodic 42 
analysis of the implications of alternative modelling approaches, this being the focus of this 43 
study. In the following, schedule-based and agent-based approaches to TAM are compared, 44 

while frequency-based is omitted from the subsequent analysis. 45 

3. MODELLING APPROACHES46 
The implications of alternative modeling approaches are investigated in this study by47 
performing a systematic examination of two distinguished TAM that differ in their network48 
representation, assignment principles and the consideration of on-board congestion effects.49 

The macroscopic TAM approach is represented by the scheduled-based TAM, implemented50 
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in VISUM software [36]. This modeling approach is compared with BusMezzo, an agent-1 
based TAM [37]. While both models represent individual vehicle trips along with their 2 
specific characteristics, trips’ inter-dependence and passengers’ route choice are treated 3 
differently. The following provides a brief description of the respective VISUM and 4 

BusMezzo assignment models followed by an investigation of their congestion functionalities. 5 

3.1 Schedule-Based Assignment 6 
The schedule-based TAM implemented in VISUM loads passenger flows on individual trips 7 
based on a static and deterministic representation of the transit system. The downstream 8 
attributes of all potential time-dependent paths are therefore known a-priori. A choice-set 9 

generation procedure is performed as a pre-assignment step by using the branch and bound 10 

technique. The procedure computes a search tree, which generates a choice-set that is 11 

composed of all feasible alternatives. Thereafter, it eliminates alternatives that are dominated 12 
by other alternatives within the same time interval.  13 

Passengers are assumed to have perfect information concerning the timetables and 14 
perfectly coordinate their arrival at stops with the departure time of the selected vehicle trip. 15 
This implies that passengers do not experience waiting time at their origin stop and transfer 16 

waiting times are known and determined by the respective timetables. The number of 17 
passengers that are assigned to a specific time-dependent path is calculated based on a 18 
discrete choice model. Passenger demand is sliced in VISUM into desired departure time 19 
intervals minimizing the impedance associated with shadow waiting time (i.e. waiting time 20 

spent in the origin due to the difference between desired and actual departure times). An 21 
iterative assignment is performed until a stochastic user equilibrium is obtained. The model is 22 

primarily used for long term planning purposes. 23 

 3.2 Agent-Based Assignment 24 
The agent-based TAM implemented in BusMezzo simulates the path decisions of individual 25 
passengers and the movements of individual vehicles. The dynamic and stochastic 26 
representation of the transit system is integrated into an event-based mesoscopic traffic 27 

simulation tool. Vehicle travel times are determined by the joint traffic and transit dynamics 28 
and consist of running, queuing, dwelling and recovery times. Running times are derived from 29 

speed-density relations while queuing times are determined by stochastic server rates, which 30 
reflect the delay at intersections. Flow-dependent dwell times are assigned at stops and 31 
recovery times are obtained from the explicit representation of vehicle scheduling. Different 32 

modes – private car, bus, metro etc. - are modeled with different vehicle types, capacities and 33 
operation regimes. Further details concerning the supply representation and its validation are 34 

provided in Toledo et al. [34]. 35 
Passengers are generated based on a time-dependent OD matrix following a Poisson 36 

arrival process. A non-compensatory deterministic choice-set generation model produces a set 37 
of alternative paths for each OD pair based on the static network representation. Throughout 38 
the simulation each passenger undertakes a sequence of successive walking, boarding and 39 
alighting decisions. The utility associated with each possible alternative is evaluated by 40 
passenger’s preferences and expectations. When evaluating path attributes, passengers take 41 

into consideration the expected utility of the entire downstream path. The latter depends on 42 
prior knowledge, the current state of the system and real-time information. Passenger path 43 

flows are the outcome of the underlying individual passenger decisions. BusMezzo is 44 
designed as an operations-oriented model for short- to mid-term planning. 45 

3.3 Modelling Congestion Effects 46 
Congestion in transit networks could emerge from a systematically underserved passenger 47 

demand. The selected schedule-based and agent-based models imply a distinctively different 48 



6 
 

 
 

approach towards representing service capacity. The former does not explicitly represent 1 
vehicle run capacities. Instead, an additional impedance is assigned to the respective route in 2 
the iterative network loading to reflect the disutility inflected by denied boarding. However, 3 
VISUM assigns any demand that is loaded to a given network even if this results in infeasible 4 

loads. In contrast, BusMezzo constantly updates the on-board occupancy for each vehicle 5 
throughout the simulation period and guarantees that capacity constraints will not be 6 
exceeded. It is assumed that passengers wishing to board an arriving vehicle form a boarding 7 
FIFO queue based on their arrival time at the stop. Passengers who fail to board due to 8 
capacity constraints can reconsider their travel decisions. Vehicle capacity corresponds to 9 

design capacity – number of seats and standees, rather than crash capacity. Since passengers’ 10 
choice execution depends on capacity constraints, the stochastic assignment results are 11 

influenced by the choices made by other passengers. Seating priority rules are applied in 12 
BusMezzo by giving priority to passengers already on-board and for those that intend to alight 13 
further downstream. In contrast, VISUM does not assign seats to individual passengers and 14 
hence does not involve any priority rules.      15 

