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Abstract – Stated choice surveys have been used for several decades to estimate preferences 
of agents using choice models, and are widely applied in the transportation domain. Different 
types of experimental designs that underlie such surveys have been used in practice. In 
unlabelled experiments, where all alternatives are described by the same generic utility 
function, such designs may suffer from choice tasks containing a dominant alternative. Also 
in labelled experiments with alternative specific attributes and constants such dominancy may 
occur, but to a lesser extent. We show that dominant alternatives are problematic because 
they affect scale and may bias parameter estimates. We propose a new measure based on 
minimum regret to calculate dominancy and automatically detect such choice tasks in an 
experimental design or existing dataset. This measure is then used to define a new 
experimental design type that removes dominancy and ensures the making of trade-offs 
between attributes. Finally, we propose a new regret-scaled multinomial logit model that 
takes the level of dominancy within a choice task into account. Results using simulated and 
empirical data show that the presence of dominant alternatives can bias model estimates, but 
by making scale a function of a smooth approximation of normalised minimum regret we can 
properly account for scale differences without the need to remove choice tasks with dominant 
alternatives from the dataset. 

Keywords: stated choice experiments, dominant alternatives, discrete choice, regret, scale 

1. Introduction

Discrete choice models based on utility theory are widely used to analyse behaviour and 
preferences of agents (e.g., travellers) in order to estimate willingness-to-pay measures (e.g., 
value of travel time savings) and to predict market shares (e.g., mode shares). Stated choice 
surveys are often used to collect data for estimating the coefficients that describe behaviour. 
For example, in the transportation field, there are many such surveys for investigating 
behaviour in mode choice (e.g., Bekhor and Shiftan, 2010 ) and route choice (e.g., Hensher, 
2006), but also parking choice (e.g., Axhausen and Polak, 1991) and vehicle type and fuel 
choice (e.g., Hess et al., 2012). For an extensive review of stated preference studies in the 
transportation literature, see Bliemer and Rose (2011). In this paper we look at the negative 
impact of having dominant alternatives in a stated choice survey and we provide different 
solutions for dealing with this problem. 

© 2017 Manuscript version made available under CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/ 
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We call an alternative dominant if it is better than (or equal to) any other alternative in the 
choice set with respect to all attributes. An alternative is said to be dominated if there exists 
another alternative in the choice set that is dominant. A dominated alternative is expected 
never to be chosen (zero probability). A pairwise comparison of attribute levels between 
alternatives can be made in unlabelled experiments, i.e., surveys in which alternatives do not 
have specific ‘brand’ value (e.g., route A, route B) and in which the coefficients are generic 
across alternatives and have a known sign. According to the literature review in Bliemer and 
Rose (2011), most studies conducted in the transportation literature to date have been 
unlabelled experiments. Nevertheless, there are many exceptions that use labelled 
experiments in which the alternatives may have alternative specific attributes and 
coefficients. The labels of the alternatives typically carry ‘brand’ value (e.g., car, train) 
represented by an alternative specific constant. In this paper we initially focus on unlabelled 
experiments since the issue of dominancy arises mainly with this type of experiments. In a 
later section we extend our methodology to define dominancy in labelled experiments, 
although dominancy here is generally much less of an issue. 
 
Whilst it is well known that the presence of dominant alternatives in the dataset can lead to 
significantly biased parameter estimates in model estimation (Huber et al., 1982), there is 
surprisingly little research on the exact nature and magnitude of the impacts and how best to 
resolve the problem. The most common approach is simply to remove choice tasks with 
dominant alternatives during the survey design stage. Some deliberately put a dominant 
alternative in a survey to test attention or understanding of a respondent, and eliminate the 
choice task later in model estimation (or even remove all observations from the respondent in 
case he or she fails to choose the dominant alternative). In many cases this is a manual 
exercise in which the analyst reviews the choice tasks and eliminates the ones with dominant 
alternatives. Such choice tasks may easily be overlooked at the design stage and end up in the 
survey used during data collection. Then the analyst has the choice to remove them from the 
dataset during the data cleaning stage, or keep them in and account for them in estimating 
choice models. 
 
The contributions of our study are as follows. First, we define a dominancy measure based on 
regret minimization. Secondly, we propose a new design methodology that automatically 
detects problematic choice tasks by embedding our dominancy measure and generates an 
experimental design without dominancy issues. Thirdly, we study the impact of the presence 
of dominant alternatives in the dataset on parameter estimates in a simple multinomial logit 
context and show that mainly scale is affected. Finally, we propose a novel discrete choice 
model that corrects for the presence of dominant alternatives by automatically adjusting the 
scale for each choice task based on a smooth approximation of our newly proposed 
dominancy measure. 
 
The paper is structured as follows. In Section 2 we provide a brief literature review on 
dominant alternatives in stated choice studies and show that such alternatives easily occur in 
experimental designs. In Section 3 we describe a measure expressed in terms of regret that 
can be used to detect dominant alternatives in an experimental design or dataset. Further, we 
describe a new efficient experimental design methodology that we term D*-efficiency, which 
aims to generate a design with maximum information while avoiding dominant alternatives. 
Section 4 proposes a novel regret-scaled multinomial logit model aiming to correct for scale 
differences due to dominant alternatives. Section 5 describes eight experimental designs with 
varying numbers of problematic choice tasks in a simple route choice case study, and use 
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these in order to simulate choice observations as well as to collect empirical data in a real-
world survey. Section 6 describes the simulation results, while Section 7 discusses outcomes 
from the empirical dataset. Section 8 extends our regret measure to include utility functions 
with nonlinear effects and labelled experiments. Finally, Section 9 concludes with a 
discussion, recommendations, and limitations of this study. 
 
2. Dominancy in stated choice studies 
 
2.1 Literature review 
 
Analysts often include dominant alternatives on purpose in order to determine whether a 
respondent pays attention to or understands the survey. For example, in the DATIV study in 
Denmark in 2004 (Burge and Rohr, 2004), nine choice tasks were generated for an unlabelled 
experiment with two alternatives and two attributes (travel time and travel cost) and choice 
task six contained on purpose a dominant alternative. If the respondent failed to choose the 
dominant alternative, all choices from this respondent were removed from the dataset. Also in 
a value of time study in the Netherlands such a dominant alternative was imposed in one of 
the choice tasks (Van de Kaa, 2006). Bradley and Daly (1994) collected data using a design 
in which the first choice task contained a dominant alternative as a lead-in into the survey, 
which also allows the interviewer to check whether the respondent has understood the choice 
task. They estimate a discrete choice model with a separate scale parameter for each choice 
task. The scale parameter of the first choice task with the dominant alternative is much larger 
compared to the other scale parameters, a result that is in line with behavioural intuition and 
discrete choice theory (see Section 4). Foster and Mourato (2002) use dominant alternatives 
to test for consistency of responses. Also Johnson and Mathews (2001) and many others 
include a dominant alternative in the survey to test for consistency. It could be argued that 
including a dominant alternative in a survey could be problematic and may actually lead to 
inconsistency in subsequent choice tasks, since the respondent may no longer take the survey 
seriously. Therefore, putting a choice task with a dominant alternative at the end of the 
survey is possibly better than at the beginning of the survey. 
 
Hensher et al. (1988) states that dominant alternatives often occur when generating 
experimental designs. Experimental designs differ with respect to structure and combinations 
of attribute level combinations and can also be related to efficiency. The efficiency of a 
design describes the reliability with which parameters of a given model can be estimated, and 
several efficiency measures have been proposed in the literature. Walker et al. (2015) 
generate several experimental designs (e.g., random, orthogonal, D-efficient) and illustrate 
that it is necessary to check for dominant alternatives and remove such choice tasks in all 
design types. Hence, existing experimental design strategies are not immune to dominancy. 
Crabbe and Vandebroek (2012) propose adjusting prior information in order to significantly 
reduce the likelihood of generating dominant alternatives in Bayesian D-efficient designs 
(although they cannot be avoided completely). Altering prior information may reduce the 
occurrence of dominant alternatives, but is not desirable since the analyst is artificially 
changing assumptions on preferences of respondents. Huber and Zwerina (1996) propose a 
utility balancing approach that limits (but not necessarily prevents) the number of dominant 
alternatives. However, one has to be careful since a high level of utility balance may lead to 
efficiency losses.  
 
As stated in Huber et al. (1982, page 91), “[d]ominance is not easily modeled by most choice 
models”. In most cases, the analyst will remove choice tasks with dominant alternatives from 
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the dataset before model estimation, motivated by the idea that no information is obtained 
from choices of dominant alternatives (Hensher et al., 1988). As discussed above, 
experimental designs created using common design techniques often include dominant 
alternatives (by accident or on purpose). Therefore, there is often the need to check for them 
in the survey design stage as well as the data cleaning stage.  
 
In practice it is often not too difficult to manually detect and remove problematic choice tasks 
in a survey during the survey design stage. However, as choice tasks become more complex 
and multiple designs of the survey may exist with different sets choice tasks, it may become 
more difficult for the analyst to detect them, so experimental designs may need to be 
computer generated with appropriate dominancy constraints on choice tasks in place. In 
practice, most analysts post-process the experimental designs and remove choice tasks with 
dominant alternatives. This leads in almost all cases to a loss of orthogonality (if the design 
was orthogonal in the first place), efficiency, and attribute level balance of the design. It is 
therefore desirable to make the dominancy check an integral part of the experimental design 
methodology.  
 
Next we illustrate that experimental designs for surveys with unlabelled alternatives are very 
likely to contain dominant alternatives without proper attention.    
 
2.2 Likelihood of dominant alternatives in unlabelled experiments 
 
Consider a stated choice survey with M unlabelled alternatives described by A attributes. 
Furthermore, suppose that each attribute has L levels. An MAL  factorial experimental design 
contains all possible choice tasks described by combinations of attribute levels (Louviere et 
al., 2000), although some of these choice tasks will essentially be the same by simply re-
arranging the order of the alternatives in the survey (because they are unlabelled).  
 
Making assumptions on the respondents’ preferences, the analyst can determine dominant 
alternatives. The fewer attributes are present in the survey, the higher the likelihood that 
dominance will occur. Also, having more alternatives and fewer attribute levels increases the 
chance of dominant alternatives. Table 1 illustrates the fraction of choice tasks without a 
dominant alternative in an MAL  factorial design. For example, 89.3 per cent of choice tasks in 
a 3 33 ×  full factorial design has a dominant alternative, leaving only 350 unique choice tasks1 
without a dominant alternative2. Suppose that we would like to create a design consisting of 
six choice tasks. In total 350

6
 
 
 

( ) 12350!/ 6!(350 6)! 2.445 10= − ≈ ⋅  unique designs without 

dominant alternatives can be created. While this is a very large number of possible designs to 
choose from, since the probability of picking a choice task without a dominant alternative is 
1 89.3 10.7− =  per cent, this means that the probability of randomly generating a design 
without any dominant alternatives is negligible (around 0.00015 per cent). For certain design 
dimensions it is not even possible to find choice tasks that do not contain a dominant 
alternative (e.g., a 3 22 ×  design, 4 22 ×  design, 4 32 ×  design, and 4 23 ×  design). The choice tasks 

                                                 
1 In total there are 2,100 choice tasks without a dominant alternative, but most of them are permutations of 350 
unique choice tasks by re-ordering alternatives. The number of possible permutations for three alternatives is 
3! 6,=  such that the number of unique combinations is 2100 / 6 350.=  
2 Note that in order to check dominancy for all cases in Table 1, only relative differences between attributes 
matter. Hence, the number of choice tasks without a dominant alternative does not depend on the exact marginal 
utilities of each attribute, we only require the signs to be known without stating whether they are positive or 
negative. 
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without dominant alternatives corresponding to the shaded design dimensions in Table 1 are 
shown in Table 2, in which we use two or three route alternatives with two (travel time and 
toll cost) or three attributes (travel time, fuel cost, toll cost), and two or three levels (10, 15, 
and 20 minutes travel time and $1, $2, or $3 costs, where the middle level is omitted in case 
of two levels only). Clearly, requiring non-dominance is typically a rather strict constraint on 
the experimental design.  
 
