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Highlights 

 A methodology has been developed for natech risk assessment of industrial plants. 

 Flotation, shell buckling, and rigid sliding are considered as prevailing failure modes. 

 Physical reliability models and Monte Carlo simulation are used to generate artificial failure data. 

 Bayesian parameter learning is used to estimate and combine failure probabilities.    
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Abstract 

In the context of natural-technological (natech) accidents, flood-induced damage of industrial plants have received 

relatively less attention mainly due to the scarcity of such accidents compared to those triggered by earthquakes, 

high winds, and lightnings. The large amount of oil spillage due to floods triggered by the Hurricanes Katrina and 

Rita in 2005 in the U.S. demonstrated the potential of floods in causing catastrophic natechs. In the present study, 

we have developed a methodology based on physical reliability models and Bayesian network so as to assess the 

fragility (probability of failure) of industrial plants to floods. The application of the methodology has been 

demonstrated for petroleum storage tanks where flotation, shell buckling, and sliding are considered as the 

prevailing failure modes. Due to scarcity of empirical data and high-resolution field observations prevailing in 

natechs, the developed methodology can effectively be applied to a wide variety of natechs in industrial plants as 

long as limit state equations of respective failure modes can reasonably be developed.  

Keywords: Floods; Natech accidents; Petroleum storage tank; Physical reliability models; Bayesian network. 

 

1. Introduction 

Technological accidents which are triggered by natural events such as earthquake, lightning, storm, wildfire, 

tsunami, and flood are known as natech (natural-technological) accidents. Natural disasters have reportedly led to 

the release of significant amounts of oil, chemicals, and radiological substances (Showalter and Myre, 1994; 

Rasmussen, 1995; Young et al., 2004).  

The occurrence of natechs in industrial plants, particularly chemical facilities, can result in catastrophic 

consequences in terms of large spillage of hazardous materials which with the assistance of flood discharge can 

vastly spread and cause enormous environmental damages (Figure 1). In 2005, the floods triggered by the 

Hurricanes Katrina and Rita in the U.S. caused a spillage of about 8 million gallons of oil into the ground and 

waterways from Louisiana to Alabama, the second largest oil spill disaster in the U.S. after the 2010 BP spill in the 

Gulf of Mexico (Sturgis, 2015). In August 2017, the Hurricane Harvey in the U.S. caused damage to storage tanks in 
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refineries and petrochemical plants, leading to substantial release of pollutants1. Aside from direct structural 

damage to industrial plants, the power outage in a chemical facility coupled with damaged backup generators 

made an extremely flammable chemical (organic peroxides) – which must be kept refrigerated – degrade and catch 

fire (the guardian, 2017). The structural damage caused by natural events at industrial plants, however, does not 

compare with the environmental damage and revenue losses due to interruption in production and supply chain: 

the Hurricane Harvey made oil refineries shut down their operations in the wake of heavy rainfall and flooding, 

leading to at least a loss of more than 1 million barrels per day in refining capacity (CNBC, 2017). 

 

Figure 1. An aerial image of the oil spill that contaminated residential neighborhoods in Louisiana's St. Bernard 

Parish after Hurricane Katrina. (source: Environmental Protection Agency, the U.S.) 

 

Risk of natech accidents has started to be recognized in quantitative risk assessment of industrial plants since the 

last decade (Young et al., 2004; Cruz and Okada, 2008; Antonioni et al, 2009; Krausmann et al., 2011). Most of the 

attempts in the field of natech risk assessment have been devoted to the fragility assessment of industrial plants to 

earthquakes (Salzano et al., 2003, 2009; Campedel et al., 2008; Korkmaz et al., 2011; Girgin and Krausmann, 2013; 

Marzo et al., 2015), lightning (Renni et al., 2010; Necci et al., 2013, 2016), tsunami (Cruz et al., 2011; Mebarki et al., 

2016; Basco and Salzano, 2016) and volcanic ashes (Millazzo et al., 2013). Despite an extensive literature in flood 

assessment and flood-induced damage of structures and infrastructures (Vrijling, 2001; Buijs et al., 2009; Jonkman 

et al., 2010; Hong et al., 2015; Sattele et al., 2015), relevant work in the context of flood natechs (impact of floods 

on industrial plants) has been very few (Haptmanns, 2010; Landucci et al., 2012, 2014; Antonioni et al., 2015; 