Crowding and the discomfort it induces are a negative externality of the interaction 16 

between passengers’ route choice. Since discomfort is not known a-priori, an iterative loading 17 
procedure is required in order to obtain equilibrium conditions. This procedure in VISUM 18 
includes an impedance term based on the volume to capacity ratio, which is calculated based 19 
on the loads obtained by previous iterations using the method of successive averages. Vehicle 20 

capacity is defined as the design capacity provided by the manufacturer. Alternative crowding 21 
impedance functions could be selected in VISUM. Figure 1 presents a commonly used 22 

function estimated by the Swiss Federal Railway (SFR) [38]. The logistic function is designed 23 
to reflect the increasing discomfort and to assign greater penalties for boarding overcrowded 24 

vehicles. However, there is behavioral evidence that perceptions of on-board discomfort 25 
cannot be adequately captured based on density [39], resulting with a discontinuou step-wise 26 
function of the in-vehicle time multiplier, as concluded in the meta-analysis in [7]. The 27 

iterative loading terminates when convergence criteria of the stochastic user equilibrium are 28 
satisfied. In contrast, the BusMezzo version used in this study does not support iterative 29 

network assignment and therefore does not capture the impact of discomfort on route choice. 30 
Equilibrium conditions can therefore not be guaranteed. However, an ex-post analysis can 31 
assign different value of time coefficients for each vehicle run segment based on the number 32 

of standees and vehicle capacity [35]. 33 

 34 
FIGURE 1 SFR crowding function 35 

A lineup of the main differences between the two modelling tools is presented in Table 1. 36 
While both models represent transit supply in terms of individual vehicle runs and passengers 37 
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are thus assigned to trip-segments, VISUM represents passenger demand as aggregate flows 1 
whereas BusMezzo assigns individual passengers that undertake adaptive path choices. 2 
BusMezzo has a richer representation of the supply phenomenon and its uncertainty whilst 3 
VISUM accounts for a greater number of variables in the path utility function.  4 

The schedule-based and agent-based models differ fundamentally in how passengers’ 5 
trips are initiated. These distinctive assumptions reflect the models focus on low frequency vs. 6 
high frequency services, respectively. These differences have implications on how 7 
passengers’ waiting times are modelled. VISUM assumes that all the waiting time is spent at 8 
the origin and is therefore captured through the difference between the desired and actual 9 

departure times while the latter is perfectly coordinated with the scheduled vehicle arrival 10 
time. In contrast, passengers’ waiting time in BusMezzo is derived from the time difference 11 

between passenger’s generation time and a positive boarding decision that could be executed. 12 

TABLE 1 Comparing modelling features in VISUM and BusMezzo  13 
 14 
While capacities are usually sufficient to accommodate average volumes, on-board congestion 15 
is often the outcome of significant fluctuations of passenger loads on individual vehicle runs. 16 

Congestion in transit networks evolves through the dynamic interactions between supply 17 
uncertainty and passengers’ decisions. Transit supply is deterministic and considered perfectly 18 
reliable in VISUM. Load variations in VISUM are hence exclusively the outcome of temporal 19 
demand variations and trip departure time adjustments. BusMezzo represents the sources of 20 

service uncertainty and the relation between headways, passenger loads and dwell times, 21 
which generate a positive feedback loop due to the inter-dependency between consecutive 22 

vehicle runs that contributes to delays and uneven loads [29, 34]. 23 

4. APPLICATION 24 
The implications of the schedule-based and agent-based modelling approaches were analyzed 25 
using an example network allowing to demonstrate the main effects while remaining tractable. 26 
Section 5 describes the example network, scenarios and their implementation details, followed 27 

by a comparison and discussion of the assignment results  28 

4.1 Network Description 29 
A network based on the one presented by Spiess and Florian [11] was selected for 30 
investigating how TAM capture the congestion effects (Figure 2). This network was chosen 31 

for its simplicity while facilitating the illustration of all relevant phenomena and reflect the 32 
implications of alternative models. The network provides a simplified yet realistic 33 
representation of real-life scenarios where passengers may choose between local and rapid 34 
services, direct and indirect connections. Passenger flow distribution is thus the result of non-35 
trivial trade-offs between waiting time, in-vehicle time, walking time, number of transfers, 36 

delays and on-board crowding. Moreover, versions of this network are occasionally used in 37 
the TAM literature and its properties were investigated [24].  38 

