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Min-Max Control of Fuel-Cell-Car-Based Smart Energy Systems

Farid Alavi1, Nathan van de Wouw1, and Bart De Schutter1

Abstract— Recently, the idea of using fuel cell vehicles as the
future way of producing electricity has emerged. A fuel cell car
has all the necessary devices on board to convert the chemical
energy of hydrogen into electricity. This paper considers a
scenario where a parking lot for fuel cell cars acts as a virtual
power plant. In order to describe the system behavior from the
energy point of view, a hybrid (mixed logical dynamical) model
is constructed. With this model, a control system is designed
to determine the production profile for both the fuel cell and
battery of each car in the parking lot subject to minimizing the
operational cost. In order to deal with both the uncertainty in
the demand profile and the power balance constraint, a robust
min-max model predictive control algorithm is developed. The
effectiveness of the proposed approach is illustrated in a
numerical example.

I. INTRODUCTION

The idea of using fuel cell cars for producing electricity
is a relatively new concept in the distributed generation
of power. In this paper, a parking lot for fuel cell cars is
considered as a virtual power plant. We consider the scenario
in which several fuel cell cars can exchange information with
a central controller in the parking lot. In such a setting,
a central controller can be employed to, on the one hand,
manage the electricity production of fuel cell cars in order
to balance the power production and consumption and, on
the other hand, minimize the operational costs.

The control system that manages the demand and produc-
tion of the electricity in a smart grid, of which the distributed
power generation based on fuel-cell cars is an example,
is called an energy management system. In recent years,
several works have considered the controller design for such
systems. In [1], the problem of charging and discharging of
electric vehicles in a smart grid is considered in order to
reach a power balance in the system and gain the maximum
operational benefit. Two optimization methods based on cen-
tralized and decentralized schemes are proposed. However,
the developed distributed solution requires the exchange of
solutions for each agent during several iterations. Therefore,
the network traffic is typically high in this approach.

Due to the intrinsic robust features and the ability to deal
with the constraints in the system, Model Predictive Control
(MPC) is a method that has gained much attention in design
of an energy management system for smart grid applications.
In [2], a distributed MPC method to operate a microgrid is
developed. The problem of power scheduling in a microgrid
is reviewed in [3] and [4].
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Another example of using MPC in the operation of a
microgrid system is [5], where it is assumed that the con-
trolled microgrid has a renewable energy source, a storage
battery system, and some electrical loads. The designed
control algorithm is based on an optimization problem which
takes into account the cost of system operation. However,
this paper neglects binary variables that determine different
operational modes of devices and, hence, some part of the
operational cost is not considered.

In [6], control of a microgrid that contains several power
plants, a photovoltaic system, and a fuel cell system is
considered. The problem is formulated with mixed-logical
dynamical models and the optimization is solved with the
multiparametric programming techniques. Another example
of using MPC in control of microgrids that contain fuel
cells and solar photovoltaic systems is [7]. In this paper,
the authors develop a method to control the system via
the market trades. However, the developed method cannot
guarantee the stability of the system.

The design of an MPC controller in order to operate
several devices in a smart grid is discussed in [8]. In this
paper, the optimization problem is expressed as a mixed
integer linear programming problem. However, the authors
have assumed that future load profile is predetermined and
there is no uncertainty in the system.

In order to deal with the uncertainty in the energy man-
agement systems, robust control techniques are used in [9]
and [10]. The authors in [9] use stochastic optimization in
the energy management system, while in [10] a minimax
formulation is used. In [11], a method is developed in order
to model the uncertainty in power systems as a polytope,
while the appropriate control strategy in order to deal with
the modeled uncertainty is not discussed.

Three different methods to deal with the uncertainty in
the power systems are discussed in [12]. The first method
simply considers some plants in the standby operation mode
in order to provide excess electricity if it is needed. The
second method uses stochastic optimization in order to set
an appropriate power production profile for each plant.
However, this method requires a priori knowledge about
the uncertainties in the system. The last method is robust
optimization which guarantees the stability of the system
in presence of all the possible disturbances. The advantage
of the third method compared to the second method is that
accurate information about the uncertainties is not necessary.

The main contributions of the current paper are as fol-
lows. Firstly, we develop a hybrid model that describes the
operation of the system, and takes into account both the
uncertainty in the demand profile and the hybrid nature of
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the system dynamics, including the way in which the latter
impacts the operational cost. Secondly, this model is used
to design a controller for the virtual power plant based on
fuel cell cars. In particular, a min-max control scheme is
developed for a controller that minimizes the operational
cost in the presence of uncertainty in the prediction of the
demand inside the microgrid. Finally, the effectiveness of
the proposed control strategy is illustrated in a representative
case study.

