

Delft University of Technology

Automated multi-level governance compliance checking

King, Thomas; De Vos, Marina; Dignum, Virginia; Jonker, Catholijn; Li, Tingting; Padget, Julian; van
Riemsdijk, Birna
DOI
10.1007/s10458-017-9363-y
Publication date
2017
Document Version
Accepted author manuscript
Published in
Autonomous Agents and Multi-Agent Systems

Citation (APA)
King, T., De Vos, M., Dignum, V., Jonker, C., Li, T., Padget, J., & van Riemsdijk, B. (2017). Automated
multi-level governance compliance checking. Autonomous Agents and Multi-Agent Systems, 31(6), 1283-
1343. https://doi.org/10.1007/s10458-017-9363-y

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s10458-017-9363-y
https://doi.org/10.1007/s10458-017-9363-y

Autonomous Agents and Multi-Agent Systems manuscript No.
(will be inserted by the editor)

Automated Multi-level Governance Compliance Checking

Thomas C. King · Marina De Vos · Virginia Dignum ·
Catholijn M. Jonker · Tingting Li · Julian Padget ·
M. Birna van Riemsdijk

Received: date / Accepted: date

Abstract An institution typically comprises constitutive rules, which give shape and meaning to social
interactions and regulative rules, which prescribe agent behaviour in the society. Regulative rules guide
social interaction, in particular when they are coupled with reward and punishment regulations that are
enforced for (non-) compliance. Institution examples include legislation and contracts. Formal institutional
reasoning frameworks automate ascribing social meaning to agent interaction and determining whether
those actions have social meanings that comprise (non-) compliant behaviour. Yet, institutions do not
just govern societies. Rather, in what is called multi-level governance, institutional designs at lower
governance levels (e.g., national legislation at the national level) are governed by higher level institutions
(e.g., directives, human rights charters and supranational agreements). When an institution design is
found to be non-compliant, punishments can be issued by annulling the legislation or imposing fines
on the responsible designers (i.e., government). In order to enforce multi-level governance, higher
governance levels (e.g., courts applying human rights) must check lower level institution designs (e.g.,
national legislation) for compliance; in order to avoid punishment, lower governance levels (e.g., national

The final publication is available at Springer via http://dx.doi.org/10.1007/s10458-017-9363-y

Thomas C. King
Lancaster University
t.c.king@lancaster.ac.uk

Marina De Vos
University of Bath
mdv@cs.bath.ac.uk

Virginia Dignum
Delft University of Technology
M.V.Dignum@tudelft.nl

Catholijn M. Jonker
Delft University of Technology
C.M.Jonker@tudelft.nl

Tingting Li
Imperial College London
tingting.li@imperial.ac.uk

Julian Padget
University of Bath
j.a.padget@bath.ac.uk

M. Birna van Riemsdijk
Delft University of Technology
m.b.vanriemsdijk@tudelft.nl

http://dx.doi.org/10.1007/s10458-017-9363-y

Automated Multi-level Governance Compliance Checking 2

governments) must check their institution designs are compliant with higher-level institutions before
enactment. However, checking non-compliance of institution designs in multi-level governance is non-
trivial. In particular, because institutions in multi-level governance operate at different levels of abstraction.
Lower level institutions govern with concrete regulations whilst higher level institutions typically comprise
increasingly vague and abstract regulations. To address this issue, in this paper we propose a formal
framework with a novel semantics that defines compliance between concrete lower level institutions
and abstract higher level institutions. The formal framework is complemented by a sound and complete
computational framework that automates compliance checking, which we apply to a real-world case
study.

Keywords Institutions, Normative reasoning, Multi-level Governance

1 Introduction

Institutions (e.g., legislation) guide societies towards subjectively-ideal and coordinated behaviour. An
institution, such as the written law, comprises regulations imposed on agents taking part in the governed
society, coupled with the means to detect compliance and impose regulations that reward and punish
agents for (non-)compliance. An institution comprises constitutional and regulative rules. Constitutional
rules define concepts, for example “making an electronic bank transfer counts-as payment”. Regulative
rules impose obligations and prohibitions to instantiate the defined concepts, for example “you are obliged
to make a payment”. Institutions, comprising interacting constitutive and regulative rules, need to be
understood in order to be applied to the governed society. Hence, increasingly institutional reasoning is
formalised and computerised with automated normative and institutional reasoning frameworks (see [3]
for a review). Such formal institutional reasoning frameworks support governing bodies in automatically
penalising agents as well as individual agents in understanding their legal duties.

However, institutions are not typically written in a vacuum. Rather, institution designs are constrained
and regulated by higher level governing bodies. This is what is called multi-level governance [45]. In
multi-level governance, legislators design institutions comprising rules and regulations, but whose design
is also subject to regulation. For example, in 2006 the European Union issued the Data Retention Directive
[22] for harmonising member states’ data retention regulations. In 2009 the UK implemented the directive
with the Data Retention Regulations [74] in order to avoid being fined. Yet, in 2014 the European Court of
Justice ruled [21] that the EU directive was non-compliant with the EU’s Charter of Fundamental Rights
[23], and consequently annulled the EU’s Data Retention Directive. We will use this case throughout,
referring to the Charter of Fundamental rights as the EU-CFR, the EU’s Data Retention Directive as the
EU-DRD, and the UK’s implementing Data Retention Regulations as the UK-DRR. The main point is
that multi-level governance exposes legislators to the risk of punishment for non-compliant institution
designs and burdens a judiciary with determining compliance of institution designs.

So far, institutional reasoning frameworks have focussed on single-level societal governance. Typically,
automated institutional reasoning deals with regulations operating at the level of institutions governing
agents and/or corporations. For example, the UK-DRR [74] obliges communications providers to store
communications metadata. However, there lacks formalisation for cases where regulations themselves are
regulated by higher level institutions in multi-level governance. For example, how EU directives govern
national legislation but where EU directives are in turn governed by human rights charters. In this paper
we look at how lower level institutions themselves are regulated by higher level institutions.

In particular, we look at increasingly abstract regulations at higher levels of governance, which govern
more concrete regulations at lower levels of governance. Such abstraction sets multi-level governance
apart from single-levelled governance of societies. In multi-level governance at the highest-level, such
as human rights charters, regulations are intentionally abstract and open to interpretation. Such abstract
regulations provide many ways in which to (non-) comply. At a lower level, such as EU directives,
regulations are more concrete and less open to interpretation. At the lowest level, such as national
or sub-national legislation, regulations are concrete and should have the least ambiguity. Despite the

Automated Multi-level Governance Compliance Checking 3

differences in abstraction between levels, each level’s institution design must somehow be demonstrated
to be compliant with relatively more abstract regulations at higher levels.

