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A B S T R A C T   

In recent decades, substantial efforts have been devoted in flood monitoring, prediction, and risk 
analysis for aiding flood event preparedness plans and mitigation measures. Introducing an initial 
framework of spatially probabilistic analysis of flood research, this study highlights an integrated 
statistical copula and satellite data-based approach to modelling the complex dependence 
structures between flood event characteristics, i.e., duration (D), volume (V) and peak (Q). The 
study uses Global daily satellite-based Climate Hazards Group InfraRed Precipitation with Station 
data (CHIRPS) (spatial resolution of ~5 km) during 1981–2019 to derive a Standardized Ante-
cedence Precipitation Index (SAPI) and its characteristics through a time-dependent reduction 
function for Myanmar. An advanced vine copula model was applied to model joint distributions 
between flood characteristics for each grid cell. The southwest (Rakhine, Bago, Yangon, and 
Ayeyarwady) and south (Kayin, Mon, and Tanintharyi) regions are found to be at high risk, with a 
probability of up to 40% of flood occurrence in August and September in the south (Kayin, Mon, 
and Tanintharyi) and southwest regions (Rakhine, Bago, Yangon, and Ayeyarwady). The results 
indicate a strong correlation among flood characteristics; however, their mean and standard 
deviation are spatially different. The findings reveal significant differences in the spatial patterns 
of the joint exceedance probability of flood event characteristics in different combined scenarios. 
The probability that duration, volume, and peak concurrently exceed 50th-quantile (median) 
values are about 60–70% in the regions along the administrative borders of Chin, Sagaing, 
Mandalay, Shan, Nay Pyi Taw, and Keyan. In the worst case and highest risk areas, the probability 
that duration, volume, and peak exceed the extreme values, i.e., the 90th-quantile, about 10–15% 
in the southwest of Sagaing, southeast of Chin, Nay Pyi Taw, Mon and areas around these states 
and up to 30% in the southeast of Dekkhinathiri township (Nay Pyi Taw). The proposed approach 
could improve the evaluation of exceedance probabilities used for flood early warning and risk 
assessment and management. The proposed framework is also applicable at larger scales (e.g., 
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regions, continents and globally) and in different hydrological design events and for risk as-
sessments (e.g., insurance).   

1. Introduction 

Flooding is one of the most damaging natural catastrophes. Flooding causes serious destruction to the economy, environment, and 
society in many areas of the world. Floods affect approximately 250 million people and cause more than USD40 billion in losses 
worldwide annually (OECD 2016). By 2050, average global flood losses are estimated to increase to USD52 billion per year from 
socio-economic changes alone and to USD60-63 billion per year when considering projected subsidence and sea-level rises (Hallegatte 
et al., 2013). To mitigate the significant consequences of floods, it is important to develop robust approaches and appropriate tools for 
accurate prediction, quantification, and risk assessment of extreme rainfall and flood events, both at gauged and ungauged locations. 

Floods are extreme hydrological events, like storms and droughts, that are inevitable, complex, and stochastic in nature (Shiau 
2003). Therefore, strategies based on ill-equipped models and low-quality data often result in poor flood risk management strategies. A 
lack of data, as well as appropriate indices or indicators integrated with multivariate models, have posed a significant challenge when 
modelling flood occurrence and impacts. High-quality spatio-temporal data is critical for flood modelling. Indeed, model accuracy and 
reliability depend on the availability and accuracy of the data. Studies analysing flood characteristics using daily streamflow discharge 
records often rely solely on data from gauging stations. However, difficulties arise from the fact that many regions in the world, 
particularly in developing countries, have no data or only a sparsely scattered station network to collect the data. In practice, extreme 
events such as floods and droughts may occur in different locations at the same time, and as such can represent a systemic risk 
(Nguyen-Huy et al., 2019). If analyses are restricted only to areas with station data, the spatially complex and systemic nature of flood 
risks may be overlooked. As such, areas lacking long-time series of station data need approaches for quantifying flood characteristics. 

To overcome the issues of absent station data on flood risks, free satellite data sources, such as Moderate Resolution Imaging 
Spectroradiometer (MODIS), Landsat, and Sentinel, have been widely applied for flood mapping and monitoring to inform disaster risk 
management (Ganaie et al., 2013; Memon et al., 2015). In general, these satellite indices are derived from optical spectral bands 
(MODIS and Landsat) such as Normalized Different Water Index (NDWI) (McFeeters 1996), Water Index (WI) (Rogers and Kearney 
2004; Ji et al., 2009), Land Surface Water Index (LSWI) (Xiao et al., 2004), and from radar backscatter values such as Normalized 
Difference Flood Index (NDFI) (Cian et al., 2018). The applications of these indices provide wide and long-term spatio-temporal 
coverage of flood patterns suitable for identifying hotspots and risk assessment. 

Regarding flood indices or indicators, it is well known that flood risk assessment should be based on how the remaining quantity of 
water due to heavy precipitation fluctuates over time and whether flood indicators can reciprocate changing hydrological conditions. 
It is also noted that the start and end dates of flood events and monitoring can be spontaneous, short-term, or chronic, and hence flood 
monitoring should be based on antecedent precipitation in each period. This is not achievable using precipitation data alone or other 
indices such as the Standardised Precipitation Index (SPI) (McKee et al., 1993; Seiler et al., 2002) that focus on precipitation distri-
bution on monthly or annual scales. For example, if a flash flood event had occurred, such indices are not available until the last day of 
the monthly period when statistical analyses of cumulative precipitation are completed. Another issue with using precipitation data 
alone or equal-weighted indices (e.g., SPI) is that the precipitation recorded in days before that period is not considered objectively and 
so this may lead to an inaccurate estimate of the changes in water reserves that are vital in elevating or reducing the flood risk. Instead, 
an index based on the unevenly weighted contribution of a series of heavy precipitation events is potentially more useful and a better 
assessment of risk. 