 
Table 1 – Dominancy in choice tasks in an MAL  factorial design 

L M A Dominant (%) Unique non-dominant tasks 
2 2 2 87.5  1  
2 2 3 71.9  9  
2 2 4 57.0  55  
2 3 2 100  0  
2 3 3 97.7  2  
2 3 4 90.6  64  
2 4 2 100.0  0  
2 4 3 100.0  0  
2 4 4 99.1  25  
3 2 2 77.8  9  
3 2 3 55.6  162  
3 2 4 38.3  2,025  
3 3 2 99.2  1  
3 3 3 89.3  350  
3 3 4 72.9  24,025  
3 4 2 100.0  0  
3 4 3 98.6  310  
3 4 4 91.1  159,300  
4 2 2 71.9  36  
4 2 3 47.3  1080  
4 2 4 30.1  22,896  
4 3 2 97.7  16  
4 3 3 82.2  7,760  
4 3 4 61.8  1,069,056  
4 4 2 99.9  1  
4 4 3 95.9  28,355  
4 4 4 -- *  -- *  

* Not calculated since there exist 4 44 4,295,000,000× ≈  choice tasks 
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Table 2 – Choice tasks without dominant alternatives in several MAL  factorial designs  
 Route A Route B Route C 
Task Time Fuel Toll Time Fuel Toll Time Fuel Toll 
          

Unique non-dominant choice tasks in a 2×22  factorial design 
1 10 – 3 20 – 1 – – – 
          

Unique non-dominant choice tasks in a 2×32  factorial design 
1 10 1 2 10 3 1 – – – 
2 10 1 2 20 1 1 – – – 
3 10 1 2 20 3 1 – – – 
4 10 3 3 20 1 1 – – – 
5 10 3 3 20 1 3 – – – 
6 10 3 3 20 1 1 – – – 
7 10 3 3 20 1 3 – – – 
8 10 3 3 20 3 1 – – – 
9 20 1 3 20 3 1 – – – 
          

Unique non-dominant choice tasks in a 3×32  factorial design 
1 10 3 3 20 1 3 20 3 1 
2 10 1 3 10 3 1 20 1 1 
          

Unique non-dominant choice tasks in a 2×23  factorial design 
1 15 – 3 20 – 2 – – – 
2 10 – 3 20 – 2 – – – 
3 15 – 3 20 – 1 – – – 
4 15 – 2 20 – 1 – – – 
5 10 – 3 20 – 1 – – – 
6 10 – 2 20 – 1 – – – 
7 10 – 3 15 – 2 – – – 
8 10 – 3 15 – 1 – – – 
9 10 – 2 15 – 1 – – – 
          

Unique non-dominant choice tasks in a 3×23  factorial design 
1 10 – 3 15 – 2 20 – 1 
          
 
 
3. Detecting dominant alternatives in unlabelled experimental designs 
 
In this section a simple measure is proposed that, together with assumptions on preferences, 
can be used to assess whether a choice task contains a dominant alternative in an unlabelled 
experiment and to generate experimental designs without dominancy.  
 
3.1 Dominancy measure 
 
Consider a choice model with systematic utilities nsjV  for each respondent {1, , },n N∈   
alternative {1, , }j J∈   and each choice task {1, , }.s S∈   Assume that each alternative has 



7 
 

attributes indexed by {1, , }.k K∈   We further assume that the systematic utilities are given 
by a linear function ( | )nsj nsj n n nsjV ′=x β β x  (the prime indicates the transpose operator) in 
which for each respondent n and each choice task s, alternative j is represented by a set of 
attribute levels given by a 1K ×  vector 1, ,[ ]nsj nsjk k Kx ==x



 called a profile. Preferences of 
respondent n are given by a 1K ×  vector of coefficients, 1, ,[ ] .n nk k Kβ ==β



 For each 
respondent n, choice task s is defined by the 1 JK×  vector consisting of profiles, 

1[ , , ].ns ns nsJx x′ ′=x   As shown in Table 2, an experimental design for respondent n is the 
collection of choice tasks given by S JK×  matrix 1[ , , ] ,n n nS ′=x x x  where each row 
represents a choice task. Note that in many cases design nx  will be the same for all 
respondents (called a homogeneous design), but in some cases these levels may vary across 
respondents (heterogeneous design). For example in a pivot design the attribute levels are 
based on respondent specific reference levels (Rose et al., 2008).  
 
We define dominance of an alternative as follows. An alternative j is said to dominate 
alternative i for respondent n in choice task s if for each attribute k the utility of alternative j 
is larger than (or equal to) the utility that would be obtained if the level of that attribute in 
alternative j would be replaced by its level in alternative i, ceteris paribus (keeping all other 
attribute levels in alternative j the same). This is a fairly general definition of dominance that 
can also be applied to nonlinear utility functions as we will show in Section 8.1.  
 
We can formulate this definition in terms of profiles. Define , ,ns j i k←∆  as the difference in 
utility between alternative j and alternative i in choice task s for respondent n by only 
comparing differences in attribute k. Consider alternatives j and i with profiles nsjx  and nsix , 
respectively. Then , ,ns j i k←∆  is defined as 
 

, , ( ).ns j i k nk nsjk nsikx xβ←∆ = −  (1) 
 
An alternative j with profile nsjx  is said to dominate an alternative i with profile nsix  if and 
only if 
 

, , 0,ns j i k←∆ ≥     for all k. (2) 
 
Alternative j would strictly dominate alternative i if the inequality sign in (2) would be strict 
for at least one attribute k. If the profiles of i and j are identical, then , , 0ns j i k←∆ =  for all k and 
the inequalities in (2) hold by definition. 
 
An alternative j is said to be dominant in choice task s for respondent n if and only if 
 

, , 0,ns j i k←∆ ≥     for all k, for all .i j≠  (3) 
 
Alternative j is strictly dominant if the inequality in (2) strictly holds for at least one attribute 
k and one other alternative i.  
 
In order to determine whether , , 0ns j i k←∆ ≥  the analyst needs to look at the difference in the 
levels of attribute k between alternatives i and j, and needs to know the (expected) sign of 
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coefficient nkβ  for each attribute (and for each respondent). The exact value of the coefficient 
is not relevant. If the analyst expects that an attribute has a negative impact on utility (e.g., 
travel time, toll cost), then the analyst can simply use 1nkβ = −  (or any other negative value), 
while for attributes with a positive impact on utility (e.g., in-flight entertainment, on-board 
wifi) one can use 1nkβ =  (or any other positive value). This is useful for removing dominant 
alternatives at the survey design stage where exact information about coefficient values is 
typically not available. 
 
In case the (expected) sign of a coefficient is unknown, we can assume 0nkβ = , which means 
that , , 0ns j i k←∆ =  and hence we implicitly assume no trade-offs on this attribute. In order to 
avoid dominant alternatives this means that we will require trade-offs on other attributes, that 
is, we need at least one attribute k for which holds that , , 0.ns j i k←∆ <  Setting multiple 
coefficients equal to zero will make it more difficult (and perhaps even impossible) to find 
designs without dominant alternatives. One could argue that if one does not know the sign of 
coefficients of multiple attributes, then there will be no apparent dominant alternatives and 
therefore checking for dominancy is not needed. 
 
The conditions in (3) can be combined into the following measure:  
 

{ }, ,
1
max 0, 0.

K

nsj ns j i k
i j k

R ←
≠ =

= −∆ =∑∑  (4) 

 
Value nsjR  can be seen as the regret that respondent n attaches to selecting alternative j over 
all other alternatives in choice task s. More specifically, we use conceptualization of regret as 
proposed in the context of the random regret minimization (RRM) model (Chorus et al., 
2008; Chorus, 2010).3 If this regret is zero, then alternative j is better than (or equally good 
as) alternative i in a pairwise comparison between all attributes. Therefore, in order for the 
respondent to make trade-offs, nsjR  need to be strictly positive, in which a respondent always 
feels some regret choosing an alternative. If 0nsjR =  for all alternatives j, then all their 
profiles are identical. 
 
Define also for each respondent n and each choice task s the minimum regret per choice task, 

,nsR  and the minimum regret per design, ,nR  
 

min{ },ns nsjj
R R=  (5) 

min{ }.n nss
R R=  (6) 

 
If 0,nsR =  then choice task s contains a strictly dominant alternative or it contains identical 
alternatives. In both cases no trade-offs between attributes need to be made, hence we 

                                                 
3 This conceptualization of regret differs from the one proposed in classical regret based models such as Regret 
Theory (Loomes and Sugden, 1982); these conventional theories postulate that regret is a function of the relative 
utilities of alternatives and can only exist in the context of uncertainty. In contrast, RRM postulates that regret is 
a function of the relative values of attributes and that it arises – also in the absence of uncertainty – when the 
decision maker has to put up with a relatively poor performance on one or more attributes to arrive at a 
relatively strong performance on other attributes. 
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typically would like to avoid such choice tasks in the dataset (since they provide no 
information). Hence, in this section, we make no distinction between the two cases. However, 
as will be discussed in Section 4, the two cases have a very different impact on scale in 
estimation. If 0,nR =  then the experimental design contains at least one dominant alternative.  
 
While a deterministic model postulates that rational respondents always select a dominant 
alternative, this may not be the case in a stochastic model with random utilities. In this case, 
each respondent is assumed to maximise random utility given by ,njs njs nsjU V ε= +  where nsjε  
is a random unobserved error term following a certain probability distribution. Even in a 
random utility framework it may be difficult to explain why a respondent would choose a 
dominated alternative in an unlabelled choice experiment. Assuming that the analyst has a 
correct understanding of the coefficients of the respondent, it may be that the error is 
confounded with one of the attributes, i.e., the respondent may relate a small travel time to a 
trip on a motorway (a characteristic not included as an attribute in the model and therefore 
assumed to be in the error term), and may not like driving on motorways. Then even if the 
respondent has a negative marginal utility for travel time, he or she may still choose the 
alternative with a higher travel time. Hence, the error will never be exactly equal to zero, but 
will likely be close to zero. Understanding that dominance is related to the error term, which 
in turn is related to the scale parameter in a logit model, is the starting point for scaling each 
choice task with respect to regret in Section 4. 
 