To give an example, the EU-CFR [23] contains vague regulations requiring that people’s private and
family life is respected. The EU-DRD [22] contains a more concrete regulation requiring communications
service providers (e.g., internet service providers) to store people’s communications metadata (e.g., a
phonecall’s time and place) within a fixed time frame. The EU-CFR governs EU directives. Hence, the
EU-DRD’s communications metadata regulation must be shown to be compliant with the EU-CFR’s
more abstract right to a private and family life. At the same time, the EU-DRD itself governs the design
of institutions, namely member states’ legislation. Member states must implement the directive in a
compliant way in order to avoid fines. The directive gives some scope for member states to implement the
legislation differently, allowing the data retention period to be between 6 and 24 months. The UK-DRR
[74] is more concrete and must be shown to ensure communications metadata to be stored within the
required time frame, no shorter and no longer. In fact, the UK-DRR does just that, concretely requiring
that communications metadata is stored for 13 months which complies with the abstract requirement of
the directive to store data between 6 and 24 months.

In this paper, we give a rigorous formal account and automate checking of compliance in multi-level
governance between concrete lower level and abstract higher level institutions with a novel framework. Our
framework provides a representation for defining institutions and their multi-level governance relationship.
A semantics defines the regulatory outcomes of each institution in different (potentially hypothetical)
contexts.

Specifically, a semantics re-interprets concrete regulations at lower levels in terms of their more
abstract meaning with respect to higher level institutions. Taking concrete regulations and determining
their abstract interpretation is based on Searle’s constitutive institutional rules, which define the links
between concrete and abstract concepts. By interpreting concrete regulations in terms of their abstract
meaning, it is determined if the concrete regulations are (non-)compliant with the abstract regulations
in higher level institutions. To give an example, the EU-DRD [22] requires member states to store
communications metadata. According to the semantics we infer that storing communications metadata
without someone’s consent is, abstractly, unfair data processing. Since the EU-CFR prohibits unfair data
processing [23, Art. 8.2] the EU-DRD’s more concrete regulations are determined to be non-compliant.
This paper contributes a framework for semantically determining if concrete regulations at lower levels of
governance are compliant with more abstract regulations at higher levels of governance.

This paper continues by providing the conceptual background of the framework in Section 2. The
approach we take in formalising multi-level governance compliance is described in Section 3. The new
formal framework is presented in Section 4. A practical approach to multi-level governance reasoning
is provided with a computational framework presented in Section 5. The computational framework
provides a sound and complete translation from the formal framework to an executable logic program.
An implementation automates the translation between high-level institution specifications and a logic
programming language program, which in turn automates compliance checking as we demonstrate for a
real-world case study. At the end of this paper we compare our framework to related work in Section 6.
We conclude with reflections and avenues for future work in Section 7.

2 Governance Concepts

2.1 Institutions

An institution, alternatively called a normative system, is in our view a specification of rules and regulations
that guide agents in a Multi-Agent System (MAS) towards ideal and coordinated behaviour. An institution
is operationalised by interpreting and applying its rules and regulations on the agents acting in the MAS
that the institution governs. The interpretation process involves assessing how agents in the MAS are
behaving and the MAS’ state in order to see which rules and regulations apply and when.

Automated Multi-level Governance Compliance Checking 4

We view an institution’s rules as being classified into two types in line with existing formal work. To
quote Searle [72]:

“Some rules regulate antecedently existing activities. For example, the rule ‘drive on the right-
hand side of the road’ regulates driving; but driving can exist prior to the existence of that rule.
However, some rules do not merely regulate, they also create the very possibility of certain
activities.”

In other words two rule types exist in an institution, those that ascribe facts such as social activities
and those that prescribe facts, respectively known as constitutive rules and regulative rules (norms)
according to Searle’s philosophy of institutions [72], formal theories of institutions [11, 13, 12, 35] and
legal scholarship [9].

Searle’s [70, 73] constitutive counts-as rules establish institutional facts (e.g., that an agent possesses
money) from physical/brute facts (e.g., that an agent possesses a piece of paper commonly viewed as
money). Regulatory rules, which we also call norms, specify how agents or a system should behave (e.g.,
obliging an agent to pay for goods) and/or what the state of affairs should be.

In our view (following preceding work on e.g., InstAL [13]) operationalising an institution involves
interpreting institutional rules of both types. Through institutional rule interpretation, a social reality is
established comprising institutional facts and various deontic positions such as obligations. Ultimately,
determining whether agents and society are behaving in a compliant way is based on whether the created
social reality conforms to the prescriptions imposed by norms. We will now describe in detail constitutive
rules and norms.

2.1.1 Constitutive Rules

Constitutive rules [70, 73] construct a social reality, where things such as ‘money’ and ‘personal data’
exist, from a brute reality where physical brute facts exist independently of an institution or society (e.g.,
that there is a piece of paper that looks like money, or that an analog signal has been sent down a wire
in what we might call personal data communication). These constitutive rules have the now ubiquitous
counts-as form of “some brute or institutional fact A counts-as an institutional fact B in a social context
C”. For example, “storing communications metadata counts-as storing personal data in the context that
the metadata is about the communications of a person”. Searle argues that such constitutive rules ascribe
an institutional meaning in the form of an institutional fact, the ‘B’ in such a rule (e.g., storing personal
data), to an ‘A’ in such a rule which is either a brute fact or another more concrete or basic institutional
fact (e.g., storing communications meta-data). Such rules are conditional on a social context, which is a
part of the social reality built by such counts-as rules (e.g., the context that someone is a ‘person’ exists
whenever an agent that exists in the brute reality is ascribed the status of ‘personhood’ by a constitutive
rule).

A similar example is “storing communications content data counts-as storing personal data in the
context that it is a person’s communications being stored”. In both of these examples, content data and
metadata are also institutional facts that are defined by other constitutive rules as either referring to a more
concrete institutional fact or a brute fact. Ultimately, through a chain of derivations, all institutional facts
exist because of constitutive rules that ascribe an institutional fact as being constituted by brute facts. It is
a bit tricky to exemplify a counts-as rule that ascribes an institutional fact from a brute fact. The reason
being, any time we try to refer to a brute fact we will be using words from a language, and since language
is a ‘base institution’ these words we use will always be institutional facts (to give Searle’s example
[73] “It seems intuitively right to say that you can have language without money, but not money without
language.”). Hence, we will use the terms “the thing we call X” or “the observable event X” to represent
a brute fact distinct from the institutional fact/symbol X that refers to the brute fact. So, for example,
meta-data is an abstract institutional fact that refers to a brute fact according to a constitutive rule such
as “the thing we call storing communications metadata counts-as storing communications metadata”. In

Automated Multi-level Governance Compliance Checking 5

other words, institutional facts are ascribed as being constituted by brute facts, giving the physical reality
a social meaning.

These examples are about ascribing abstract institutional events. But, constitutive rules also establish
the institutional properties that hold at a particular point in time. For example, from an institutional event
that occurs, the establishment of an institutional property that holds is ascribed “someone signing a form
stating a communications provider is allowed to store their personal data counts-as establishing that the
person has consented to personal data storage”. This means that the establishment of an institutional
‘consent’ fact in a state is a special meaning ascribed to the event where the agent signs a consent form.