Floods are complex events and hence univariate frequency analysis can only provide limited information of these events and may 
lead to an overestimation or underestimation of flood-related risks (Yue et al., 2001; Shiau et al., 2006). Consequently, describing flood 
events through multiple characteristics such as volume (V), flood peak (Q), and duration (D) is needed for a better understanding of 
these complex and interacting flood processes. For example, if a flood risk assessment is based only on duration, then high peak and 
volume risks will be missed. Instead, it is the combined, or co-occurrence, of extreme volume, peak and duration flood events that are 
likely to cause the most damage and therefore should be a priority for risk assessments. Further, as flood characteristics are generally 
interdependent, they should be jointly considered in multivariate analysis to provide a complete assessment of the true probabilities of 
occurrence (Chebana and Ouarda 2009). 

Based on the analysis of research gaps and challenges, this study aims to develop a framework of multivariate flood frequency 
analysis that takes into account the advantages of advanced high-resolution remotely sensed data and statistical copula-based tech-
niques. The proposed approach is applied for probabilistic analysis of flood characteristics for Myanmar, a southeast Asian county that 
has frequently suffered from severe floods (Khaing et al., 2019). Thus, the main motivation of the present study is not to develop a 
comprehensive flood model that often requires more input data such as land use and land cover, elevation, slope, river network, and 
drainage system. Instead, we outline a generalizable approach using a satellite-based antecedence precipitation index as a flood in-
dicator and models the joint exceedance probability of flood characteristics based on this. 

A flood indicator and its multiple characteristics (V, Q, D) are computed from satellite-derived precipitation using a time-dependent 
reduction function. Vine copulas (see methods for details) are then applied for modelling the joint distributions between extreme flood 
characteristics to derive important information for flood risk management including the exceedance probability, conditional proba-
bility, and return period. More details are described in the remainder of this paper organised as follows. Section 2 provides the satellite- 
based data sources, data pre-processing and explained the methodologies for deriving flood index and its characteristics and copula 
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models, and the equations for computing probabilities and return periods. Section 3 represents the main results. Section 4 discusses 
implications, limitations, and areas for future research. Section 5 summaries the findings and contributions of this study. 

2. Materials and methods 

2.1. Dataset 

Daily gridded precipitation dataset was acquired from the gauge-corrected Climate Hazards Group InfraRed Precipitation with 
Station data (CHIRPS, version 2.0) during the period of 1981–2019 (Funk et al., 2015). The CHIRPS dataset is a 35+ year quasi-global 
rainfall data set covering 50◦S-50◦N (and all longitudes) and ranging from 1981 to near-present. CHIRPS incorporates in-house 
climatology, CHPclim, 0.05◦ resolution satellite imagery, and in-situ station data to create gridded rainfall time series (mm/day). 

Fig. 1. Myanmar river network (blue lines) overlaid on the digital elevation model (in meter above sea level) acquired from Environment Operations Center (www. 
gms-eoc.org) based on Version 4.1 of NASA’s Shuttle Radar Topographic Mission (SRTM) elevation dataset. Location of five stations used for validation. 
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The CHIRPS dataset has been evaluated and validated on a semi-global domain (126◦W-153◦E) (Funk et al., 2015) and global scale 
(Shen et al., 2020) using the gauge-based GPCC (Global Precipitation Climatology Center) data. Their results reported that the CHIRPS 
has a low bias and agrees well with the gauge-based GPCC. More specifically, global assessment results show that CHIRPS has negative 
biases of 2.01% before 2000, however, this systematic underestimation was effectively eliminated after 2000 (Shen et al., 2020). In 
addition, when compared to other four widely-used precipitation models and observational products, such as the Coupled Forecast 
System (CFS), CPC Unified interpolated gauge products (CPCU), European Center for Medium-Range Weather Forecast (ECMWF), and 
TRMM-based TMPA 3B42 RT, CHIRPS has lower systematic biases (Funk et al., 2015). 

The evaluation and validation of CHIRPS have been also performed in many regions and countries, for example, over eastern Africa 
(Dinku et al., 2018), China (Bai et al., 2018), India (Gupta et al., 2020), Argentina (Rivera et al., 2018), Brazil (Paredes-Trejo et al., 
2017), and Vietnam (Le et al., 2020). In general, the CHIRPS performance was found to be comparable to that of the gauge-based 
observations and can support effective hydrologic applications. Luo et al. (2019) reported that CHIRPS yields good performance on 
precipitation estimation in the Lower Lancang-Mekong River Basin. The author also concluded that CHIRPS data was superior to rain 
gauge and interpolated data for driving the hydrological model, particularly for large data-poor or ungauged watersheds, and river 
basins where observed precipitation are difficult to collect. The CHIRPS dataset has been also applied in many hydrological topics, such 
as drought monitoring (Gao et al., 2018; Perdigón-Morales et al., 2018), evaluation of extreme rainfall (Cavalcante et al., 2020; Gupta 
et al., 2020). 