3.2 Efficient experimental designs without dominant alternatives 
 
None of the existing experimental design techniques rule out the existence of dominant 
alternatives in one or more choice tasks. We therefore propose a constrained experimental 
design method that automatically checks for dominancy (i.e., strictly dominant alternatives 
and identical alternatives that are not strictly dominated) within the design.  
 
Assume that nX  denotes the set of all possible experimental designs for respondent n that 
satisfy the analysts design dimensions and possibly attribute level balance and orthogonality. 
A D-optimal design is a matrix with attribute levels n nX∈x  that minimises the determinant 
of the asymptotic variance-covariance (AVC) matrix under the assumption of a vector of 
prior coefficients nβ  (e.g., Huber and Zwerina, 1996). Such a design maximises the (Fisher) 
information obtained from the choice tasks. Since in most cases one cannot guarantee to have 
found the optimal design (as this would require evaluating all possible designs), these designs 
are often referred to as D-efficient instead of D-optimal. Besides minimising the determinant, 
one can also minimise the trace of the AVC matrix (resulting in an A-efficient design), or 
minimise the maximum sample size required for statistically significant parameter estimates 
(resulting in an S-efficient design, see Rose and Bliemer, 2013).  
 
We define a D*-optimal (efficient) design as a design that maximises the determinant of the 
Fisher information matrix under the restrictions that (i) the design contains no dominant 
alternatives as defined in (3) and (4), and (ii) does not contain choice task replications. 
Permutations of profiles in a choice task result in an identical choice task. This is not 
necessarily a problem, and sometimes such choice tasks are included in the design on purpose 
in order to assess consistent choice behaviour respondents (see Section 1.2). However, most 
analysts would prefer to include unique attribute level combinations in each choice task and 
avoid any replications.  
 



10 
 

To formulate mathematically, let ( | )n nI x β  denote the Fisher information matrix that depends 
on the experimental design and prior coefficients nβ . These prior values can be best guesses 
from the literature, a pilot study, or expert judgement (Bliemer and Collins, in press). Then 
the D*-optimal design for respondent n is the matrix n nX∈x  that solves the following 
nonlinear programming problem: 
 
                                             max ( | )

n n
n nX

I
∈x

x β  

                          subject to:  ( | ) 0,n n nR >x β  
                            nx  does not contain choice task replications, 

(7) 

 
where ⋅  denotes the matrix determinant. Note that such a design cannot be generated if 

,n =β 0  i.e., if the analyst has no information regarding the coefficients, not even the sign, 
since in that case by definition ( | 0) 0.n nR =x  In case the analyst only knows the signs, one 
can set values close to zero for the priors, i.e. 0.001nkβ = −  or 0.001.nkβ =  This enables 
computation of minimum regret and these small deviations from zero will only have little 
effect on the Fisher information matrix.  
 
Similarly, an A*-optimal, S*-optimal or other efficient designs can be defined, where the 
asterisk indicates that the design is dominancy constrained. Also other more advanced 
designs such as Bayesian D*-optimal designs can be defined by a direct extension of 
Bayesian D-optimal designs (Sándor and Wedel, 2001). Such Bayesian efficient designs are 
more robust against misspecification of prior coefficients. In order to check for dominancy, 
one can use the sign of the mean of the Bayesian prior distribution. 
 
Traditional column based algorithms, i.e., relabelling and swapping techniques described in 
Huber and Zwerina (1996), modify columns in matrix nx  and will generally struggle 
generating designs without dominant alternatives. Since the dominancy constraint is on the 
entire choice task, a row based algorithm that modifies a row in matrix nx  will therefore be 
more useful. Federov (1972) proposed a row based algorithm for generating efficient designs, 
which was modified by Cook and Nachtsheim (1980). This modified Federov algorithm can 
be used to first construct a candidature set that consist of all (or a select of) choice tasks that 
do not contain dominant alternatives. For example, when generating a fractional factorial 3 33 ×  
design, we first determine the 350 unique choice tasks without dominancy and without 
replications (see Table 1). Then we randomly select S choice tasks from this set to form a 
design, and keep replacing rows in the design with rows in the candidature set until the best 
design has been found. Note that the number of designs that can be created by selecting S 
tasks out of 350 is typically very large (see Section 2.2). Therefore the algorithm is usually 
terminated once the Fisher information no longer improves for a certain number of iterations.  
 
We implemented a column based as well as a row based algorithm in Ngene version 1.1 
(ChoiceMetrics, 2012), which that take the constraint 0nR >  into account and avoids 
replications of the same choice task. We use these algorithms to generate the D*-efficient 
designs in this paper. While a row based algorithm can easily avoid dominant alternatives, it 
is more difficult to generate attribute level balanced designs. If attribute level balance is 
required, our algorithm selects new choice tasks from the candidature set such that attribute 
level balance is satisfied or only marginally violated. 
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4. Regret-scaled multinomial logit model 
 
4.1 Choice task based scaling 
 
Suppose that the analyst decides not to remove choice tasks with dominant alternatives from 
the dataset and wishes to estimate a simple discrete choice model assuming a decision maker 
n selecting alternative j that maximise the random utility ,nsj nsj nsjU V ε= +  where nsjε  is a 
random, unobserved (by the analyst) component of the utility. 
 
Now, there are two reasons why one would expect the variance of the error term (which is 
definitionally linked to the inverse of the scale of utility) to decrease strongly when a choice 
task contains a dominating alternative, leading to more deterministic behaviour and hence 
choice probabilities close to 1 for the dominant alternative. First, in a conventional logit 
model with non-random parameters, a substantial portion of the error variance consists of 
unobserved taste heterogeneity across respondents. Now, if we are willing to assume that this 
heterogeneity does not involve sign differences across respondents (e.g., we assume that 
despite differences in cost sensitivity, everyone dislikes higher costs), such taste 
heterogeneity would not lead to heterogeneity in choice outcomes when a dominant 
alternative is present. That is, irrespective of differences in weights assigned to attributes by 
respondents everyone would choose the dominant alternative as it by definition performs best 
on all attributes (we for the moment ignore other sources of error; see directly below). So, the 
unobserved taste heterogeneity which in non-dominated choice tasks constitutes a sizeable 
portion of error variance leading to a distribution of choices across alternatives, is expected to 
vanish in choice tasks with a dominant alternative, leading to a much larger scale of utility, 
i.e., a much smaller error term variance, and hence much more pronounced differences in 
choice probabilities.  
 
Second, it is expected that choice tasks containing a dominant alternative are perceived by 
individuals as being much easier to respond to than non-dominated choice tasks. The reason 
is that, in the latter choice tasks, a trade-off needs to be made by the respondent whereas in 
the former this is not the case. As a consequence, we expect that there will be less 
behavioural idiosynchracies or mistakes in the dominated choice tasks than in other tasks. 
Since such idiosynchracies by definition end up in the error term, this is another reason why 
it is expected that the variance of the error term will be strongly diminished when a choice 
task contains a dominant alternative. 
 
In order to account for these expected differences in scale across observations which are due 
to the presence of dominant alternatives in some choice tasks, one can estimate a model with 
choice task specific scale parameters, such as in Bradley and Daly (1994). Scale parameters 
for choice tasks with a strictly dominant alternative are expected to be large in contrast to 
other choice tasks. On the other hand, a choice task with identical alternatives will also not 
allow any trade-offs, but is expected to have a very small scale parameter, since the choice 
will be mostly based on the unobserved component (i.e., the user chooses more or less 
randomly since all alternatives are the same). Indeed, these expectations are in line with the 
results of Bradley and Daly, who estimated 14 scale parameters on top of four regular 
coefficients in the utility function. One of the scale parameters (corresponding to a base 
choice task) needs to be set to one, and all other scales are relative to this base. Clearly, such 
a choice task specific scaling significantly increases the number of parameters to be 
estimated. In order to avoid having to estimate a separate parameter per choice task, we adopt 
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a parametric approach in which we make scale a function of our dominancy measure 
introduced in Section 3.1.  
 
Under the assumption that nsjε  are independently and identically extreme value type I 

distributed with variance 2 21
6 ,nsπ λ−  we obtain an extension of the well-known multinomial 

logit (MNL) model (McFadden, 1974) in which this variance of the error term in choice task 
s is inversely related to the scale in the choice task, .nsλ  The probability of respondent n 
selecting alternative j in choice task s is then given by 
 

1

exp( )
.

exp( )
ns nsj

nsj J
ns nsii

V
P

V

λ

λ
=

=
∑

 (8) 

 
In a (homoscedastic) MNL logit model, 1nsλ =  for all s. In case of a strictly dominant 
alternative in choice task s, the variance of error nsjε  is expected to diminish, which 
corresponds to an increase in the scale parameter.  
 
There is a formal equivalence between Luce models (Luce, 1959) and standard MNL models. 
The probabilities in Equation (8) are consistent with a set-dependent Luce model (Marley et 
al., 2008), where the scale can depend on (all) the options in the choice set, and this class of 
models could be called set-dependent MNL models. As with the MNL model with a scale 
that does not depend on the choice set, the Luce model cannot produce a probability of one 
for a dominant alternative except in the limit as the scale goes to infinity.  
 
In our study, we will relate scale parameter nsλ  to minimum regret nsR  in order to make it 
heteroscedastic. However, there are two concerns in using minimum regret nsR  as a 
descriptor for .nsλ  First of all, nsR  is bounded from below by zero, but the upper bound 
depends on the attribute level ranges. For interpretability reasons we prefer an upper bound 
that does not rely on the levels, similar to the entropy upper bound of (independent of 
attribute level range) used in the model of Swait and Adamowicz (2001) for scaling choice 
tasks according to complexity. Secondly, nsR  as defined in Equation (5) is not ‘smooth’, 
since it involves minimum and maximum operators. This typically leads to numerical 
problems in model estimation, and it also does not discriminate between a choice task with a 
strictly dominant alternative (with a very high scale parameter) and a choice task with 
identical alternatives (with a very low scale parameter). We address these two concerns in the 
next subsections. 
 
4.2 Normalised minimum regret 
 
In order to address the first issue, we simply normalise the minimum regret by the average 
regret in the choice set. Hence, our normalised minimum regret nsM  becomes 
 

1
1

.ns
ns J

nsjj

RM
J R−

=

=
∑

 (9) 
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Note that 0njsR ≥  for all alternatives j such that 0.nsM ≥  Suppose that choice task s contains 
a strictly dominant alternative for respondent n. This means that 0nsR =  and there exists a 
dominated alternative j for which 0.njsR >  As a result, a choice task with a strictly dominant 
alternatives yields 0.nsM =  Now suppose that choice task s does not contain any strictly 
dominant alternatives for respondent n, such that 0njsR >  for all alternatives j. Since nsR  is 

the minimum over these values, nsR  can never be greater than 1 ,njsJ j
R∑  hence 1.nsM ≤  The 

upper bound of 1nsM =  is reached when all alternatives have the same positive regret ,nsjR  
making each alternative equally attractive. In summary, it holds that [0,1].nsM ∈  
 
In the extreme case where the profiles of all alternatives in a choice task are identical, i.e., 

0njsR =  for all alternatives j, the normalised minimum regret in (9) is undefined (zero divided 
by zero). Clearly such choice tasks should be prevented at all times, but as we will show in 
Section 4.3, the smooth approximation of the normalised minimum regret is properly defined 
in this extreme case and will not lead to numerical problems.  
 