Khakzad and Van Gelder, 2017). This has partly been due to the rarity of flood natechs (Cozzani et al., 2010) and 

partly due to the scarcity of high resolution historical or experimental data relating the characteristics of floods 

(return period, inundation height, flow speed) to the damage states of impacted vessels (Godoy, 2007; Campedel, 

                                                             
1At the time of submitting the present study, the Hurricane Harvey was still hitting the Houston area in the U.S., and thus the 
accurate extent of damage to industrial plants had not yet been known.   
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2008; Krausmann and Mushtaq, 2008; Santella et al., 2010). For example, in most of accident reports and previous 

studies, it is not clarified if the spillage of chemicals during floods has been due to disconnected pipelines or due to 

the structural collapse of vessels (Cozzani et al., 2010). 

Investigating 272 flood natech accidents from 1960 to 2007 in Europe and the U.S., Cozzani et al. (2010) identified 

the above-ground storage tanks as the most frequently damaged equipment (74% of cases), including atmospheric 

storage tanks, floating roof tanks, and pressurized tanks. Besides, the displacement of equipment (due to flotation 

or sliding), shell buckling, and impact with debris have been identified as credible failure modes (Cozzani et al., 

2010). Similar failure modes have been reported in Godoy (2007) based on the site observations of affected 

process plants in Louisiana and Texas, U.S., after Hurricane Katrina in 2005. It is also worth mentioning that the 

pipeline disconnection as a lateral failure mode resulting from the displacement of equipment has reportedly led to 

significant chemical releases as well (Godoy, 2007; Campedel, 2008; Cozzani et al., 2010). 

Due to the scarcity of historical data, the majority of previous quantitative risk assessment studies has relied on 

analytical or numerical techniques to calculate the probability of failure based on the failure mechanism of 

impacted vessels subject to floods (Landucci et al., 2012, 2014; Kameshwar and Padgett, 2015; Mebarki et al., 

2016; Khakzad and Van Gelder, 2017). In this regard, usually based on a comparison between the flood loads and 

the vessel resistance, limit state equations (LSEs) have been developed for different failure modes of the vessel 

which in turn can be used to determine the likelihood of failures deterministically (Landucci et al., 2012, 2014) or 

probabilistically (Kameshwar and Padgett, 2015; Mebarki et al., 2016). 

Regardless of the followed approach, in the previous studies usually merely one failure mode has been investigated 

(e.g., Landucci et al., 2012, 2014) and where more than one failure mode have been considered (Kameshwar and 

Padgett, 2015) the resulting failure probabilities have been aggregated assuming independent failure modes. This 

latter oversimplification, however, may result in an overestimation of the total failure probability since the same 

parameters (load-resistance forces) contribute to the failure modes of an impacted vessel, making them 

conditionally dependent. To address this drawback, Khakzad and van Gelder (2017) developed a methodology 

based on Bayesian network (BN) to facilitate the incorporation of dependencies among individual failure modes. 

The present study is aimed at presenting a methodology based on physical reliability modes and BN to assess the 

vulnerability of above-ground atmospheric storage tanks (hereafter, storage tanks) to floods. The main idea, in a 

nutshell, is first to generate artificial failure data based on failure mechanism of storage tanks (a failure takes place 

if the random stress on the storage tank exceeds the random strength of the storage tank) and Monte Carlo 

simulation, and then to apply Bayesian parameter learning to estimate and combine failure probabilities. The 

methodology is schematically displayed in Figure 2, comprising the following four parts:  

(i) physics of failure analysis (Steps 1-3), where the loading and resisting forces contributing to the failure of 

storage tanks during floods are investigated. Based on such, LSEs will be developed for respective failure modes.  
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(ii) data generation (Steps 4-6), where Monte Carlo simulation is used to generate random values of LSEs based on 

the random variables involved in loading-resisting parameters.  