The validation and applications of the CHIRPS dataset have also been performed in Myanmar. Kyaw et al. (2020) indicated that 
CHIRPS rainfall estimates consistently agree well with ground-based rainfall at different spatiotemporal scales and are even more 
accurate than single stations at a large catchment scale. Acierto, Kawasaki and Zin (2020) evaluated the CHIRPS data against the 25 
rain gauge stations in Myanmar. The evaluation results shown a good correlation ranging from 0.78 to 0.94. The findings also indicated 
that when compared to both the rain gauge monthly climatology and daily distribution data, the CHIRPS dataset shown better rainfall 
estimates than APHRODITE data (Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation) that is 
interpolated from in-situ measurements. The author summarized that CHIRPS is a good alternative for a gridded proxy observation 
over the Myanmar region. Dutta (2018) used CHIRPS data to study the impact of insufficient precipitation conditions on vegetation 
stress conditions in the Dry Zone of Myanmar. The author found a strong statistical correlation (R2 = 0.74 and 0.82) between pre-
cipitation derived from CHIRPS data and MODIS Normalized Difference Vegetation Index (NDVI). Recently, MacLeod et al. (2021) has 
used CHIRPS data to evaluate the skill of ensemble forecast of extreme rainfall events over Myanmar. 

The global CHIRPS dataset was then extracted for the study area, i.e., Myanmar, using its country boundary. Fig. 1 shows the river 
network overlaid on the digital elevation model of Myanmar acquired from Environment Operations Center (www.gms-eoc.org) based 
on Version 4.1 of NASA’s Shuttle Radar Topographic Mission (SRTM) elevation dataset. 

2.2. Standardized available precipitation index 

The Standardized Antecedent Precipitation Index (SAPI) is a standardized index for meteorological flood analysis (Nguyen-Huy 
et al., 2020; Prasad et al., 2020) and can be used to compute flood characteristics, i.e., peak (Q), volume (V), and duration (D) on 
hourly, daily, and monthly timescales (Deo et al. 2015, 2018). The SAPI was originally introduced by (Byun and Lee 2002) to overcome 
the drawbacks of other indices, for example, derived by fitting to parametric probability distribution functions. 

The computation of SAPI is based on the concept of effective (or accumulated) precipitation PE that is the summed value of pre-
cipitation for the current day and antecedent day determined by a time-dependent reduction function (Byun and Lee 2002) through 
Eqs. (1)–(3): 

PE =
∑i

n=1

⎛

⎜
⎜
⎝

∑n

m=1
Pm

n

⎞

⎟
⎟
⎠, (1)  

API=
PE

∑i

n=1
(1/n)

, (2)  

SAPI=
API − MEAN(maxAPI)

STD(maxAPI)
, (3)  

where Pm is the precipitation of m days before, i represents the duration of the summation of the antecedent period, and API means an 
extensive measure to indicate the amount of current and accumulated precipitation in which daily reduction (by runoff, evapo- 
transpiration, infiltration, etc.) of water, and the duration of accumulation into account quantitatively. maxAPI denotes the annual 
maximum value of API where MEAN and STD are the mean and standard deviation of API, respectively, for the study period. When 
SAPI >0 then there is an elevated risk of flooding. 

In this study, the SAPI was computed for every pixel (at a 0.05◦ resolution) for all of Myanmar using the CHIRPS dataset between 
1981 and 2019. The duration of the summation is 365 days as for the usual hydrological cycle (366 days for the leap years) and so, if we 
denote W ≡ 1 + 1

2 +
1
3 ...+

1
365 as a weighting factor summed over an annual precipitation cycle, Eqs. (1) and (2) can be written as (Deo 

et al., 2018): 
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API=P1 +
[P2(W − 1)]

W
+

[
P3
(
W − 1 −

1
2
)]

W
+ ...+

[
P365

(
W − 1 −

1
2
− ... −

1
364

)]

W
≈ P1 + 0.85P2 + 0.77P3 + ...+ 4.23× 10− 4P365.

(4) 

According to Eq. (4), the antecedent precipitation is represented in a rational form associated with reduced weights to take into 
account the loss of available water resources over time. That means the index accounts for 100% of precipitation received a day before, 
≈ 85% of that received two days before, ≈ 77% of that received three days before, and so on, to ≈0.0423% of that received 365 days 
before (Fig. 2 (a)). The model puts the highest weight on present precipitation whereas previous days’ contributions decrease grad-
ually, e.g., over an annual cycle (N = 365 days) as in this study. It is also noted that the hydrological cycle can be adjusted to specific 
target days depending on the objective, e.g., 10 days. 

2.3. Flood characteristics 

The definitions of flood characteristics, concordant with run theory (Yevjevich 1967), are illustrated in Fig. 2 (b). More specifically, 
the duration (D) (day) is defined as consecutive days of SAPI above zero where the first and last dates are called the onset and end date, 
respectively. Within a duration, the volume (V) is the cumulative SAPI, and the peak (Q) is the maximum value of SAPI. 

Fig. 2 (b) also shows an example of the SAPI time series for Bilin town (17.225◦ N, 97.225◦ E) in Mon state, Myanmar from July 01, 
2019 to October 31, 2019. It is worth pointing out that the onset date, i.e., when SAPI starts being above zero, was on August 06, 2019. 

Fig. 2. (a) The time-dependent reduction function showing ratio of weighted contribution of raw precipitation (P) into effective precipitation (PE) over annual cycle 
(N = 365 days). (b) An example of duration, volume, and peak of the Standardized Antecedent Precipitation Index (SAPI) time series extracted at Bilin town (17.225◦

N, 97.225◦ E) in Mon state, Myanmar. A flood event is defined as when SAPI >0. 
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According to the Department of Meteorology and Hydrology of Myanmar, the observed water level condition of Bilin river at Bilin 
reached the danger level on August 07, 2019 (FloodList 2019). Thus, using the criterion of SAPI >0 provides a good indicator of flood 
risk in this instance. 