The network consists of 5 stops, 1 walking link between stop II and V and 5 lines. 39 
Line headways vary from 3 minutes for Line 4 to 15 minutes for Line 3. Link travel times are 40 
in the range of 3 to 15 minutes, resulting in an in-vehicle travel time of 15 and 25 minutes 41 

from stop I to stop IV, depending on the path selected. The capacity of each vehicle is 50 42 

passengers except for the high frequency Line 4 which is operated by vehicles with a capacity 43 

of 25 passengers. Vehicle capacity induces a strict constraint in BusMezzo, whereas in 44 
VISUM it is embedded into travel impedance through the SFR crowding function.  45 

Passenger demand is generated for six origin-destination relations with a total 46 
generation rate of 1,620 passengers per hour. The superposition of passenger demand yields 47 
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on-board congestion. Passenger path choice involves the decision between a slow and direct 1 
line (e.g. Line 1 for passengers travelling from I to IV) to faster and indirect path alternatives 2 
(e.g. Line 2 + Line 3, Line 2 + Line 4). In addition, passengers may choose between fast but 3 
infrequent connection (e.g. Line 3 for passengers travelling from III to IV) to more frequent 4 

albeit slower lines (e.g. Line 4).  5 

6 
FIGURE 2 Example network details 7 

 8 
4.2 Scenario Design 9 
A set of network, demand and modelling scenarios was constructed in order to enable a 10 

systematic comparison of assignment model results in terms of passenger loads and travel 11 
times. The base case scenario corresponds to the assignment of the demand matrix in Figure 2 12 
to the example network with the respective vehicle capacities and line frequencies. The 13 

assignment was performed in VISUM and BusMezzo, in the presence and absence of capacity 14 
constraints, in order to investigate their influence (Section 5.1). 15 

In addition to the base case scenario, the remaining scenarios were designed to test 16 
model performance under different demand levels and service capacity. The demand level 17 
was incrementally increased, testing the sensitivity to a progressively saturated network 18 

(Section 5.2). Alternatively, network saturation can emerge from a reduction in service 19 
capacity. The latter could arise from either a lower vehicle capacity or a reduction in service 20 

frequency. The consequences of an incremental decrease in either vehicle capacity or service 21 
frequency on passengers’ distribution and network performance were investigated (Section 22 

5.3). All of these scenarios were simulated in both VISUM and BusMezzo [40].  23 

4.3 Implementation and Specification  24 
A systematic and meaningful model comparison requires a careful design of case study and 25 
model specifications that will ensure comparable application results as well as allow 26 
pinpointing the important modelling differences and their consequences. Hence, all modelling 27 

components were reviewed and were made as consistent as possible in order to focus on the 28 
differences in modeling on-board congestion effects and remove alternative modelling 29 

differences as much as possible. 30 
Network supply is substantially simplified and is considered deterministic in order to 31 

allow a consistent and comparable implementation in both models. Although BusMezzo 32 
supports the modelling of traffic dynamics, vehicle scheduling and flow-dependent dwell 33 

times, the results of the case study would have been highly dependent on these sources of 34 
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uncertainty and the specification of these modelling components would hinder model 1 
comparability. All sources of randomness like delays or service disruptions were therefore 2 
removed from the network representation in BusMezzo, implying a perfectly reliable service. 3 
The representation of passenger information was unified to avoid inconsistencies.  4 

In order to harmonize the two modelling approaches, the expected value of passenger 5 
waiting time in VISUM was computed as half the headway, assuming a random arrival 6 
process and given that transit supply is deterministic in this case study. This was implemented 7 
by assigning passengers in VISUM into sufficiently short desired departure time intervals of 8 
one minute so that the impedance due to departure adjustment is negligible. The penalty for 9 

departures earlier than the desired departure time was assigned with a very high impedance. 10 
Hence, passengers could only take a vehicle trip that departs later than their desired departure 11 

time. This implementation enables a comparison of model results while maintaining the trip 12 
departure time functionality in VISUM to allow passengers to adjust their departure time in 13 

response to crowding. The utility of an alternative path 𝑎 for individual 𝑛 at time 𝜏 is defined 14 
in VISUM (Eq. 1) and BusMezzo (Eq. 2) as follows: 15 