One final example is “storing personal data counts-as non-consensual data processing in the context
that the person who the data concerns has not consented”. In this final example we can see that by
transitivity it follows that from storing metadata (which is personal data) in the context that the person
who it concerns has not consented we derive non-consensual data processing from the aforementioned
abstracting constitutive rules. In conclusion, constitutive rules establish abstract institutional events and
properties from more concrete brute events or institutional events/properties. Constitutive rules build an
abstract institutional reality of institutional facts from brute facts, in turn the institutional reality can be
further abstracted according to constitutive rules.

It is important to note that counts-as rules make institutional facts possible. As Searle argues [72]:

“[...] institutional facts exist only within systems of constitutive rules. The systems of rules create
the possibility of facts of this type; and the specific instances of institutional facts such as the fact
that I won at chess or the fact that Clinton is president are created by the application of specific
rules [...]”

In other words, a status or institutional fact assigned to a particular brute or institutional fact exists
only because a constitutive rule makes it so. For example, ‘personal data’ cannot exist in a social reality
without a constitutive rule ascribing it as being a status of a more concrete brute or institutional fact (e.g.,
meta-data). An important distinction must be made with the physical reality, taking a classical example
often used for explaining abduction. We may know that “if it rains then the grass becomes wet”, however
the grass being wet is not a fact introduced by the rule, rather the rule is representative of a predicted
causal relationship in a pre-existing physical reality. Consequently, if it has not rained, that does not mean
that the grass is not wet, perhaps the grass can become wet by some other means (e.g., a sprinkler is turned
on). In comparison, if we only have the two constitutive rules “communications meta-data counts-as
personal data” and “communications content counts-as personal data” then the social meaning of data
being personal can only be attributed to meta-data or content data, since the constitutive rules introduce
the fact of personal data. Accordingly, counts-as rules are commonly known as having the property of
being ascriptive (i.e., introducing new concepts) [28, p. 420].

In this paper we characterise two counts-as rule types: those that ascribe abstract meaning to events
and those that ascribe abstract meaning to fluents (properties that hold in states). For these counts-as
rules types we give a simple semantics where if we have a rule “A counts-as B in context C” and an
A holds/occurs in a context C then a B holds/occurs in the same context C. Counts-as rules semantics
is intentionally simple, since we focus on the relation between counts-as rules and norms. Specifically,
we will later argue that ascriptive counts-as rules, which introduce abstract institutional facts to refer to
concrete institutional or brute facts, are sufficient to interpret norms at different levels of abstraction such
that concrete deontic positions (e.g., obligations) count-as more abstract deontic positions.

2.1.2 Norms

Institutions, in our framework, use norms to govern a society or to govern other institutions’ normative
effects. A choice needs to be made on the representation and semantics for norms to take. We will discuss
this choice by first describing two common forms for norms in the literature. Namely, an evaluative form
[2, 37] and a modal form [70, p. 63]. Then, we will compare evaluative and modal norms in terms of
the ease with which we can represent and reason about norms that govern other institutions’ normative

Automated Multi-level Governance Compliance Checking 6

effects. Or, in other words, norm governing norms. We will conclude that modal norms offer a simpler
way for representing norm governing norms, which in a modal norm representation are a generalisation
of norms governing agents.

An evaluative norm provides a qualitative evaluation of an institutional fact in a specific context.
For example, “storing communications meta-data is good”. More precisely, evaluative norms ascribe
institutional facts as being good/bad/a violation/compliant. They take a specialised constitutive form of
“A counts-as being good/bad/a violation/compliant in a context C”. If regulations take an evaluative form,
then they place evaluative statements in the social reality stating how ideal the social reality itself is (e.g.,
whether there is a violation). Evaluative norms do not place statements in the social reality stating what
should be done, only evaluations of what has been done (e.g., stating a norm has been complied with, or
the social reality is ‘good’). Rather, it is the evaluative rules themselves that state what should and should
not be done (e.g., “storing meta-data counts-as compliance” states that meta-data should be stored).

Modal regulatory rules ascribe deontic positions of obligation/permission/prohibition/etc. over partic-
ular institutional facts. Modal norms have the form of “An institutional fact A causes the imposition of
an obligation/prohibition/permission/etc. to do B in a context C”. If norms are modal, then they ascribe
‘into’ the social reality explicit deontic positions stating what should (not) be done or which state of
affairs should (not) be brought about. For example, the social reality can contain an obligation to store
communications’ metadata. In turn, whether there is compliance or violation is derived from the deontic
statements that hold in the social reality. For example, from an obligation to store metadata and the
occurrence of storing metadata, compliance is derived. Modal norms place deontic statements in the social
reality explicitly stating what should be done, based on which the social reality is evaluated (i.e., whether
the deontic positions are complied with).

In this paper we adopt a modal representation for norms. This is because they offer a simpler way to
represent and reason about norms at higher levels of governance, which govern norms at lower levels of
governance. For example, expressing that it is required to not require storing communications metadata if
the user has not consented. To see why modal norms are simpler for norm governing norms, we compare
evaluative and modal norm representations.

In the evaluative form one possible representation is through rule nesting - “(storing metadata counts-
as being good in a context C) counts-as being bad if context C is somehow compatible with the user
not consenting”. In this form, the instantiation of the nested rule violates the outer rule if the two
have compatible contexts. There may be other evaluative representations, but this appears to be the
simplest which fully captures the requirement. Determining compliance seems to differ between an
evaluative norm about an evaluative norm compared to an evaluative norm governing an agent’s actions.
On the one hand, determining compliance with an evaluative norm governing an agent’s actions involves
inspecting the social reality in order to determine whether an agent’s actions are compliant. On the other
hand, determining compliance with an evaluative norm governing another evaluative norm seems to
involve comparing evaluative rules themselves to evaluate the rules’ compliance. Hence, evaluative norms
governing norms are not a simple generalisation of those governing agents.

In comparison, a possible modal representation is to nest deontic modalities as opposed to rules. An
example is the following unconditional modal norm - “it is prohibited to oblige a user’s metdata to be
stored in the context that they have not consented”. Determining compliance for a modal norm about
another modal norm seems to be a simple generalisation of determining compliance of a modal norm
about an agent’s actions. Determining compliance of an agent with a deontic modal statement requires
seeing if, in the social reality, the agent is performing actions or bringing about social facts that are
obliged/prohibited. Likewise, determining compliance of a deontic modal statement with another deontic
modal statement requires seeing if, in the social reality, there is an obligation/prohibition that is itself
obliged/prohibited.

We adopt modal norms in this paper as a simple way to reason about norms governing norms. By
adopting modal norms the social reality comprises both institutional facts from descriptive constitutive
rules and deontic positions from norms stating what is obliged and prohibited.

Automated Multi-level Governance Compliance Checking 7

Increasingly Ab-
stract Regulations

Institution

Governs

Non-compliant
Institution

Compliant Institution Compliant Institution

Governs Governs Governs

Compliant Institution Compliant Institution Non-compliant
Institution

Compliant Institution

Governs Governs Governs Governs

Highest-level

Second-level

First-level

MASs

Fig. 1: A high-level depiction of institutions operating in multi-level governance.