2.4. Exceedance probability 

In hydrology, different risk analyses and assessments are performed to obtain desired information about flood behaviour. For 
example, conventional risk analysis of flood characteristics is generally based on one variable of interest (duration, volume, or peak) by 
fitting a parametric univariate distribution to that variable. In bivariate cases, one may be interested in the probability of exceeding 
both duration and volume. To acquire a comprehensive risk assessment, the present study analyses a multivariate case of flood 
characteristics, i.e., the exceedance probability of duration-volume-peak for the entire Myanmar. More specifically, we estimate the 
probability that duration, volume, and peak are simultaneously greater than or equal to some threshold scenarios, i.e.: 

P(D≥ d,V ≥ v,Q≥ q)= 1 − P(D< d,V < v,Q< q). (5) 

Eq. (5) requires modelling a joint distribution of such three variables, F(xd,xv,xq). The multivariate normal distribution is a common 
method used, however, not appropriate as mentioned earlier. Thus, we develop a copula-based model, which is described in the 
following sections, to estimate the exceedance probability of flood events. 

2.5. Copulas 

2.5.1. Copulas and multivariate flood analyses 
The application of multivariate analysis to study flood problems has been often restricted in practice because of the limited number 

of techniques available for multivariate extreme modelling (Shiau et al., 2006). Furthermore, multivariate modelling, compared to 
univariate modelling, often requires much more data and sophisticated mathematical analysis. As a result, bivariate distributions, 
including but not limited to normal, logistic, exponential, gamma, and Gumbel mixed model, are commonly applied for modelling the 
correlation between flood characteristics (Shiau 2003; Karmakar and Simonovic 2008; Chebana and Ouarda 2011; Dong et al., 2019). 
However, these types of bivariate distributions exhibit some limitations. For example, the Gumbel mixed model restricts the corre-
lation of random variables in a certain range, between 0 and 2/3 (Shiau 2006). Other drawbacks in using these bivariate distributions 
are that (i) each marginal distribution must come from the same family, (ii) extensions to multivariate cases are not clear, and (iii) the 
same parameters are used for modelling the marginal distributions and the dependence between the random variables (Favre et al., 
2004). Also, the use of a multivariate normal distribution is not appropriate to model extreme variables in most cases since the 
marginal distributions are asymmetric, and their dependence structure is often different from the Gaussian case described by Pearson’s 
correlation coefficient. 

Copulas, introduced by Sklar (1959), offer efficient algorithms for modelling multivariate distributions that overcome the draw-
backs mentioned above. More specifically, copulas are able to model the dependence structure between random variables separately 
with the marginal distributions. This means that each variable can come from any distribution type and their dependence structure can 
be either linear or non-linear. Consequently, copula-based methods have been broadly used in different fields to construct multidi-
mensional distributions, for example in finance and insurance (de Melo Mendes, Semeraro & Leal 2010; Jaworski et al., 2013), weather 
forecast (Ali et al., 2018; Nguyen-Huy et al., 2020), and agriculture and climate risk (Nguyen-Huy et al., 2018; Nguyen-Huy et al., 
2020). In the hydrological domain, bivariate and trivariate copulas are common approaches for jointly modelling the characteristics of 
extreme events such as droughts (Mirabbasi et al., 2012; Yusof et al., 2013; Saghafian and Mehdikhani 2014; Vergni et al., 2015) and 
floods (Zhang and Singh 2006; Karmakar and Simonovic 2009; Reddy and Ganguli 2012; Latif and Mustafa 2020a). Among multi-
variate copula models, vine copulas offer the most flexible way for modelling the dependence structure through bivariate building 
blocks (Aas et al., 2009). Recently, vine copulas have been demonstrated to outperform other traditional Archimedean and elliptical 
copulas in modelling flood event characteristics (Daneshkhah et al., 2016; Shafaei et al., 2017; Tosunoglu et al., 2020). 

2.5.2. Copula analytical approach 
A copula C(.) : [0,1]n → [0,1] is a function that links univariate marginal distribution functions P(Xi ≤ xi) = Fi(xi) of random 

variables X1, ...,Xn to form a joint cumulative distribution function (JCDF) P(X1 ≤ x1, ...,Xn ≤ xn) = F(x1, ...,xn), i.e.: 

F(x1, ..., xn)=C[F1(x1), ...,Fn(xn)], (6)  

with the corresponding joint density distribution function (JPDF): 

f (x1, ..., xn)=

[
∏n

i=1
fi(xi)

]

c[Fi(xi), ...,Fn(xn)]. (7)  

here, fi(xi) and c(.) are the corresponding marginal and copula PDFs, respectively. If the marginal distributions are continuous, then the 
copula is unique. Eqs. (5) and (6) indicate an advanced feature of using copulas that a JCDF of random variables can be constructed by 
two separate processes: (i) modelling a copula function that captures the dependence structure between correlated variables, and (ii) 
modelling univariate marginal distributions. This advantage of copulas offers a more flexible way to select appropriate univariate 
distribution functions to fit the observed data in practice. 

From Eq. (6), the joint distribution of duration, volume and peak mentioned in Eq. (5) can be expressed in terms of copulas as: 
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P(D≥ d,V ≥ v,Q≥ q)= 1 − F(xd, xv, xq)
= 1 − C

[
FD(xd),FV(xv),FQ

(
xq
)]
.

(8) 

The copula function in Eq. (8) may be modelled by different copula families including, but not limited to, empirical, Archimedean, 
extreme value, elliptical, vine, and entropy copulas. Vine copulas, introduced in more details in the following section, among others, 
offer the most flexibility to construct the JCDF and JPDF as shown in Eqs. (6) and (7), respectively. 

2.6. Vine copulas 

Introduced by Joe (1996) and developed further by Bedford and Cooke (2002), the vine approach decomposes the JPDF into a 
cascade of iteratively conditioned bivariate copulas, so-called the pair copulas (Aas et al., 2009). The vine copula can be expressed in 
three forms: drawable-vine (D-vine), canonical-vine (C-vine), and regular-vine (R-vine). 