It is interesting to note how normalised minimum regret nsM relates to entropy ,nsE  which is 
defined by Shannon (1948) as (our notation): 
 

1
log .

J

ns nsj nsj
j

E P P
=

= −∑  (10) 

 
This entropy value is bounded by 1

2 2[0, log( )].J
nsE ∈ −  Entropy is used as a proxy for choice 

task complexity in Swait and Adamowicz (2001). Typically a low (high) normalised 
minimum regret also means a low (high) entropy, and vice versa. For example, if a choice 
task has a strictly dominant alternative (i.e., a relatively easy choice) such that one alternative 
is chosen with a probability equal to 1, then 0nsM =  and 0.nsE =  On the other hand, if all 
alternatives are different on every attribute but probabilities and regrets are identical (i.e., a 
relatively difficult choice), then both nsM  and nsE  are maximised.  
 
An important difference is that entropy depends on choice probabilities, which makes it 
dependent on the model assumptions. Normalised minimum regret only depends on the utility 
function and not on a specific type of discrete choice model. This means that the entropy 
metric is much less sensitive to dominancy than the regret metric, especially when attribute 
differences across alternatives are small. To illustrate this, consider a simple route choice 
example in which Route A is described by a travel time of 10 minutes and a travel cost of $1, 
while Route B has a travel time of 11 minutes and the same travel cost of $1, making route A 
a strictly dominant alternative. Assume a linear utility function and negative coefficients for 
time and cost. If one uses an MNL model, then the probabilities will be almost identical, 
yielding a high value for .nsE  In contrast, nsM  will be equal to zero.  
 
4.3 Smooth approximation of minimum regret 
 
In order to resolve the second issue, we replace the maximum operator with the ‘soft 
maximum’ operator in order to approximate the non-smooth minimum regret nsR  function by 
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a smooth function nsR  (we denote all smooth approximations with a tilde). The soft 
maximum for a series of values 1, , Za a  is defined as follows (see e.g., Cook, 2011): 
 

1

1max{ } log exp( ) ,
Z

z zz z
a aξ

ξ =

 ≈  
 
∑  (11) 

 
where 0ξ >  defines the ‘hardness’. The approximation becomes exact if .ξ →∞  In this 
paper we will use 10ξ =  since Figure 1 illustrates that using this value results already in a 
reasonably good approximation of the maximum operator. Using a larger value would 
theoretically yield a better approximation but may lead to numerical problems due to the use 
of the exponential function in Equation (11).  
 
The smooth approximation for the regret of alternative j, as defined in Equation (4), is given 
by 

( )( ), ,
1

1 log 1 exp .
K

nsj ns j i k
i j k

R ξ
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≠ =

= + − ∆∑∑  (12) 

 
The smooth approximation for nsR  in Equations (5) and (6) can be calculated in the same 
way by taking the ‘soft minimum’. Since min { } max{ },z z za a= − −  we can use Equation (12) 
again to calculate the following smooth approximations: 
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Figure 1 – Smooth approximation for different levels of ‘hardness’ 
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It is interesting to note that Equation (12) is identical to the formulation of regret for an 
alternative as formulated in Chorus (2010) and using a moderate hardness of the soft 
maximum of 1,ξ =  resulting in  
 

( )( )
1
log 1 exp ( ) .

K

nsj nk nsik nsjk
i j k

R x xβ
≠ =

= + −∑∑  (15) 

 
Furthermore, regret for a choice task as stated in Equation (13) is identical to the random 
regret logsum derived by Chorus (2012) in the case of 1.ξ =  Our generalisation with respect 
to hardness ξ  and nonlinear utility functions (including interactions between attributes, see 
Section 8.1) can also be applied in a random regret choice modelling context. Van 
Cranenburgh et al. (2015) provide an alternative derivation and interpretation of hardness ξ  
in the regret formulation.  
 
The smooth approximation of normalised minimum regret nsM , denoted by ,nsM   can be 
calculated for each respondent n and for each choice task s using Equation (9) by replacing 

nsR  with nsR  and nsjR  with .nsjR  If choice task s for respondent n has a strictly dominant 

alternative j, then 0nsM →  approaches zero for a sufficiently large .ξ  In case all alternatives 
have an identical positive regret ,R′  then 11 log( )( ) ,nsM J Rξ −′= −  which approaches one for 
sufficiently large values of .ξ  Hence, for finite ξ  it holds that (0,1).nsM ∈  Finally, consider 
the case in which all alternatives are represented by identical profiles, i.e., 0nsjR =  for all 
alternatives j. While nsM  in Equation (10) is undefined in this case, it can be shown that in 

case of identical profiles ( ) 11 ( 1) log(2) log( ),nsM K J J−= − −  which equals 0.5 when 
2.J K= =  

 
4.4 Scaling using smooth approximations of normalised minimum regret 
 
Now that we have normalised minimum regret and also derived a smooth approximation, we 
can relate scale nsλ  to nsM  in such a way that scale decreases with increasing normalised 
minimum regret. Two obvious choices would be an exponential or a power function. We 
propose the following power function: 
 

,ns nsM γλ −=   (16) 

 
where γ  is a coefficient that needs to be estimated. If 0,γ =  then the probabilities in 
Equation (8) are consistent with the homoscedastic MNL model. Given how nsλ  and nsM  are 
related, it is expected that 0.γ ≥  We also tested other functional forms, such as 

exp( ),ns nsMλ γ= −   but a power function seems to work best, especially since nsλ →∞  if 
0.nsM →  We call our choice model in Equation (8) with scale determined as in Equation 

(16) a regret-scaled multinomial logit (RS-MNL) model.  
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5. Simulated and empirical datasets 
 
In order to demonstrate how dominancy can be excluded from surveys, how it can be taken 
into account in estimation, and how it affects results when not taken into account 
appropriately, we created four experimental designs for a simple route choice study. Then we 
used these designs to simulate choices and also to create an online survey to collect actual 
choice data from respondents.  
 
5.1 Simple route choice case study 
 
In order to demonstrate the impact of dominancy, we consider a simple route choice case 
study in which there are two unlabelled alternatives (Routes 1 and 2) with a generic linear 
utility function considering two attributes, namely travel time and travel cost: 
 

,njs T njs C njsV T Cβ β= +  (17) 

 
where Tβ  and Cβ  are the coefficients for time and cost, respectively, such that the value of 
travel time savings (VTTS) is given by / .T Cβ β  We assume a homogeneous population such 
that these coefficients are the same for all respondents, and four different levels for each 
attribute, namely {10,15,20,25}njsT ∈  (minutes) and {1,2,3,4}njsC ∈  (Australian dollars). We 
generate homogeneous and heterogeneous designs in which each respondent faces eight 
choice tasks.  
 
In order to assess dominancy, we need to know the signs of the coefficients. We assume that 
coefficients Tβ  and Cβ  are both negative. Further, in order to generate efficient experimental 
designs, we assume the following prior values (best guesses) for these coefficients: 

0.2Tβ = −  and 1.2,Cβ = −  such that the VTTS is $10 per hour. 
 
5.2 Experimental designs 
 
We generate eight experimental designs as listed in Table 3, namely three heterogeneous 
designs (denotes R1, R2, and R3) in which each respondent faces a different set of randomly 
generated choice tasks (we create in total 2500 different sets), and five homogeneous designs 
(denoted O1, O2, E1, E2, and E3) constructed using orthogonality and/or efficiency criteria 
in which each respondent faces the same choice tasks. For more information on generating 
experimental designs for stated choice studies we refer to Huber and Zwerina (1996) and 
Rose and Bliemer (2009).  
 
According to Table 1, there are 36 unique choice tasks without dominant alternatives, such 
that there exist 36

8
 
 
 

30,260,340=  unique designs consisting of eight choice tasks without a 

dominant alternative. As shown in Table 3, existing methods for generating experimental 
designs, including random designs (R1, R2), (near-)orthogonal designs (O1, O2), and D-
efficient designs (E1), are not able to rule out choice tasks with dominant alternatives (each 
respondent faces at least two such choice tasks in each of the designs). Designs R3, E2, and 
E3 have been created by rejecting designs that include choice tasks with a dominant 
alternative (detected using our regret measure). The D-error reported in Table 3 is a measure 
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for the efficiency of a design for a single respondent4 and is computed as 1/( | ) K
n nI −x β  

assuming priors ( 0.2, 1.2)n ′= − −β  for all respondents n. The lower the D-error, the more 
(Fisher) information is captured per choice task and the smaller standard errors in estimation 
will be. Some of the designs are attribute level balanced, while others are not. Attribute level 
balance ensures that the respondent sees all attribute levels an equal number of times 
throughout the survey and that the data covers the range of levels for each attribute equally, 
which is often seen as a desirable property.  
 
Table 3 – Generated experimental designs 
 Experimental design 

 R1 R2 R3 O1 O2 E1 E2 E3 

D-error 0.121 0.127 0.089 0.304 0.076 0.057 0.064 0.053 

Dominant choice tasks 68% 72% 0% 100% 63% 25% 0% 0% 

Design property         

Random choice tasks ■ ■ ■      

(Near) orthogonal    ■ ■    

Attribute level balanced ■   ■ ■ ■ ■  

D-efficient     ■ ■ ■ ■ 

No strict dominancy   ■    ■ ■ 
 
Design R1 is generated using a column based algorithm in which we create choice tasks for 
each respondent by taking random permutations of levels within each column of an initial 
design matrix that has attribute level balanced columns (10,10,15,15,20,20,25,25)′  and 
(1,1,2,2,3,3,4,4)′  for the time and cost attributes, respectively. On average 68 per cent of the 
choice tasks contain a dominant alternative. Design R2 is generated using a row based 
algorithm in which we randomly select attribute levels for each attribute and each alternative. 
This design does not satisfy attribute level balanced and contains on average 72 per cent 
choice tasks with a dominant alternative (which is consistent with the 71.9 per cent listed in 
Table 1). Design R3 randomly selects choice tasks from a candidate set with 36 unique 
choice tasks without any dominancy. This design also does not satisfy attribute level balance.  
 
Designs O1 and O2 are both near-orthogonal (i.e., the design is attribute level balanced and 
attribute levels are uncorrelated, but in order to limit the size of the design not all pairwise 
attribute level combinations are present). Design O1 has a low D-efficiency (high D-error) 
while design O2 has a high D-efficiency (low D-error). All eight choice tasks in design O1 
have a dominant alternative, while this is the case in five out of eight choice tasks in O2.  
 
Designs E1 and E2 both maximise D-efficiency under the constraint of attribute level 
balance. Design E1 contains two choice tasks with a dominant alternative. Further, note that 
choice tasks 2 and 3 are essentially the same, as well as 1 and 6, 4 and 5, and 7 and 8, 
therefore this design contains only four unique combinations of attribute levels and four 
replications. Design E2 is a D*-efficient design (i.e., without dominancy or choice task 

                                                 
4 Since the random designs are heterogeneous, the D-error per respondent is calculated as the average D-error 
obtained for all 2500 sets combined, multiplied by 2500. 
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replications). We also generate design E3 which is a D*-efficient design without requiring 
attribute level balance (and hence the D-error goes further down).  
 