This paper is organized as follows. In Section II, the
problem statement is introduced. Section III is dedicated to
the system model and the definition of the operational cost.
The min-max controller design is proposed in Section IV. In
section V, a numerical example illustrates the operation of
the system. Finally, section VI concludes the paper.

II. PROBLEM STATEMENT

We consider a parking lot that contains several fuel cell
cars. It is assumed that the parking lot uses the fuel cell of
the cars in order to produce electricity. If this kind of parking
lot is connected to the electricity grid, it can be employed as
a power plant. For example, if there are 100 cars inside the
parking lot and the power capacity of electricity production
in each fuel cell car is 30 kW, then the total capacity of the
parking lot is 3 MW. That is why this scenario is called Car
as Power Plant (CaPP).

This kind of parking lot is assumed to be in a microgrid
that is connected to the power network. In this scenario, we
assume that the power exchange between the microgrid and
the power network is limited and also that the demand of
electricity in the microgrid is not controllable. However, it
is assumed that an estimate of the demand profile for the
next few hours can be predicted, e.g. based on historical
data in combination with smart grid devices. Subsequently,
we consider the difference between the actual and predicted
electricity demand as an uncertainty in the system.

The CaPP is employed in order to guarantee the power
balance in the microgrid. Therefore, a control system is
necessary in the parking lot in order to use all the fuel
cell and batteries of the cars in such a way that the power
production meets the expectations and also the operational
cost of the microgrid is minimized.

Figure 1 depicts an overview of the CaPP. The hydro-
gen and electricity exchange between different devices are
shown with solid and dashed lines, respectively. The inputs
of controller, i.e. measurements, consist of the amount of
available hydrogen and the state of charge of the batteries.
The outputs of controller, i.e. actuation commands, consist
of both binary and continuous signals in order to determine
the on/off mode of each fuel cell and the amount of power
production for each fuel cell. Moreover, to manage the
function of the batteries, binary outputs of the controller
determine the charge/discharge mode of each battery. In
addition, continuous controller outputs determine the amount
of input or output power to/from the battery. In this paper, we
aim to develop such a centralized controller that minimizes
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Fig. 1. The scenario of the car as power plant.

operational cost while aiming to guarantee the power balance
in the microgrid.

III. MODELING

A. Fuel cell model

To control a fuel cell device with a model-based algorithm,
we need a mathematical model that describes the behavior of
the device. In this section, the functionality of the device is
explained, and next a hybrid piecewise affine (PWA) model
for the fuel cell system is developed.

A fuel cell is a device that extracts the chemical energy
of the hydrogen oxidation reaction in the form of electricity.
Usually, the required hydrogen is extracted from a storage
tank and it will be conducted to one side of the fuel cell.
Air is pumped to the other side of the fuel cell and it will
be used as the source of oxygen. Reaction of the hydrogen
with the oxygen occurs inside the fuel cell and the output
is heat and electricity. In this research, the fuel cell will be
controlled at a high level and, hence, the detailed internal
function of the fuel cell is not considered. For a discussion
of the internal function and low-level control of fuel cells,
we refer the interested reader to [13].

One of the important aspects in high-level control of the
fuel cell is the hydrogen consumption related to the net power
generation. Due to the limited life-time of fuel cells, the
degradation of the fuel cell is considered in the scope of
high-level control. Moreover, maximum power generation is
an important physical constraint in every fuel cell system.

The model should be able to describe the financial costs
and benefits of the fuel cell operation. Two important factors
in determining the operational cost of a fuel cell are the
price of the fuel and the degradation of the device. In
order to determine the fuel cost, the relationship between
the hydrogen consumption and the net power production is
considered. Because some part of the power production of
the fuel cell is used to run an air compressor, the net power
production of the fuel cell should be considered. Based on
[14], the hydrogen consumption of the fuel cell per time unit
has an affine relation with the net fuel cell power.