2.2 Multi-level Governance

In our view, multi-level governance acts as a mechanism to guide rather than regiment institutional design.
The purpose is to coordinate regulations across institutions (e.g., collaborative cross-EU policies for data
retention) and ensure institutions do not place unacceptable limits on agents’ rights. At the same time,
multi-level governance aims to appeal to the principle of subsidiarity (what can be done at the local level,
should be left up to the local level). This means that, higher-level institutions do not force lower-level
institutions to be designed in a specific way. Rather, higher-level institutions guide the design of lower-
level institutions by abstractly defining what obligations and prohibitions lower-level institutions should
impose. Where through abstraction, lower-level institution designers are able to comply in multiple ways
as deemed appropriate for their jurisdiction. For example, the EU-DRD [22] was designed to coordinate all
member states in enacting legislation to store communications’ metadata for future criminal investigations.
Appealing to subsidiarity, it gave scope for member states to define the length of time metadata is stored
for. Another example is the EU-CFR [23], which aims to prevent legislation in the EU from violating
agents’ rights such as the right to a private life. If legislation is enacted that is non-compliant, fines can be
issued, and legislation annulled or abrogated.

We view multi-level governance as comprising three distinctive characteristics relevant to compliance
checking, schematically depicted in Figure 1. We draw these characteristics from political science literature
[45], work on multi-level governance for artificial societies in AI [67, 68] (in what is called polycentric
governance), and the real-world case study we focus on. These three characteristics are:

– Regulation of regulation: higher level institutions govern lower level institutions’ designs with
norms that govern norms. This differs from regimenting legislation changes, which due to institution
designers’ autonomy might not be possible. Since we adopt regulations as being modal, “A establishes
an obligation/prohibition in a context C”, regulations governing regulations oblige/prohibit the
imposition of obligations/prohibitions. We call these regulations higher-order norms (first-order norms
impose obligations/prohibitions on agent actions and/or societal outcomes of agent actions) and
they have the form “A establishes an obligation/prohibition for an obligation/prohibition to hold in a
context C”.

– Multiple connected levels: in multi-level governance, higher-level institutions govern lower-level
institutions. We view these institutions as being connected in the sense that the regulations of a
lower-level institution can be (non-)compliant with the regulations in a higher-level institution. For
example, the EU-DRD is a level 2 institution that requires EU member states’ legislation, level 1
institutions, to ensure people’s personal communications data is stored. The EU-DRD is governed by

Automated Multi-level Governance Compliance Checking 8

the EU-CFR, a level 3 institution. The directive violates the charter of fundamental right’s regulation
that demands rights to privacy are respected.

– Abstraction: increasingly abstract regulations, which can be interpreted in many different ways are
prescribed at increasingly higher levels of governance. To give an example, at the (typically) highest
level of governance, human rights charters use abstract terminology such as ‘fairness’ or ‘privacy’
which can have many different interpretations. At a slightly lower level the terminology is more
precise, such as in EU directives or supranational agreements between governments, but there are
many possible compliant institution designs. For example, the EU-DRD [22] states that member
states should legislate for communications’ metadata to be stored between 6 and 24 months. This
regulation is far clearer than human rights regulations, but does not provide the precise data retention
time. At a slightly lower level regulations are more concrete, such as at the level of nation-states. For
example, the UK-DRR which implements the EU directive specifies a precise time in that data should
be stored. In multi-level governance increasingly abstract regulations, which can be interpreted in
many different ways, are prescribed at increasingly higher levels of governance.

A key question is on what basis are concrete regulations determined to be non-compliant with
abstract regulations? Legal monitors such as courts interpret the concrete and abstract regulations in
order to determine if concrete regulations violate more abstract regulations. To go back to our example,
the European Court of Justice [21] determined that the EU-DRD’s relatively concrete requirement for
metadata to be stored violated the EU Human Rights Charter’s for personal data to be processed fairly
[23]. The basis of the judgement [21] was an interpretation that storing metadata was the same as storing
personal data, and storing personal data without someone’s consent was the same as processing data
unfairly. In a different context, where someone has given consent, storing metadata would not be unfair
data processing.

Hence, a relationship between concrete concepts having a context-sensitive abstract meaning is used to
determine compliance between concrete and abstract regulations. According to the concept of institution
we use, the context-sensitive rules linking concrete and abstract institutional facts are constitutive rules.
Hence, the relation between concrete and abstract norms is derived from constitutive rules and based on
this relationship concrete norms are determined to be, themselves, (non-) compliant. Specifically, in the
most basic case given that if X counts-as Y in a context C then we derive an abstracting relation obliged
X counts-as obliged Y in the context C.

There is, however, a well-known argument against this type of derivation. Statements of belief, desire,
obligation etcetera. are known as Intentional statements, which are mental states directed at states of
affairs (borrowing from Searle [71, p. 3], a capital-I distinguishes the technical term Intention from the
specific mental state of intention). Many Intentional statements are also intensional-with-an-s meaning
that they fail at a substitution of identicals, to quote Searle [71, p. 23]:

A sentence such as “John believes that King Arthur slew Sir Lancelot” is usually said to be
intensional-with-an-s because it has at least one interpretation where it can be used to make a
statement which does not permit existential generalization over the referring expressions following
“believes”, and does not permit substitutability of expressions with the same reference, salva
veritate.

In other words, if it is a fact that Sir Lancelot is-a person that never existed, we cannot substitute
Sir Lancelot with “a person that never existed” to obtain “John believes that King Arthur slew a person
that never existed” salva veritate. Hence, the belief Intention is intensional-with-an-s. On the other hand
if John believes that King Arthur is a tall person, then it is possible to make a substitution resulting
in “John believes that a tall person slew Sir Lancelot”. A substitution of X with Y is possible in an
intensional-with-an-s statement if the substituting property (Y) is held within the same Intention (John
believes).

In our case of deriving abstract norms from concrete, a problem stems from the fact that it is a
substitution of identicals in Intentional statements (viz. obligations) that can also be intensional-with-an-s.

Automated Multi-level Governance Compliance Checking 9

We are substituting obliged X with obliged Y because X counts-as Y (i.e., Y is-an X). To give an example,
storing meta-data counts-as storing personal data and hence we might argue that there is a derivation to
obliging storing meta-data counts-as obliging storing personal data. However, if it is not also obliged that
storing meta-data count-as storing personal data then the substitution fails salva veritate. Likewise, King
Arthur can only be substituted with “a very tall person” in John’s belief, if John believes King Arthur is a
very tall person. In order to manage our expectations in this paper, and since this is a difficult topic in its
own right that has been covered elsewhere ([71]), we will leave it here and make a simplifying assumption:
we assume that if a constitutive rule “X counts-as Y in context C” is included in an institution, through
design or interpretation, then the designers/interpreters are implying that it is obliged that “X counts-as Y
in context C” and based on that assumption we will also assume a substitution of identicals for abstracting
norms is correct salva veritate.. To summarise, at the core of our proposal we are abstracting norms based
on constitutive rules, which is a substitution of identicals in otherwise intensional-with-an-s statements
(norms in our case), and through such abstraction we will determine compliance of institution designs.