(iii) development of BN (Steps 7 and 8), where the structure of the BN, i.e., the nodes and their conditional 

dependencies in form of arcs, is constructed. Moreover, using the BN structure and the data generated in the 

previous part the parameters of the BN (i.e., conditional probabilities) are estimated using maximum likelihood (or 

log-likelihood) estimation technique. Having the structure G and the parameters θ of the BN (G,  θ), it can be used 

for predicting the failure probabilities.  
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Figure 2. Schematic of the developed methodology.  
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(iv) performance assessment (Steps 9 and 10), where by making a comparison between the failure probabilities 

predicted by the BN (Part iii) and the data generated based on LSEs (Part ii), the performance of the BN as a 

classifier (whether the storage tank fails or not) can be assessed using the technique of Receiver Operating 

Characteristics (ROC). If the BN turns out to be performing poorly, its performance should be improved either by 

using a larger dataset (if the poor performance is attributed to, among others, incomplete observation data) or by 

modifying the structure of the BN which would otherwise fail to capture the dependencies among the contributing 

factors.  

The remaining of the paper has been organized as follow: in Section 2, the physics of failure (failure modes) of 

storage tanks impacted by floods will be modeled using simplified LSEs. These equations will later be coupled with 

Monte Carlo simulation to generate data required for BN development. In Section 3, the basics of BN, Bayesian 

parameter learning, and ROC are presented. The application of the methodology will be exemplified in Section 4, 

while the conclusions are presented in Section 5. 

2. Flood-induced failure modes  

2.1. Flotation  

Flotation of storage tanks has reportedly been the most prominent failure mode observed due to the floods 

triggered by Hurricane Katrina (Godoy, 2007; Santella et al., 2010). To investigate the physical conditions leading 

to the flotation of a storage tank during flood, (i) the weight of the tank bulk WT, (ii) the weight of the contained 

chemical WL, and (iii) the force exerted by the foundation FF are considered as resisting forces; on the other hand, 

the buoyant force FB of flood (White, 2003) is considered as the loading force as depicted in Figure 3. In the figure, 

D, H, and t are the tank’s diameter, height, and shell thickness, respectively, while the height of the chemical inside 

the tank and the flood inundation depth have been denoted, respectively, by h and S. Although the specifications for 

the anchorage of storage tanks have been given in the current standards (e.g., API, 650), the common design 

practice in many chemical plants is still based on self-anchored storage tanks, i.e., FF = 0 (Godoy, 2007).  
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Figure 3. Schematic of the load-resistance forces considered in tank flotation. 

 

Considering the forces in Figure 3, the flotation limit state equation, LSEFlotation, can be developed in Equations (1)-

(5): 

                                 (1) 

      
   

 
              (2) 

      (     
   

 
)             (3) 

      
   

 
              (4) 

where   ,   , and    are the densities of the flood water, tank shell (usually steel), and the chemical substance 

inside the tank, respectively; g is the gravitational acceleration. As can be seen from Equation (1), the storage tank 

will float if LSEFlotation > 0. 

2.2. Shell buckling  

As reported by Godoy (2007), the shell buckling of storage tanks was mainly caused by high winds during the 

Hurricanes Katrina and Rita rather than by the subsequent floods. However, Campedel (2008), Cozzani et al. 

(2010), and Landucci et al. (2012) have pointed out the shell buckling as a potential failure mode, where an 

external pressure above the critical pressure     may lead to the shell collapse.  

To investigate the physical conditions leading to the shell buckling, the main internal (resisting) and external 

(loading) radial pressures on the shell have been depicted in Figure 4. The radial pressures include the hydrostatic 

pressure both from the height of liquid inside the tank    (resisting) and from the height of flood inundation    

(loading) and the hydrodynamic pressure    (loading) due to the kinetic energy of the flood flow (White, 2003). If 
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the resultant of the radial pressures are higher than a critical pressure    , shell buckling occurs. As a result, the 

corresponding LSE can be developed in Equation (5).  

 

 

Figure 4. Schematic of the load-resistance forces considered for shell buckling. 