 16 

𝑢𝑎,𝑛
𝑉𝐼𝑆𝑈𝑀  = 𝛽𝑎

𝑖𝑣𝑡 ∙ 𝑡𝑎
𝑖𝑣𝑡 ∙ 𝑓(𝑣) + 𝛽𝑎

𝑤𝑎𝑙𝑘 ∙ 𝑡𝑎
𝑤𝑎𝑙𝑘 + 𝛽𝑎

𝑤𝑎𝑖𝑡 ∙ 𝑡𝑎
𝑤𝑎𝑖𝑡 + 𝛽𝑎

𝑡𝑟𝑎𝑛𝑠 ∙ 𝑡𝑎
𝑡𝑟𝑎𝑛𝑠 + 𝜀      (1)  17 

𝑢𝑎,𝑛
𝐵𝑢𝑠𝑀𝑒𝑧𝑧𝑜(𝜏)  = 𝛽𝑎

𝑖𝑣𝑡 ∙ 𝑡𝑎
𝑖𝑣𝑡 + 𝛽𝑎

𝑤𝑎𝑙𝑘 ∙ 𝑡𝑎
𝑤𝑎𝑙𝑘 + 𝛽𝑎

𝑤𝑎𝑖𝑡 ∙ 𝑡𝑎,𝑛
𝑤𝑎𝑖𝑡(𝜏) + 𝛽𝑎

𝑡𝑟𝑎𝑛𝑠 ∙ 𝑡𝑎
𝑡𝑟𝑎𝑛𝑠 + 𝜀  (2)  18 

 19 

Where 𝑡𝑎
𝑖𝑣𝑡 , 𝑡𝑎

𝑤𝑎𝑙𝑘  and 𝑡𝑎,𝑛
𝑤𝑎𝑖𝑡(𝜏) are the in-vehicle, walking and waiting times, respectively. 20 

The in-vehicle and walking time are fixed and known a-priori in both models. This is also true 21 

for waiting times in the case of VISUM. In contrast, passenger waiting times in BusMezzo 22 

depend on the random arrival process and are therefore time-dependent and passenger-23 

specific. The utility function in VISUM also incorporates𝑓(𝑣) , the respective crowding 24 

multiplier, which depends on the expected passenger occupancy 𝑣 (Figure 1).  𝑡𝑎
𝑡𝑟𝑎𝑛𝑠  is the 25 

number of transfers and 𝜀 is an error term. The corresponding coefficients were assigned with 26 

the following values: 𝛽𝑎
𝑖𝑣𝑡 = −1, 𝛽𝑎

𝑤𝑎𝑙𝑘 = −2, 𝛽𝑎
𝑤𝑎𝑖𝑡 = −2, 𝛽𝑎

𝑡𝑟𝑎𝑛𝑠 = −5. The values of the 27 
coefficients are based on the commonly accepted values reported in the literature [41]. Fares 28 
are not considered a route choice determinant in this study. The multinomial Logit (MNL) 29 

model was applied in both models for computing the door-to-door path choice probabilities 30 
(VISUM) or each path decision involved in passenger movement (BusMezzo).  31 

The simulation time was set to 3 hours, while passenger generation was restricted to 32 
1 hour to provide warm-up and clean-up periods. The OD-matrix was used as a uniform 33 

arrival rate at stops or split into even one-minute time slices in BusMezzo and VISUM, 34 
respectively. Since BusMezzo is a stochastic simulation model, the performance of each 35 

scenario needs to be evaluated based on the average results of several simulation runs. Based 36 
on the variations in average passenger travel time, 10 replications were found to yield a 37 
maximum allowable error of less than 0.5 %. 38 

5. RESULTS 39 
The analysis and comparison of scenario results are presented in the following sections. In 40 

particular, the implications of modelling approaches on mean travel time, transfer rates (the 41 
share of passengers whose selected path involves an interchange) and the underlying 42 
passenger load distribution are highlighted and discussed.  43 

5.1 Base Case Scenarios 44 
Table 2 summarizes the total travel time and transfer rate for the base case scenario. Total 45 
travel times consist of walking, waiting and in-vehicle travel times. The difference between 46 
the travel times obtained by the two models in the unconstrained scenario stems from the 47 

different representation of the passenger arrival process at stops. VISUM, which allows for 48 
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representing shadow waiting time, generates shorter travel times than those obtained from 1 
random arrival in BusMezzo. The average travel time of 16.8 min remains unchanged in 2 
BusMezzo when capacity constraints are enforced because the base case demand level does 3 
not provoke congestion effects in the form of denied boarding. Thus, the average transfer rate 4 

per passenger remains unchanged. However, crowding levels are sufficient to cause route 5 
choice adjustments in VISUM due to the increase in in-vehicle impedance invoked by the 6 
SFR function. This effect occurs because line 3 is the favorite alternative for passengers 7 
travelling from stop II to stop IV. The short travel time, however, is countered by the low 8 
frequency and the high occupancy rate. When congestion is considered, more passengers shift 9 

to the more frequent but slower line 5, resulting in a travel time increase and transfer rate 10 
decrease.  11 

TABLE 2 Summary of base case scenario results 12 
 13 

Travel times do not disclose the more substantial difference in assignment results in 14 
terms of passenger loads. While the two models yield similar loads on links a,b and g, which 15 
are fairly independent from the rest of the network, significant differences are observed for 16 

the remaining links as is evident in Figure 3. The two models lead to distinctively different 17 
loads on links that form a common corridor – links c,d, and e,f. The different distribution of 18 
passengers within each corridor stems from the different representation of passenger route 19 
choices. On both common corridors, the assignment involves choosing between a slow and 20 

frequent service (c,f) or a fast and infrequent service (d,e). BusMezzo assigns more 21 

passengers to the line with the higher frequency. The dynamic path choice model in 22 
BusMezzo provokes a boarding decision every time that a transit vehicle arrives at the stop. 23 
Each waiting passenger then takes a probabilistic decision based on the expected implications 24 