To be consistent with the scope of the study for modelling the joint distribution of flood duration, volume, and peak, we take the 
trivariate case as an example for illustration. Fig. 3 graphically described examples of the D- and C-vine copulas in a form of trees, 
edges, and nodes. In the trivariate case, the C-vine copula is the D-vine copula with a given center variable, for example, with the 
duration (D) variable as the center, the D-vine copula in Fig. 2(b) is exactly the same as the C-vine copula in Fig. 2(d). The edges are 
identified with bivariate copulas, for example, the edge DV associated with the bivariate copula CDV that models the dependence 
structure between D and V. The JPDF in Eq. (6) can be written as (Czado 2019): 

f (v, d, q)= fV(v)fD|V(d|v)fQ|V ,D(q|v, d), (9)  

where: 

fV|D(d|v)= cDV [FD(d),FV(v)]fV(v), (10)  

fQ|V,D(q|v, d)= cVQ|D
[
FV|D(v|d),FQ|D(q|d)

]
fQ|D(q|d), (11)  

FQ|D(q|d)=
∂CDQ[FD(d),FQ(q)]

∂FD(d)
(12)  

FV|D(v|d)=
∂CDV [FD(d),FV(v)]

∂FD(d)
. (13) 

For fitting the univariate marginal distribution functions, we applied the univariate local-polynomial likelihood kernel density 
estimation (Nagler, T & Vatter, T 2018) that can handle both discrete (duration) and continuous (volume and peak) data (Nagler, 
2018a, 2018b). Also, all bivariate copula families are employed for modeling the vine copulas including independence, parametric 
(elliptical, Archimedean and their rotated versions), and non-parametric (transformation kernel) families (Nagler and Czado 2016; 
Nagler et al., 2017). For the estimates of bivariate copula parameters, the maximum likelihood and local-likelihood approximations 
were applied for parametric and non-parametric models, respectively. Additionally, the Akaike information criterion (AIC) and 
Kendall’s tau were adopted as the criterion for selecting the bivariate copulas and tree sequences. For more details, readers are referred 

Fig. 3. Example of 3-dimensional D-vine (a–c) and C-vine (d) copula with 3 trees and 3 edges where duration (D), volume (V), and peak (Q) are nodes. Each edge is 
associated with a pair-copula. 

T. Nguyen-Huy et al.                                                                                                                                                                                                  



Remote Sensing Applications: Society and Environment 26 (2022) 100733

8

to the work by Nagler, Thomas and Vatter, Thibault (2018). All the computations of this paper were implemented using the R pro-
gramming language. 

3. Results 

3.1. Exceedance probability of SAPI characteristics 

The Standardized Antecedent Precipitation Index (SAPI) and its characteristics were calculated for each gridded cell separately 
over all of Myanmar. Annual maximum values of SAPI are presented in Fig. S1 in supplementary. It can be seen that SAPI is able to 
capture heavy rainfall events, potentially leading to flood events that occurred in the past, e.g., the occurrence of significantly wet 
conditions in 1994, 2001, 2002, 2006, 2010 and 2011. Fig. 4 shows the number of times that SAPI >0, which is an indicator of flood 
events, over the period of 38 years (1982–2019). In general, except for some regions in the center, flood potentially occurs at least once 
a year in a major part of Myanmar. It is noticed that the extreme event numbers in the southwest states including Bago, Ayeyarwardy, 
and Yangon and Kachin state in the north are extremely high, up to 3 times per year on average. Some regions in other states such as 
Shan, Sagaing, and Rakhin also expose a high risk of occurring heavy rainfall events. 

Fig. 5 represents the probability that SAPI is above zero in the rainy monsoon season (Jun–Oct), which is P(FI> 0) = 1− P(FI≤ 0),
where P(FI≤ 0) derived from the empirical cumulative distribution function. The results are in agreement with annual observations in 
Myanmar, reported by ADPC (2009), where during the rainy season flooding regularly occurs in three waves: June, August, and late 
September to October with major hazards arriving in August as peak monsoon rains occur around that time. The result indicates the 
highest probability (up to 40%) of flood occurrence in August and September in the south (Kayin, Mon, and Tanintharyi) and 
southwest regions (Rakhine, Bago, Yangon, and Ayeyarwady). The high chance of flood occurrence (up to 25%) is also found for the 
northern parts of Sagaing and Kachin in Sep and in the central part (south of Sagaing) in October. These maps of a high chance of flood 
occurrence coincide well with the maps of flood-prone areas in Myanmar shown in Fig 18 in the report of UoM (2009) (see Section 6.3, 
page 50). 

The statistics of SAPI duration, volume, and peak including mean, standard deviation, skewness, and kurtosis are illustrated in 
Figs. S2 and S3 (supplementary). In general, the majority of Myanmar has an average duration of about 4–10 days of rainfall surplus, i. 
e., consecutive days of SAPI above zero. However, this is even high, between 16 and 24 days, in the south and southwest regions 
(Fig. S2). Accordingly, those regions also have the highest average volume. However, while the central and southeast regions have 
lower values of duration, these regions also have high values of average volume. The standard deviation of duration and volume 
reveals a similar pattern, i.e., higher values in the lower part (south, southeast, and southwest). The highest average peak and its 
standard deviation can be observed in the center spanning from the west to east. The high spatio-temporal variability of the duration, 
volume and peak of extreme events highlights the importance of modelling these characteristics simultaneously. 