 

                                  (5) 

                    (6) 

                    (7) 

   
 

 
                   (8) 

where    is the drag coefficient (   = 2.0 for square and rectangular piles, and    = 1.2 for round piles);   is the 

average speed of the flow. For cylindrical shell structures, the amount of buckling critical pressure     can be 

calculated using simplified relationships given in Equations (9) and (10) for long cylinders (Iturgaiz Elso, 2012) 

and short cylinders (Landucci et al., 2012), respectively. Above-ground storage tanks usually lie in the category of 

short cylinders.  
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where E is the Young’s modulus of the tank material;   is Poisson ratio; n is the number of waves involved in 

buckling. As can be seen from Equation (5), the tank shell will buckle if LSEBuckling > 0. 
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2.3. Sliding  

As for unanchored storage tanks, the rigid sliding due to the hydrodynamic pressure of the flood surge has been 

reported as a possible failure mode (Cozzani et al., 2010) but not so common as flotation and shell buckling. 

Considering the storage tank and its containment as a body of mass, the hydrodynamic force of the flood (load) and 

the friction force between the tank and the ground (resistance) are taken into account as influential forces (Figure 

5). The limit state equation can be presented in Equation (11).  

 

D

H

L
S

t

Pd

Ffr

WT

WL
FB

 

Figure 5. Schematic of the load-resistance forces considered for sliding. 

 

Accordingly, the hydrodynamic force    can be calculated as the product of the hydrodynamic pressure    and the 

vertical wet section area of the storage tank in Equation (12). The friction force     is equal to the product of the 

friction coefficient    and the normal force    exerted from the ground to the bottom of the tank, as presented in 

Equation (13). For an unanchored storage tank, the normal force is the vector summation of the weight of the tank, 

weight of chemical, and the buoyant force, as shown in Equation (14), as long as the tank is not floated. Having the 

load,   , and the resistance,    , the corresponding LSE has been developed in Equation (11), where LSESliding > 0 

implies the tank’s sliding. 

                             (11) 

                    (12) 

                     (13) 

                       (14) 
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where    is the friction coefficient (0.4 according to API 650). It should be noted that the existence of the friction 

force is legitimate as long as the tank stays in touch with the ground; in other words, if the flotation occurs first, the 

sliding will be excluded from the analysis. Such conditional dependency between flotation and sliding should be 

taken into account in BN modeling. 

3. Bayesian network modelling 

3.1. Bayesian network 

BN (Pearl, 1988) is a directed acyclic graph that represents a joint probability distribution of a set of random 

variables U= {X1, X2, …, Xn}. The network can be defined as BN= (G, θ); G is the structure of the graph where the 

random variables are presented as nodes and direct dependencies among the random variables are denoted as 

arcs between the nodes. The graph G satisfies Markovian condition in that each variable in G is independent of its 

nondescendents given its immediate parents. As a result, the associated joint probability distribution of the 

random variables can be factorized as the multiplication of conditional probabilities of each node (variable) given 

its parent nodes as: 

              ∏             
 
              (15) 

The conditional probabilities of type                are also known as the network parameters which can either 

be elicited from subject matter experts – usually in case of small networks – or be learned from data.  

3.2. Bayesian parameter learning  

Suppose we have a dataset comprising m complete observations of the random variables as 

   (  
 
   

 
     

 
)          in that each observation assigns a value to each variable. Accordingly, the log-

likelihood function of the network parameters can be developed as: 
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       (16) 

Maximizing the log-likelihood function given in Equation (16) with respect to θ, the parameters of the BN can be 

estimated. Applications of Bayesian parameter learning in probabilistic risk assessment can be found in Siu and 

Kelly (1998), Yan and Haims (2010), and Khakzad et al. (2014). 

3.3 Performance assessment  

Considering binary random variables, the developed BN whose parameters are learned from observation data can 

be used as a binary classifier so as to determine the state of a random variable of interest provided that the states 

of other variables are known. To assess the performance of the developed BN as a classifier, a number of 
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techniques can be employed among which the method of Receiving Operating Characteristics (ROC) is used in the 

present study due to its both simplicity and practicality (Cook, 2007). 