3 Approach

In this section we describe the approach we take to automatically determining compliance in multi-level
governance. Since we are reasoning about institutions in multi-level governance, we build on an existing
institutional reasoning framework. Our proposal requires representation and reasoning for: constitutive
rules, modal norms, higher-order norms, connections between institutions and reasoning about regulation
abstraction. The InstAL (Institution Action Language) framework [13, 12] provides constitutive rules
and modal norms. Hence, we base our proposal on the InstAL framework and extend it to multi-level
governance with higher-order and abstract norm representation and reasoning.

We also modify InstAL from capturing institutions that are prohibitive by default (where anything not
permitted is forbidden) to permissive institutions (everything is permitted unless explicitly prohibited).
The main motivation is simply that the institutions in our running case study, which comprises three
institutions in a multi-level governance relationship from real-world law, are inherently permissive. Hence,
by representing those institutions in a framework that captures permissive institutions we are able to show
a clearer link between our formalised rules and their natural-language counterparts.

Based on InstAL [13, 12], an institution in our framework specifies six elements: events, fluents,
constitutive rules that generate institutional events, rules that initiate and terminate fluents, constitutive
rules that derive abstract institutional fluents from more concrete institutional fluents and an institution’s
initial set of inertial fluents that hold in its initial state. Each element is described subsequently in more
detail.

Events can represent observable changes to reality, corresponding to the notion of brute fact. Events
can represent changes to the social reality, corresponding to the notion of institutional fact. For example,
the brute fact we call storing metadata is an observable event, whilst storing metadata and storing personal
data are institutional events.

Fluents describe institutional facts holding in a social reality and are subject to changing over time.
For example, a user consenting to processing their data causes a fluent to hold stating that they have
consented, which is removed if they revoke their consent. Some fluents represent the deontic positions
that hold, in our case: obligations, prohibitions and empowerments.

Fluents representing obligations and prohibitions are normative fluents. For example, “an obligation
to pay a fine”. Higher-order normative fluents can also be specified, for example an obligation to oblige
paying a fine. We deal with institutions in a temporal setting, so the various deontic normative fluents
express that something should be done before a deadline. For example, an obligation to pay a fine within
one month.

Empowerments, in contrast, represent the institutional power to perform institutionally-recognised
actions as given various formalisations by Jones and Sergot [47], Artikis et al. [7] and Cliffe et al. [13],
amongst others. In our use of the concept, a typical example is that of bidding in an auction, multiple

Automated Multi-level Governance Compliance Checking 10

agents may raise their hand which typically constitutes bidding, but only those agents empowered to
bid can actually do so (e.g., by being registered for the auction in the auction institution). In the context
of our case-study, whilst multiple telephony providers may perform an action that constitutes storing
communications content, only those providers located in the United Kingdom are empowered to perform
that action such that it affects the UK’s legal institutions (e.g., by being legal or illegal). To be clear,
in line with Jones and Sergot [47], we apply empowerments to agents (in our case study), rather than
roles. But in general we make no distinction in our formalism at the meta-level between events occurring
in the environment, or institutional actions such as performatives taken by agents or by roles. Hence
empowerment is used in a very general sense of making institutional actions possible by which we mean
legally recognisable.

In contrast, Jones and Sergot [47] formalise institutional power as a non-primitive derived from
counts-as rules. Specifically, an agent taking a particular action, such as consenting, constituted by another,
such as signing a form, is empowered to take that action (i.e., counts-as rules empower institutional
actions to be taken). Whilst we also adopt counts-as rules in their canonical form to ascribe institutional
facts, our use of empowerment is as an additional restriction on what actions are empowered to occur -
for example, an agent may be able to de facto raise their hand which counts-as bidding, but only if the
auctioneer has decided to empower the agents in being able to bid can the agent actually do so. In other
words, empowerments represent hard constraints on the actions recognised by an institution, in line with
Cliffe et al.’s earlier conceptualisation [13].

Event generating constitutive rules cause institutional events to occur when observable (brute) events
or institutional events occur in a given context. For example, “the observable event of storing metadata
counts-as the institutional event of storing metadata”. An example of a rule where an institutional events
causes further institutional events to occur is “storing personal data counts-as unfair data processing in
the context that a user has not consented”.

Fluent initiation and termination rules cause inertial fluents to hold in a state when initiated and persist
from one state to another over time until terminated. For example, “a user consenting to storing their
data initiates the fluent stating that the user has consented”. Rules that establish what we call normative
fluents are norms. For example, “a user using a communications device initiates an obligation for their
communications’ metadata to be stored”. Higher-order norms impose higher-order normative fluents.
Once a fluent is initiated by such a rule it holds until it is terminated by another rule. That is, these rules
initiate and terminate inertial fluents.

Constitutive rules that derive fluents based on other fluents holding extend a state comprising relatively
concrete institutional facts to a state comprising more abstract institutional facts. For example, “an
obligation to store personal data non-consensually counts-as unfair data processing, unconditional on
any specific social context”. Generally, these rules have the form “fluent A counts-as fluent B in context
C”. Viewed as counts-as rules, these rules ascribe a special meaning B to a fluent A in a context C. For
example, an obligation to store personal data non-consensually has the special meaning of being unfair
data processing. So long as the fluent ‘A’ holds in a context ‘C’ then its special meaning ‘B’ also holds.
But, unlike fluent initition and termination rules, the special meaning ‘B’ does not hold until terminated,
rather, it holds when ‘A’ holds in the context ‘C’. That is the ‘Bs’ in rules of this type are non-inertial
fluents, since the Bs do not persist over time by default until terminated (i.e., they do not possess inertia).
Unlike the previous rules, constitutive rules that derive non-inertial fluents from other fluents are not
present in the InstAL framework. Similar non-inertial fluent rules with the form “in context C non-inertial
fluent A also holds” are present in subsequent InstAL developments [54, 65, 66].

Each fluent in an institution’s set of initial inertial fluents, which can be the empty set, holds in the
institution’s first state and continues to hold until terminated. To summarise, an institution specifies events,
fluents and constitutive rules which ascribe institutional events or institutional fluents.

Multi-level governance is operationalised with a semantics. This semantics defines how each institution
evolves from one state to the next in response to a trace of observable events. These events can be real
events occurring in the MAS, or hypothetical events if a pre-runtime check for compliance is performed.
An institution’s evolution is schematically depicted in Figure 2 and described as follows.

Automated Multi-level Governance Compliance Checking 11

abstraction

Sn
0

Eventsn
0

abstraction

Sn
1

Eventsn
1

abstraction

Sn
2 ...

abstraction

Sn
k+1

Nth-level Institution

abstraction

S2
0

Events2
0

abstraction

S2
1

Events2
1

abstraction

S2
2 ...

abstraction

S2
k+1

Second-level Institution

abstraction

S1
0

Events1
0

abstraction

S1
1

Events1
1

abstraction

S1
2 ...

abstraction

S1
k+1

First-level Institution

Obs. Event0 Obs. Event1 Obs. Eventk
...

