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Unified mean-field framework for susceptible-infected-susceptible epidemics on networks,
based on graph partitioning and the isoperimetric inequality

K. Devriendt and P. Van Mieghem
Delft University of Technology, Faculty of Electrical Engineering, Mathematics and Computer Science,

P.O Box 5031, 2600 GA Delft, the Netherlands
(Received 14 July 2017; published 27 November 2017)

We propose an approximation framework that unifies and generalizes a number of existing mean-field
approximation methods for the susceptible-infected-susceptible (SIS) epidemic model on complex networks.
We derive the framework, which we call the unified mean-field framework (UMFF), as a set of approximations
of the exact Markovian SIS equations. Our main novelty is that we describe the mean-field approximations
from the perspective of the isoperimetric problem, which results in bounds on the UMFF approximation error.
These new bounds provide insight in the accuracy of existing mean-field methods, such as the N-intertwined
mean-field approximation and heterogeneous mean-field method, which are contained by UMFF. Additionally,
the isoperimetric inequality relates the UMFF approximation accuracy to the regularity notions of Szemerédi’s
regularity lemma.

DOI: 10.1103/PhysRevE.96.052314

I. INTRODUCTION

Epidemic spread on complex networks is a widely studied
topic in the field of network science [1], covering many
applications ranging from diseases and computer viruses, to
the spreading of ideas and emotions. While the mathematical
study of epidemics dates back to the work of Bernoulli in the
18th century, the focus on the role of the network topology only
started at the end of the 20th century with the work of Kephart
and White [2]. With the recent observations that networks seem
ubiquitous in both natural and man-made systems, a better
understanding of the interplay between dynamic processes and
network topology has become an important pursuit.

In the theory of epidemics on complex networks, the
compartmental model of Kermack and McKendrick [3] from
1927 is regarded as a landmark. In compartmental models,
each entity in the population is assumed to be in a certain state,
for instance healthy, contagious, immune, aware of the disease,
exposed or others. The state of each entity, from now on called
“node,” can change based on the current state of the node
itself and its neighboring nodes. By these local interactions the
disease can spread, die out or show other behaviors depending
on the model. A general overview of the basic models and
current progress in the field of epidemics on complex networks
is given in Ref. [1].

Like many network-epidemic studies, we will focus on
one specific compartmental model: the susceptible-infected-
susceptible (SIS) model. The SIS model is attractive and
simple enough for a deep theoretical study, while still complex
enough to exhibit global behavior that is nontrivially coupled
to the small-scale process and the topology of the underlying
network. In the SIS model, each node in the network can be
in either of two states: susceptible (S) or infected (I). These
states can change over time when an infected node is cured,
or when a susceptible node is infected by a sick neighbor.
These curing and infection events are stochastic processes that
determine the dynamics of the epidemic. For a given initial
distribution of infected nodes, basic questions are: What is
the evolution of the state of the nodes in the network? How
many nodes are infected in the metastable state? Does the

disease die out before reaching a significant fraction of the
population?

To address these questions, further assumptions need to
be made about the dynamics of the SIS process. In the
continuous-time Markovian SIS model, on which this article
focuses, the infection and healing events are modeled as
independent Poisson processes. More general distributions
are possible [4], but in Poisson processes, the waiting times
for infection or healing events are exponentially distributed,
which means that they satisfy the memoryless property. As a
result, the transitions between different disease states in the
network become equivalent to state transitions in a Markov
chain, which allows the Markovian SIS model to be exactly
described [5]. However, since the number of possible states
grows exponentially with the number of nodes, this exact
description is infeasible for large networks. Consequently,
several approximate methods have been proposed. The N-
intertwined mean-field approximation (NIMFA) [5] and the
heterogeneous mean-field method (HMF) [6,7] are two widely
used approximation methods, which are contained in our new
framework. An overview of these two methods and other SIS
approximation methods can be found in Refs. [1] and [8].

In this article, we present the unified mean-field framework
(UMFF), which consists of two general approximation steps.
First, a topological approximation leads to a coarse-grained
description of the SIS process. Second, a moment-closure
approximation further simplifies the SIS process description
by omitting higher-order correlations. UMFF contains a
number of existing mean-field methods, like NIMFA and
HMF as mentioned earlier, and additionally extends the
range of known SIS approximation methods. Linear stability
analysis of the resulting UMFF equations also leads to the
formulation of an epidemic threshold that depends on the
choice of approximation steps. Apart from the unification
and generalization, our main results are based on the close
connection between the infection process in SIS epidemics and
the well-studied isoperimetric problem [9,10]. This connection
provides novel insights, e.g., about the scaling behavior of the
SIS process on large graphs, and allows us to deduce powerful
bounds on the UMFF approximations. To our knowledge, such
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general bounds for mean-field approximations on graphs are
derived for the first time.

Section II starts by defining the SIS epidemic model
on networks and elaborates on the feasibility of the exact
SIS description. In Sec. III, we present the unified mean-
field framework, which consists of the UMFF topological
approximation, the UMFF moment-closure approximation, the
resulting set of UMFF equations and the UMFF epidemic
threshold. In Sec. IV, we show how the UMFF equations fol-
low from the exact SIS equations by subsequently introducing
the two general UMFF approximations. Section V describes
how existing mean-field methods are contained by UMFF and
in particular, we show how UMFF encompasses both NIMFA
and HMF. Section VI introduces the isoperimetric problem
and describes its analogy with the infection process. This
analogy leads to the topological UMFF approximation and
bounds. In Sec. VII, we discuss the relation between UMFF
and Szemerédi’s regularity lemma and explore the implications
of this relation for the SIS process on large graphs. Section VIII
overviews some related work. Finally, Sec. IX concludes by
summarizing the main properties of UMFF and by suggesting
future research directions.

II. BACKGROUND: THE SIS EPIDEMIC MODEL

The compartmental SIS epidemic model describes the
spread of an epidemic on a network, which we represent by a
graph G(N ,L). Here, N is the set of N nodes and L the set of
L undirected, unweighted links between pairs of nodes. The
graph’s topology is conveniently represented by an N × N

adjacency matrix A, with elements:

aij =
{

1 if (i,j ) ∈ L
0 otherwise .

Since we consider undirected and unweighted graphs, the
adjacency matrix A is real and symmetric, possessing the
following eigendecomposition [11]:

A = X�XT =
N∑

i=1

λixix
T
i ,

where X is the orthogonal eigenmatrix with eigenvectors xi as
columns and � = diag(λ1,λ2, . . . ,λN ) is the diagonal matrix
with eigenvalues on its diagonal. Because the adjacency matrix
A is real and symmetric, all eigenvalues are real and can be
ordered as λ1 � λ2 � · · · � λN . Another graph-related matrix
is the Laplacian matrix Q, defined as

Q = � − A,

where � is the diagonal matrix containing the node degrees.
Since the Laplacian Q is also a real and symmetric matrix, we
can write the eigendecomposition:

Q = ZMZT =
N∑

i=1

μiziz
T
i ,

where Z is the orthogonal eigenmatrix with eigenvectors zi as
columns and M = diag(μ1,μ2, . . . ,μN ). Since all rows of Q

sum to zero, it holds that Qu = 0, where u is the all-one vector.
The eigenvalue equation Qu = μNu with μN = 0 illustrates

that Q has at least one zero eigenvalue, belonging to the eigen-
vector u√

N
. The Laplacian Q is positive semidefinite, which

means that all eigenvalues are non-negative, i.e., μi � 0 for
all i � N . Additionally, the multiplicity of the zero eigenvalue
μN is known to be one for connected graphs [11]. Hence, for
any connected graph, we can write the ordered sequence of
Laplacian eigenvalues: 0 = μN < μN−1 � · · · � μ1.

The disease state of each node n ∈ N at a given time t , is
captured by a Bernoulli random variable Wn(t); the expression
Wn(t) = 0 means that node n is healthy, but susceptible (S) to
the disease, while Wn(t) = 1 means that the node is infected
(I) and contagious. The evolution of the disease states over
time is governed by the disease dynamics

S → I → S,

which means that susceptible nodes can become infected
nodes, which in turn can become susceptible. The S → I

transition is called infection and can occur when a susceptible
node n has an infected neighbor j in the network. The I → S

transition is called curing and captures the process where
each infected node has the possibility to cure. To make the
SIS dynamics tractable, the infection and curing events are
assumed to be independent Poisson processes. In particular,
for the curing process,

Pr[Wn(t + h) = 0|Wn(t) = 1] = δe−δh (1)

means that, disregarding all other processes, the waiting time
for the I → S transition is exponentially distributed with rate
δ. In general, each node n can have a different, time-dependent
rate δn(t), but further in this work we confine ourselves to a
fixed and time-independent rate δ. If we consider just one link
between a susceptible node n and an infected node j , which
we will call an infective link, then the infection process obeys

Pr[Wn(t + h) = 1|Wn(t) = 0] = βe−βh, (2)

where we assume that the infected neighbor node j stays
infected and does not cure, i.e., Wj (t + s) = 1 for any time
s ∈ [0,h]. Again, each link (n,j ) ∈ L can have a specific
rate βnj (t), but for simplicity we assume a fixed and time-
independent rate β. For notational purposes, we will often omit
the time reference t in time-dependent variables by writing
Wn instead of Wn(t) and similarly for other time-dependent
variables. The infection and curing events can be modeled
as more general renewal processes [12], which results in
different distributions for the waiting times (1) and (2). The
corresponding SIS process is described in Ref. [4].

By assuming the infection and curing processes to be
independent Poisson processes, the SIS process constitutes
a Markov process [12]. For the continuous-time SIS Markov
process, the infinitesimal generator can be deduced from the
SIS dynamics [5], which allows for an exact description
of the SIS process. Unfortunately, there are 2N possible
states for an SIS process on an N node network, which
means that for roughly N > 20, finding a solution of the 2N

linear equations becomes infeasible on current computers. The
computational complexity of representing all possible disease
states on a network is the main problem of SIS epidemics
on networks. To resolve this complexity problem of the exact
SIS equations, it is necessary to introduce approximations.
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TABLE I. Overview of node-level and partition-level variables according to a specific partitioning. 1 is the indicator function for which
1{S} = 1 if statement S is true and zero otherwise.

Single node Partition (π )

Node or partition indicator Node i ∈ {0,1, . . . ,N} Partition k ∈ {0,1, . . . ,K}
Indicator vector ei ∈ RN ẽk ∈ RK

(ei)j = 1{i=j} (ẽk)m = 1{k=m}
Partition sum vector sk ∈ RN N.A.