ROC is widely used in machine learning and data mining (Khakzad et al., 2015); it is created by plotting the 

classifier’s true positive rate (TPR) versus its false positive rate (FPR). TPR is the fraction of true positives out of 

the total actual positives (a.k.a the sensitivity of the classifier) whereas FPR is the fraction of false positives out of 

the total actual negatives (a.k.a one minus the specificity of the classifier) at a specific threshold setting: 

    
  

     
             (17) 

    
  

     
             (18) 

where TP is true positives, FP is false positives, FN is false negatives, and TN is true negatives. A ROC space is 

defined by FPR and TPR as horizontal and vertical coordinate axes, respectively (Figure 6). The line of no 

discrimination (LND) drawn from the bottom left (0,0) to the top right (1,1) divides the ROC space into three areas: 

(i) points above the LND illustrate good predictions, (ii) points below the LND represent poor predictions, and (iii) 

a point along the LND represents random predictions. 
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Figure 6. An exemplification of ROC for performance assessment of binary classifiers.  

 

The distance of a point from the LND in either direction indicates the good or poor performance of the respective 

classifier. The accuracy of the classifier (ACC) can be estimated as: 

    
     

           
            (19) 
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4. An illustrative example  

4.1. Case study 

To illustrate the application of the developed methodology, a storage tank of crude oil with a diameter of D = 22 m, 

height of H = 11 m, and shell thickness of t = 0.01 m is considered. The height of crude oil inside the tank is 

considered to uniformly vary from zero to 0.75 H, that is, h ~ Uniform (0.0 m, 8.25 m). For flood-induced fragility 

assessment of chemical vessels, a comprehensive flood hazard assessment should be performed to identify the 

frequency of floods along with relevant parameters such as the height of inundation, S,  and flow velocity, V. This 

demands for an exhaustive investigation of mechanisms that can lead to floods, including extreme precipitation, 

snow melting, and dam breaks, along with the hydrological and topological aspects of floodplains (Van Gelder, 

2013). 

In the present study, for illustration purposes only, a hypothetical flood is considered, the height of inundation and 

the flow velocity of which follow normal distribution as S ~ Normal (μ = 1.0 m, σ = 0.1 m) and V ~ Normal (μ = 2.0 

m/s, σ = 0.25 m/s). The parameters and variables used in the present study have been summarized in Table 1. 

 

Table 1. Parameters used for vulnerability assessment of storage tank. 

Parameter Symbol Value Unit 

Storage tank's height H 11 m 

Storage tank's diameter D 22 m 

Storage tank's shell thickness t 0.01 m 

Crude oil height h Uniform (0.0 , 8.25) m 

Flood's inundation height S Normal (1.0, 0.1) m 

Flood's flow velocity* V Normal (2.0, 0.25) m/s 

Tank shell density (steel)     7900 kg/m3 

Flood water density     1024 kg/m3 

Crude oil density     850 kg/m3 

Young’s modulus  E 2.1 E +11 Pa 

Buckling critical pressure (Eq. 10)      217 Pa 

Poisson ratio    0.3 
 

Drag coefficient     1.8 
 

Friction coefficient     0.4 
 

Number of buckling waves n 2 
 

 

4.2. Results  

To assess the vulnerability of the storage tank, Monte Carlo simulation is performed (5000 runs) to generate 

random values of LSEs based on Equations (1), (5), and (11), for flotation, shell buckling, and sliding, respectively. 

For this purpose, all the parameters are assumed constant except the height of crude oil h, inundation height S, and 
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flow velocity V (Table 1). As such, the positive values of, for example,  LSEFlotation indicate the tank flotation (Float = 

1), whereas negative values indicate the tank survival (Float = 0). Similarly, the values of LSEBuckling and LSESliding can 

be used to determine the possibilities of shell buckling and sliding.  

Taking into account the random variables h, S, and V which contribute to the flotation (Float), shell buckling 

(Buckle), and rigid sliding (Slide) of the storage tank, the structure of the corresponding BN can be developed as in 

Figure 7 using GeNIe software2.  

 

 

Figure 7. Developed BN for fragility assessment of storage tanks impacted by flood. 