Fig. S2 also presents the skewness and kurtosis information of duration, volume, and peak, which is useful information for 

Fig. 4. Number of times that the Standardized Antecedent Precipitation Index (SAPI) is above 0, which is an indicator of flood events, over a period of 38 
years (1982–2019). 
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understanding the pattern of the data, i.e., the probability distribution of each characteristic. Skewness is a measure of whether the 
distribution is symmetric or asymmetric relative to its means. Kurtosis is a measure of whether the data are heavy-tailed or light-tailed 
relative to a normal distribution. From Fig. S2, the skewness and kurtosis of the majority data are much greater than +1 and + 3 
indicating that the distributions of flood characteristics are highly skewed right. Such right-skewed distributions reflect a large range of 
extreme values of flood duration, volume, and peak. These findings also emphasize the need for a robust model, such as copulas used in 
this study, to fully capture the dependence between those characteristics. 

Analysing the correlation among duration, volume and peak is another important step in modelling the joint distribution among 
these variables. Different correlation coefficients between the characteristic pair are computed to have a complete analysis of their 
relationship. The Pearson correlation coefficient measures the strength of a linear association between two variables where its 
nonparametric version, the Spearman’s rank correlation coefficient, and Kendall’s tau measure the strength and direction of associ-
ation between the rank values of those two variables. It is also noted that the values of Kendall’s tau are usually lower than those of the 
Spearman’s rank. 

The results shown in Fig. 6 indicate a strong positive relationship among the flood characteristics in all measures where the values 
of correlation coefficients range between a Pearson r of 0.4–1. The p-values of the significance level of the t-test are also computed (not 
shown here) are less than the significance level alpha of 0.05 indicating that the three characteristics are significantly correlated 
together. The correlation between duration and volume is found to be spatially consistent in all measures where the values of Kendall’s 

Fig. 5. The probability that the Standardized Antecedent Precipitation Index (SAPI) is above zero, which is an indicator of a flood event, in Myanmar in the rainy 
monsoon season (Jun–Oct) over 38years (1982–2019). 
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tau are slightly lower than those of the Spearman’s rank, which is expected. The correlation coefficients between duration-peak and 
volume-peak are more spatially variable where their values in the north and northeast regions are considerably lower than those 
figures in the rest parts. In addition, the Pearson’s correlation coefficients between duration-peak and volume-peak are lower than 
those measured from the rank methods. These findings imply a strong monotonic relationship between flood peak with duration and 
volume. In other words, when the duration or volume increases, the peak increases at a non-constant rate that differs from the linear 
relationship. 

Copula functions are able to fully capture the complicated dependence between variables regardless of their relationship patterns. 
By modelling the joint distribution between flood characteristics using vine copulas, the joint exceedance probability was derived for 
different combination scenarios of extreme events using Eqs. (8) - (13). More specifically, we quantify the probability that duration, 
volume, and peak exceed specific thresholds concurrently. The thresholds were selected at 50th-quantile (median), 75th-(moderate), 
and 90th-quantile (extreme) averaged for the entire country. As can be seen in Table 1, for example, the averaged 50th-quantile value 
of duration, qD(0.5) = 3 (days) and similarly qD(0.75) = 7 (days) and qD(0.9) = 19 (days). To understand the spatial pattern, the 

Fig. 6. Spatial patterns of Pearson (top), Spearman’s rank (middle), and Kendall’s tau (bottom) correlation coefficients between pairs of Standardized Antecedent 
Precipitation Index (SAPI): duration (D), volume (V), and peak (Q). 

Table 1 
The values of duration (D), volume (V) and peak (Q) at 50th-quantile (median), 75th-quantile (moderate), and 90th-quanitle (extreme) for the entire country.   

50th-quantile 75th-quantile 90th-quantile 

Duration (D) (days) 3 7 19 
Volume (V) 0.426 2.014 8.839 
Peak (Q) 0.277 0.628 1.139  
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quantile values at each gridded cell were also computed shown in Fig. 7. The findings reveal that the extreme values of duration and 
volume occur in the west and south regions are higher than those in other areas. 

The joint exceedance probabilities of duration, volume and peak in different combination scenarios are presented in Figs. 8–10. The 
interpretation of those figures is straightforward where the results show a remarkable difference in the spatial pattern of the ex-
ceedance probability. In Fig. 8, at 50th-quantile (q(0.5)), the chance that a flood event with D ≥ q(0.5) = 3 (days), V ≥ q(0.5) = 0.426, 
and Q ≥ q(0.5) = 0.277 co-occurrence is about 60–70% in the regions along the administrative borders of Chin, Sagaing, Mandalay, 
Shan, Nay Pyi Taw, and Keyan while this probability is slightly lower, about 40–50%, at Ayeyarwadi, Bago, Yangon, Kayin and a major 
part of Kachin. In the case when D ≥ q(0.5) and Q ≥ q(0.5), the probability that V ≥ q(0.9) (extreme) at the same time ranges from 10 to 
30%, except for the north (Kachin) and east (Shan). In addition, the probability that duration exceeds the median, i.e. D ≥ q(0.5) = 3 
(days), and volume and peak exceed the extreme, i.e. V ≥ q(0.9) = 8.839 and Q ≥ q(0.9) = 1.139, is about 10–20% in Chin and 
southwest of Sagaing, Nay Pyi Taw and regions around its border, south of Kayin, Mon, and from north to east of Tanintharyi. The 

Fig. 7. The values of duration (D) (top), volume (V) (middle) and peak (Q) (bottom) at 50th-quantile (50qt) (median), 75th-quantile (75qt) (moderate), and 90th- 
quantile (90qt) (extreme). 
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probability of such a scenario occurring is less than 10% in the remaining parts of the country. 
Similar probabilistic risk analysis performed, however, when duration exceeding 75th-quantile (moderate) and 90th-quantile 

(extreme) combined with different scenarios of volume and peak are presented in Figs. 9 and 10, respectively. In Fig. 9, the proba-
bility of D ≥ q(0.75) = 7 (days), V ≥ q(0.5) = 0.426, and Q ≥ q(0.5) = 0.277 is 40–60% majorly occurred in Sagaing, Magway, 
Rakhine, Mon and Tanintharyi and up to 60–70% in some regions such as south of Shan, Chin, and Nay Pyi Taw. 