of boarding the vehicle versus waiting at the stop. Note that a high frequency line may trigger 25 
several boarding decisions before the first arrival of a low frequency line occurs. Hence, the 26 

probability that a passenger waits at the stop when the low frequency line finally arrives 27 
depends on the joint probability of successive decisions to stay. In contrast, route choice is 28 
performed pre-trip in VISUM. The choice-set generation process removes alternatives that 29 

involve longer in-vehicle times with both earlier departure time and later arrival time. This 30 
filtering rule implies that slow and frequent services are often dominated by fast and 31 

infrequent services and are thus removed from the choice-set. Furthermore, this trend is 32 

reinforced in the choice phase. Since the waiting time at the origin stop and the uncertainty 33 
are not considered in VISUM, model results favor fast and infrequent services over slow and 34 
frequent services, when compared with BusMezzo.  35 

 36 
FIGURE 3 Assignment results of BusMezzo and VISUM for the base case scenario 37 
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 1 
The effect of load distribution can also be investigated in terms of the average vehicle 2 

occupancy rate for each line-segment. The direct lines 1 and 5 (links a and g) are assigned 3 
with a moderate occupancy level of approximately 50% and 70%, respectively, by both 4 

models. These occupancy levels neither induce a decisive role for the congestion parameter in 5 
VISUM nor for denied boarding in BusMezzo. In contrast, the corridor between stops II and 6 
IV exhibits significant congestion effects that yield distinctively different results in VISUM 7 
and BusMezzo. VISUM assigns to segment c passenger loads that are sometimes almost twice 8 
as much as vehicle capacity allows for, whereas BusMezzo enforces capacity constraints and 9 

passengers are retained to choosing alternative options. 10 
In addition to the significant differences in passenger loads there are striking 11 

differences between the transfer rates in VISUM and BusMezzo. In the unconstrained case, 12 
the transfer rate in BusMezzo is 10 times higher than in VISUM. A closer investigation 13 
revealed that this drastic difference arises from the different modelling approaches applied at 14 
the choice-set generation phase. Whilst VISUM filters the choice-set by applying time-15 
dependent filtering rules based on the static timetable, BusMezzo maintains all reasonable 16 

paths and then applies dynamic filtering rules upon passengers’ decision. Furthermore, 17 
VISUM removes path alternatives that induce transfer without the consideration of 18 
uncertainties. Hence, alternatives that might become attractive under certain circumstances 19 
(e.g. missed the designated bus trip) will have zero probability to be selected. In contrast, 20 

BusMezzo assigns passengers to the paths that remain in the choice-set based on the 21 
respective expected utilities. Since the paths that involve transfers happen to be more 22 

congested in the case study network than the direct paths, rerouting in VISUM results with 23 
fewer transfers in the constrained scenario.  24 

5.2 Demand Scenarios 25 
The sensitivity of the TAM to demand level was examined by incrementally increasing travel 26 

demand either uniformly (5.1.1) or locally (5.2.2).   27 

5.2.1 Uniform Demand Increase 28 
The base case demand was incrementally increased in order to study the sensitivity of 29 
assignment results and analyze TAM performance under an increasingly saturated network.  30 

The passenger demand specified in the original OD-matrix was uniformly amplified by α 31 
ranging between 1 and 2.5 with 0.1 intervals. This range of values was selected as it can 32 

mimic the impact of the peak period demand. Figure 4 presents the total travel time and 33 
transfer rate for each demand level in VISUM and BusMezzo. 34 

It is evident that the results of VISUM are insensitive to changes in the demand level. 35 
Even when demand is 2.5 times the base case, the average travel time is not affected and the 36 
transfer rate remains almost zero, implying that the vast majority of passengers use a direct 37 

line. Only limited rerouting takes place in the increased demand scenarios because the total 38 
demand is amplified uniformly and hence there are only limited gains to be made by shifting 39 
from one route to the other. The reasons for the low transfer rate were discussed in the 40 
previous section. Hence, in-vehicle times are almost unaffected. Since any number of 41 
passengers can theoretically be assigned to a vehicle in VISUM, waiting times are not 42 

prolonged. Even though the impedance for the connection increases, it has marginal effects on 43 
the passenger distribution because the congestion level increases equally across the network. 44 

Furthermore, once the volume exceeds 200% of the desired capacity, the impedance becomes 45 
constant (Figure 1).  46 

A very different pattern can be observed when analyzing BusMezzo results. Total 47 

travel times increase first slowly for 𝛼 = [1;  1.4] and then increase sharply when demand 48 
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increases by 40-70% followed by a milder monotonous increase for higher increases in 1 
demand levels. This increase is primarily attributed to the longer travel times inflicted by 2 
denied boarding. The transfer share fluctuates with a generally increa4sing trend as demand 3 
increases. This trend emerges, as passengers that fail to board are more likely to switch to 4 

substituting indirect paths.  5 

 6 
FIGURE 4 Average travel time (left) and average transfer rate (right) under increased 7 

demand 8 

5.2.2 Demand Increase for a Selected OD-pair 9 
A single travel demand relation, travelling from stop I to stop IV, was selected for further 10 
investigation. This relation was selected because it provides a number of relevant travel 11 

alternatives for travelers to choose from. . Line 1 (green) offers a high frequency and direct 12 
connection. In saturated cases, Line 2 (pink) and transferring to Line 3 (yellow) at stop II or 13 