 

As can be seen from Figure 7, the heights of crude oil h and water inundation S contribute to all three failure modes 

whereas the flow velocity V only plays a role in shell buckling and sliding. Such cause-effect relationships have 

been denoted by the arcs from h, S, and V to the respective failure modes. Likewise, since the flotation and sliding 

of the storage tank are mutually exclusive (the former prohibits the latter; see Section 2.3), there is an arc from the 

node Float to the node Slide to incorporate such conditional dependency, that is, P(Slide= 1 | Float= 1) =0.0.  

                                                             
2 GeNIe 2.0, Decision Systems Laboratory, University of Pittsburgh, available from: www.bayesfusion.com   
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It has to be noted that in the nodes Float, Buckle, and Slide, the States 1 and 0 refer to the occurrence and 

nonoccurrence, respectively, of the failure modes (Table 2). Having the structure of the BN determined, the next 

step will be to estimate the network parameters (conditional probabilities) based on the generated dataset using 

the parameter learning algorithm described in Section 3.2. For this purpose, first the generated continuous data for 

each random variable was discretized into a limited number of states in order to comply with the discrete chance 

nodes in the BN of Figure 7 as listed in Table 2. 

 

Table 2. States of the variables in the BN of Figure 7. 

State h S V Float Buckle Slide 

0 0.0 - 1.0 0.0 - 0.8 0.0 - 1.5 LSE < 0  LSE < 0 LSE < 0 

1 1.0 - 1.5 0.8 - 1.0 1.5 -2.0 LSE > 0  LSE > 0 LSE > 0 

2 1.5 - 2.0 1.0 - 1.2 2.0 -2.5 
   3 2.0 - 2.5 > 1.2 > 2.5 
   4 > 2.5           

 

The reason for the discretization of h with more intervals for 0.0 < h < 2.5 is the fact that the critical height of 

chemical inside the storage tank, i.e., the height below which the tank becomes floated, has been reported about the 

flood inundation height, S (RRT6, 2016). Likewise, the discretization of S and V has been carried out owing to the 

fact that in a normal distribution 95% of the data lies between μ ± 2σ. A sample of data modified according to the 

foregoing discretization has been depicted in Figure 8.  

 

S V h Float Buckle Slide 

2 1 1 0 0 0 

1 2 0 1 1 0 

1 2 4 0 0 0 

2 0 0 1 1 0 

1 1 0 1 1 0 

2 1 0 0 0 1 

2 1 3 0 0 0 

1 2 3 0 0 0 

1 2 0 1 1 0 

2 1 1 0 0 1 

2 1 0 1 1 0 

2 2 0 1 1 0 

1 1 0 1 1 0 

 
Figure 8. Sample data used for BN parameter learning. The numbers refer to the states in Figure 6.  
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Determinig the parameters of the network, the BN has been run in GeNIe software to calculate the probability of 

each failure mode along with the probability of the total failure (union of individual failure modes’ probabilities via 

an OR gate), resulting in P(Float) = 0.20, P(Buckle)= 0.17, P(Slide)= 0.04, and P(Total failure) = P(Float ∪ Buckle ∪ 

Slide) = 0.26 for the flood of interest. Not to mention that ignoring the conditional dependencies3 among the failure 

modes would have been resulted in an overestimation of the total failure probability as P(Total failure) =  0.36. 

4.3. Verification  

The results of the ROC analysis of the developed BN have been displayed in Figure 9 to assess the BN’s 

performance as a classifier. To this end, the dataset generated by Monte Carlo simulation (see Figure 8) in form of 

{S, V, h, Float MC, Buckle MC, Slide MC} were compared with corresponding data computed by the BN in form of {S, V, h, 

FloatBN, BuckleBN, SlideBN} in order to calculate the parameters needed in Equations (17)-(19).  

For sake of clarity, part of calculations carried out for performance assessment of the BN in predicting the flotation 

have been reported in Table 3 for a number of simulations. In Table 3, in order to make a comparison between the 

results of Monte Carlo simulation (denoted by MC superscript) with those of the BN analysis (denoted by BN 

superscript), the flotation probabilities greater than or equal to 0.5 have been taken as State1 (flotation is likely to 

occur); the numbers in the brackets denote the states.   