A typical fuel cell consumes hydrogen with a constant rate
in the standby operation mode, i.e. when the output power



is equal to zero. We define a constant parameter, βf [g/s],
to denote this rate. The rate of hydrogen consumption due
to the net power generation is equal to another constant
parameter, αf [g/kJ ]. Therefore, if h and p represent the
rate of the hydrogen consumption and net power production
respectively, the following relation holds:

h(t) =

∫ t

τ=t0

(αfp(τ) + βf) dτ, (1)

where [t0, t] is the time span that the fuel cell is turned on.
The reserved amount of hydrogen in the storage tank is

considered as the state of the fuel cell system model, denoted
by xf . There are two inputs for the model of a fuel cell
system. The first input, uf , is a continuous variable that
determines the amount of net power production of the system
and the second input, sf , is a binary variable that indicates
the off (sf = 0) or on (sf = 1) operation mode of the fuel
cell. Based on the definition of input variables, we have:

if uf(k) > 0 then sf(k) = 1. (2)

Using (1) as the basic operation function of the fuel cell,
the following piecewise affine function describes the system
behavior in discrete time:

xf(k + 1) =

{
xf(k) if sf(k) = 0
xf(k)− (αfuf(k) + βf)Ts if sf(k) = 1,

(3)

where Ts is the sampling interval of the discrete-time system.
If the minimum and maximum power production of the fuel
cell are equal to 0 and P̄f , respectively, then the constraint

0 ≤ uf(k) ≤ P̄f , for all k, (4)

should be considered when controlling the system.

B. Battery model

The battery of the fuel cell car can store energy at one
time and deliver it at another time. Therefore, two operational
modes, namely charging and discharging, are considered for
the battery. In a simplified model for the battery [8], a
continuous input, ub, determines the input or output power
of the battery system. In the charging mode of the battery, the
input power, ub, is determined with a negative real number.
Conversely, a positive value for ub indicates the discharging
power. The system state, xb, represents the energy stored in
the battery. Therefore, the simplified discrete-time model of
the battery can be formulated as:

xb(k + 1) =

{
xb(k)− Ts

ηd
ub(k) if sb(k) = 0

xb(k)− Tsηcub(k) if sb(k) = 1,
(5)

where sb is an auxiliary binary variable that determines the
discharge (sb = 0) or charge (sb = 1) mode of the battery.
The discharging and charging efficiencies are determined by
ηc and ηd, respectively.

Due to the physical limits in the maximum power of
charging or discharging a battery, the following constraints
are in effect:

P b ≤ ub(k) ≤ P̄b, for all k. (6)

C. System model

The central controller of the parking lot operates several
fuel cell cars inside the parking. Therefore, Nveh fuel cells
and batteries should be included in the system model. Using
the models (3) and (5), the model of the total system can be
described as follows:

x(k + 1) = x(k) + Ts

[
−sf(k) (αfuf(k) + βf)

sb(k) (η̃d − η̃c) ub(k)− η̃dub(k)

]
(7)

with:

x(k) ,
[
xf,1(k) . . . xf,Nveh

xb,1(k) . . . xb,Nveh
(k)

]T
sf(k) , diag{sf,1(k), sf,2(k), . . . , sf,Nveh

(k)}
αf , diag{αf,1, αf,2, . . . , αf,Nveh

}

uf(k) ,
[
uf,1(k) uf,2(k) . . . uf,Nveh

(k)
]T

η̃d , diag{1/ηd,1, /ηd,2, . . . , 1/ηd,Nveh
}

η̃c , diag{ηc,1, ηc,2, . . . , ηc,Nveh
},

and xf,i and xb,i denote the states of ith vehicle and a similar
notational convention is employed for the other variables.
The vectors and matrices sb, βf , and ub are defined similarly.

The model in (7) can be written as a Mixed Logical
Dynamical (MLD) model [15] by defining auxiliary variables
zi(k) =

[
zf,i(k) zb,i(k)

]T
, for i = 1, . . . , Nveh, where:

zf,i(k) = sf,i(k)uf,i(k) (8)
zb,i(k) = sb,i(k)ub,i(k). (9)

Following the procedure of [15] and defining
xi(k) =

[
xf,i(k) xb,i(k)

]T
and ui(k) =[

uf,i(k) ub,i(k) sf,i(k)
]T

, the MLD model of
the system can be written in the form:

x(k + 1) = x(k) +B1u(k) +B3z(k), (10)

where the vector of auxiliary variables is defined as follows:

z(k) =
[

z1(k)T . . . zNveh
(k)T

]T
.

The vector of inputs, u(k), and states, x(k), are defined
similar to z(k). If we define

b1,i ,

[
0 0 −Tsβf,i
0 −Ts/ηd,i 0

]
(11)

b3,i ,

[
−Tsαf,i 0

0 Ts(
1
ηd,i
− ηc,i)

]
, (12)

then B1 = diag{b1,1, . . . , b1,Nveh
} and B3 =

diag{b3,1, . . . , b3,Nveh
} in (10).