Link

Input for all Institutions

Fig. 2: Overview of Multi-level Governance Reasoning

The institution starts in an initial state in which its initial set of inertial fluents holds. State transitions
are driven by observable events occurring in the MAS (potentially hypothetically). During a state transition,
further events occur in an institution according to its constitutive rules, building up an institutional
interpretation of reality based on the observable events that have occurred. Further events signifying there
is (non-)compliance also occur, for example if there is an obligation to store communications’ metadata
within one month and the data is not stored within one month, then a norm violation occurs. If it is
prohibited to oblige storing communications’ metadata, then a higher-order norm violation occurs. That
is, norm violations are institutional events denoting non-compliance. A newly transitioned to state can
contain different fluents from the previous state, based on each institution’s constitutive rules variously
initiating and terminating fluents from one state to the next. Thus, each institution evolves over time from
one state to the next transitioned by events.

Recall that concrete lower level institution norms are abstracted, in order to determine whether they
are compliant, in higher level institutions according to constitutive rules. The approach we take is to firstly,
link each institutional level such that concrete normative fluents holding in lower level institutions are
‘passed up’ to the corresponding state in higher level institutions. For example, an obligation to oblige
storing communications metadata in the EU-DRD is ‘passed up’ to the EU-CFR for monitoring. Likewise,
so too are norm compliance events.

Then, in each institutional state of a higher level institution the concrete normative fluents coming
from lower level institutions are re-interpreted and abstracted based on constitutive rules. To give an
example, storing communications metadata counts-as non-consensual data processing in the context that
the person whom the data concerns has not consented. Since storing metadata in such a context is ascribed
the special status of non-consensual data processing, an obligation to oblige storing communications
metadata is re-interpreted as an obligation to oblige non-consensual data processing.

In turn, from these abstractions any further abstractions are also derived. For example, the obligation
to oblige non-consensual data processing is abstracted simply to being unfair data processing, if such an

Automated Multi-level Governance Compliance Checking 12

Prohibited to process data unfairly

Unfair data processing

Prohibited to process data unfairly

Obligation to oblige processing
data non-consensually

Abstraction
Obligation to oblige storing per-
sonal data

Abstraction
Obligation to oblige storing meta-
data

Ada has consented to storing data

Obligation to oblige storing per-
sonal data

Obligation to oblige storing meta-
data

Ada consents to
storing data
Violated prohibi-
tion to process data
unfairly

Obligation to oblige storing meta-
data

Abstraction

Obligation to oblige storing meta-
data

Ada consents to
storing data

Charter of Funda-
mental Rights of the
EU

Data Retention Di-
rective

Abstraction

Fig. 3: An example of abstracting normative fluents at different levels of governance based on the context.
Normative fluents oblige/prohibit an aim a occurs before or at the same time as a deadline d. We use < to
denote one thing occurring strictly before another and ≤ to denote one thing occurring before or at the
same time as another.

ascription exists according to constitutive rules. Thus, each institutional state contains concrete normative
fluents from lower levels and the state contains the closure of all abstractions on these concrete normative
fluents based on constitutive rules. So, it is the concrete normative fluents imposed by norms in lower level
institutions that are re-interpreted as more abstract normative fluents at higher levels. Hence, concrete
normative fluents are determined in their abstract incarnation whether they cause non-compliance and
thus whether their originating concrete norms are compliant with abstract norms.

An example is depicted in Figure 3 based on the running case study and described as follows:

1. In the EU-DRD’s first state there is an obligation to oblige storing communications’ metadata, which
is passed up to the EU-CFR.

2. In the EU-CFR’s initial state the EU-DRD’s obligation to oblige storing communications’ metadata is
abstracted. This is because concrete normative fluents are abstracted based on whether the prescribed
event counts-as a more abstract event in a context entailed by the state. Specifically:

i The obligation to oblige storing metadata is abstracted to an obligation to oblige storing personal
data, because storing metadata counts-as storing personal data.

ii The obligation to oblige storing personal data is abstracted to an obligation oblige processing data
without consent, because storing personal data counts-as non-consensual data processing in the
context where an agent has not consented.

3. An obligation to oblige processing data non-consensually counts-as ‘unfair data processing’ and is
hence abstracted to ‘unfair data processing’.

4. Unfair data processing is prohibited and thus a norm violation event occurs in the transition to the
EU-CFR’ next state.

In the EU-CFR institution the next state lacks an obligation to oblige processing data without consent
because a user has consented. So, unfair data processing also does not hold. That is, the abstract meaning
of concrete normative fluents evolves as the context evolves. Consequently, compliance of normative
fluents is context sensitive because normative fluents’ abstraction is context sensitive.

Automated Multi-level Governance Compliance Checking 13

To summarise, our semantics for multi-level governance defines the evolution of each institution over
time in response to a sequence of events. Specifically, the semantics takes concrete normative fluents
from lower-level institutions and abstracts them in higher-level institutions. Abstracted normative fluents
can cause higher-order norm compliance events through discharging or violating higher-order norms.
Thus, non-compliance can be determined by inspecting the sequence of events in higher level institutions
for higher-order norm compliance events. In the next section we will define the representation and a
semantics as described.

4 Formal Framework

In this section we present the syntax for representing multi-level governance (subsection 4.1) and
alongside give the intuition/informal semantics for each syntactic construct. Then, we provide a semantics
for reasoning about multi-level governance (subsection 4.2).

4.1 Syntax

We begin with representing normative fluents. These are fluents that represent temporal obligations and
prohibitions, meaning they have an aim which should be achieved before a deadline. Obligation and
prohibition fluents are respectively represented as obl(aim, deadline) and
pro(aim, deadline). The aims and deadlines can be events, fluents or other normative fluents to represent
higher-order normative fluents. Two special events are used in aims and deadlines, now and never1. The
event ‘now’ occurs immediately to represent something should (not) be done immediately. For example,
obl(aim, now) means the aim should occur ‘now’. Our representation is inspired by the formalisation of
instantaneous norms in a variant of dynamic logic [17], which similarly use ‘now’ to refer to the present
state. An aim or deadline event never represents that the aim/deadline never occurs, potentially meaning
that the normative fluent lasts indefinitely. For example pro(aim, never) means it is always prohibited for
the aim to occur or in other words that the aim should ‘never’ occur.

The informal semantics for normative fluents’ is described in terms of when obligations/prohibitions
are discharged and violated, overviewed in Figure 4. An obligation fluent, of the form obl(aim, deadline),
represents that the aim should occur/hold before or at the same time as the deadline to discharge the
obligation (fulfil all duties). If the deadline occurs/holds strictly before the aim then the obligation is
violated. Prohibition fluents, of the form pro(aim, deadline), are the inverse of obligations. Prohibitions
represent that the aim should not occur/hold strictly before the deadline. When a normative fluent n is
discharged it causes the event disch(n) to occur. If n is violated then the event viol(n) occurs.