In general, when D ≥ q(0.75), the probability that volume or duration or both exceed the extreme (90th-quantile) is less than 20%. 
Fig. 10 highlights the high risk region of occurring extreme duration, i.e. D ≥ q(0.9) = 19 (days) including southwest of Sagaing, south 
of Magway, Bago and Kayin, Rakhine, Yangon, Mon, and Tanintharyi. In the worst case, the probability that all duration, volume, and 
peak exceed the extreme values, i.e. D ≥ q(0.9), V ≥ q(0.9), and Q ≥ q(0.9), is about 10–15% in regions such as southwest of Sagaing, 
southeast of Chin, Nay Pyi Taw, Mon and areas around these states. The highest risk area with the probability up to 30%, which 
exceeds extreme duration, volume, and peak simultaneously is southeast of Dekkhinathiri township (Nay Pyi Taw). 

3.2. SAPI evaluation 

Here, we tested how the SAPI derived from CHIRPS agrees with SAPI based on ground observations. We interrogated two data 
sources including Global Historical Climatology Network Daily (GHCND) and Global Surface Summary of the Day (GSOD). Both 

Fig. 8. Probabilities of duration (D), volume (V), and peak (Q) exceeding thresholds simultaneously where different scenarios of thresholds of D being greater than or 
equal to 50th-quantile (median) are combined with V and Q being greater than or equal to 50th-quantile (median), 75th-quantile (moderate), and 90th-quanitle 
(extreme). The quantile values were computed for the entire country. 
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datasets have daily precipitation summaries provided by National Centers for Environmental Information (NOAA). Over Myanmar, 
GHCND and GSOD have five (Fig. 1) and twenty-four stations, respectively. Both datasets are extremely patchy; however, the GHCND 
data is better (see Fig. S4 in Supplementary) and thus only GHCND data was used for validation (GSOD data are not shown here). For 
the purpose of SAPI computation requiring daily data and a long climatology period, and also matching with CHIRPS data 
(1981–2019), the missing values in GHCND time series were imputed by values from CHIRPS. 

Fig. 11 represents the percent consistent (PC) (Charles et al., 2015) of the events, when SAPI >0, derived from CHIRPS and GHCND 
datasets. The PC is formulated as: 

PC=
total events when SAPI > 0 at the same time in both CHIRPS and GHCND

total events when SAPI > 0 in GHCND
(14) 

The PC values vary across five stations, Myitkyina (57%), Mandalay (33%), Sittwe (86%), Yangon Intl (80%), and Victoria Point 
(95%). It is noted that the results were highly affected by the missing values from ground-based observations and hence should be 
interpreted with care. Fig. 1 (b) also shows an example of the SAPI time series for Bilin town (17.225◦ N, 97.225◦ E) in Mon state, 
Myanmar from July 1, 2019 to October 31, 2019. It is worth pointing out that the onset date, i.e., when SAPI starts being above zero, 
was August 6, 2019. According to the Department of Meteorology and Hydrology of Myanmar, the observed water level condition of 
Bilin river at Bilin reached the danger level on August 7, 2019 (Fig. S5 in Supplementary). 

Fig. 9. Probabilities of duration (D), volume (V), and peak (Q) exceeding thresholds simultaneously where different scenarios of thresholds of D being greater than or 
equal to 75th-quantile (moderate) are combined with V and Q being greater than or equal to 50th-quantile (median), 75th-quantile (moderate), and 90th-quanitle 
(extreme). The quantile values were computed for the entire country. 
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4. Discussion 

Given the stochastic nature of rainfall, and many of the processes that contribute to flooding, a probabilistic based framework that 
has simultaneously different characteristics (i.e., duration, volume and peak) is required to more accurately assess risk. Thus, the main 
motivation of the present study is to demonstrate how remotely sensed data and copula statistical methods can be applied to assess and 
map flood risks over large areas where station data is lacking. In addition, we show the potential flexibility and efficiency of the 
multivariate copula model in modelling the flood characteristics, particularly when dependence between variables is complex and the 
data contains outliers, i.e., extreme values. Examples of methodological papers investing flood characteristics are published by Jeong 
et al. (2014) Daneshkhah et al. (2016), Latif and Mustafa (2020b), Latif and Mustafa (2020a), Latif and Mustafa (2020c). As a result, 
the aim of this study is not to deliver an ultimate model of extreme flood events which generally requires more input information such 
as land use and land cover, elevation, slope, river network, and drainage system to be integrated into the model. Instead, we developed 
a satellite-based antecedence precipitation index that can be used as an indicator of flood events and quantified the joint exceedance 
probability of flood characteristics including duration, volume, and peak. 

Another motivation of the methodology developed in our paper is to model the joint distribution of flood characteristics in a 
probabilistic way and particularly to provide a framework for the cases when data is limited, or no data is available. The case of data 
limitation is very common in extreme value theory and risk analysis, and hence the copula-based method is effective and efficient when 

Fig. 10. Probabilities of duration (D), volume (V), and peak (Q) exceeding thresholds simultaneously where different scenarios of thresholds of D being greater than or 
equal to 90th-quantile (extreme) are combined with V and Q being greater than or equal to 50th-quantile (median), 75th-quantile (moderate), and 90th-quanitle 
(extreme). The quantile values were computed for the entire country. 
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used for approximating modelling when data is limited. When data is not available, the copula-based method can be used for synthetic 
data generation for machine learning emulators in weather and climate (see Hong et al. (2016) and Meyer et al. (2021) for further 
details). 