D. Operational cost

The cost of the system operation consists of several
factors. The price of consumed hydrogen in the parking lot is
one factor of the operational cost. It is assumed that the price
of hydrogen per kilogram is constant and equal to CH2

. In
addition, the price of extracting some part of stored energy in
the batteries should be considered as a part of the operational



cost. It is assumed that the stored energy in the battery has
a predefined price per kWh, which is given by Ce,batt.

Degradation of the fuel cells and batteries is another source
of the operational cost in the parking lot. There are several
factors that determine the lifetime of a fuel cell. However,
it is assumed that the degradation cost of a fuel cell is
only associated with turning the fuel cell on or off. Due
to the high influence of changing the operation mode in the
lifetime of a fuel cell [16], this assumption is realistic. It
is also assumed that changing the operation mode of the
battery causes degradation and, hence, is accounted in the
operational cost.

The amount of power that is injected to the microgrid
should be equal to the amount of power that is consumed.
Therefore, there is a power balance constraint in the system,
which means that the excess or shortage of energy should
be traded with the power network, outside of the microgrid.
This means that the operational cost also includes the cost of
importing or the benefit of exporting electricity. As a result,
the operational cost of the microgrid can be written as:

J(k) =

Nveh∑
i=1

(Np−1∑
j=0

(
Wf,i|∆sf,i(k + j)|+Wb,i|∆sb,i(k + j)|

− Ce(k + j)(uf,i(k + j) + ub,i(k + j))
)

− CH2 (xf,i(k +Np)− xf,i(k))

− Ce,batt (xb,i(k +Np)− xb,i(k))
)

+

Np−1∑
j=0

Ce(k + j)ein(k + j), (13)

where the parameter Nveh is the total number of the fuel
cell cars in the parking lot. The operator ∆ indicates the dif-
ference between two consecutive values of its operand. The
conversion factors Wf,i are defined for all i ∈ {1, . . . , Nveh}
in such a way that the term Wf,i|∆sf,i(k + j)| in (13) indi-
cates the degradation cost of the fuel cells due to on/off mode
switching. A similar reasoning holds for Wb,i|∆sb,i(k+ j)|.

The value of Ce(k) indicates the price of electricity at time
step k. The term ein(k) indicates the amount of electricity
that is imported to the system at time step k and hence, the
last term in the cost function (13) determines the overall cost
of importing electricity to the microgrid.

IV. CONTROL STRATEGY
To minimize the cost of system operation defined in (13),

the controller should determine, firstly, a suitable production
profile for all the fuel cells, and, secondly, a charge or
discharge profile plan for all the batteries in the system.

In the parking lot, outputs of the controller contain the net
power generation, uf,i, the on or off operation mode of each
fuel cell, sf,i and the power exchange with each battery, ub,i.
The operation mode of batteries, i.e. δb,i, are not considered
as a controller output, because they are determined based on
the value of ub,i.

Considering the presence of auxiliary variables (8) and (9),
minimization of the operational cost is nonlinear and hence,

hard to solve. However, the problem can be solved more
efficiently by formulating it as a Mixed Integer Linear Pro-
gramming (MILP) problem. Therefore, the input constraints
in (4) and (6) are used and the procedure of [15] is followed
in order to formulate the optimization problem as an MILP.
As a result, the auxiliary variable zf,i(k) can be treated as
an optimization parameter with the following inequalities:

zf,i(k) ≤ P̄f,isf,i(k)

zf,i(k) ≥ 0

zf,i(k) ≤ uf,i(k)

zf,i(k) ≥ uf,i(k)− P̄f,i(1− sf,i(k)),

for all i ∈ {1, . . . , Nveh}. A similar argument also holds for
the auxiliary variable zb,i(k). In addition, the rule in (2) is
equivalent to:

uf,i(k) ≤ P̄f,isf,i(k),

for all k and i ∈ {1, . . . , Nveh}.
In order to obtain a linear cost function, auxiliary variables

θi(k) =
[
θf,i(k) θb,i(k)

]T
(i ∈ {1, . . . , Nveh}) are

introduced which have the following constraints for all time
steps k and vehicles i ∈ {1, . . . , Nveh}:

θf,i(k) ≥ |∆sf,i(k)| (14)
θb,i(k) ≥ |∆sb,i(k)|. (15)