(sk)i = 1{i∈Nk }
All-one vector u = (1,1, . . . ,1)T ũ = (N1,N2, . . . ,NK )T

State vector w = (w1,w2, . . . ,wN )T w̃ = (w̃1,w̃2, . . . ,w̃k)T

wi = 1{node i is infected} w̃k = sT
k w

Adjacency matrix A ∈ RN×N Ã ∈ RK×K

aij = 1{(i,j )∈L} ãkm = sT
k

Asm

NkNm
= Lkm

NkNm

Submatrix A(km) Ã(km)

a
(km)
ij = aij1{i∈Nk and j∈Nm} ã

(km)
ij = ãij1{i=k and j=m}

One family of approximation methods are the mean-field SIS
approximations, which we unify and generalize below with
our proposed framework.

III. DEFINITION OF THE UNIFIED
MEAN-FIELD FRAMEWORK

Before describing the unified mean-field framework
(UMFF), we introduce definitions and notations.

As introduced earlier, we denote the stochastic disease state
of node n at time t by the Bernoulli random variable Wn(t).
Because the disease state of each node in the network is a
result of the Poissonian infection and curing processes, the
disease probabilities of different nodes are not independent.
This means that the disease probabilities should be described
by the joint probability distribution Pr[W1(t) = w1,W2(t) =
w2, . . . ,WN (t) = wN ], where Wn(t) is the Bernoulli random
variable representing the disease state of node n, and wn ∈
{0,1} represents a specific outcome of this random variable.
If we concatenate the random disease states into the N × 1
random vector W (t) = (W1(t),W2(t), . . . ,WN (t))T , and the
disease state realizations into the N × 1 disease-state vector
w = (w1,w2, . . . ,wN )T , then the probability of the network
to be in a specific disease state w, can be written compactly
as Pr[W (t) = w]. The exact description of the SIS process
consists of the probabilities Pr[W (t) = w] for all possible
disease states w ∈ {0,1}N , which shows, indeed, that the exact
SIS description consists of 2N states.

In order to address the complexity problem of the exact SIS
description, UMFF relies on partitions in a graph:

Definition 1 (Partitioning). A partitioning π of graph G

defines a partitioning of the node set N of G into K nonempty,
disjoints partitions Nk ⊆ N such that

⋃K
k=1 Nk = N .

By Nk = |Nk|, we denote the number of nodes in partition k,
and by Lkm, the number of links between nodes from partition
k and m (and twice the number of links if k = m, see Table I).
For the specific case of K = N partitions, each node is in a
separate partition, Nk = 1 for each partition and Lkm = akm.
Based on a graph partitioning, the disease information of nodes
within a same partition can be grouped, which results in a
lower-dimensional description of the disease state and thus of
the SIS process. Specifically, for any partitioning π , UMFF

considers the K × 1 reduced-state vector w̃ instead of the
N × 1 full-state vector w. In the reduced-state vector w̃, the
vector component w̃k captures how many nodes are infected
in partition k and equals

w̃k =
∑
i∈Nk

wi for any partitionk = 1,2, . . . ,K (3)

so that w̃k is an integer bounded by 0 � w̃k � Nk . The
reduced-state vector w̃ contains less information about the
disease state than w, and is a coarser description. In other
words, one reduced state w̃ can correspond to a number of
different full states w (see also Appendix B 2). The K × 1
reduced-state random vector W̃ (t) is defined similarly as a
simplified description of the random state vector W (t), i.e.,
W̃k =∑i∈Nk

Wi . With this notation, the probability of the
network to be in a certain reduced state w̃ is denoted by
Pr[W̃ = w̃]. Furthermore, the expected number of infected
nodes in a partition k is given by E[W̃k]. The variables that
follow from grouping the disease states, together with some
additional definitions, are summarized in Table I. Another
important characteristic of the SIS process is the number of
infective links, which are links with one end node infected and
the other healthy, since the infection rate of a healthy node
is proportional to the number of infected neighbors of this
node. The infective links form the cut set between healthy and
infected nodes in the graph [13]. In a partitioning π of the
graph, the relations

(u − w)T A(km)w =
N∑

i=1

N∑
j=1

a
(km)
ij (1 − wi)wj

=
∑
i∼j

1{(1−wi∈Nk
)wj∈Nm }

show that (u − w)T A(km)w equals the number of infective links
between susceptible nodes in partition k and infected nodes in
partition m.

Based on the notion of a reduced state w̃, we present
UMFF as

Definition 2 (Unified mean-field framework). Consider a
graph G(N ,L), an SIS epidemic process with rates (β,δ) and
a graph partitioning π of the nodes into K partitions. The

052314-3



K. DEVRIENDT AND P. VAN MIEGHEM PHYSICAL REVIEW E 96, 052314 (2017)

UMFF equations are approximate equations for the expected
number of infected nodes in partition k:

dE[W̃k]

dt
≈ −δE[W̃k] + β

K∑
m=1

ãkm(Nk − E[W̃k])E[W̃m].

(4)

The UMFF equations follow from simplifying the exact SIS
process description, using two approximations:

Approximation 1 (Topological approximation). The number
of infective links between susceptible nodes in partition k and
infected nodes in partition m are approximated by

(u − w)T A(km)w ≈ (ũ − w̃)T Ã(km)w̃ = ãkm(Nk − w̃k)w̃m.

(5)

Approximation 2 (Moment-closure approximation). The
covariance between the random variables W̃k and W̃m is
approximated by zero:

Cov[W̃k,W̃m] ≈ 0 ⇒ E[W̃kW̃m] ≈ E[W̃k]E[W̃m]. (6)

In the next section, we show how the UMFF equations
are deduced from the exact SIS process description subject to
approximations (5) and (6). The idea behind the topological
approximation is further discussed in Sec. VI, while the
moment-closure approximation is addressed in Appendix C.
Finally, the UMFF equations (4) also lead to the formulation
of an epidemic threshold:

Definition 3 (UMFF epidemic threshold). For a graph
G(N ,L) and a partitioning π , the UMFF epidemic threshold
τπ obeys

τ−1
π = λmax(Ã diag(N1,N2, . . . NK )), (7)

where λmax(M) denotes the largest eigenvalue or spectral
radius of the matrix M . Furthermore, the UMFF epidemic
threshold is lower bounded by τπ � λ−1

1 for any choice of
partitioning the graph.

Equation (7) for the UMFF epidemic threshold and the
lower bound are derived in Appendix A based on a linear
stability analysis of the UMFF equations. The UMFF epidemic
threshold τπ specifies the phase transition (after sufficiently
long time) between the dying-out regime when β

δ
< τπ ,

and the very long survival regime when β

δ
> τπ . While the

description of UMFF does not distinguish between different
choices of partitioning the graph, which implies that any
epidemic threshold τπ is equally valid, certain choices of
partitioning are expected to lead to closer approximations of
the real dynamics, and thus yield more reliable predictions
for the epidemic threshold, than others. The accuracy of the
UMFF approximations is further discussed in Sec. VI, where
bounds are given for the topological approximation. Since
every epidemic threshold is lower bounded by τπ � λ−1

1 ,
which equals the N -intertwined mean-field approximation
(NIMFA) threshold [5], every UMFF threshold will predict
that, for β

δ
< λ−1

1 , the disease dies out exponentially fast
for sufficiently large time [13]. Hence, the NIMFA epidemic
threshold provides a safe criterion for β

δ
to ensure that the

epidemic dies out.

IV. DERIVATION OF THE UNIFIED
MEAN-FIELD FRAMEWORK

Figure 1 overviews the variables and approximations
involved in UMFF, and how the UMFF equations are derived
from the exact SIS equations. Additionally, Fig. 1 shows for
which particular choices of partitioning, UMFF is equivalent
to existing mean-field methods (see also Sec. V). In the next
sections, we follow the variables in Fig. 1 from left to right to
derive the UMFF equations.

A. Exact SIS equations

The UMFF approximation of the SIS process is based on
two process variables: the reduced-state probability Pr[W̃ (t) =
w̃] for each reduced state w̃, and the expected number of
infected nodes E[W̃k(t)] for each partition k. In Appendix B 2,
the reduced-state probabilities are derived based on the birth-
death equations as

d Pr[W̃ = w̃]

dt
= −δ

K∑
k=1

w̃k Pr[W̃ = w̃]

+ δ

K∑
k=1

(w̃k + 1) Pr[W̃ = w̃ + ẽk]

−β

K∑
k=1

K∑
m=1

∑
w∈Wk

w̃k
∩Wm

w̃m

(u − w)T A(km)w

× Pr[W = w]

+β

K∑
k=1

K∑
m=1

∑
w∈Wk

(w̃k−1)∩Wm
w̃m

(u − w)T A(km)w

× Pr[W = w] (8)

for any reduced-state vector w̃, where Wk
x = {w ∈ {0,1}N |

wT sk = x} is the set of all full states w with x infected nodes
in partition k.

For each partition k, Appendix B 3 derives the governing
equation for the expected number of infected nodes as

dE[W̃k]

dt
= −δE[W̃k] + β

K∑
m=1

Nk∑
w̃k=0

Nm∑
w̃m=0

×
∑

w∈Wk
w̃k

∩Wm
w̃m

(u − w)T A(km)w Pr[W = w]. (9)

B. Birth-death process

Appendix B 2 illustrates that the rate of the infection
transitions w̃ → w̃ + ẽk and w̃ − ẽk → w̃, which correspond
to a node in partition k being infected, depends on the
number of infective links. The consequence is that the reduced-
state probability Pr[W̃ = w̃] in (8) depends on the full-state
probability Pr[W = w], which means that Eqs. (8) are not
closed. This closure problem is solved by invoking the UMFF
topological approximation (5)

(u − w)T A(km)w ≈ (ũ − w̃)T Ã(km)w̃,
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FIG. 1. Schematic representation of the relationship between the different variables involved in the UMFF approximation steps.

which enables the simplifications∑
w∈Wk

w̃k
∩Wm

w̃m

(u − w)T A(km)w Pr[W = w] ≈ (ũ − w̃)T Ã(km)w̃ Pr[W̃k = w̃k,W̃m = w̃m]

∑
w∈Wk

(w̃k−1)∩Wm
w̃m

(u − w)T A(km)w Pr[W = w] ≈ (ũ − (w̃ − ẽk))T Ã(km)w̃ Pr[W̃k = w̃k − 1,W̃m = w̃m]. (10)

Substituting (10) in the exact Eqs. (8) yields

d Pr[W̃ = w̃]

dt
≈ −δ

K∑
k=1

w̃k Pr[W̃ = w̃] + δ

K∑
k=1

(w̃k + 1) Pr[W̃ = w̃ + ẽk]

−β

K∑
k=1

K∑
m=1

(ũ − w̃)Ã(km)w̃ Pr[W̃k = w̃k,W̃m = w̃m]

+β

K∑
k=1

K∑
m=1

(ũ − (w̃ − ẽk))Ã(km)w̃ Pr[W̃k = w̃k − 1,W̃m = w̃m], (11)

which no longer depends on the full-state probability Pr[W =
w]. Although cumbersome, (11) is a closed set of equations
that completely characterizes Pr[W̃ (t) = w̃] for a given initial
distribution Pr[W̃ (0) = w̃].