A limitation of this study is that there is very limited observed data available from Myanmar for the validation of the proposed 
index. This problem has been also mentioned by previous studies (Taft and Evers 2016; Phongsapan et al., 2019). Therefore, validating 
the proposed antecedence precipitation index against observations over the study area is highly recommended. Future research 
including other flood prediction methods and analysis techniques such as trend analysis and breakpoint analysis will improve analysis 
and assessment of flood risk. Also, when the spatiotemporally dense flood maps derived from satellite data are integrated with data 
from secondary sources on historical flood impacts, it is possible to classify regions into flood zones with homogeneous characteristics 
based on different levels of risk. For example, Khaing et al. (2019) applied MODIS flood inundation images in conjunction with other 
datasets such as topography and land cover to derive flood hazard maps or simulate the spatial extent of flooding. 

The satellite-based antecedence precipitation index (SAPI) and probabilistic framework proposed in this study are also useful for 
other research and practical applications. For example, as indicated by several recent studies, flood characteristics (peak discharge, 
duration, and volume) exhibit nonstationary behaviour due to changes in land use and land cover, urbanization, climate, and water 
resource structures (Liu et al., 2017; Dong et al., 2019). As a result, the assumption of temporal stationarity in flood characteristics is 

Fig. 11. Daily Standardized Antecedent Precipitation Index (SAPI) derived from daily precipitation (mm) extracted from Climate Hazards Group InfraRed Precipi-
tation with Station data (CHIRPS) and Global Historical Climatology Network daily (GHCND) at five stations in Myanmar for the period of February 01, 
1982–December 31, 2019 (38 years). Percent consistent (PC) refers to the percentage of the total events when SAPI >0 that are consistent between two datasets over 
the total events based on ground-based GHCND datasets. 
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not always valid and potentially leads to an underestimation of flood risk. Thus, it is possible to perform multivariate frequency 
analysis of extreme discharge events in a nonstationary condition by modelling parameters of marginal distributions with covariates, 
such as antecedent precipitation. 

Furthermore, the present framework is applicable for practical projects of hydrological works, where the joint probability of flood 
characteristics can be used for different design events. Examples include design events derived from different bivariate and multi-
variate conditional probabilities and return periods as considered in Salvadori et al. (2011) and Gräler et al. (2013). The satellite-based 
antecedence precipitation index was developed for flood detection and risk analysis, however, because of its characteristics, the index 
can also be used as a tool to monitor drier-than-normal conditions, for example, the study of Malik et al. (2020). 

Another important application of the proposed satellite-based standardized antecedence precipitation index is in the context of 
index-based insurance. Index-based insurance does not suffer common problems of moral hazard and adverse selection as in con-
ventional insurance (Adeyinka et al., 2022). Instead, index insurance triggers payouts based on external indicators. However, 
index-based insurance often uses ground-based indicators such as weather and area yield, which rely on historical data for the design, 
pricing, and calibration of products. The data have to meet commercial insurer and re-insurer requirements such as long historical data 
with only a small percentage of missing or out-of-range values of the total datasets, the distance between weather stations and insured 
farms, secure and trustworthy data recording. These requirements make the operation of ground-based index-based insurance products 
in rural areas difficult since the weather stations are often very scattered. Thus, index-based insurance using indices or indicators 
derived from satellite data, such as the standardized antecedence precipitation index in this study, can offer many advantages. 
Remotely sensed data are spatially continuous across large areas of the earth, available in near real-time, can be freely accessible and 
available, have extended historical records, and are difficult to influence by either the insured or insurer. 

Finally, many operational satellite-based precipitation products (SPPs) have recently become available with quasi-global coverage 
and at sub-daily temporal resolution. SPPs provide important information for hydrological applications (e.g., flood or flash flood 
analysis) in sparsely gauged or ungauged basins (Jiang et al., 2018; Yuan et al., 2018; Liu et al., 2019). For example, Yuan et al. (2019) 
used the precipitation products from Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement (GPM) for 
flood simulations at sub-daily scales in a poorly gauged watershed in Myanmar. The results indicated that the SPPs (3B42RT) acquired 
from TRMM Multi-satellite Precipitation Analysis were suitable for hydrological performance in a 3-hourly flood simulation. Maggioni 
and Massari (2018) reviewed the performance of SPPs in riverine flood modeling and concluded that the use of satellite data in flood 
forecasting is significantly promising. However, Maggioni and Massari (2018) argue that for operational purposes the maturity of 
SPP-forced models is currently insufficient. Therefore, further research on bias correction methods of different complexity and 
characteristics of the region, such as population density, land use, geophysical and climate is needed to improve the performance of 
current hydrologic models used to predict floods. 

5. Conclusion 

This study developed a probabilistic framework of multivariate frequency analysis that takes into account the advantages of 
advanced high resolution remotely sensed data (CHIRPS) and statistical copula-based techniques for Myanmar. A standardized 
antecedence precipitation index (SAPI) that can be used as a flood indicator and its associated characteristics including duration, 
volume, and peak was developed from satellite-derived precipitation using a time-dependent reduction function. Vine copulas were 
applied to model the joint distribution between event characteristics to derive important information of the exceedance probability for 
flood risk analysis and assessment. The southwest and south regions are found to be at high risk from floods (as indicated by the 
characteristics SAPI) in the rainy monsoon season, i.e., in August and September. The results also show a strong relationship among 
duration, volume, and peak of an extreme event. In addition, the results reveal a significant difference in spatial patterns of the joint 
exceedance probability of event characteristics in different scenario combinations. The proposed approach is applicable to improve 
risk assessment and potentially useful in different hydrological design events and the context of index-based insurance. 
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