In Figure 2 we have visually represented the choice tasks in the homogeneous experimental 
designs, with travel time and cost on the horizontal and vertical axis, respectively. Each 
profile in the design is represented with a black dot and each choice task is represented by a 
line between two dots. All possible choice tasks without a dominant alternative are shown in 
Figure 2(a), i.e., all lines need to have a negative slope (running from north-west to south-east 
or vice versa). Dashed (red) lines indicate a choice task with a dominant alternative, while 
solid (blue) lines indicate a choice task without a dominant alternative.  
 
Designs O1, O2, E1, and E2 are clearly attribute level balanced, since each attribute level 
appears exactly twice. All choice tasks in the design O1 in Figure 2(b) contain a strictly 
dominant alternative. Design O2 in Figure 2(c) contains three solid (blue) line segments and 
five dashed (red) lines. Design E1 in Figure 2(d) shows only four lines, since each choice task 
is replicated twice. Design E2 in Figure 2(e) shows eight solid (blue) lines, such that there are 
no replications nor dominant alternatives. Design E3 as visualised in Figure 2(f) shows that 
without the requirement of attribute level balance, profiles are pushed towards the edges since 
this increases trade-offs and thereby efficiency.    
 
All eight designs will be used to simulate choices in order to create datasets and compare 
model estimates. For our empirical analysis we concentrate on the four attribute level 
balanced homogeneous designs (O1, O2, E1, and E2) that differ in dominancy levels (namely 
100, 63, 25, and 0 per cent of choice tasks with dominant alternatives). These four designs are 
listed in Table 4 including the associated MNL probabilities consistent with 0.2Tβ = −  and 

1.2.Cβ = −  The shading in the table indicates choice tasks with a dominant alternative.  
 
Even though the probabilities in the MNL model would suggest that the probability of 
choosing Route 2 is 0.77 for the first choice task in design O1, a decision maker would under 
these assumptions be expected to always choose Route 2. Hence we would expect that the 
observed probabilities will be (close to) 0.00 and 1.00 for routes 1 and 2, respectively. This 
discrepancy is due to the difference between the assumptions in the (homoscedastic) MNL 
model and the actual (heteroscedastic) behaviour. Such a discrepancy between the modelled 
and actual choice probabilities could be diminished by increasing scale 1λ  in our RS-MNL 
model.   
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Figure 2 – Visualisation of choice tasks 
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Table 4 – Balanced homogeneous experimental designs (grey shading indicates a choice task 
containing a dominant alternative) 
   Design O1  Design O2  Design E1  Design E2 
s j  sjT  sjC  sjP   sjT  sjC  sjP   sjT  sjC  sjP   sjT  sjC  sjP  

1 1  15 3 0.23  20 2 0.60  10 4 0.35  10 4 0.17 
1 2  15 2 0.77  10 4 0.40  25 1 0.65  20 1 0.83 
2 1  25 1 0.97  10 4 0.60  25 1 0.65  25 2 0.35 
2 2  25 4 0.03  25 1 0.40  10 4 0.35  10 4 0.65 
3 1  20 4 0.03  25 1 0.35  10 3 0.86  15 4 0.20 
3 2  20 1 0.97  15 3 0.65  25 2 0.14  20 2 0.80 
4 1  10 2 0.90  10 1 0.96  25 2 0.14  20 1 0.80 
4 2  15 3 0.10  20 2 0.04  10 3 0.86  15 3 0.20 
5 1  10 3 0.23  20 3 0.10  20 1 0.93  15 3 0.69 
5 2  10 2 0.77  15 2 0.90  15 4 0.07  25 2 0.31 
6 1  20 1 0.73  15 2 0.10  15 4 0.07  25 2 0.14 
6 2  25 1 0.27  10 1 0.90  20 1 0.93  10 3 0.86 
7 1  15 2 0.97  25 4 0.10  20 3 0.10  10 3 0.65 
7 2  20 4 0.03  20 3 0.90  15 2 0.90  25 1 0.35 
8 1  25 4 0.01  15 3 0.96  15 2 0.90  20 1 0.93 
8 2  10 3 0.99  25 4 0.04  20 3 0.10  15 4 0.07 
 
5.3 Simulated choices 
 
In this section we generate datasets by simulating choices consistent with an MNL model, 
except when there is a dominant alternative. In such a choice task, there are no trade-offs to 
be made and therefore, for reasons explained in Section 4.1, we assume that the actual 
behaviour will be that all respondents choose the dominant alternative. This simulation setup 
is therefore similar to Rose et al. (2013), who simulate datasets to determine the impacts of 
wrong model assumptions (although they did not look at the case of dominant alternatives).  
 
Let nsjy  denote a choice indicator that equals one if respondent n chooses alternative j in 
choice task s, and zero otherwise. Assuming an MNL model and that the true coefficients are 

0.2Tβ = −  and 1.2,Cβ = −  we simulate these observations by randomly drawing nsjε  from an 

extreme value type I distribution with variance 21
6π  independently for each alternative, 

choice task, and respondent. In case there is no dominant alternative in choice task s (i.e., 
0nsR > ), then 1nsjy =  if nsj nsj nsi nsiV Vε ε+ ≥ +  for all i, and zero otherwise. In case the choice 

task does contain a dominant alternative (i.e., 0nsR = ), then 1nsjy =  for alternative j that has 
minimum regret 0,nsjR =  and zero otherwise. Note that none of the homogeneous 
experimental designs in Table 4 have identical alternatives in a single choice task, so there 
will be only one such dominant alternative. In contrast, the heterogeneous random 
experimental designs contain some choice tasks with identical alternatives. In that case, we 
randomly select an alternative.  
 
We simulate choices for 2,500 respondents for each of the eight designs, such that in total 
there are 2500 8 20,000× =  choice observations in each dataset. Further, using a jack-knifing 
technique we create five subsamples consisting of 500 respondents each to confirm results on 
smaller samples.  
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5.4 Empirical choices 
 
We used the four balanced and homogeneous experimental designs (O1, O2, E1, and E2) to 
create an internet survey. In total 360 respondents were asked to participate in the survey, in 
which each respondent faced 16 choice tasks originating from two of the four designs, 
thereby obtaining in total 5,760 choice observations (1,440 per experimental design). 
 
In total six different combinations of experimental designs can be made (O1-O2, O1-E1, O1-
E2, O2-E1, O2-E2, E1-E2), and the order can be reversed, such that each respondent saw one 
of twelve different versions of the survey. We emphasized in the survey that the choice tasks 
were computer generated in order to prepare the respondent for possible ‘silly’ choice tasks 
because of dominant alternatives. 
 
The observed choice probabilities are listed in Table 5 in which the shading again indicates a 
choice task with a dominant alternative. It is interesting to see that the choice probabilities 
only reach 1.000/0.000 in one case (namely the second choice task in the design O1 in which 
both routes have the same travel time, but one route has a cost of $1 while the second route 
has a cost of $4). In all other cases, at least one respondent did not choose the dominant 
alternative (i.e., they chose a dominated alternative). Taking a closer look at the data, there 
are 40 respondents that chose one dominated alternative, five respondents that chose two 
dominated alternatives, two respondents that chose three dominated alternatives, three 
respondents that chose four dominated alternatives, and one respondent that chose seven 
dominated alternatives (out of 16). We will refer to these choice observations as spurious 
choices. Hence, out of 5,760 choice observations there are 75 spurious choices (1.3 per cent). 
There were no respondents that consistently chose routes with longer travel times and higher 
costs, so we can conclude that all respondents perceive time and cost as a disutility in general. 
The 40 respondents may have made a mistake due to fatigue, especially since the ‘mistake’ 
occurred mostly near the end of the survey; or they may have been annoyed by the seemingly 
unreasonable choice task leading to a ‘protest’ response. The 11 respondents that did not 
choose the strictly dominant alternative multiple times may not have taken the survey 
seriously and may have selected their preferred option in a somewhat random fashion. 
 
6. Results from simulated dataset 
 
6.1 Estimates for the multinomial logit model 
 
Using the data simulated in Section 5.3, we first estimate coefficients in an MNL model for 
each of the eight experimental designs. We use BIOGEME (Bierlaire, 2003) for all model 
estimations in this paper. The estimation results on the dataset of 2,500 simulated respondents 
are summarised in Table 6. 
 
First, we consider the estimates based on the simulated choices for random designs R1 and 
R2 that contain a large number of dominant alternatives. The estimates for the time and cost 
coefficients are significantly inflated (due to scale) compared to the ‘true’ values -0.2 and       
-1.2. While the VTTS values seem reasonable, they are actually statistically different from 
$10/hr (at the 95 per cent significance level). Hence, not only is the scale different due to 
dominant alternatives, also the ratios of coefficients are affected. In contrast, the coefficients 
for random design R3, which does not contain any dominant alternatives, are fairly close to 
the ‘true’ values. Further, its corresponding VTTS is not statistically different from $10/hr. 
The model fit measures (log-likelihood values and adjusted 2ρ ) for designs R1 and R2 are 
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much better than for design R3. It is important to note that this does not mean that one should 
use design R1 or R2 instead of design R3. Model fits can only be compared within datasets 
and not across datasets. The model fit merely indicates how well the model can correctly 
predict choice observations. In datasets with many dominant alternatives, it is quite easy to 
predict the choices, and hence the model fit is high. One should clearly prefer using design 
R3 despite its seemingly low model fit, since more information on trade-offs is captured and 
model estimates are not biased.  
 
 
Table 5 – Observed choice probabilities in empirical dataset (grey shading indicates a choice 
task containing a dominant alternative) 

s j Design O1 Design O2 Design E1 Design E2 
1 1 0.011 0.689 0.356 0.206 
1 2 0.989 0.311 0.644 0.794 
2 1 1.000 0.583 0.756 0.517 
2 2 0.000 0.417 0.244 0.483 
3 1 0.017 0.356 0.233 0.061 
3 2 0.983 0.644 0.767 0.939 
4 1 0.967 0.961 0.939 0.889 
4 2 0.033 0.039 0.061 0.111 
5 1 0.011 0.050 0.056 0.578 
5 2 0.989 0.950 0.944 0.422 
6 1 0.983 0.050 0.633 0.367 
6 2 0.017 0.950 0.367 0.633 
7 1 0.994 0.033 0.078 0.500 
7 2 0.006 0.967 0.922 0.500 
8 1 0.028 0.978 0.972 0.956 
8 2 0.972 0.022 0.028 0.044 

 
Table 6 – MNL estimates on simulated datasets (2,500 respondents, 20,000 observations per 
design)  
         

 Design R1 Design R2 Design R3 Design O1 
 coeff. s.e. coeff. s.e. coeff. s.e. coeff. s.e. 
Time ( )Tβ  -0.374 0.006 -0.396 0.007 -0.196 0.004 --* --* 
Cost ( )Cβ  -2.140 0.034 -2.240 0.036 -1.187 0.020 --* --* 
VTTS $10.49/hr $10.60/hr $9.90/hr --* 
LL -4988.8 -4901.5 -11367.4 --* 
Adj. 2ρ  0.640 0.646 0.180 --* 
         

 Design O2 Design E1 Design E2 Design E3 
 coeff. s.e. coeff. s.e. coeff. s.e. coeff. s.e. 
Time ( )Tβ  --* --* -0.247 0.003 -0.197 0.003 -0.192 0.003 
Cost ( )Cβ  --* --* -1.461 0.018 -1.185 0.017 -1.171 0.015 
VTTS --* $10.15/hr $9.98/hr $9.84/hr 
LL --* -6808.1 -10135.9 -9393.1 
Adj. 2ρ  --* 0.509 0.269 0.322 
         

* We could not obtain estimates for this dataset (unidentifiable model according to BIOGEME) 
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Next we estimate the coefficients using the data from near-orthogonal designs O1, and O2. 
As expected, we were not able to estimate the model for design O1 since no information on 
trade-offs is collected from choice tasks with dominant alternatives. Maybe more surprising 
is the fact that we could also not estimate the model using design O2, despite containing three 
choice tasks without a dominant alternative. Although the percentage of choice tasks with 
dominant alternatives is smaller in this dataset than the datasets related to designs R1 and R2, 
the heterogeneous random designs contain more variation in the data and hence sufficient 
information is captured in order to estimate the coefficients. 
 