Moreover, since only transitions of the form w̃ → w̃ ± ẽk

and w̃ ± ẽk → w̃ exist (i.e., only single nodes are infected
or cured during one event), Eq. (11) is equivalent to the
description of a K-dimensional birth-death process. The
reduced-state vector w̃ can be regarded as a coordinate
in the (N1 + 1) × (N2 + 1) × · · · × (NK + 1) lattice for this
birth-death process. Figure 2 illustrates for the specific case
of K = 1 how the state reduction w → w̃ results in a lattice
transition structure, i.e., a birth-death process. Furthermore,
Eq. (11) indicates that the birth rates are quadratic in w̃ and

the death rates are linear in w̃, which means that the SIS process
is equivalent to a higher-dimensional quadratic birth-death
process. The number of infected nodes in the complete graph
KN can be exactly described as a quadratic birth-death process
[12,14]. While no analytical solutions exist for the quadratic
birth-death process [14], the equivalence between the SIS and
the quadratic birth-death process is an interesting observation
and means that insights in one setting translate directly to the
other (see also Sec. IX).

C. UMFF equations

The exact Eq. (9) for the expected number of infected nodes
E[W̃k] is not “closed” for two reasons: the exact SIS dynamics

052314-5



K. DEVRIENDT AND P. VAN MIEGHEM PHYSICAL REVIEW E 96, 052314 (2017)

FIG. 2. Example of the transition structure of the SIS process
on a four-node network. On the left, a network is shown together
with its schematic representation. Sick nodes in the network are
colored pink, which is encoded in the schematic representation
as pink squares. State transitions are represented by connected
squares. Full lines represent bidirectional transitions and dotted lines
represent unidirectional transitions. The schematic representation of
the reduced network disease state is simply the number of infected
nodes in that state. On the right, the transition structure of the SIS
process on this four-node network is shown. Already for a small
network, the full-state transition structure turns out to be complex.
As an illustration of the UMFF approach, the full-state transition
structure is simplified to the reduced-state transition structure for
a one-partition partitioning (K = 1). This partitioning combines all
the full states with the same number of infected nodes into a single
reduced state. Additionally, the reduced-state transition rates are a
combination of the full-state transition rates. Appendix B 2 describes
this reduction in more detail.

depend on the number of infective links (i.e., on full-state
probability Pr[W = w]) and on higher-order moments, i.e.,
the first-order moment Eqs. (9) depend on the second-order
moments E[W̃kW̃m] (see also Appendix C). Similar to the
derivation of the birth-death process, invoking the UMFF
topological approximation (5) results in simplifications (10),
which allows Eq. (9) to be approximated by

dE[W̃k]

dt
= −δE[W̃k] + β

K∑
m=1

Nk∑
w̃k=0

Nm∑
w̃m=0

(ũ − w̃)T Ã(km)w̃

× Pr[W̃k = w̃k,W̃m = w̃m]. (12)

While the dependence on the full-state probability Pr[W = w]
is solved, Eq. (12) still contains higher-order moment terms

Nk∑
w̃k=0

Nm∑
w̃m=0

w̃kw̃m Pr[W̃k = w̃k,W̃m = w̃m] = E[W̃kW̃m] (13)

for partition pairs (k,m). In general, these second-order mo-
ments E[W̃kW̃m] cannot be determined from E[W̃k] and E[W̃m]
alone. Invoking the UMFF moment-closure approximation (6)

Cov[W̃k,W̃m] ≈ 0 ⇒ E[W̃kW̃m] ≈ E[W̃k]E[W̃m]

solves this closure problem by enabling Eq. (12) to be
approximated by

dE[W̃k]

dt
≈ −δE[W̃k] + β

K∑
m=1

ãkm(Nk − E[W̃k])E[W̃m],

which are the UMFF equations (4). In Appendix C an extension
of the UMFF equations for higher-order moments is described.
These higher-order equations are more general, but a detailed
description is beyond the focus of this article.

1. Bounds on the moment-closure approximation

For the particular case of K = N partitions (for which
UMFF is equivalent to NIMFA, see Sec. V), the infection
probabilities of nodes are non-negatively correlated [15], i.e.,
Cov[W̃k,W̃m] � 0. Based on the definition of the covariance

Cov[W̃k,W̃m] = E[W̃kW̃m] − E[W̃k]E[W̃m] (14)

we can rewrite Eq. (12), which is only exact in the K = N

partitioning, as

dE[W̃k]

dt
= −δE[W̃k] + β

K∑
m=1

ãkm(Nk − E[W̃k])E[W̃m]

−β

N∑
m=1

ãkm Cov[W̃k,W̃m]. (15)

Omitting the last, negative sum in Eq. (15) implies that for
K = N partitions, the moment-closure approximation is an
upper bound of the true process. However, for any other
partitioning (K 
= N ), we do not know about any such results
for Cov[W̃k,W̃m]. In other words, we do not know how to
bound the UMFF moment-closure approximation error.

V. EXISTING MEAN-FIELD METHODS
CONTAINED BY UMFF

An important feature of UMFF is that by particular choices
of graph partitioning, the UMFF equations are equivalent to
existing mean-field methods. In particular, the widely used N-
intertwined mean-field approximation [5] and heterogeneous
mean-field approximation [6] are contained by UMFF. Addi-
tionally, by the higher-order extension of UMFF described in
Appendix C, also second-order NIMFA [15] and pair quenched
mean-field theory [16] are contained by (higher-order) UMFF.

A. N-intertwined mean-field approximation (NIMFA)

The N-intertwined mean-field approximation [5] incorpo-
rates the full topological information of the graph. The only
approximation consists of assuming independence between
the infection states of adjacent nodes, i.e., the moment-closure
approximation (6). Denoting the infection probability of node
k by ρk = Pr[Wk = 1], the NIMFA equations for 1 � k � N

are given by [5]

dρk

dt
= −δρk +

N∑
m=1

βakm(1 − ρk)ρm. (16)

The same NIMFA equations (16) are retrieved from UMFF
with K = N partitions, which corresponds to each node being
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in a separate partition. The expected number of infected nodes
in a partition E[W̃k] is then equal to the infection probability
ρk of node k that constitutes that partition. The K = N

partitioning, where Nk = 1 and Ã = A, illustrates that the
NIMFA equations (16) are indeed a particular case of the
UMFF equations (4).

B. Heterogeneous mean-field method (HMF)

Pastor-Satorras and Vespignani [6] introduced the heteroge-
neous mean-field method, which approximates the SIS process
assuming that all nodes of a certain degree are equivalent
(in their connections with other nodes). Consequently, the
SIS process is described based on the degree distribution of
the underlying graph. Differently from UMFF and NIMFA,
HMF [6] does not assume a known graph G, but rather
considers a class of graphs. Specifically, in HMF the epidemic
is assumed to spread on a graph with a specified degree
distribution and with the link probability between pairs of
nodes independent of their degrees. For each degree d1 �
dk � dK , the probability distribution Pr[D = dk] denotes the
probability that a randomly chosen node has degree dk . The
variable 0 � ρ̃k � 1 reflects the expected fraction of infected
nodes with degree dk , leading to the HMF [6] equations:

dρ̃k

dt
= −δρ̃k + βdk(1 − ρ̃k)
, (17)

where 
 is the probability that a healthy node is linked to an
infected node and calculated in Ref. [6] as


 =
K∑

m=1

ρ̃m

dm Pr[D = dm]∑K
i=1 di Pr[D = di]

. (18)

Substituting expression (18) for 
 in (17) gives

dρ̃k

dt
= −δρ̃k + β

K∑
m=1

dkdm Pr[D = dm]∑K
i=1 di Pr[D = di]

(1 − ρ̃k)ρ̃m.

Introducing the variable ρk = Pr[D = dk]ρ̃k then yields

dρk

dt
= −δρk + β

K∑
m=1

dkdm∑K
i=1 di Pr[D = di]

× (Pr[D = dk] − ρk)ρm. (19)

While Eqs. (19) are derived in HMF for a probabilistic graph,
the same equations are found from UMFF for a particular
graph with the same degree distribution, so that the number
of nodes with degree k equals Nk = c Pr[D = dk] for some
scalar c ∈ R, and with degree-uncorrelated links. For such
a graph, the number of links Lkm = sT

k Asm between nodes
of degree dk and degree dm obeys the consistency relation∑K

m=1 Lkm = Nkdk as

Lkm = dkdmNkNm∑K
i=1 diNi

,

from which the UMFF equations follow as

dE[W̃k]

dt
= −δE[W̃k] + β

K∑
m=1

dkdm∑K
i=1 diNi

× (Nk − E[W̃k])E[W̃m]. (20)

Equations (20) are equivalent to (19) for the scaling E[W̃k] =
cρk , where c is the same scalar relating Nk to Pr[D = dk].
Hence, the HMF equations are found from the UMFF frame-
work by considering a specific graph realization consistent
with the random graph properties assumed by HMF.

Boguñá and Pastor-Satorras [7] extend the HMF model to
random graphs with correlated degrees. Instead of only assum-
ing Pr[D = dk], also the probability Pr[i ∼ j |i ∈ Nk,j ∈ Nm]
that a node i of degree dk links with a node j of degree dm

is assumed to be known for any pair of degrees (dk,dm). With
these extra assumptions in the HMF methodology, the SIS
process is then approximately described based on the degree
distribution and the linking probabilities. If we now consider
a specific graph realization with Nk = c1 Pr[D = dk] nodes of
degree dk and with Lkm = c2 Pr[i ∼ j |i ∈ Nk,j ∈ Nm] links
between nodes with degree dk and dm (for some scalars
c1,c2 ∈ R), then again the UMFF equations (4) are equivalent
to the correlated HMF equations. In the same way that the HMF
equations are fully determined by the degree distribution and
the linking probabilities, also the UMFF equations are fully
determined by Nk and Lkm.