III offers a fast connection. At stop III passengers can also transfer to Line 4 (blue) which is 14 
slower but more frequent. Finally, passengers can also make a short walk between stops II and 15 

V and take Line 5 (brown). 16 
The load distribution results on line segments are presented in Figure 5. The color 17 

represents the line number using the same scheme as in Figure 2. Solid lines stand for the first 18 

line segment and dashed lines for the subsequent segment. In order to provoke congestion 19 

effects, the base case OD-matrix was uniformly multiplied by 𝛼 = 1.5. The demand on the 20 

selected OD-pair varied by 𝛽  ranging between 0.5 and 3.0 with 0.1 intervals using the 21 
modified demand matrix. 22 

Due to the absolute vehicle capacity restriction in BusMezzo, lines can only absorb 23 
the increasing demand until the vehicle capacity limit is reached. Since the network is already 24 

close to capacity limits, the share of passengers travelling with Line 1 increases only for 25 

𝛽 = [0.5,1.6]. Beyond this demand level, additional passengers are simply forced to wait for 26 
the next approaching vehicle, or even worse, passengers are not able to board any vehicle, 27 
have to wait, and never arrive at their destination within the analysis period.  28 

Unlike its insensitivity to a uniform demand increase, assignment results in VISUM 29 

are sensitive to a discriminate demand increase. Similar to BusMezzo, Line 1 absorbs the 30 

increasing number of passengers when  𝛽  is within the range of [0.5,1.0] . When demand 31 
exceeds this level, the congestion-dependent impedance for Line 1 reaches a critical level and 32 

passengers start shifting to alternative routes using the first segement of Line 2 and transfer at 33 

stop II to Line 3. The share of passengers transferring to Line 3 peaks at 𝛽 = 1.4 and then 34 
abruptly decreases as passengers shift to continuing with Line 2 to stop III to remain seated 35 
and thus minimize the perceived on-board time. At stop III passengers switch to the fast 36 
infrequent Line 3 because of the the shorter travel time it offers in comparison to Line 4. Even 37 

when the demand level exceeds 𝛽 = 1.5, the short travel time and the high capacity of Line 3 38 
are more attractive than the frequent but much slower Line 4 which offers less capacity. Since 39 
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VISUM absorbs any demand assigned, all passengers are assumed to reach their destination 1 
within the analysis period without accounting for passengers that are possibly left behind.  2 

 3 
FIGURE 5 Load distribution share on line segments for BusMezzo (left) and VISUM 4 

(right) 5 

 6 

5.3 Reduced Capacity Scenarios  7 
The demand that a transit network can absorb depends primarily on the number of vehicle 8 

trips and their corresponding capacities. A set of reduced capacity scenarios was designed and 9 
simulated to examine the sensitivity of the assignment models to an increasing saturation due 10 

to limited network capacity. First, the vehicle capacities specified in the base case (Figure 2) 11 
were incrementally reduced down to 60% of the original level with 10% intervals rounding to 12 
the closest discrete value. Second, service frequencies were similarly reduced down to 60% 13 

with 10% intervals where frequencies were rounded to the closest minute. Passenger arrival 14 
pattern is assumed random in all scenarios for comparison reasons although lower frequencies 15 

may lead to a shift into a more coordinated arrival pattern.  16 
Figure 6 displays the average passenger travel time (left horizontal axis) and transfer 17 

rate (right horizontal axis) for reduced vehicle capacity scenarios (left) and reduced service 18 

frequency scenarios (right). The general pattern observed in the increased demand scenarios 19 

(Figure 4) is also apparent in Figure 6 albeit with more fluctuations. Total travel time is 20 
almost constant and transfer rates remain very low in VISUM for all scenarios. Minor 21 

fluctuations occur due to changes in transfer coordination that incidentally influence the 22 
impedance associated with a non-direct connection when evaluating time-dependent paths in 23 
the choice-set generation and choice phases. The decrease in transfer rate under reduced 24 
vehicle capacity scenarios is caused by the overcrowding and the non-linear increase in 25 
impedance associated with it on link f which deters passengers travelling from I to IV from 26 

transferring.  27 
Total travel times in BusMezzo follow a monotonically increasing function for 28 

decreasing capacities. The travel time increase becomes steeper for lower capacities and the 29 
increase is steeper when capacity reduction is driven by frequency reduction than if driven by 30 
vehicle capacity reduction. While both capacity reductions lead to an increasing number of 31 