Higher-order norms impose higher-order normative fluents. A higher-order normative fluent obliges/pro-
hibits another normative fluent is imposed before a deadline. The deadline is an event or another normative
fluent. Compliance-focussed higher-order norms can also be expressed, which oblige/prohibit compliance
with an obligation/prohibition occurs before/after an event occurs or another normative fluent is imposed
(e.g., it is obliged a norm is violated before a fine is imposed). Where for an obligation n = obl(a, d)
or prohibition n = pro(a,d) norm discharge is the event disch(n) and violation is the event viol(n). A
grammar to specify normative fluents is formalised as:

1 We allow a normative fluent’s aim to be now or never, even though, for example, it sounds odd to say “it is obliged to be
now”. This is for symmetry between obligations and prohibitions - for example, obliged never before an event E is the same
as saying prohibited E until never (i.e., forever).

Automated Multi-level Governance Compliance Checking 14

obl(a,d) pro(a,d)

Event/fluent a Event/fluent d

Violates
if < dDischarges

if ≤ d
Discharges
if ≤ a

Violates
if < a

obl(obl(a,d),d′)

Discharges
if ≤ d′

obl(pro(a,d),d′)

Discharges
if ≤ d′

pro(obl(a,d),d′)

Violates
if < d′

pro(pro(a,d),d′)

Violates
if < d′

Fig. 4: Discharge and violation (higher-order) normative fluent conditions. < X denotes the event/fluent
holding or occurring strictly before X causes a violation. ≤ X denotes the same, but the condition is not
strictly before.

Definition 1 Normative Fluents Let P be a set of propositions denoting events with typical element p.
The set of normative fluents N |P is the set of all normative fluents n expressed as:

aim ::= p | n | now | never | disch(n) | viol(n)

deadline ::= p | n | now | never | disch(n) | viol(n)

n ::= obl(aim,deadline) | pro(aim,deadline)

We give some examples concerning two agents, a law enforcement officer called Charles and an
internet communications user called Ada, and an internet communications provider colloquially called an
ISP. The UK-DRR implements the EU-DRD. The UK-DRR states that if a law enforcement official (e.g.,
charles) requests the data stored by a communications provider (e.g., isp) of a user (e.g., ada) then the
communications provider is obliged to provide the data within one month (m1):

obl(provideData(isp, charles, ada), time(m1))

Instantaneous normative fluents express that something should (not) be done or a normative fluent
should (not) be imposed now. One way an higher-level institution designer might use instantaneous norms
is to express that as soon as something happens a normative fluent should be imposed. For example, as
soon as a norm is violated it is obliged that there is an obligation to punish the violator. The EU-DRD as we
formalise it, requires that any implementing legislation should impose punishment as soon as regulations
are violated. Thus, when there is a violation it imposes a normative fluent obliging an obligation to punish
the violator is imposed immediately:

obl(obl(punish(isp), time(m6)), now)

Compliance-focussed normative fluents can be used to express that an agent should discharge/violate
a normative fluent before another normative is imposed that rewards/punishes the agent. For example,
in our previous work [52], an obligation expressed “it is obliged that a norm is violated before a fine
is imposed”. Such compliance focussed normative fluents do not state that a normative fluent being
discharged should cause a reward/punishment. Rather, they state that discharge/violation should occur
before the reward/punishment is imposed. Following this paper’s case-study - it is obliged that the
communications provider isp violates the obligation to provide charles with data which concerns ada
before any obligation to punish the communications provider isp is imposed.

Automated Multi-level Governance Compliance Checking 15

obl(viol(obl(provideData(isp, charles, ada), time(m1))), obl(punish(isp), time(m6)))

Normative fluents can also be explicitly first-order, but implicitly higher-order by obliging/prohibiting
fluents that abstractly represent other normative fluents. Recall that various obligations in the EU-DRD
can abstractly be interpreted as unfair data processing. Hence, the following is an example of an abstract
first-order norm that indirectly governs other norms. The EU-CFR states that it is prohibited to process
Ada’s data unfairly (indefinitely):

pro(unfairDataProcessing(ada), never)

We now proceed to representing individual institutions. In short, institutions are specified as a tuple,
extending the formal specification of an institution in the InstAL framework [13]. Generally, speaking,
an individual institution describes the things that can occur (events) and hold (fluents) in the institution
as well as the institution’s rules causing events to occur and fluents to hold. An institution’s constitutive
rules - cause institutional events to occur in response to other events (“an event A counts-as an event
B in context C”), fluents to hold in response to events (“an event A counts-as establishing/removing a
fluent B in context C”), and further, more abstract, fluents to be derived from other fluents (“a fluent
A counts-as a fluent B in context C”). Rules stating fluents are derived are not present in InstAL but
we introduce them since they provide an abstracting relation between fluents and thus contribute to our
goal of reasoning about abstraction in multi-level governance. Regulative rules are just modal norms
represented as constitutive rules that establish normative fluents, “an event A counts-as establishing an
obligation/prohibition in context C”.

Specifically, institutions comprise the following elements:

Events - a set of propositions (E) denoting events that can occur in the institution, s.t. now,never 6∈ E ,
meaning that the institution cannot define when the events now and never occur. The set of events
comprises:

– Observable events (Eobs) that are exogenous to the institution corresponding to the notion of a
brute fact denoting an event.

– Internal institutional events (Einst) representing an institutional description of reality.
– Compliance events (Enorm = {disch(n),viol(n) | n ∈ Fcnorm ∪Fanorm}) indicating a normative

fluent (in the set of concrete and abstract normative fluents Fcnorm∪Fanorm) has been discharged
or violated.

Fluents - a set of propositions (F) denoting the fluents that can hold in the institution, comprising:
– Domain fluents (Fdom) providing an institutional description of the state of reality (e.g., an agent

has consented to their data being processed).
– Empowerment fluents (Fpow ⊆ {pow(e) | e ∈ Einst}) denoting an event is recognised by the

institution in a state and has the power to affect the institution (i.e., is empowered).
– Normative fluents (Fnorm = Fcnorm∪Fanorm) comprising mutually disjoint sets of concrete nor-

mative fluents (Fcnorm ⊆N |E∪Fdom) and abstract normative fluents (Fanorm ⊆N |E∪Fdom):
• Concrete normative fluents denote obligations and prohibitions imposed by the institution

about events or domain fluents. These normative fluents are concrete in the sense of being
explicitly imposed by an institutional norm, rather than being abstract interpretations of other
normative fluents that have been imposed.

• Abstract normative fluents denote obligations and prohibitions imposed by the institution
about events or domain fluents. These are abstract in the sense of not being imposed by the
institution, but rather represent an abstract interpretation of other more concrete normative
fluents. For example, an obligation to store personal data is a more abstract interpretation of
an obligation to store communications metadata.