Since (correlated) HMF is a particular case of UMFF, HMF
implicitly assumes the UMFF moment-closure approximation
(6) with respect to the partitioning according to node degree.
As discussed in Sec. IV C, this means that, apart from
simulation results [17], we do not know in general whether
HMF upper- or lower-bounds the infection probabilities, nor
how HMF relates to the exact SIS process in general. But
a consequence of the equivalence between UMFF (4) and
(correlated) HMF (19) is that we can bound the topological
approximation errors of HMF (with respect to a specific
realization of the probabilistic graph model).

Since the partitions Nk do not need to correspond to node
degrees specifically, UMFF enables the description of SIS
dynamics for a wider range of graph classes. For any graph
model, where a probability distribution Pr[K = k] of a node
belonging to partition Nk is given, together with a linking
probability Pr[i ∼ j |i ∈ Nk,j ∈ Nm], the UMFF equations
can be directly found. Such graph models are more general
than graphs with degree-based partitions only and, in some
settings, a specific structure in the graph might suggest a
natural way to partition the nodes such that grouped nodes
have a similar connectivity to the rest of the network (see also
further directions in Sec. IX).

C. Second-order NIMFA and pair quenched mean-field theory

As described in Appendix C, second-order NIMFA
(sNIMFA) [18] is a second-order extension of NIMFA,
approximating the joint probability Pr[W = w] by first- and
second-order moments E[Wi] and E[WiWj ] for all nodes
i 
= j . Similarly, pair quenched mean-field theory (pQMF)
[16] is an extension of quenched mean-field theory (QMF)
[19], which is an SIS approximation method introduced to
investigate the epidemic threshold. The extension QMF →
pQMF is conceptually the same as NIMFA → sNIMFA, but
a different moment-closure approximation approximates the
third-order moments. Both sNIMFA as well as pQMF are
contained by the higher-order UMFF equations (C1), for
K = N partitions and order n = 2 if the generic moment-
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closure approximation is chosen as in Refs. [15] and [16],
respectively.

VI. THE ISOPERIMETRIC PROBLEM IN SIS EPIDEMICS

In this section, we focus on the UMFF topological approx-
imation (5). We first describe how the closure problem of
Eqs. (8) and (9) can be related to the isoperimetric problem.
Then, we show how this analogy leads to approximation (5)
and bounds on the approximation error.

A. The isoperimetric problem

The isoperimetric problem is an ancient problem that has
interested many mathematicians throughout history. For the
most basic form of the isoperimetric problem, we refer to
Blåsjö [9], who provides a broad historical and conceptual
overview of the isoperimetric problem:

Problem 1 (The isoperimetric problem). Among all figures
in the plane with a given perimeter P , which one encloses the
greatest area A?

Theorem 1 (The isoperimetric theorem). The solution to the
isoperimetric problem is the circle of perimeter P .

Theorem 2 (The isoperimetric inequality). For all figures
with a given perimeter P and area A, it holds that P 2 − 4πA �
0 and equality only occurs for the circle.

While the question in problem 1 might seem simple and its
solution intuitive, it took until the 20th century to rigorously
prove the isoperimetric theorem. After the extensive historical
study of the isoperimetric problem in the 2D plane, similar
problems were studied in different geometric contexts. The
basic interest in these problems always consisted of describing
the relationship between the volume and surface of a certain
object, leading to isoperimetric inequalities of the form

θmin � f (volume) + g(surface) � θmax. (21)

For instance, Osserman [10] describes isoperimetric inequal-
ities in higher dimensions, on curved surfaces and on general
Riemannian manifolds. The geometric context of interest for
UMFF, is the study of the isoperimetric problem on graphs
(see, for instance, Ref. [20]).

B. Infective links and infected nodes: An isoperimetric analogy

The dynamics of SIS epidemics are governed by two
processes: infected nodes are cured and infection takes place
on infective links, i.e., the links between healthy and infected
nodes. The curing process is proportional to the number of
infected nodes while the infection process is proportional to
the number of infective links. In a nontechnical way, we can
associate the number of infected nodes to a volume on the
graph, while the infective links accord to a surface or interface
around the infected volume, as illustrated by Fig. 3. The curing
process is then proportional to the infected volume, while the
infection process is proportional to the infective surface.

To use the concepts of volume and surface adequately, we
must define a unit of volume and surface in the context of
graphs: we define a set of one node to have unit volume,
and a set of one link to have unit surface. Other choices are
possible, e.g., the volume of a node being proportional to
its degree, but for the purpose of deriving and bounding the

FIG. 3. Schematic of the disease state in a network. The infected
and healthy nodes determine two separate partitions separated by the
cut set, the set of infective links.

UMFF topological approximation (5), this would be a less
natural choice.

In the derivation of the exact reduced-state Kolmogorov
equations (8), the transition rate between reduced states
depends on the number of infective links. Hence, the ex-
act equations (8) for Pr[W̃ = w̃] and (9) for E[W̃ ] are
not closed, because they contain terms of the form (u −
w)T A(km)w Pr[W = w]. In the language of the isoperimet-
ric problem, this closure problem translates to the volume
equations (8) and (9) containing terms related to the surface.
The UMFF topological approximation (5) replaces the surface
term by a function of volume terms and thus solves the closure
problem. Now, by analogy with the isoperimetric problem, we
can bound the approximation error caused by this replacement,
as shown in Fig. 4, where ε represents the introduced error.

It remains to find the correct translation of the isoperimetric
inequality into the setting of SIS epidemics. The UMFF
topological approximation is defined as (5)

(u − w)T A(km)w ≈ (ũ − w̃)T Ã(km)w̃,

which we can rewrite by introducing an error term ε ∈ R as

(u − w)T A(km)w = (ũ − w̃)T Ã(km)w̃ + ε, (22)

or, by upper-bounding the error term |ε| � θ , as

|(u − w)T A(km)w − (ũ − w̃)T Ã(km)w̃| � θ. (23)

In the next subsection, we specify the error bound θ based
on the isoperimetric inequalities on graphs. More than just
providing an error bound, the analogy with the isoperimetric
problem and the mathematical techniques in the proofs (see
Appendix D) also provide a motivation for the specific form
of the UMFF topological approximation (5).

C. Isoperimetric inequalities for the number of infective links

The bound for the approximation error is based on the
isoperimetric and discrepancy inequalities of Chung [20]:

Theorem 3 (General-graph isoperimetric inequality). For a
graph G(N ,L) and a partitioning π , the error of the UMFF
topological approximation (5) between any two partitions k

and m is bounded as

|(u − w)T A(km)w − (ũ − w̃)T Ã(km)w̃|
� θ

N

√
w̃m(N − w̃m)(Nk − w̃k)[N − (Nk − w̃k)], (24)
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FIG. 4. Conceptual diagram depicting the analogy between the UMFF topological approximation (5) and the isoperimetric inequality (21).

where |ãkm − μi | � θ holds for 1 � i < N , with μi the eigen-
values of the Laplacian matrix corresponding to adjacency
matrix A.

For biregular graphs A(km), meaning that A(km)sm = c1sm

and sT
k A(km) = c2s

T
k for some constants c1,c2 ∈ R, a tighter

bound can be given based on interlacing techniques of
Haemers [21]:

Theorem 4 (Biregular-graph isoperimetric inequality). For
a graph G(N ,L) and a partitioning π such that A(km) is
biregular for some partitions k and m, the error of the UMFF
topological approximation (5) is bounded as

|(u − w)T A(km)w − (ũ − w̃)T Ã(km)w̃|
� λ2√

NkNm

√
w̃k(Nk − w̃k)w̃m(Nm − w̃m), (25)

where λ2 is the second-largest eigenvalue of Akm,r = A(km) +
A(mk).

Theorem 3 and Theorem 4, proved in Appendix D, rely
heavily on proofs given by Chung [20] and Haemers [21].

VII. UMFF AND SZEMERÉDI’S REGULARITY LEMMA

The isoperimetric problem is a well-studied mathematical
problem that appears in many different fields, including graph
theory and network science, and thus provides a conceptual
link between those fields. For instance, Szemerédi’s regularity
lemma (SRL) is a lemma with interesting implications for
UMFF, which follows from the relation of both UMFF and
SRL with the isoperimetric problem. We will discuss how SRL
may indicate for which graphs the UMFF topological approx-
imation (5) is expected to be accurate, and for which the SIS
dynamics are thus well approximated by the UMFF equations.

A. Szemerédi’s regularity lemma

The following definitions and interpretations are based on
Diestel’s [22] description of SRL. We start by defining a so-
called regularity condition between pairs of partitions, which
is related to the isoperimetric inequality.

Definition 4 (ε-regular partition pair). [22] Consider a
graph G(N ,L) and two disjoint node partitions Nk,Nm ⊆ N .
If for any pair of subsets Nx ⊆ Nk and Ny ⊆ Nm of size Nx

and Ny with Nx � εNk and Ny � εNm for some real ε > 0,
the inequality ∣∣∣∣ sT

x A(km)sy

NxNy

− sT
k A(km)sm

NkNm

∣∣∣∣ � ε (26)

holds, then we say that the partition pair (k,m) is ε-regular.

Inequality (26) can be rewritten as∣∣∣∣sT
x A(km)sy − Lkm

NkNm

NxNy

∣∣∣∣ � εNxNy, (27)

which shows that the regularity condition (26) is related to
the difference between the size of the cut set sT

x A(km)sy (for
all subsets of partitions k,m with Nx,Ny nodes, respectively)
and the approximate size of the cut set: Lkm

NkNm
NxNy . For lower

values of ε, the regularity condition becomes stronger. First,
because the true size of the cut set can deviate less from the
approximate cut-set size if ε is smaller, and secondly, because
the regularity condition must hold for a larger range of subsets
(Nx,Ny), since Nx � εNk is a less stringent condition if ε

is lower (and similarly for Ny). Based on the notion of ε-
regular partition pairs, we define a regularity condition on a
partitioning π of a graph:

Definition 5 (ε-regular graph partitioning). [22] Consider
a graph G(N ,L) with a partitioning π of the nodes into K +
1 partitions {N0,N1, . . . ,NK}. Such a graph partitioning is
called ε-regular if it meets the following conditions:

(i) N0 � εN

(ii) N1 = N2 = · · · = NK

(iii) All except at most εK2 of the partition pairs (k,m) for
1 � k < m � K are ε-regular.