passengers experiencing denied boarding, frequency reduction has an additional effect on 32 

prolonging passengers initial waiting times as well as the waiting time for subsequent 33 

vehicles.  34 
Interestingly, transfer rates in BusMezzo follow a non-monotonic function with a 35 

generally increasing trend for lower vehicle capacities and a generally decreasing trend for 36 
lower frequencies. The former resembles the trend for increasing demand levels as it is caused 37 
by passengers that fail to board and switch to a more complex path. Unlike vehicle capacity 38 
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reduction, frequency reduction influences not only the dynamics of the path choice process 1 
but also the initial choice as passengers incorporate expectations about downstream waiting 2 
times, thus discouraging transfers. Moreover, the properties of the MNL choice model imply 3 
that everything else being equal, a uniform reduction in frequencies leads to a rise in the share 4 

of passengers choosing more frequent services. Since in this network example direct and 5 
slower paths are also more frequent, passengers are more inclined to choose direct lines under 6 
reduced frequency scenarios.  7 

 8 

FIGURE 6 Travel time and transfer rate under: reduced vehicle capacity (left) and 9 

reduced service frequency (right) 10 

6. DISCUSSION AND CONCLUSIONS 11 
This paper reviewed and compared alternative approaches for modelling on-board congestion 12 

in transit networks. In particular, the congestion-related functionalities of a schedule-based 13 
model, VISUM, and an agent-based TAM, BusMezzo, were studied. Based on the comparison 14 

of theoretical foundations and the analysis of their performance under a range of scenarios, 15 
practical and modelling implications are discussed in the following sub-sections.  16 

6.1 Practical Implications and Recommendations 17 
Decision makers and analysts should be aware of the capabilities and shortcomings of the 18 
TAM used when evaluating different scenarios and their implications on assignment results. 19 

Modelling assumptions and functionalities have to be carefully reviewed before selecting the 20 
most appropriate model for a specific network and application. This is especially true when 21 

the passenger loads predicted by the TAM are used as a basis for service design and capacity 22 
allocation decisions. An inadequate model selection and results interpretation could 23 
potentially result in a poor capacity utilization and contributing further to congestion effects. 24 
For example, models for strict capacity constraints can better cater for highly saturated 25 
networks, whereas networks characterized by high temporal variations in demand levels 26 

should be studied using models that consider departure time choices.  27 
The evaluation of investments to increase capacity and measures to relieve 28 

congestion requires models that can capture their network effects and the corresponding 29 
passengers’ adaptation. While none of the existing models captures the full range of 30 

congestion effects and related behavioural responses, each model can support certain planning 31 

decisions. Due to its capability to model departure time adjustments, schedule-based models 32 
are more suitable for assessing long-term investments as long as the network can absorb the 33 
forecasted demand level. Furthermore, a model such as VISUM is especially suitable when 34 
departure time adjustments are important. This is for example the case of designing a low-35 
frequency feeder service to a railway network, networks with low connectivity that rely on 36 
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scheduled transfers, or where passengers choose between a frequent local service and an 1 
infrequent express service. In contrast, agent-based models are potentially better equipped to 2 
capture service reliability, overcrowding and en-route decisions. These are particularly 3 
relevant for public transport systems that operate close to capacity and experience crush loads. 4 

An model that enforces strict capacity constraints such as BusMezzo is essential for capturing 5 
congestion effects in public transport systems that are highly saturated. BusMezzo is 6 
particularly suitable for modelling dense networks that offer many route choice alternatives 7 
and where transfers play an important role, such as the core of metropolitan networks. In 8 
addition, agent-based TAM are well-positioned to model the congestion impacts of tactical 9 

and operational measures such as vehicle layout, timetable design, control strategies and 10 
information provision as well as service disruptions.  11 

The results suggest that differences in modelling the passenger arrival process, the 12 
choice-set generation and the route choice, yield with systematically different passenger 13 
loads. In practice, model parameters such as utility function coefficients have to be estimated 14 
and calibrated based on local conditions. Assignment results will greatly depend on the trade-15 
offs assumed between travel time components and the role of congestion in passenger 16 

decisions. VISUM assigned passengers to infrequent but fast and direct lines when compared 17 
to BusMezzo. Furthermore, the former is insensitive to a uniform increase in demand or 18 
decrease in capacity when caused by either vehicle capacity or service frequency reduction. 19 
While the generalized travel time increases due to discomfort, passengers’ distribution and 20 

travel times remain unaffected even in highly saturated networks. This stems from the limited 21 
rerouting invoked and the unconstrained capability of vehicles to absorb any number of 22 

passengers. In contrast, total travel times increase monotonically in BusMezzo as demand 23 
increases or capacity decreases. The marginal increase in travel time increases as the network 24 

becomes more saturated. An increase in a specific demand relation may lead to abrupt 25 
changes in passenger loads in VISUM as opposed to the gradual route shift in BusMezzo. 26 
Although frequency and vehicle capacity reduction scenarios may yield the same overall 27 

capacity reduction, they result in different assignment results in the agent-based model due to 28 
their distinctive implications on dynamic rerouting and waiting times.  29 