Finally, looking at model estimates using data from the efficient designs, we can again see 
that the estimates for the time and cost coefficients for design E1 containing dominant 
alternatives are somewhat inflated, while they are close to the ‘true’ values for designs E2 
and E3 that do not contain dominant alternatives. The VTTS resulting from design E1 is 
statistically different from $10/hr at the 95 per cent significance level. The analyst would be 
better off removing the choice tasks with dominant alternatives from the dataset. On the 
reduced dataset the coefficients are estimated to be 0.196Tβ = −  and 1.176Cβ = −  (VTTS is 
$10.01/hr. In other words, failure to remove choice tasks with dominant alternatives from the 
dataset may lead to biased estimates in the MNL model. This suggests that the analyst is 
better off using design E2 (or E3) instead of design E1, even though design E1 seemingly has 
a higher efficiency (lower D-error). 
 
The simulation results reported thus far are based on 2,500 simulated respondents, and 20,000 
choice observations. Such a sample size is generally larger than those typically used in 
practice. In order to test the performance of the results on sample sizes more in tune with 
those used in practice, additional simulation runs assuming 500 respondents were also 
conducted. The results of these simulations are given in Table A1 in Appendix A. The results 
of these simulations demonstrate a high level of consistency, suggesting that our results hold 
for sample sizes typical of most empirical studies. 
 
6.2 Estimates for the regret-scaled multinomial logit model 
 
Using the same simulated dataset, we now estimate our newly proposed RS-MNL model, see 
Table 7. Again, the coefficients could not be estimated using designs O1 and O2 due to the 
lack of information on trade-offs in the dataset.  
 
The first thing we observe when comparing the RS-MNL model estimates with the MNL 
model estimates (Table 6) is that the model fits in the designs without dominant alternatives 
(i.e., R3, E2, and E3) are the same. In these cases the model parameter γ  is not statistically 
significant and hence the RS-MNL model collapses to the MNL model. This is encouraging 
and means that the RS-MNL model is able to replicate the ‘true’ values, and can ‘safely’ be 
used on datasets with and without dominant alternatives. In all other cases, the model fit of 
the RS-MNL model is superior over the MNL model. This result is of course strongly related 
to the fact that by design, our choice simulation process mimics the behaviour assumed by the 
RS-MNL. We present results on subsets of 500 respondents in Table A2 in Appendix A, 
which confirm our findings on the dataset with 2,500 respondents.  
 
To illustrate the RS-MNL model results we look at design E1. Table 8 shows the scale 
parameters in the RS-MNL model for each choice task (see Equation (16)) which are between 
1.013 and 1.121 for choice tasks without a dominant alternative and equals 4.944 for choice 
tasks with a dominant alternative. Through this scaling, the RS-MNL model is able to move 
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the choice probabilities to 0 and 1 for choice tasks with a dominant alternative, while keeping 
the choice probabilities of the other choice tasks mostly unaffected. We can see that the RS-
MNL model is much better able to replicate the simulated choices than the MNL (which has a 
fixed scale parameter equal to 1). The scaled coefficient for time for choice tasks without 
dominant alternatives is between 0.189 1.013 0.191− × = −  and 0.189 1.121 0.211,− × = − and 
for cost between 1.140 1.013 1.155− × = −  and 1.140 1.121 1.278.− × = −  These values are 
much closer to the ‘true’ values than the coefficients for the MNL model. Further, the VTTS 
of $9.94/hr is not statistically different from $10/h. Hence, the RS-MNL model seems to 
reduce bias in model estimates compared to the MNL model. However, the model estimates 
for designs R1 and R2 (with a high percentage of choice tasks containing a dominant 
alternative) still produce values for VTTS that are statistically different from $10/hr, hence 
the RS-MNL model is not capable of entirely removing the bias.  
 
Table 7 – RS-MNL estimates on simulated datasets (2,500 respondents, 20,000 observations 
per design)  
         

 Design R1 Design R2 Design R3 Design O1 
 coeff. s.e. coeff. s.e. coeff. s.e. coeff. s.e. 
Time ( )Tβ  -0.123 0.007 -0.120 0.0069 -0.203 0.009 --* --* 
Cost ( )Cβ  -0.709 0.041 -0.675 0.0397 -1.23 0.053 --* --* 
Exp ( )γ  1.223 0.077 1.270 0.0783 -0.070 0.077 --* --* 
VTTS $10.43/hr $10.63/hr $9.89/hr --* 
LL -4285.5 -4143.3 -11367.0 --* 
Adj. 2ρ  0.691 0.701 0.180 --* 
         

 Design O2 Design E1 Design E2 Design E3 
 coeff. s.e. coeff. s.e. coeff. s.e. coeff. s.e. 
Time ( )Tβ  --* --* -0.189 0.004 -0.191 0.008 -0.200 0.008 
Cost ( )Cβ  --* --* -1.140 0.023 -1.147 0.050 -1.214 0.044 
Exp ( )γ  --* --* 0.130 0.017 0.060 0.077 -0.072 0.068 
VTTS --* $9.94/hr $10.01/hr $9.86/hr 
LL --* -6413.7 -10135.6 -9392.5 
Adj. 2ρ  --* 0.537 0.269 0.322 
         

* We could not obtain estimates for this dataset (unidentifiable model according to BIOGEME) 
 
Table 8 – Estimated scale parameters and choice probabilities for design E1 (grey shading 
indicates a choice task containing a dominant alternative) 
  Simulation  MNL model  RS-MNL model 

s    sλ  sjP   sλ  sjP  

1 & 2  0.354  1.000 0.339 (-0.016)  1.013 0.368 (+0.014) 
 0.646  1.000 0.661 (+0.016)  1.013 0.632 (-0.014) 

3 & 4  0.142  1.000 0.096 (-0.046)  1.081 0.137 (-0.005) 
 0.858  1.000 0.904 (+0.046)  1.081 0.863 (+0.005_ 

5 & 6  0.069  1.000 0.042 (-0.028)  1.121 0.063 (-0.007) 
 0.931  1.000 0.958 (+0.028)  1.121 0.937 (+0.007) 

7 & 8  0.000  1.000 0.063 (+0.063)  4.944 0.000 (+0.000) 
 1.000  1.000 0.937 (-0.063)  4.944 1.000 (-0.000) 
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7. Results from empirical dataset 
 
Using the choice observations from our online survey as described in Section 5.4, we 
estimate coefficients in an MNL model as well as our RS-MNL model based on (i) a pooled 
dataset, (ii) a reduced pooled data set in which observations from respondents that selected 
one or more dominated alternatives were removed, and (iii) separate datasets for each of the 
four experimental designs.  
 
7.1 Estimates on pooled dataset 
 
Table 9 summarises the estimates for both models on a pooled dataset of all four 
experimental designs. The RS-MNL model has a better model fit than the MNL model 
measured by the log-likelihood value and the adjusted 2.ρ  The exponent γ  is positive and 
significant, which means that scale is not constant over all choice tasks but needs to be 
adjusted for choice tasks containing dominant alternatives. With 0.055,γ =  the scale 
parameter sλ  is between 1.055 and 1.078 for all choice tasks that do not contain a dominant 
alternative, while the scale is between 1.369 and 1.496 for choice tasks that include a 
dominant alternative. This means that for choice tasks without a dominant alternative, s Tλ β  is 
between 0.190 and 0.194, while s Cλ β  is between 1.132 and 1.348. For choice tasks with a 
dominant alternative, s Tλ β  is between 0.246 and 0.269, while s Cλ β  is between 1.711 and 
1.870. The MNL estimates, which assume 1,sλ =  fall as expected between these values. 
Clearly, including dominant alternatives in the dataset impacts upon scale and inflates the 
MNL coefficients. The VTTSs are $8.83 and $8.67 per hour respectively for the MNL and 
RS-MNL model, which are not statistically different. 
 
Table 9 – Estimates on pooled empirical dataset (360 respondents, 5,760 observations) 
 MNL RS-MNL 
 coeff. s.e. coeff. s.e. 
Time ( )Tβ  -0.206 0.0059 -0.159 0.0103 
Cost ( )Cβ  -1.400 0.0335 -1.100 0.0633 
Exponent ( )γ  -- -- 0.055 0.0130 
VTTS $8.83/hr $8.67/hr 
Loglikelihood -2115.6 -2099.4 
Adjusted 2ρ  0.470 0.473 

 
7.2 Estimates on reduced pooled dataset  
 
As described in Section 5.4, there were 51 (out of 360) respondents with one or more 
spurious choices. We cleaned the dataset by removing all choice observations from these 51 
respondents (so not only the 1.3 per cent spurious observations), which amounts to a removal 
of 14.2 per cent of all observations. Table 10 presents the estimates for the MNL and RS-
MNL model. The RS-MNL model has a much better model fit than the MNL model. The 
difference in model fit is much larger than in Table 9, which – in line with intuition – 
suggests that the presence of the spurious choices actually diminishes the problem of scale 
inflation.  
 
The γ  parameter in the RS-MNL model is significantly higher than the value in Table 9 since 
much larger scale differences are estimated over different choice tasks. For choice tasks 
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without a dominant alternative it holds that 1.369 1.496,sλ≤ ≤  while 11.355 26.758sλ≤ ≤  for 
choice tasks that contain a dominant alternative. Clearly, without the spurious choice 
observations, the RS-MNL model is much better able to distinguish between choice tasks 
with and without dominant alternatives, and the VTTS values grow further apart (and become 
statistically different).  
 
Table 10 – Estimates on reduced pooled empirical dataset (309 respondents, 4,944 
observations) 
 MNL RS-MNL 
 coeff. s.e. coeff. s.e. 
Time ( )Tβ  -0.236 0.0072 -0.061 0.0089 
Cost ( )Cβ  -1.610 0.0416 -0.431 0.0634 
Exponent ( )γ  -- -- 0.540 0.0734 
VTTS $8.80/hr $8.45/hr 
Loglikelihood -1609.4 -1501.0 
Adjusted 2ρ  0.531 0.563 

 
 
7.3 Estimates on separate datasets for each experimental design 
 
Next, we estimated models using data from each design separately (without removing 
spurious choices), see Table 11. All estimates are statistically significant. Looking at the 
MNL model, the first thing we notice is that the VTTS values are statistically different when 
using data from different designs. Looking at the coefficients, scale has a clear influence on 
the estimates, where designs with more dominant alternatives means higher scale and 
therefore a more deterministic choice. Using these coefficients in prediction will lead to quite 
different choice probabilities. The RS-MNL model has a better model fit in all four designs, 
especially in the datasets resulting from designs O1 and E1.  
 