Moreover, the user (i.e. car owner) preference on the
minimum level of fuel, xf,i, and minimum and maximum
state of charge of the battery, xb,i and x̄b,i, will result in
another set of constraints. In addition, the amount of power
that can be imported from or exported to the grid, ein, is
limited. Therefore, the designed controller should minimize
the operational cost of the microgrid system subject to:

xf,i ≤ xf,i(k)

xb,i ≤ xb,i(k) ≤ x̄b,i
ein ≤ ein(k) ≤ ēin
Nveh∑
i=1

(
ub,i(k) + uf,i(k)

)
+ ein(k) = Pd(k) + ω(k), (16)

for all k and i ∈ {1, . . . , Nveh}, where Pd(k) is the pre-
dicted demand in the microgrid. The unknown variable ω(k)
represents the uncertainty in the prediction of power demand
in the microgrid at time step k. Hence, Pd(k) + ω(k) is the
actual demand in the microgrid and the constraint in (16) is
related to the power balance situation. All the constraints in
the system at time step k can be easily expressed in matrix
form as:

E1u(k) + E4x(k) + E51(k) + E52ω(k) ≥ E3. (17)

The matrices E1, E3, E4, and E52 are constant at all
times. The matrix E51(k) is a function of k; however, by
using the predicted values of demand, it can be determined
in the prediction horizon. The variable ω(k) indicates the
deviation between the predicted and actual demand in the



microgrid and, hence, its value is unknown. Assumption 1
below expresses a bound on this uncertainty.

Assumption 1: There exists a finite bound for the deviation
of the predicted demand from the actual value, ω(k), at each
time step k. Therefore, it is possible to determine ω̄ and ω
such that for all k, ω ≤ ω(k) ≤ ω̄.

We define a vector, denoted by Ṽ , that contains all
the parameters that should be determined by solving the
optimization problem. This vector contains the sequence of
all the future inputs, ũ(k) and auxiliary variables, z̃(k), θ̃(k).
The variables with a tilde indicate the stacked value of that
variable in the prediction horizon.

Using the definition of vector Ṽ (k) and defining constant
matrices G0, G1, G2, and G3, the inequalities in (17) can
be written for all time steps k ∈ {0, . . . , Np−1} as follows:

G0Ṽ (k) ≤ G1 +G2x(k) +G3ω̃(k), (18)

where ω̃(k) =
[
ω(k) ω(k + 1) . . . ω(k +Np)

]T
is

the vector of unknown future deviations of the demand from
its predicted values and Np is the prediction horizon.

Using the power balance equality constraint in (16), the
cost function in (13) can be written as follows:

J(k) = W0Ṽ (k) +Wdω̃(k).

The aim of the controller is to achieve a guaranteed benefit
for the microgrid in case of any possible deviation w̃ from
the prediction of the demand. Therefore, the system cost
should be minimized with respect to the variable Ṽ for the
maximum possible value of deviation of demand from the
predicted values. In other words, the aim is to solve the
following optimization problem:

min
Ṽ (k)

max
ω̃(k)
{W0Ṽ (k) +Wdω̃(k)} (19)

with respect to the constraints in (18).
Given the fact that the constraint (18) should hold for any

realization of the unknown parameter ω̃(k), the optimization
of (19) is hard to solve. However, with the assumption
of bounded deviation of actual demand from the predicted
values (Assumption 1) and using Lemma 1 below, the opti-
mization problem can be formulated as an MILP problem.

Lemma 1: Defining

ω̃1 =
[
ω̄ . . . ω̄

]T
Np×1

ω̃2 =
[
ω . . . ω

]T
Np×1

,

the inequality (18) holds for all possible disturbances ω
satisfying Assumption 1 if the following two inequalities
hold:

G0Ṽ (k) ≤ G1 +G2x(k) +G3ω̃
1 (20)

G0Ṽ (k) ≤ G1 +G2x(k) +G3ω̃
2. (21)

Proof : The existence of a maximum and minimum value
for variable ω shows that it lies in a polytope. Therefore,

∀ω ∃λ1, λ2 ∈ [0, 1] : λ1ω + λ2ω̄ = ω and λ1 + λ2 = 1.
(22)

Now assume an arbitrary realization of ω̃(k) as follows:

ω̃(k) =
[
ω(k) ω(k + 1) . . . ω(k +Np − 1)

]T
.