Roughly speaking, a graph partitioning is ε-regular if it
contains K equally sized partitions (ii) such that most partition
pairs are regular (iii), where one additional “small” partition
is allowed to exist (i) on which conditions (ii) and (iii) do not
apply. For a given K , a smaller ε strengthens the regularity
conditions. First, because the regularity condition between
partition pairs becomes stronger, second, because N0 � εN

means that a lower number of nodes are allowed to make up
the “leftover partition” N0 and, finally, because εK2 becomes
smaller, implying that an increasing proportion of the partition
pairs need to satisfy the regularity condition (26). Since
condition (iii) holds for partition pairs (k,m) with k 
= m, the
regularity condition applies only to links between partitions
and not within partitions. Based on the regularity notion
of a graph partitioning, Szemerédi’s regularity lemma is a
statement about the possibility of finding a regular partitioning
in arbitrary graphs, with a number K of partitions effectively
independent of the size N of the graph.

Definition 6 (Szemerédi’s regularity lemma). For every ε >

0 and every integer Kmin � 1, there exists an integer Kmax such
that every graph on N � Kmin nodes admits an ε-regular graph
partitioning in K partitions, with Kmin � K � Kmax.

The proof of SRL can be found in Diestel [22]. We
exemplify the lemma: if we take a certain ε and choose
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Kmin = 10, then SRL states that there is an integer Kmax,
such that for any graph with N > 10 nodes there exists an
ε-regular partitioning of 10 � K � Kmax partitions. While
for N � Kmax, the existence of an ε-regular partitioning
automatically holds by choosing the K = N partitioning, the
result becomes stronger for N > Kmax. For very large graphs,
i.e., N � Kmax � K , SRL states that it is always possible to
have an ε-regular K-partitioning. An interesting interpretation
of SRL is due to Tao [23] who states that, roughly speaking:
“SRL can be viewed as a structure theorem for large dense
graphs, approximating such graphs to any specified accuracy
by objects, whose complexity is bounded independently of the
number of nodes in the original graph.” Applied to UMFF,
this means that, for any large dense graph and any desired
accuracy ε, there exists a partitioning in K � N partitions,
such that the topological approximation of UMFF between
most (k,m) partition pairs (k 
= m) is ε-accurate, in the sense
that (k,m) are ε-regular partition pairs. While a regular graph
partitioning does not imply any regularity conditions on the
within-partition links, Diestel [22] mentions that by choosing
Kmin large “we may increase the proportion of links running
between different partition sets (rather than inside one), i.e., the
proportion of links that are subject to the regularity assertion.”
In other words, if we take Kmin large enough for a given ε,
then most links will be between partitions (rather than within)
and will thus satisfy the regularity conditions.

B. Implications of SRL for UMFF

We believe that SRL can be translated to a statement about
the scaling behavior of the SIS process on large graphs.
We will describe the conceptual idea here, realizing that a
more rigorous investigation would be necessary to proof any
of the claims. Since the regularity inequality (26) can be
rewritten as (27), which has the same form as the isoperimetric
inequality, the ε-regularity of a partition pair also implies that
the UMFF topological approximation (5) has an ε-bounded
approximation error (for subsets of sufficiently large size). For
an ε-regular graph partitioning with K + 1 pairs, this isoperi-
metric interpretation then means that, for most of the partition
pairs (�εK2), the UMFF topological approximation error is
ε-bounded. Finally, SRL indicates that for any chosen accuracy
ε and sufficiently large minimum number of partitions Kmin,
an integer Kmax exists such that for any graph on N � Kmin

nodes, a partitioning can be found with Kmin � K � Kmax

partitions, such that most links are between partitions and most
of the partition pairs have ε-bounded approximation errors.
Applied to UMFF, this means that for large graphs on N

nodes, a partitioning in Kmin < K � N partitions can always
be found such that the UMFF topological approximation
between most partition pairs is bounded by a chosen ε,
where choosing a large enough Kmin results in most links
being between partitions (by Diestel’s argument). While the
isoperimetric bounds on the UMFF approximations are defined
for any possible partition, the relation with SRL leads to a
statement about how good these isoperimetric bounds can
become. An important difference between SRL regularity and
the UMFF approximation error is that SRL regularity only
holds for subsets of size Nx � εNk , where Nk ≈ N

K
. Hence,

the regularity weakens for growing N , because it no longer

holds for cut sets between small subsets. The consequence for
UMFF is that the regularity, and thus the boundedness of the
topological approximation error, only holds if a sufficiently
large fraction of nodes is infected in both partitions. Thus,
the dynamics are well approximated by lower-dimensional
dynamics, only for disease states w where enough nodes are
infected between any pair of partitions, i.e., w̃k � εNk and
w̃m � εNm.

VIII. RELATED WORK

A. NIMFA on graphs with an equitable partitioning

Bonaccorsi et al. [24] study the NIMFA equations on
graphs with an equitable partitioning. A partitioning π is
equitable if the subgraph between any two (possibly the
same) partitions, is biregular (regular). If a graph has such
an equitable partitioning, and the initial infection probability
is the same for all nodes within one partition, then the NIMFA
equations for the SIS process on that graph can be exactly
described by K rather than N equations [24]. This result
follows from the observation that equality in the UMFF
topological approximation (5) holds, i.e.,

(u − w)T A(km)w = (ũ − w̃)T Ã(km)w̃ = ãkm(Nk − w̃k)w̃m,

when A(km) is biregular, and that

Pr[W (0) = w] = ∣∣Wk
w̃k

∩ Wm
w̃m

∣∣−1

× Pr[W̃k(0) = w̃k,W̃m(0) = w̃m]

∀w ∈ Wk
w̃k

∩ Wm
w̃m

holds, when nodes from the same partition have equal initial
infection probabilities. Hence, the main point of Ref. [24]
is that for this specific type of graph and initial condition,
the number of infective links between any two partitions
only depends on the number of infected nodes in those
partitions, which enables a lower-dimensional description of
the SIS process (within the NIMFA approximation). This
result is based on similar ideas as the UMFF framework,
but from a very different perspective: UMFF describes how
the topological approximation (5) applied to any graph,
followed by a moment-closure approximation (6), results in a
lower-dimensional approximate description of the SIS process.

B. Approximating the number of infective links in SIS

A central concept of UMFF is the description of the
topological approximation (5) from the perspective of the
isoperimetric problem. This approach of approximating the
SIS process by approximating the number of infective links
has appeared before. Ganesh et al. [25] find an upper bound
for the epidemic threshold, by relating the infection terms in
the SIS process to the isoperimetric problem. The isoperimetric
or Cheeger constant [11] of a graph with adjacency matrix A

is defined as

ηc(A) = min
w∈{0,1}N

(u − w)T Aw

wT w
,
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which leads to a lower bound for the number of infective links
as

(u − w)T Aw � ηc(A)w̃ (28)

for any w ∈ {0,1}N and where w̃ = wT w is the number of
infected nodes. By assuming equality in (28), the SIS process
is approximated by a linear birth-death process, from which
an approximate epidemic threshold is derived in Ref. [25].

Van Mieghem [13,26] also approximated the SIS process
by approximating the size of the cut set. Rather than relying
on the isoperimetric problem, the most dominant terms in the
spectral decomposition of the quadratic form wT Qw, which
equals the number of infective links, approximate the cut set.
Specifically, the approximation

(u − w)T Aw ≈ μN−1

N
w̃(N − w̃)

is made. If this approximation error can be bounded by a
constant θ ∈ R, i.e.,∣∣∣(u − w)T Aw − μN−1

N
w̃(N − w̃)

∣∣∣ � θ, (29)

then the exact equation for the expected number of infected
nodes can be bounded as

E[W̃−θ (t)] � E[W̃exact(t)] � E[W̃+θ (t)], (30)

where the bounds follow from the differential equations:

dE[W̃+θ (t)]

dt
= −δE[W̃+θ ]

+β
μN−1

N
E[W̃+θ ](N − E[W̃+θ ]) + θ

dE[W̃−θ (t)]

dt
= −δE[W̃−θ ]

+β
μN−1

N
E[W̃−θ ](N − E[W̃−θ ]) − θ,

(31)

which are Riccati differential equations, whose analytic
solutions are known and have a hyperbolic-tangent form [26].
In other words, the method of Refs. [26] and [13] gives bounds
on the exact expected number of infected nodes E[W̃exact(t)], if
a constant bound θ on the approximation error (29) is known.

By filling in c = μN−1 in Lemma 1 from Appendix D,
we can show that θ � N(μ1−μN−1)

4 = θ�. Although not a tight
bound, filling in θ = θ� in Eqs. (31) gives

E[W̃ (t)−θ� ] � E[W̃exact(t)] � E[W̃ (t)+θ� ],

which is a new result based on the spectral decomposition
methodology of Refs. [26] and [13].

IX. SUMMARY

We have introduced a novel and unified approximation
framework UMFF for the continuous-time Markovian SIS
process on complex networks, whose main features are the
following:

(1) UMFF unifies and generalizes a number of existing
mean-field approximations for SIS epidemics on complex
networks. In particular, two widely used approximations, the

N-intertwined mean-field approximation [5] and the hetero-
geneous mean-field method [6] are shown to be contained by
UMFF.

(2) The accuracy of UMFF and of all its contained methods
can be assessed based on the isoperimetric analogy, which
provides bounds on the error of the UMFF topological
approximation (Theorem 3).

(3) UMFF conceptually describes the scaling behavior of
SIS epidemics on large graphs. Since the UMFF accuracy
is related to the regularity notion of Szemerédi’s regularity
lemma (SRL), we can translate the statements of SRL about
the structural regularity of large graphs to statements about the
possibility to accurately approximate SIS dynamics on large
graphs by a lower-dimensional description.

A. Future directions

By providing a unified description of mean-field approx-
imation techniques for the SIS process, UMFF offers a
framework, in which the existing techniques can be compared
and which enables their respective accuracy to be assessed.
In principle, UMFF could prescribe which existing (or new)
mean-field method is more suitable, for a certain graph and for
a specific SIS process parameter of interest.

While derived for SIS epidemics, the UMFF approach
is applicable to more general epidemic models, such as the
generalized epidemic mean-field model (GEMF) in Ref. [27],
which generalizes NIMFA to any number of compartments and
with a general transition structure between different compart-
ments. The global dynamics of GEMF follow from node-based
compartmental transitions and edge-based compartmental
transitions, which translates to volume-based transitions and
surface-based transitions in context of the isoperimetric
problem. Hence, by exploiting the same problem structure
and the isoperimetric analogy, UMFF could generalize GEMF
in a similar vein as UMFF generalizes NIMFA for the SIS
compartmental process.