While in our simulated dataset no estimates could be obtained using design O1 (since all 
choice tasks have a dominant alternative which was by design of the simulated data 
generating process never chosen), there is no problem estimating the coefficients using the 
empirical dataset based on the same design. This is due to the fact that the dominant 
alternative was not always chosen by the respondents; the erroneous choices help identify the 
model. This indicates that choice tasks with dominant alternatives can actually contain 
information in empirical applications. Simply removing them would therefore lead to loss of 
information.  
 
Looking at the estimates for design O2, γ  is negative in the RS-MNL model. This means that 
scale is small when dominancy in a choice task is large. We attribute this counterintuitive 
result to the existence of spurious choices. However, γ  is small such that scale differences 
are very small. 
 
The estimates obtained from design E2 are quite similar across the MNL and the RS-MNL 
model. Since this dataset does not contain any dominant alternatives, there do not seem to be 
scaling issues in the MNL model, such that the models perform similarly and the VTTS 
values are identical. An exponent of 0.672γ =  means that there are some scale differences 
across choice tasks, where the scale parameter takes the values 3.625 5.297.sλ≤ ≤  In other 
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words, the relative difference between the highest and the lowest scale is with 46 per cent 
quite small, such that the results are not so different from the MNL results. 
 
 
Table 11 – Estimates on empirical datasets (180 respondents, 1,440 observations per design) 
 MNL 
 Design O1 Design O2 Design E1 Design E2 
 coeff. s.e. coeff. s.e. coeff. s.e. coeff. s.e. 
Time ( )Tβ  -0.385 0.066 -0.256 0.164 -0.183 0.010 -0.143 0.010 
Cost ( )Cβ  -2.660 0.260 -1.510 0.083 -1.180 0.051 -1.170 0.066 
VTTS $8.68/hr $10.17/hr $9.31/hr $7.33/hr 
LL -168.3 -506.3 -602.4 -741.5 
Adj. 2ρ  0.831 0.491 0.396 0.256 
         
 RS-MNL 
 Design O1 Design O2 Design E1 Design E2 
 coeff. s.e. coeff. s.e. coeff. s.e. coeff. s.e. 
Time ( )Tβ  -0.748 0.077 -0.610 0.262 -0.019 0.016 -0.032 0.017 
Cost ( )Cβ  -4.680 0.399 -3.290 1.310 -0.128 0.093 -0.258 0.136 
Exp ( )γ  -0.046 0.003 -0.022 0.003 0.719 0.020 0.672 0.234 
VTTS $9.59/hr $11.12/hr $8.88/hr $7.33/hr 
LL -130.7 -505.4 -588.2 -736.4 
Adj. 2ρ  0.866 0.491 0.404 0.259 
 
 
8. Extensions 
 
So far we have focussed primarily on dominant alternatives in case of unlabelled experiments 
and linear utility functions. In this section we extend our regret measure to include nonlinear 
effects and labelled experiments. We show that dominancy checks for these cases often 
require more information than just the signs of the coefficients. Further, we argue that 
dominancy is much less of an issue in labelled experiments. 
 
8.1 Nonlinear effects 
 
In Equation (1) we defined , , ( ),ns j i k nk nsjk nsikx xβ←∆ = −  which is applicable to utility functions 
that are linear in the parameters and linear in the attributes. In this section we discuss 
extensions to include nonlinear effects and interaction effects for continuous attributes, and 
nonlinear effects for discrete attributes. 
  
A more general definition for , ,ns j i k←∆  is given as follows: 
 

, , ( | ) ( ( ) | ),ns j i k nsj nsj n nsj nsj nsik nsjk k nV V x x←∆ = − + −x β x 1 β  (18) 
 
where k1  is a 1K ×  vector with zeros, except in row k where it takes on value 1. Profile 

( )nsj nsik nsjk kx x+ −x 1  is identical to profile nsjx  except that the level for attribute k is replaced 
by the level of that attribute in profile .nsix  This equation allows for more general nonlinear 
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utility functions. For example, consider 1 1 2 2 3 1 2log( ) ,nsj n nsj n nsj n nsj nsjV x x x xβ β β= + +  which 
includes an interaction effect. Then we can calculate , ,1 1 3 2 1 1( )( )ns j i n n nsj nsj nsix x xβ β←∆ = + −  and 

, ,2 2 2 2 3 1 2 2log( / ) ( ).ns j i n nsj nsi n nsj nsj nsix x x x xβ β←∆ = + −  If the coefficients are all positive (without 
knowing the exact value), then , , 0ns j i k←∆ ≥  if nsjk nsikx x≥  for both attributes. Similarly, if all 
coefficients are negative, then , , 0ns j i k←∆ ≥  if .nsjk nsikx x≤  If 1nβ  and 2nβ  are both positive 
(negative) and 3nβ  is negative (positive), then determining the sign of , ,ns j i k←∆  relies on more 
exact knowledge regarding the values of these coefficients. Hence, in case of nonlinear utility 
functions, checking for dominancy may rely on more knowledge than only knowing the signs 
of the coefficients.  
 
Often analysts use dummy or effects coding to model nonlinear effects or to handle 
qualitative attributes. Consider attribute k with kL  levels. Then these coding schemes replace 
a single coefficient nkβ  with a series of coefficients ( 1)(1)[ , , ] ,kL

nk nkβ β − ′
  where we assume that 

the last level kL  is the reference level. This means that if nsjkx  is equal to level kl L<  then 

this contributes ( )l
nkβ  to utility, and if kl L=  then it contributes 0 (in case of dummy coding) 

or 1 ( )
1

kL l
nkl

β−

=
−∑  (in case of effects coding) to utility. For example, suppose that nsjkx  equals 

level 1 kl L<  and that nsikx  equals 2 .kl L<  Then it holds that  1 2( ) ( )
, , .l l

ns j i k nk nkβ β←∆ = −  If 2 ,kl L=  

then 1( )
, ,

l
ns j i k nkβ←∆ =  (in case of dummy coding) or 1

1( ) ( )
, , 1

kLl l
ns j i k nk nkl

β β−

← =
∆ = −∑  (in case of 

effects coding). In all cases, we can check for dominancy by determining the sign of , , ,ns j i k←∆  

which is possible if we have knowledge of the ordering of ( ) , {1, , 1}.l
nk kl Lβ ∈ −  Note that 

requires more information than just the sign of each ( ).l
nkβ  In many cases such information can 

be easily obtained (e.g., for an attribute ‘comfort’ with levels ‘low’, ‘medium’, and ‘high’) 
while in other cases such information may not be readily available (e.g., for an attribute 
‘colour’ with levels ‘blue’, ‘red’, ‘yellow’).   
 
8.2 Labelled alternatives 
 
Dominancy checks can quite easily be applied to labelled experiments as well. Labelled 
experiments often include alternative specific constants, some attributes may not appear in all 
alternatives, and coefficients for the same attribute may be different across alternatives. 
 
Let 0njβ  denote the alternative specific constant for respondent n in alternative j, where at 
least one of these constants (for a chosen reference alternative) is normalised to zero. Then 
we can calculate , , 0 0.ns j i k nj niβ β←∆ = −   Similar as in the case of dummy or effects coding, for 
dominancy checks we can determine the sign of , ,ns j i k←∆  if we know the ordering of 

0, {1, , }.nj j Jβ ∈   It is important to note that if a dummy coded attribute is included in the 
utility function of alternative j, the alternative specific constant 0njβ  is confounded with the 
reference level of the dummy coded attribute. This means that the constant does not only 
include the ‘brand’ vale of the label, but also includes utility associated with the reference 
level of the dummy coded attribute. This does not allow proper comparison of alternative 
specific constants in order to assess dominancy. To overcome this issue, any dummy coding 
should first be converted into effects coding (which can always be easily be done). Effects 
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coding ensures that the constant is no longer confounded with 0njβ  and allows proper 
comparison of the constants.  
 
In case a certain attribute k does not exist in alternative i, we can simply set 0,nsjkx =  such 
that , , .ns j i k nk nsjkxβ←∆ =  Then we only need to know the sign of nkβ  in order to check for 
dominancy. If the attribute exists in both alternatives i and j but they have different 
coefficients njkβ   and ,nikβ  then , , .ns j i k njk nsjk nik nsikx xβ β←∆ = −  The sign of , ,ns j i k←∆  can be 
determined if we know the signs of njkβ   and ,nikβ  as well as the ratio / .njk nikβ β  
 
Alternative j cannot be dominant if there exists a {0, , }k K∈   and an i j≠  for which holds 
that , , 0.ns j i k←∆ <  Therefore, we can immediately rule out all alternatives j where 

0 0max { }.nj i niβ β< In other words, the only possible candidates for dominant alternatives are 
those with the largest alternative specific constant. For example, consider the four alternatives 
‘car route 1’, ‘car route 2’, ‘train’, and ‘stay home’, and assume the alternative specific 
constants are respectively 2, 2, 1, and 0, respectively. This means that in general ‘car’ is 
preferred over ‘train’, and that both modes are preferred over (reference alternative) ‘stay 
home’. Then ‘train’ and ‘stay home’ cannot be dominant, and the only alternatives to check 
for dominancy are ‘car route 1’ and ‘car route 2’. Further, suppose that ‘car route 1’ and ‘car 
route 2’ include a price attribute (e.g., fuel cost, toll cost), which does not occur in ‘stay 
home’. Assuming that the coefficient for price is negative, the ‘car’ alternatives cannot be 
dominant since there is regret on the price attribute compared to ‘stay home’. Hence, in this 
example there do not exist any dominant alternatives no matter what levels the attributes 
have. If the ‘stay home’ alternative does not exist and both the ‘car’ and ‘train’ alternatives 
have time and cost attributes with generic coefficients, then the ‘car’ alternatives could be 
dominant depending on the attribute levels and checks are needed.    
 
 9. Discussion, recommendations, and limitations 
 
9.1 Summary and discussion 
 
In this paper we have discussed the impacts of the existence of choice tasks with dominant 
alternatives stated choice studies, in particular in unlabelled experiments where such issues 
can easily arise. In a simple case study with simulated choices we showed that dominant 
alternatives could lead to biased model estimates due to the discrepancy between actual 
behaviour (which is heteroscedastic, having a small error term variance in the case of 
dominant alternatives) and assumed homoscedasticity in the model.  
 
We discussed three ways of dealing with dominant alternatives. First, the analyst could 
simply make sure that dominant alternatives do not exist in the stated choice data. To this 
end, we proposed a new D*-efficient design method, in which we use minimum regret as a 
measure to detect and eliminate choice tasks that contain a dominant alternative. This regret 
measure can be used for both unlabelled and labelled experiments with linear and nonlinear 
utility functions. 
 