6.2 Modelling Implications and Outlook 30 
There is currently no TAM that fully captures the three on-board congestion effects – 31 
discomfort, capacity constraints and service reliability. Each of the existing models captures 32 

only part of the on-board congestion effects in transit systems. VISUM models the potential 33 

day-to-day departure time and route choice adjustments due to discomfort (and implicit 34 

capacity constraints). BusMezzo represents the within-day implications of congestion by 35 
enforcing strict capacity constraints and modelling load variations due to service irregularity. 36 

As indicated in the literature review, recent developments in the schedule-based TAM domain 37 
allows guaranteeing that capacity constraints are binding at the individual vehicle level and 38 
that queuing and sitting priorities are respected. Future studies may examine the properties of 39 
the latest developments which are not yet available in commercial software. Similarly, the 40 
comparison performed in this paper could be further extended by considering also a 41 

frequency-based model and applying alternative models to a real-size network. In order to test 42 
models validity, future research should apply alternative TAM to a real-world network and 43 
compare model results with empirical passenger flow data.  44 

Even though many real-world public transport systems include a combination of high 45 
and low frequency services, there is ,to the best of our knowledge, no hybrid TAM. 46 
Developing such a model is in our opinion an important approach for future research. In 47 

particular, special attention needs to be given to trips that involve transferring from high 48 
frequency to low-frequency services due to the implications on departure time choice. The 49 
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combination of TAM and traffic simulation models, such as in the case of BusMezzo, 1 
facilitates the modelling of on-road congestion effects, in particular in the case of mixed-2 
traffic. Moreover, models that belong to the same overarching approach might vary 3 
substantially in their congestion-related capabilities. The advantages of several models could 4 

be integrated into project appraisal, as was recently demonstrated in evaluating the benefits of 5 
a metro line extension in Stockholm, Sweden [35].  6 

The shortcomings of contemporary TAM urge for the development of more 7 
elaborated representation of congestion phenomena. Future research should take into account 8 
all congestion effects – discomfort, denied boarding and reliability – and their emergence. 9 

Agent-based approaches enable the dynamic modelling of passenger flows on-board vehicles 10 
and at stops to better capture priority regimes [42]. The integration of within-day dynamics 11 

with an iterative day-to-day network loading will enable the representation of variations in 12 
congestion between service elements as well as different levels of passenger choices. For 13 
example, Kim et al. [43] demonstrated how the metro car choice can be modelled to 14 
reproduce the uneven distribution of passengers over metro trains. The latter further increases 15 
the experienced crowding level. Passengers’ response to congestion also depends on their 16 

expectations and cultural preferences. Raveau et al. [44] found that travellers in Santiago have 17 
greater tolerance towards crowding than their counterparts in London. Further research on 18 
passengers’ behavior, perceived congestion and degree of adaptation will enable the 19 
modelling of congestion effects and their interaction across network elements, beyond merely 20 

on-board congestion.  21 
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TABLE 2 Comparing modelling features in VISUM and BusMezzo  1 

 

Modelling feature VISUM BusMezzo 
S

u
p
p
ly

 

Service provision Deterministic Stochastic 

Traffic dynamics  Macroscopic Mesoscopic 

Mixed-fleet composition X X 

Line-segment/ individual run representation Individual  Individual  

Vehicle scheduling  X 

Service delays, incidents 
 

X 

Control strategies 
 

X 

Capacity constraints 
 

X 

Flow-dependent dwell time 
 

X 

D
em

an
d
  

Generation Process Deterministic Stochastic 

OD-level with connectors (walking links) X X 

Random taste variation 
 

X 

Passenger flows/travellers representation Flows Individual  

Choice model Deterministic Stochastic 

Passenger prior-knowledge Timetable Frequenties 

Real-time information provision  X 

Adaptive en-route choices 
 

X 

Day-to-day learning  X * 

P
at

h
 c

h
o
ic

e 
d
et

er
m

in
an

ts
 Fare X 

 
Access time X X 

Access stop waiting time ** X 

In-vehicle time X X 

Transfer walk and waiting time X X 

Number of transfers X X 

Egress time X X 

Depature time choice (hidden waiting time) X 
 

Mode specific constant X 
 

Discomfort because of crowding X 
 

 

*   recently implemented  

** waiting time at the access stop is assumed to be zero as it is transfered into hidden waiting time 

through departure time choice adjustments 

 2 

  3 
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TABLE 2 Summary of base case scenario results  1 

 2 

 Average total travel time Average transfer rate 

VISUM 

[min] 

BusMezzo 

[min] 

VISUM 

[%] 

BusMezzo 

[%] 

Unconstrained Capacity 13.3 16.8 0.58 5.8 

Constrained Capacity 14.6 16.8 0.18 5.8 