The inequality constraint (18) consists of several inequali-
ties belonging to each time step in the prediction horizon.
Considering the structure of G3, it can be shown that (18)
consists of the following inequalities, for j ∈ {0, . . . , Np −
1}:

G0,k+j Ṽ (k) ≤ G1,k+j +G2,k+jx(k) + g3,k+jω(k + j)
(23)

where G0,k+j , G1,k+j , G2,k+j , and g3,k+j are the j + 1th
row of G0, G1, G2, and G3, respectively.

From (20) and (21), we have that

G0,k+j Ṽ (k) ≤ G1,k+j +G2,k+jx(k) + g3,k+jω(k + j)
(24)

G0,k+j Ṽ (k) ≤ G1,k+j +G2,k+jx(k) + g3,k+jω̄(k + j),
(25)

Property (22) shows that for any realization of ω(k+j), there
exists a pair (λ1, λ2) such that λ1ω + λ2ω̄ = ω(k + j) and
λ1 + λ2 = 1. By multiplying these factors to (24) and (25),
it can be easily seen that (23) holds. This reasoning can be
done for all j ∈ {0, . . . , Np − 1} and, hence, (18) holds. �

Lemma 1 shows that if the optimization problem in (19)
is solved subject to the two constraints (20) and (21) that
are stated in Lemma 1, the inequalities will be hold for all
possible disturbances satisfying Assumption 1. Therefore, by
using a similar procedure as in the proof of Lemma 1, the
optimization problem in (19) can be written as follows:

min
Ṽ (k)

{
max

{
W0Ṽ (k) +Wdω̃

1,W0Ṽ (k) +Wdω̃
2
}}

(26)

subject to

G0Ṽ (k) ≤ G1 +G2x(k) +G3ω̃
1

G0Ṽ (k) ≤ G1 +G2x(k) +G3ω̃
2,

which can be solved by a variety of MILP solvers, such as
GLPK, CPLEX, or Gurobi.

V. NUMERICAL EXAMPLE
The algorithm developed in Section IV is now imple-

mented in a scenario where two fuel cell cars in the microgrid
have to guarantee the power balance. A fuel cell with
maximum power generation, P̄f = 30kW and a battery with
24 kWh capacity, i.e. x̄b,1 = x̄b,2 = 24, exist in each of
the two cars. We assume that the maximum power exchange
with the batteries is limited to 2 kW, i.e. |P b,i| = P̄b,i = 2
for i ∈ {1, 2}. In addition, the charging and discharging
efficiency is considered to be equal with values 0.9 and 0.8
for each battery, respectively. It is assumed that the maximum
power that can be imported to the microgrid ēin is 66 kW.
The uncertainty in the power demand is in the interval [-
3,2] kW and a min-max model predictive controller based
on the optimization problem (26) is designed. The sampling
interval, Ts, of the control system is 15 minutes and the
simulation shows the system behavior in 24 hours.
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Fig. 2. Operation of the control system in presence of two fuel cell cars.
(a) Demand profile in the microgrid and the maximum power capacity of
imported power. The solid line is the predicted demand profile and the
shaded area represents the possible realization of the demand. (b) Energy
production by fuel cells and batteries. (c) Operation mode of fuel cells and
batteries.

Figure 2 illustrates the simulation results. In Figure 2(a),
the predicted demand profile is depicted. Considering the
uncertainty in the system, in two time intervals the actual
demand may exceed the maximum power capacity that can
be imported to the microgrid. Therefore, the fuel cell car
has to produce electricity in these time intervals. Figure
2(b) depicts the production profiles of the fuel cell and
battery. During the high demand period in the morning, one
of the batteries compensates the shortage of electricity in
the microgrid and as a result, the fuel cells remain out of
operation. However, the high demand in the afternoon can
only be compensated by a fuel cell, as the results also show
that in the afternoon one of the fuel cells is turned on in
order to guarantee the power balance of the system. Figure
2(c) indicates the changes in the operation mode of fuel
cell and battery. The switching signals show that during the
simulation, one of the fuel cells is not used in the task of
power balance in the microgrid.

VI. CONCLUSIONS

We have considered a parking lot for fuel cell cars as a
virtual power plant that is employed to produce electricity in
a microgrid. A high-level, hybrid system model has been
derived from the energy point of view and in order to
achieve the power balance situation in addition to minimizing
the operational cost of the virtual power plant, a min-max
controller has been designed. The operation of the control
system is simulated for a case study. Future work will
focus on distributed and scenario-based robust control of the
presented system.
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