Secondly, the analyst can simply clean the data such that (i) choice tasks with a dominant 
alternative are removed, or (ii) all choice tasks of respondents that fail to choose a dominant 
alternative are removed. In our empirical analysis we show that a choice task with a dominant 
alternative may actually contain information, in contrast to common belief. A requirement 
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seems that the dominant alternative is not chosen by all respondents in the dataset. Removing 
all choice tasks with dominant alternatives may therefore result in information loss. If we 
would have used this strategy to clean the dataset of our near-orthogonal design, we would 
not have been able to estimate the coefficients. If the analyst removes only data from certain 
respondents, dominant alternatives may still exist in the dataset. Such dominant alternatives 
typically decreases error variance and as such increases scale, leading to biased estimates in 
the MNL model. 
 
Thirdly, the analyst can compensate for scale differences in the model. We proposed a regret-
scaled (RS-) MNL model, in which scale increases with a decrease in normalised minimum 
regret. We further proposed a smooth approximation of this normalised minimum regret in 
order to avoid numerical problems in model estimation. Our simulation and empirical results 
show that our RS-MNL model improves model fit and seem to appropriately account for 
scale differences. 
 
9.2 Recommendations 
 
Based on these findings, we would strongly recommend using a (Bayesian) D*-efficient 
design instead of a random, (near-)orthogonal or D-efficient design in stated choice studies, 
since this avoids dominant alternatives particularly in case of unlabelled experiments. 
Further, when a dataset includes dominant alternatives, we suggest not removing these choice 
tasks (since they contain some information), but rather adopting our RS-MNL model that 
automatically accounts for scale differences. 
 
9.3 Limitations 
 
In our study we have focussed on limitations of the MNL model. Clearly, more advanced 
discrete choice models exist. Therefore, we only demonstrated the impacts on the MNL 
model assuming homogeneous preferences. However, we argue that dominancy has an 
impact on all homoscedastic models. The theory and methods in our paper can be applied to 
each individual respondent (indicated by subindex n), and as such can be applied to for 
example latent class models with discrete groups of heterogeneous users or to mixed logit 
models with continuous preference heterogeneity. Therefore, results in this paper are 
expected to translate to more advanced models. 
 
Furthermore, we have only focussed on dominancy in isolation. In our empirical dataset, 
many other behavioural processes may have led to the actual choices, including non-trading, 
lexicographic, or inconsistent behaviour. We can therefore not guarantee that our observed 
scale differences are purely the result of the presence of dominant alternatives, but may also 
be the result of learning, fatigue, and other effects. 
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Appendix A 
 
Table A1 – MNL estimates on simulated datasets (500 respondents, 4,000 observations per 
sample per design) 

 Time ( )Tβ  Cost ( )Cβ     
Sample coeff. s.e. coeff. s.e. VTTS LL Adj. 2ρ  

Design R1 
1 -0.3506 0.0128 -2.0473 0.0714 10.27 -1060.1 0.6177 
2 -0.4039 0.0151 -2.2839 0.0824 10.61 -962.5 0.6528 
3 -0.3690 0.0136 -2.1303 0.0760 10.39 -980.3 0.6464 
4 -0.3842 0.0144 -2.1990 0.0782 10.48 -972.0 0.6494 
5 -0.3671 0.0135 -2.0792 0.0735 10.59 -1009.4 0.6359 
Pooled -0.3740 0.0062 -2.1400 0.0340 10.49 -4988.8 0.6401 

Design R2 
1 -0.4028 0.0147 -2.2188 0.0792 10.89 -994.2 0.6414 
2 -0.4015 0.0149 -2.1847 0.0783 11.03 -977.9 0.6473 
3 0.3698 0.0137 -2.1715 0.0774 10.22 -993.6 0.6416 
4 -0.4018 0.0150 -2.3183 0.0830 10.40 -968.1 0.6508 
5 -0.4069 0.0151 -2.3240 0.0842 10.50 -962.0 0.6530 
Pooled -0.3957 0.0066 -2.2396 0.0359 10.60 -4901.5 0.6464 

Design R3 
1 -0.2109 0.0086 -1.2499 0.0463 10.12 -2240.1 0.1921 
2 -0.1890 0.0081 -1.1775 0.0440   9.63 -2266.7 0.1825 
3 -0.2058 0.0085 -1.2305 0.0460 10.04 -2256.9 0.1860 
4 -0.1868 0.0082 -1.1525 0.0443   9.73 -2302.8 0.1694 
5 -0.1880 0.0081 -1.1300 0.0432   9.98 -2296.2 0.1718 
Pooled -0.1957 0.0037 -1.1868 0.0200   9.89 -11367.4 0.1800 

Design E1 
1 -0.2483 0.0075 -1.4771 0.0401 10.09 -1348.3 0.5137 
2 -0.2516 0.0075 -1.4506 0.0398 10.41 -1366.0 0.5073 
3 -0.2449 0.0074 -1.4643 0.0397 10.03 -1361.8 0.5088 
4 -0.2493 0.0075 -1.4961 0.0406 10.00 -1331.7 0.5197 
5 -0.2420 0.0072 -1.4224 0.0387 10.21 -1397.1 0.4961 
Pooled -0.2471 0.0033 -1.4614 0.0178 10.15 -6808.1 0.5089 

Design E2 
1 -0.1990 0.0065 -1.1970 0.0376   9.97 -2016.9 0.2726 
2 -0.2002 0.0066 -1.2312 0.0385   9.76 -1995.1 0.2804 
3 -0.2155 0.0067 -1.2473 0.0383 10.37 -1955.3 0.2948 
4 -0.1801 0.0063 -1.0824 0.0355   9.98 -2117.8 0.2362 
5 -0.1926 0.0065 -1.1771 0.0374   9.82 -2039.8 0.2643 
Pooled -0.1971 0.0029 -1.1849 0.0167   9.98 -10135.9 0.2689 

Design E3 
1 -0.2096 0.0062 -1.2238 0.0351 10.28 -1803.2 0.3496 
2 -0.1836 0.0057 -1.1429 0.0336   9.64 -1915.8 0.3090 
3 -0.1895 0.0058 -1.1604 0.0339   9.80 -1891.0 0.3180 
4 -0.1910 0.0058 -1.1622 0.0339   9.86 -1886.4 0.3196 
5 -0.1880 0.0058 -1.1700 0.0341   9.63 -1888.1 0.3190 
Pooled -0.1920 0.0026 -1.1706 0.0152   9.84 -9393.1 0.3224 
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Table A2 – RS-MNL estimates on simulated datasets (500 respondents, 4,000 observations 
per sample per design) 

 Time ( )Tβ  Cost ( )Cβ  Exp ( )γ     
Sample coeff. s.e. coeff. s.e. coeff. s.e. VTTS LL Adj. 2ρ  

Design R1 
1 -0.1003 0.0126 -0.5810 0.0753 1.4675 0.1930 10.36 -889.3 0.6793 
2 -0.1438 0.0177 -0.8188 0.1010 1.0799 0.1550 10.54 -836.7 0.6982 
3 -0.1270 0.0150 -0.7404 0.0876 1.1487 0.1530 10.29 -843.3 0.6959 
4 -0.1401 0.0172 -0.8120 0.0990 1.0949 0.1600 10.35 -849.5 0.6936 
5 -0.1148 0.0153 -0.6421 0.0881 1.3312 0.1940 10.72 -862.5 0.6889 
Pooled -0.1233 0.0070 -0.7093 0.0405 1.2229 0.0769 10.43 -4285.5 0.6909 

Design R2 
1 -0.1132 0.0153 -0.6353 0.0857 1.3598 0.1900 10.69 -833.4 0.6994 
2 -0.1159 0.0153 -0.6360 0.0846 1.3202 0.1830 10.93 -822.6 0.7033 
3 -0.1130 0.0137 -0.6501 0.0822 1.2932 0.1690 10.43 -838.2 0.6977 
4 -0.1307 0.0162 -0.7477 0.0953 1.1617 0.1600 10.48 -826.1 0.7020 
5 -0.1307 0.0168 -0.7390 0.0969 1.1816 0.1670 10.61 -821.0 0.7039 
Pooled -0.1196 0.0069 -0.6751 0.0397 1.2697 0.0783 10.63 -4143.3 0.7011 

Design R3 
1 -0.2309 0.0224 -1.3684 0.1300 -0.1777 0.1750 10.12 -2239.5 0.1923 
2 -0.1766 0.0184 -1.0997 0.1130 0.1287 0.1780 9.63 -2266.4 0.1826 
3 -0.2285 0.0208 -1.3690 0.1230 -0.2114 0.1660 10.02 -2256.1 0.1863 
4 -0.1812 0.0184 -1.1174 0.1120 0.0593 0.1770 9.73 -2302.7 0.1695 
5 -0.1990 0.0196 -1.2018 0.1170 -0.1129 0.1710 9.93 -2296.0 0.1719 
Pooled -0.2029 0.0089 -1.2305 0.0531 -0.0698 0.0771 9.89 -11367.0 0.1800 

Design E1 
1 -0.1913 0.0089 -1.1610 0.0495 0.1224 0.0322 9.88 -1271.6 0.5414 
2 -0.1910 0.0107 -1.1225 0.0591 0.1378 0.0561 10.21 -1287.3 0.5357 
3 -0.1850 0.0105 -1.1327 0.0598 0.1426 0.0581 9.80 -1281.5 0.5378 
4 -0.1930 0.0089 -1.1821 0.0497 0.1197 0.0313 9.79 -1256.9 0.5467 
5 -0.1832 0.0089 -1.0984 0.0493 0.1339 0.0365 10.01 -1313.3 0.5263 
Pooled -0.1890 0.0041 -1.1400 0.0230 0.1295 0.0172 9.94 -6413.7 0.5373 

Design E2 
1 -0.1982 0.0179 -1.1915 0.1200 0.0084 0.1770 9.98 -2016.9 0.2726 
2 -0.2091 0.0185 -1.2924 0.1260 -0.0880 0.1670 9.71 -1995.0 0.2805 
3 -0.2069 0.0174 -1.1917 0.1100 0.0885 0.1690 10.42 -1955.2 0.2948 
4 -0.1606 0.0154 -0.9535 0.0984 0.2343 0.1800 10.11 -2116.9 0.2365 
5 -0.1808 0.0169 -1.1006 0.1080 0.1247 0.1710 9.86 -2039.5 0.2644 
Pooled -0.1915 0.0077 -1.1475 0.0500 0.0598 0.0768 10.01 -10135.6 0.2689 

Design E3 
1 -0.2322 0.0216 -1.3436 0.1140 -0.1877 0.1630 10.37 -1802.5 0.3499 
2 -0.2015 0.0165 -1.2503 0.0983 -0.1760 0.1450   9.67 -1915.1 0.3093 
3 -0.1944 0.0163 -1.1892 0.0952 -0.0483 0.1470   9.81 -1891.0 0.3180 
4 -0.1944 0.0171 -1.1817 0.0986 -0.0328 0.1550   9.87 -1886.4 0.3196 
5 -0.1900 0.0158 -1.1800 0.0946 -0.0208 0.1470   9.66 -1888.1 0.3190 
Pooled -0.1995 0.0077 -1.2142 0.0442 -0.0724 0.0676   9.86 -9392.5 0.3225 
          

 