The general partitioning feature of UMFF also creates
the possibility to develop new approximation techniques for
the SIS process. Specifically, if nodes can be grouped in
partitions based on some parameter such that similarity in
that parameter corresponds to similarity in connectivity, then
UMFF is expected to yield a good approximation of the SIS
process. For instance, in the embedding of graphs in metric
spaces as in Refs. [28] and [29], similar spatial coordinates
between a pair of nodes means that their distance to other nodes
is also similar. Hence, for such graph models, spatial closeness
of nodes seems to provide a good partitioning criterion for
UMFF, and the coarse graining of the infection state would
then correspond to the intuitively attractive notion of spatial
similarity.

Furthermore, the observation that both the exact and
approximate Markovian SIS processes are equivalent to a
higher-dimensional quadratic birth-death process opens up
new perspectives on modeling the SIS process. Some questions
about the epidemic process have tractable solutions if properly
formulated in terms of birth-death processes. Ganesh et al.
[25] characterized the disease die-out probability of the SIS
process, based on the gambler’s ruin problem [12] of a
birth-death process. Conversely, the knowledge about the
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epidemic process might provide valuable insights in the
quadratic birth-death process, whose exact solution is still an
open problem [14].

APPENDIX A: EPIDEMIC THRESHOLD

From the UMFF equations (4), the epidemic threshold τπ

can be found based on a linear stability analysis. In order to use
the standard approach for mean-field equations, for instance
as described by Boguñá and Pastor-Satorras in Ref. [7], we
introduce a change of variables. Instead of the expected
number of infected nodes E[W̃k] in a partition k, we will
consider the expected fraction of infected nodes ρk = E[W̃k]

Nk
in

that partition. The UMFF equations (4) then reduce to

dρk

dt
= −δρk + β

K∑
m=1

Lkm(1 − ρk)ρm (A1)

for every partition k ∈ {1,2, . . . ,K}. Equation (A1) can be
linearized around the all-healthy state ρ = 0 as follows:

dρk

dt
≈

K∑
m=1

Jkmρm with

Jkm =
⎛⎝ ∂

∂ρm

⎛⎝−δρk + β

K∑
j=1

Lkj (1 − ρk)ρj

⎞⎠⎞⎠
ρ=0

,

(A2)

where the vector ρ = [ρ1,ρ2, . . . ,ρK ]T contains the infection
fraction of all partitions, and where Jkm are matrix elements
of the Jacobian J of Eqs. (A1). The linearized Eq. (A2) reads
in matrix form

dρ

dt
≈ Jρ. (A3)

Equation (A3) indicates that the all-healthy state is a stable
point of the UMFF equations (4) if the Jacobian J has a
negative largest eigenvalue, while a positive largest eigenvalue
of J means that the all-healthy state is not a stable point.
Translated to the setting of the SIS epidemic process, a positive
largest eigenvalue λmax(J ) > 0 reflects that the epidemic
disease will spread over the network, while λmax(J ) < 0
correspond to a die-out of the epidemic [1]. Calculating the
Jacobian elements Jkm from Eq. (A2) yields

Jkm = −δ1{k=m} + β
Lkm

Nk

.

Using the matrix elements ãkm = Lkm

NkNm
, the Jacobian matrix J

becomes

J = −δI + βÃ diag(N1,N2, . . . ,NK ). (A4)

From Eq. (A4), it follows that τ−1
π =

λmax(Ã diag (N1,N2, . . . ,NK )) determines the epidemic
threshold, because λmax(J ) > 0 ⇐⇒ β

δ
> τπ corresponds

to the disease spreading over the network, while
λmax(J ) < 0 ⇐⇒ β

δ
< τπ corresponds to the disease

dying out. Secondly, it is possible to lower-bound
the UMFF epidemic threshold by invoking properties
of the quotient matrix [21], which is defined as

A(π) = Ã diag(N1,N2, . . . ,NK ). As discussed in more
detail in Appendix D, the eigenvalues of this quotient matrix
A(π) can be bounded by the eigenvalues of the corresponding
adjacency matrix A (see Theorem D 1 in Appendix D). In
particular, the largest eigenvalue of the quotient matrix A(π)

can be bounded by

λmax(A(π)) � λmax(A). (A5)

From inequality (A5) and τπ = λ−1
max(A(π)) follows that the

UMFF epidemic threshold can be lower-bounded by τπ � λ−1
1 .

APPENDIX B: DERIVATION OF EXACT SIS EQUATIONS
FOR ˜W AND E[˜W ]

1. The Kolmogorov equations for Markov Chains:
Brief reminder

As a background for the further derivation of the UMFF
equations (4), we start with a toy example to illustrate how the
Kolmogorov equations are found for a Markov chain. Further
details can be found in [12]. Consider the three-state Markov
chain in W (t) below:

The Markov chain has three states: w1,w2 and w3, with state
probabilities Pr[W (t) = wi] and transition rates rij , for 1 �
i 
= j � 3. By the subscript “ij” in the rates rij , we denote the
transition from state i to state j , i.e., i → j . As mentioned in
Sec. II, we assume that the transition processes are independent
Poisson processes with exponentially distributed interevent
times, for example, for the transition r12 this yields

Pr[W (t + h) = w2|W (t) = w1] = r12e
−r12h.

For h → 0, this transition leads to

d Pr[W (t) = w2]

dt
= r12 Pr[W (t) = w1]

d Pr[W (t) = w1]

dt
= −r12 Pr[W (t) = w1].

Combining all transitions then leads to the Kolmogorov
equations:

d Pr[W (t) = w1]

dt
= −r12 Pr[W (t) = w1]

+ r21 Pr[W (t) = w2]

d Pr[W (t) = w2]

dt
= r12 Pr[W (t) = w1] − (r23 + r21)

× Pr[W (t) = w2] + r32 Pr[W (t) = w3]

d Pr[W (t) = w3]

dt
= r23 Pr[W (t) = w2] − r32 Pr[W (t) = w3].

Hence, by identifying the state transitions and according rates,
one obtains the Kolmogorov equations of a Markov chain,
which completely characterize the dynamics of the process for
a given initial distribution Pr[W (0) = wi], for each possible
state w.
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2. State probability Pr[˜W (t) = w̃]

As described in Secs. III and IV, the reduced-state vector
w̃ is introduced to compactly describe the disease state and to
reduce the complexity of the SIS process description. Instead
of describing the state of each node separately, the reduced-
state vector w̃ = (w̃1,w̃2, . . . ,w̃K )T captures the number of
infected nodes in each partition, by the relation w̃k = sT

k w.
By Wk

x = {w ∈ {0,1}N |sT
k w = x} we denote the set of all

full-state vectors w with x nodes infected in partition k (and
with any possible number of infected nodes in the other
partitions m 
= k). Each full-state vector w ∈⋂K

k=1 Wk
w̃k

then
corresponds to the reduced-state vector w̃, since each set Wk

w̃k

constrains the number of infected nodes in a specific partition
k. Based on this notation, we can represent the coarse graining
of the full states to the reduced states as

K⋂
k=1

Wk
w̃k

group by partitioning π−−−−−−−−−−−→ w̃.

The full-state and reduced-state probabilities are then related
as

Pr[W̃ = w̃] =
∑

w∈⋂K
k=1 Wk

w̃k

Pr[W = w], (B1)

and similarly, the rates are related as

rw̃k(w̃k±ẽk) Pr[W̃k = w̃k] =
∑

w∈⋂K
i=1 W i

w̃i

∑
j∈Nk

rw(w±ej )

× Pr[W = w]. (B2)

More can be said about the reduced-state transition structure:
first, the entries w̃k represent the number of infected nodes in
partition k, from which it follows that

w̃ ∈ {0,1, . . . ,N1} × {0,1, . . . ,N2} × · · · × {0,1, . . . ,NK},
and, second, since a state transition in the Markovian SIS
process reflects a single infection or curing event, the possible
transitions between reduced states are of the form

w̃ → w̃ ± ẽk.

Hence, the reduced states and their transitions constitute an
(N1 + 1) × (N2 + 1) × · · · × (NK + 1) lattice. This structure
can be represented compactly by the chain below, which
depicts one specific “direction” in the lattice, corresponding to
one partition k:

However, since the transition rates between reduced states
depend on the full states (B2), the transitions at the reduced-
state level do not describe a Markov chain. Nonetheless, it
is still possible to write the exact, but not-closed differential
equations for the reduced-state probabilities by grouping the
Kolmogorov equations according to the partitions:

d Pr[W̃ = w̃]

dt
=

∑
w∈⋂K

k=1 Wk
w̃k

d Pr[W = w]

dt
.

Considering the transitions within the partitions separately
enables the Kolmogorov equations at the reduced-state level
to be written as

d Pr[W̃ (t) = w̃]

dt
=

K∑
k=1

(−rw̃(w̃−ẽk) Pr[W̃ = w̃]

+ r(w̃+ẽk )w̃ Pr[W̃ = w̃ + ẽk]

− rw̃(w̃+ẽk ) Pr[W̃ = w̃]

+ r(w̃−ẽk )w̃ Pr[W̃ = w̃ − ẽk]). (B3)

The transition rates at the reduced-state level are derived below.

a. Transition rates rw̃(w̃−ẽk ) and r(w̃+ẽk )w̃: Node
healing in partition k

By the grouping relation (B2) between the full states and
the reduced states, the reduced-state transition rates are given
by

rw̃(w̃−ẽk ) Pr[W̃ = w̃] =
∑

w∈⋂K
i=1 W i

w̃i

∑
j∈Nk

rw(w−ej ) Pr[W = w].

(B4)
The transition rate rw(w−ej ) in Eq. (B4) corresponds to node j

healing in state w, i.e., the transition Wj = 1 → Wj = 0. The
healing rate in UMFF is δ for any node, hence the transition
rate equals

rw(w−ej ) = δwj

for any full-state vector w and node j . The sum of the healing
rates for all nodes in a partition k is then∑

j∈Nk

rw(w−ej ) = δsT
k w = δw̃k. (B5)

Substituting (B5) in the rate Eq. (B4) and invoking (B1) then
yields

rw̃(w̃−ẽk ) Pr[W̃ = w̃] = δw̃k Pr[W̃ = w̃] (B6)

for the reduced-state transition rate corresponding to a node
healing in partition k, in state w̃. A similar derivation yields

r(w̃+ẽk)w̃ Pr[W̃ = w̃ + ẽk] = δ(w̃k + 1) Pr[W̃ = w̃ + ẽk]

(B7)

for the reduced-state transition rate corresponding to a node
healing in partition k, in state w̃ + ẽk .

b. Transition rates rw̃(w̃+ẽk ) and r(w̃−ẽk )w̃: a node
in partition k is infected.