 

Table 3. A sample of calculation used for performance assessment of the BN in predicting the flotation. The 

numbers in the brackets denote the state numbers in Figures 7 and 8. 

Simulation 
ID S (m) V (m/s) H (m) Float MC Float BN TP FP TN FN 

99 1.076 (2) 1.81 (1) 0.78 (0) LSE > 0 (1) 0.89 (1) 1 0 0 0 

279 0.95 (1) 1.86 (1) 0.86 (0) LSE < 0 (0) 0.79 (1) 0 1 0 0 

405 1.04 (2) 2.32 (2) 2.56 (4) LSE < 0 (0) 0.005 (0) 0 0 1 0 
 

Having the positive and negative predictions for all the dataset determined, Equations (17) and (18) are used to 

calculate the coordinates of the respective points in Figure 9. As can be seen, ROC curves for all the failure modes 

lie well above the LND, implying the high performance of the BN in predicting these failure modes. Besides, using 

Equation (19), the accuracy of the BN in predicting the failure modes are ACCFloat= 0.96, ACCBuckle = 0.91, ACCSlide = 

0.81, respectively.  

A lower accuracy of the model in predicting the sliding failure mode (note part of ROC curve below LND) may be 

due to issues such as scarcity of positive data (i.e., cases where sliding occurs) rather than ineffectiveness of the 

BN. This is well evident from Figure 8, where compared to the floating and buckling modes, the sliding mode is less 

likely to take place (see few-and-far-between 1s in the last column of Figure 8). In this regard, the application of 

                                                             
3 P(A∪B∪C)= P(A)+ P(B)+ P(C) – P(A)P(B) – P(A)P(C) – P(B)P(C) + P(A)P(B)P(C) 
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larger datasets which may contain more sliding cases in parameter learning may improve the performance of the 

developed BN in predicting the sliding mode. 

 

 

Figure 9. Performance assessment of the BN presented in Figure 6 using ROC technique.  

 

It should be noted that the ROC curves in Figure 9 merely point out the good agreement between the data 

generated using Monte Carlo simulation based upon physics-of-failure relationships and the data predicted by the 

developed BN. In other words, Figure 9 should be looked upon as a means of verification of the developed BN (i.e., 

predicted failure probabilities) assuming that the developed limit state equations (i.e., generated failure 

probabilities) reasonably resemble (at least with an acceptable level of accuracy) the actual failure mechanisms of 

equipment in case of floods. That being said, to truly validate the methodology, the generated failure probabilities 

at the first place should be verified against actual data obtained from either field observations or laboratory 

experiments. This, however, imposes a challenge since the lack of adequately detailed data is one of the main issues 

to tackle in flood-related natech risk assessment.  

5. Conclusions 

In this study we developed a methodology based on Bayesian network to assess the vulnerability of chemical 

installations to floods. The failure modes such as flotation, buckling, and sliding were modeled in form of limit state 

equations and coupled with Monte Carlo simulation to generate data required for Bayesian parameter learning. 

Although the application of the methodology has been demonstrated on petroleum storage tanks, the methodology 

can readily be tailored to be applicable to a wide variety of process and chemical vessels.  
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In the present study we illustrated that due attention should be paid to dependencies when combining individual 

failure modes such as flotation, buckling, and sliding. The dependencies mainly arise due to (i) common load-

resistance parameters (e.g., the same flood inundation height, flow velocity, and chemical content) which are taken 

into account when deriving limit state equations, and (ii) conditional dependencies among the failure modes (e.g., 

between flotation and sliding). We demonstrated that both types of such dependencies can effectively be taken into 

account in a Bayesian network methodology, which would otherwise result in an overestimation of the total failure 

probability. 

We illustrated the application of the methodology to flood-related failure of atmospheric storage tanks. Yet, the 

methodology can be applied, without loss of generality, to a wide variety of natechs (e.g., those triggered by 

seismic, wind, tsunami, etc.) and industrial plants and infrastructures as long as physical failure mechanisms (in 

form of limit state equations) can be developed for contributing failure modes.  
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