By the grouping relation (B2) between the full states and
the reduced states, the reduced-state transition rates are given
by

rw̃(w̃+ẽk ) Pr[W̃ = w̃] =
∑

w∈⋂K
i=1 W i

w̃i

∑
j∈Nk

rw(w+ej ) Pr[W = w].

(B8)

The transition rate rw(w+ej ) in Eq. (B8) corresponds to node
j becoming infected in state w, i.e., the transition Wj = 0 →
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Wj = 1. Since

eT
j Aw =

N∑
i=1

aijwi

is the number of infected neighbors of node j , and since each
infected neighbor infects node j at a rate β if wj = 0, the
full-state transition rate

rw(w+ej ) = β(1 − wj )eT
j Aw

is found. The sum of infection rates for all nodes in partition
k is then ∑

j∈Nk

rw(w+ej ) = β

K∑
m=1

(u − w)T A(km)w, (B9)

where the sum over partitions 1 � m � K is introduced
such that the block-matrix A(km), which naturally reflects the
partition structure, can be used. Filling (B9) into the rate
equation (B8) then yields

rw̃(w̃+ẽk ) Pr[W̃ = w̃] = β

K∑
m=1

∑
w∈Wk

w̃k
∩Wm

w̃m

(u − w)T A(km)w Pr[W = w] (B10)

for the reduced-state transition rate corresponding to a node becoming infected in partition k, in state w̃. A similar derivation
yields

r(w̃−ẽk )w̃ Pr[W̃ = w̃ − ẽk] = β

K∑
m=1

∑
w∈Wk

(w̃k−1)∩Wm
w̃m

(u − w)T A(km)w Pr[W = w] (B11)

for the reduced-state transition rate corresponding to a node
becoming infected in partition k, in state w̃ − ẽk .

c. Resulting reduced-state equations

Introducing the rates (B6), (B7), (B10), and (B11), the
Kolmogorov equations (B3) establish Eq. (8).

3. Expected number of infected nodes E[˜Wk]

The equations for the expected number of infected nodes
E[W̃k] can be derived from the reduced-state probability
equations (8), based on the definition of expectation and the
law of total probability. For any partition k, we can write the
expected number of infected nodes as

E[W̃k] =
Nk∑

w̃k=0

w̃k Pr[W̃k = w̃k]. (B12)

By the law of total probability, the marginal probability can be
written as

Pr[W̃k = w̃k] =
N1∑

w̃1=0

· · ·
Nl∑

w̃l=0

· · ·
NK∑

w̃K=0︸ ︷︷ ︸
∀l 
=k

Pr[W̃ = w̃]

such that (B12) equals

E[W̃k] =
N1∑

w̃1=0

· · ·
Nl∑

w̃l=0

· · ·
NK∑

w̃K=0︸ ︷︷ ︸
∀l

w̃k Pr[W̃ = w̃]. (B13)

Differentiation with respect to time of Eq. (B13) then yields

dE[W̃k]

dt
=

N1∑
w̃1=0

· · ·
Nl∑

w̃l=0

· · ·
NK∑

w̃K=0︸ ︷︷ ︸
∀l

w̃k

d Pr[W̃ = w̃]

dt
. (B14)

After substitution of d Pr[W̃=w̃]
dt

from Eq. (8), we arrive at
Eq. (9).

APPENDIX C: HIGHER-ORDER UMFF

The UMFF equations can be extended to higher-order
moments, in order to better capture the dynamic correlations
of the SIS process. For the case of K = N partitions, Cator
et al. [18] and Mata et al. [16] have described how the NIMFA
[5] and quenched mean-field (QMF) [19] equations can be
extended to nth-order moments:

E[Wi] → E[Wi],E[WiWj ], . . . ,E[WiWj . . .Wl︸ ︷︷ ︸
n

]

based on the exact SIS dynamics. In order to have a closed set
of equations for order n, the (n + 1)th-order moments must be
approximated by lower-order moments, i.e., an approximation
of the form

E[WiWj . . . Wl︸ ︷︷ ︸
n+1

] ≈ f

⎛⎜⎝E[WiWj . . . Wl︸ ︷︷ ︸
∀m�n

]

⎞⎟⎠,

where different choices for the moment-closure approximation
f are given in Refs. [18] and [16]. Similarly, we can define the
higher-order UMFF as:

Definition 7 (Higher-order UMFF). Consider a graph
G(N ,L), an epidemic process with rates (β,δ) and a graph
partitioning π . For any integer n �

∑K
k=1 Nk , the nth-order

UMFF equations are given by

dE
[∏K

k=1 W̃
pk

k

]
dt

=
N1∑

w̃1=0

· · ·
Nk∑

w̃k=0

· · ·
NK∑

w̃K=0︸ ︷︷ ︸
∀k

K∏
k=1

× w̃
pk

k

d Pr[W̃ = w̃]

dt
(C1)
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for all vectors p ∈ {p ∈ NK |0 � pk � Nk,∀k and uT p � n}
and with d Pr[W̃=w̃]

dt
given by Eq. (11). The (n + 1)th-order

moments appearing in the higher-order UMFF equations are
approximated by

E

[
K∏

k=1

W̃
pk

k

]
≈ f

⎛⎝{E

[
K∏

k=1

W̃
qk

k

]}
∀q∈Q

⎞⎠ (C2)

for all vectors p ∈ {p ∈ NK |0 � pk � Nk,∀k and uT p =
n + 1} and withQ = {q ∈ NK |0 � qk � pk,∀k and uT q � n}.
The function f represents a generic moment-closure
approximation.

Remark 1. The higher-order UMFF equations are found
from the definition of expectation and the law of total
probability, similar to the derivation of the first-order moments
in Appendix B 3.

Remark 2. For a certain partition k, only the mo-
ments E[. . . W̃ pk

k . . . ] for values pk ∈ {1, . . . ,Nk} are con-
sidered. Since w̃k ∈ {0,1, . . . ,Nk} has (Nk + 1) possible
values, the probability distribution Pr[W̃k = w̃k] is fully
determined by the first Nk moments. Hence the set
{p ∈ NK |0 � pk � Nk,∀k and uT p � n} represents the set of
powers of all nth-order moments.

APPENDIX D: PROOF OF ISOPERIMETRIC
INEQUALITIES

In this section, we prove the isoperimetric inequalities (24)
and (25) of Theorem 3 and Theorem 4. We start by introducing
some definitions and notations, based on the work of Haemers
[21]. We then state and prove Lemma 1, from which Theorem
3 follows. Finally, we prove Theorem 4 based on the specific
structure of biregular graphs.

1. Interlacing and quotient matrices

The following definitions are given in Refs. [21] and [11]:
Definition 8 (Interlacing sequences). Consider two se-

quences of real numbers: α1 � α2 � · · · � αN and γ1 �
γ2 � · · · � γK with K � N . The second sequence is said to
interlace the first whenever

αi � γi � αN−K+i for i = 1, . . . ,K.

Definition 9 (Quotient matrix). The quotient matrix A(π) of
an adjacency matrix A according to a partitioning π , is the
matrix whose entries are the average row sums of the blocks
of A. More precisely, a

(π)
km is the entry in the quotient matrix

according to the submatrix of A between nodes of Nk and Nm

with value

a
(π)
km = 1

Nk

sT
k Asm.

These concepts can be combined by the interlacing theorem
[21]:

Theorem 5 (Interlacing theorem). Suppose A(π) is the
quotient matrix of a matrix A, then the eigenvalues of A(π)

interlace the eigenvalues of A.
The interlacing theorem is crucial for the proof of the

isoperimetric inequality as will become clear in the proof of
Lemma 1.

2. General isoperimetric inequality

We start by proving Lemma 1 below:
Lemma 1. Consider a graph G(N ,L) with N nodes. For

any c ∈ R and any pair of Bernoulli vectors wx,wy ∈ {0,1}N ,
with Nx = uT wx and Ny = uT wy ones, respectively, and with
wT

x wy = 0, the following inequality holds:∣∣∣wT
x Awy − c

N
NxNy

∣∣∣ � θ

N

√
Nx(N − Nx)Ny(N − Ny),

(D1)
where |c − μi | � θ for 1 � i < N holds.

A first proof of Lemma 1 is given by Chung [20] in
the context of isoperimetric inequalities and discrepancy
inequalities on graphs. The proof is mainly based on algebraic
manipulations of the term wT

x Awy and the eigendecomposition
of the Laplacian matrix Q. As mentioned in Sec. II, the
Laplacian Q is a positive semidefinite matrix possessing the
eigendecomposition:

Q = ZMZT ,

where Z is the orthogonal eigenmatrix with eigenvectors
zi as columns, and M = diag(μ1,μ2, . . . ,μN ), the diagonal
matrix containing the eigenvalues. These eigenvalues can
be ordered as 0 = μN < μN−1 � · · · � μ1, where the 0
eigenvalue corresponds to the all-one eigenvector zN = u√

N
.

Now, if we denote by Z̃ the N × (N − 1) matrix with zN

removed, and by M̃ the (N − 1) × (N − 1) diagonal matrix
M̃ = diag(μ1, . . . ,μN−1), then we can also write

Q = Z̃M̃Z̃T .

If we further denote by QK = NI − uuT the Laplacian matrix
of the complete graph, then we can write Z̃Z̃T = 1

N
QK , which

holds for Z̃ of any Laplacian matrix.
Proof A: We start by rewriting wT

x Awy = wT
x (� − Q)wy .

Due to the condition that wT
x wy = 0, we have wT

x �wy = 0
and thus wT

x Awy = −wT
x Qwy . We then introduce the value

c ∈ R as follows:

wT
x Awy = −wT

x Qwy + c

N
wT

x QKwy − c

N
wT

x QKwy

= wT
x

(
c

N
QK − Q

)
wy − c

N
wT

x QKwy.

Since wT
x QKwy = −NxNy , and using the eigendecomposi-

tion of Q and QK , we obtain

wT
x Awy = wT

x Z̃(cI − M̃)Z̃T wy + c

N
NxNy

or

wT
x Awy − c

N
NxNy = wT

x Z̃(cI − M̃)Z̃T wy.

By introducing the variables αi = wT
x zi and βi = wT

y zi , we
can write

wT
x Awy − c

N
NxNy =

N−1∑
i=1

αiβi(c − μi). (D2)

We can upper-bound the right-hand side as
|∑N−1

i=1 αiβi(c − μi)| � θ
∑N−1

i=1 |αiβi |, where we introduce
θ with |c − μi | � θ,∀i 
= N as an upper bound. Equation (D2)
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can then be written as∣∣∣wT
x Awy − c

N
NxNy

∣∣∣ � θ

N−1∑
i=1

|αiβi |.

Now, invoking the Cauchy-Schwartz inequality on the right-
hand side of the equation, and replacing αi,βi by their original
values yields

∣∣∣wT
x Awy − c

N
NxNy

∣∣∣ � θ

√√√√N−1∑
i=1

α2
i

N−1∑
i=1

β2
i

� θ

√(
wT

x Z̃Z̃T wx

)(
wT

y Z̃Z̃T wy

)
,

which by Z̃Z̃T = I − uuT

N
and wT

x (NI − uuT )wx = Nx(N −
Nx) proves (D1). �

A second proof for Lemma 1 can be formulated based on
Haemers’ interlacing theorem and applications [21]. Haemers
ingeniously describes how quotient matrix constructions com-
bined with the interlacing theorem can lead to algebraic expres-
sions (i.e., involving Laplacian eigenvalues) for combinatorial

quantities (i.e. possible number of links between subsets of
nodes in a graph).

Proof B: Haemers defines the block matrix B

B =
[

0 Q + cI

Q + cI 0

]
(D3)

for some graph Laplacian Q, and any scalar c ∈ R. By the
antidiagonal blockform of B, we know that each eigenvalue
μj of the Laplacian Q corresponds to two eigenvalues λ̃i =
μj + c and λ̃2N−i = −(μj + c) of B. We consider a specific
partitioning π of the rows of B (nodes in the combined graph),
for which we can explicitly write the quotient matrix. For the
Laplacian in the upper-right block, we partition the nodes N
into a subset Nx of size Nx , and a remainder set Nrx . For
the Laplacian in the lower-left block, we partition the nodes
N into a subset Ny of size Ny , where Ny is nonoverlapping
with the Nx-size block of the other Laplacian, and a remainder
set Nry . Overall, this results in the partitioning {N ,N } →
{Nx,Nrx,Ny,Nry} for matrix B. For this partitioning, and
because Bu = cu due to Qu = 0, we can write the quotient
matrix B(π) explicitly as

B(π) =

⎡⎢⎢⎢⎣
1

Nx
0 0 0

0 1
N−Nx

0 0
0 0 1

N−Ny
0

0 0 0 1
Ny

⎤⎥⎥⎥⎦
⎡⎢⎣ 0 0 cNx + m −m

0 0 c(N − Nx − Ny) − m cNy + m

cNx + m c(N − Nx − Ny) − m 0 0
−m cNy + m 0 0

⎤⎥⎦, (D4)

where m is the number of links between subsets Nx and Ny ,
i.e., wT

x Awy in Lemma 1.
We can write the determinant of B(π) in two ways:

an equality involving m and an inequality involving the
eigenvalues of the Laplacian Q. Combining both expressions
for the determinant then yields the isoperimetric inequality
(D1) of Lemma 1.

From (D4), the determinant of B(π) can be calculated as

det(B(π)) = c2(cNxNy + Nm)2

Nx(N − Nx)Ny(N − Ny)
. (D5)

Secondly, if we call δ1 � δ2 � δ3 � δ4 the eigenvalues of B(π),
where δ1 = −δ4 and δ2 = −δ3 hold because of the antidiagonal
blockmatrix structure, then we have a second equation for the
determinant:

det(B(π)) = δ1δ2δ3δ4 = δ2
1δ

2
2 . (D6)

From the definition of B(π), it follows that the all-one vector
u is an eigenvector with eigenvalue c, i.e., B(π)u = cu. This
means that either |δ1| = c or |δ2| = c. Additionally, because
B(π) is a quotient matrix of B, we know that the eigenvalue
sequence δi of B(π) interlaces the eigenvalue sequence λ̃i

of B:

−λ̃2 � δ1 � λ̃1 and − λ̃3 � δ2 � λ̃2.

Because we know that either δ1 or δ2 equals λ̃i = μN + c = c,
we can write

det(B(π)) = δ2
1δ

2
2 � c2

[
max
∀i 
=N

|μi + c|]2. (D7)

Combining (D5) and (D7) gives

c2(cNxNy + Nm)2

Nx(N − Nx)Ny(N − Ny)
� c2θ2, (D8)

with |c + μi | � θ,∀i 
= N . By taking the square root of both
sides, replacing m by wT

x Awy and c by −c, we find again the
isoperimetric inequality (D1) in Lemma 1. �

Remark. Proofs A and B are two different ways to arrive at
the same result. Proof A, based on Chung’s approach, involves
two approximations that upper-bound the cut-set approxima-
tion. The first approximation is upper bounding the (c − μi)
values by θ , i.e. |∑N−1

i=1 αiβi(c − μi)| � θ
∑N−1

i=1 |αiβi |. The
second approximation involves the Cauchy-Schwartz inequal-
ity applied to the inner product

∑N−1
i=1 |αiβi |. Proof B based

on Haemers’ approach, involves one approximation step. The
absolute value of the second largest eigenvalue |δ2| of the
quotient matrix B(π) is upper bounded by the second largest
absolute eigenvalue maxi 
=N |μi + c| of Q + cI , based on the
interlacing theorem. Since both approaches lead to the same
result, we can conclude that the error due to interlacing is of
the same nature as the error due to upper-bounding (c − μi)
combined with the Cauchy-Schwartz inequality, which is a
nontrivial relationship.

3. Proof of Theorem 3

Theorem 3 follows from Lemma 1 by particular choices of
(c,A,wx,wy).

Proof. First, we choose wx = (u − w) ◦ sk and wy = w ◦
sm, where (. ◦ sk) represents the Hadamard product (elemen-
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twise product) with sk . For this choice of wx and wy , which
are Bernoulli vectors satisfying wT

x wy = 0, and any adjacency
matrix A, we can write

wT
x Awy = (sk ◦ (u − w))T A(w ◦ sm) = (u − w)T A(km)w.

Secondly, we choose the specific value c = Nãkm which
satisfies the condition c ∈ R. These choices allow us to rewrite
Lemma 1 as

|(u − w)T A(km)w − (ũ − w̃)T Ã(km)w̃|
� θ

N

√
w̃m(N − w̃m)(Nk − w̃k)(N − (Nk − w̃k))

for any adjacency matrix A, which equals Eq. (24) and thus
proves Theorem 3. �

4. Proof of Theorem 4

Theorem 4 states that the topological approximation error
can be bounded more tightly for biregular graphs Akm,r , which
we prove based on Haemers’ interlacing techniques [21].

Proof. Consider a biregular graph Gkm,r with partitions
Nk and Nm, for which the adjacency matrix has the block
form:

Akm,r =
[

0 B

BT 0

]
,

with Bu = d1u and uT B = d2u
T , because the graph is

biregular. The values d1 = L
Nk

and d2 = L
Nm

are the degrees of
the partitions. Furthermore, we consider a partitioning π of the
nodes of Gkm,r into four sets {N x

k ,N r
k ,N y

m,N r
m} according to

N x
k ∪ N r

k = Nk, N x
k ∩ N r

k = ∅ and |N x
k | = Nx

N y
m ∪ N r

m = Nm, N y
m ∩ N r

m = ∅ and |N y
m| = Ny.

In other words, partition k is further refined into a subset of Nx

nodes and a remainder subset, and similarly for partition m.
For this partitioning π , the quotient matrix can be explicitly
written as

A
(π)
km,r =

⎡⎢⎢⎢⎣
1

Nx
0 0 0

0 1
Nk−Nx

0 0
0 0 1

Ny
0

0 0 0 1
Nm−Ny

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

0 0 m L
Nk

Nx − m

0 0 L
Nm

Ny − m L
(
1 − Nx

Nk
− Ny

Nm

)+ m

m L
Nm

Ny − m 0 0
L
Nk

Nx − m L
(
1 − Nx

Nk
− Ny

Nm

)+ m 0 0

⎤⎥⎥⎥⎥⎦, (D9)

where m is the number of links between partitions N x
k and

N y
m, i.e. the cut-set size (u − w)T A(km)w in Theorem 4.
We can write the determinant of A

(π)
km,r in two ways:

an expression involving m, which follows directly from the
block-matrix form and secondly, an inequality involving the
eigenvalues of A

(π)
km,r . Combining both expressions for the

determinant yields the isoperimetric inequality of Theorem
4. From (D9), the determinant of A

(π)
km,r can be calculated as

det
(
A

(π)
km,r

) =
L2
(
m − L

NkNm
NxNy

)2
Nx(Nk − Nx)Ny(Nm − Ny)

. (D10)

Second, if we call δ1 � δ2 � δ3 � δ4 the eigenvalues of A
(π)
km,r ,

where δ1 = −δ4 and δ2 = −δ3 hold because of the antidiagonal
block structure, then we have a second equation for the
determinant:

det
(
A

(π)
km,r

) = δ1δ2δ3δ4 = δ2
1δ

2
2 . (D11)

Next, two facts about the eigenvalues of A
(π)
km,r are combined to

find expression (25). First, because A
(π)
km,r is a quotient matrix

of Akm,r , we know by Theorem D 1 that the eigenvalues of the
first interlace those of the latter. In other words, we can bound
δ2 by

λN−K+2 � δ2 � λ2.

Because λN−K+2 = λN−2 = −λ3 � −λ2, we find

δ2
2 � λ2

2. (D12)

The second fact we use is

δ1 = L√
NkNm

, (D13)

which can be verified by considering the eigenvalue equation:

(
A

(π)
km,r − L√

NkNm

I

)⎡⎢⎢⎣
√

Nm√
Nm√
Nk√
Nk

⎤⎥⎥⎦ = 0,

from which follows that (
√

Nm,
√

Nm,
√

Nk,
√

Nk)
T

is the right
eigenvector of A

(π)
km,r according to eigenvalue δ1 = L√

NkNm
.

By the Perron-Frobenius theorem [11], we know that for
non-negative matrices such as A

(π)
km,r , the largest (possibly

nonunique) eigenvalue accords to an eigenvector with non-
negative elements. This means that δ1 is the largest eigenvalue
of A

(π)
km,r since its corresponding eigenvector is a vector with

non-negative elements.
Combining (D12) and (D13) then yields an upper bound

for the determinant of A
(π)
km,r in Eq. (D11):

det
(
A

(π)
km,r

)
� L2

NkNm

λ2
2.

Combined with (D10) this gives

L2
(
m − L

NkNm
NxNy

)2
Nx(Nk − Nx)Ny(Nm − Ny)

� L2

NkNm

λ2
2.

Which reduces to Eq. (25) if we replace m by (u − w)T A(km)w,
and which thus proves Theorem 4. �
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