– Inertial and non-inertial fluents, We assume that fluents are either inertial or non-inertial repre-
sented as mutually disjoint sets of inertial fluents (Finert) and non-inertial fluents (Fninert) such
that F =Finert∪Fninert and Finert∩Fninert = /0. Institutions define fluents that can be initiated by

Automated Multi-level Governance Compliance Checking 16

the institution’s state consequence function and then persist from one state to the next by default
until they are terminated. That is, some fluents are inertial. Other fluents hold due to constitutive
rules stating more abstract fluents are derived from more concrete fluents. These abstract fluents
hold whenever the concrete fluents hold and do not persist from state to state by default. That
is, they are non-inertial fluents. Concrete normative fluents are inertial, since an institution ex-
plicitly imposes them by initiation and termination according to the state consequence function
(Fcnorm ⊆ Finert). Abstract normative fluents are non-inertial since they are derived from other
normative fluents and do not persist from state to state by default (Fanorm ⊆ Fninert).

Contexts - these characterise a condition on a state and denote the social context each rule is
conditional on. A context is a set of positive and weakly negative fluents, which acts as a condition on
a state that is true if all of the positive fluents hold and none of the negative fluents hold. Formally,
the set of all contexts is X = 2F∪¬F s.t. ¬F = {¬ f | f ∈ F} is the set containing the negation of all
elements in the set F .
State change rules (C : X ×E → 2Finert ×2Finert), described as a state consequence function. They
specify that due to the occurrence of events conditional on a context holding in a state, inertial fluents
are initiated and terminated from one state to the next. State change rules can be descriptive (e.g., a user
consenting to their data being stored initiates a fluent stating that they have consented) and regulative
rules by initiating and terminating normative fluents (e.g., someone using electronic communications
initiates an obligation for the communications provider to store their communications’ metadata).
Event generation rules - (G :X ×E → 2Einst), described as an event generation function. These rules
are only descriptive. They specify that when an exogenous or institutional event occurs, conditional
on a social context holding in a state, another institutional event occurs.
Fluent derivation rules - (D : X ×F → 2Fninert), described as a fluent derivation function. These
rules state that a fluent holding in a state derives a non-inertial fluent holding in the same state,
conditional on a social context.

According to these notions, an individual institution is formally defined as:

Definition 2 Individual Institution An institution is a tuple I = 〈E ,F ,C,G,D,∆〉 such that:

– E = Eobs∪Einst∪Enorm is the set of events.
– F = Fdom∪Fnorm∪Fpow is the set of fluents.
– C : X ×E → 2Finert ×2Finert is the state consequence function.
– G : X ×E → 2Einst is the event generation function.
– D : X ×F → 2Fninert is the fluent derivation function.
– ∆ ⊆ Finert is the set of inertial fluents that initially hold in the institution’s zeroeth state (and until

terminated will hold in subsequent states).

Some further useful constructs are:

– Σ = 2F to denote the set of all states for I .
– Given a context X ∈ X and an event e ∈ E we denote the result of the consequence function as
C(X ,e) = 〈C↑(X ,e),C↓(X ,e)〉 s.t. the set of initiated fluents is C↑(X ,e) and the set of terminated
fluents is C↓(X ,e).

– For readability if an institution is denoted with a superscript, such as id then all its elements have the
same superscript, such as I id = 〈E id,F id,C id,G id,Did,∆ id〉, the set of states being Σ id and the set of
contexts being X id.

We exemplify using institutional specification fragments where for clarity we use a superscript
denoting the name of each institution. The EU-CFR [23, Art. 8.2] states that a person’s data must be
processed fairly. For an agent called ‘ada’, the set of inertial fluents initially holding in the CFR institution
includes:

pro(unfairDataProcessing(ada), never) ∈ ∆
cfr

Automated Multi-level Governance Compliance Checking 17

A communications provider, called ‘isp’, storing metadata is by default an event empowered to affect
the Data Retention Regulations:

pow(storeData(isp, ada, metadata)) ∈ ∆
drd

Now we give some example counts-as rules, fluent initiation and termination rules and norms (where,
for clarity, we use 3 to denote right-hand side’s membership of the left-hand-side). According to the
European Court of Justice’s (ECJ) judgement [21] on the EU-DRD, with respect to the EU-CFR, storing
communications metadata counts-as storing personal data. If an agent’s metadata is stored, such as Ada’s,
unconditional on a specific context (the empty set) then the event of storing the Ada’s personal data is
generated. Additionally, if Ada’s personal data is stored in the context that Ada has not consented then the
event of non-consensually processing Ada’s data occurs. The following rules are a part of the EU-CFR,
incorporating the ECJ’s judgement.

Gcfr(/0,storeData(isp, ada, metadata)) 3 storeData(isp, ada, personal)

Gcfr({¬consentedDataProcessing(ada, isp)},storeData(isp, ada, personal)) 3
nonConsensualDataProcessing(ada)

The DRD [22, Art. 8] requires data concerning people is transmitted to authorities on request before
any undue delay. A fluent initiation rule is conditional on an agent, Charles, requesting the data from a
communications provider, ISP, of another agent, Ada. In the context that Charles is a law enforcement
official the rule initiates an obligation to immediately oblige that ISP provides Charles with data concerning
Ada before any undue delay.

Cdrd↑({is(charles, lawEnforcement)},requestData(ada, isp, charles)) 3
obl(obl(provideData(isp, charles, ada), undue delay), now)

According to the ECJ’s interpretation of the EU-DRD [21] with respect to the EU-CFR. Obliging that
personal data is processed non-consensually counts-as unfair data processing. We represent the ECJ’s
interpretation as a fluent derivation rule in the CFR institution. It states that obliging an agent, Ada’s,
personal data is processed without consent in any social context (the empty set) derives the fluent of
(counts-as) unfair data processing.

Dcfr(obl(nonConsensualDataProcessing(ada), now), /0) 3 unfairDataProcessing(ada)

In multi-level governance, institutions are related in the sense that institutions designed at lower levels
of governance are governed by institutions designed at higher levels of governance. In our approach, this
means that if a lower level institution imposes an obligation or a prohibition, then the same obligation/pro-
hibition holds in any higher level institution that governs it. Institutions are linked in this way in what we
call a multi-level governance institution, where institutions are ordered by the level they operate at and
linked with a relation between lower level and higher level institutions. The relations linking institutions
are expressed as a set of directed edges R between lower level institutions and higher level institutions
they are governed by. Each relation is restricted such that higher levels cannot be governed by lower levels,
meaning that collectively the relations are always acyclic. Formally, a multi-level governance institution
is:

Definition 3 Multi-level Governance Institution A Multi-level Governance Institution is a directed
graph 〈T ,R〉. The vertices are represented as a tuple T = 〈I1, ...,In〉 of institutions. The arrows are a set
of pairs R = 2[1,n]×[1,n] of institution indexes in T such that ∀〈i, j〉 ∈ R : i < j.

Automated Multi-level Governance Compliance Checking 18

Closed Initial State
(definition 8)

Closed transitioned to state
(definition 10)

Generated events
(definition 5)

Inertial
Fluents

Inertial
Fluents

Fluent initiation
and termination

(definition 9)

concrete
normative
fluents As

abstracts
(definition 7)

non-inertial
abstract
normative
fluent B

non-inertial
fluent A

derives
(definition 6) non-inertial

fluent B

concrete
normative
fluents As

abstracts
(definition 7)

non-inertial
abstract
normative
fluent B

non-inertial
fluent A

derives
(definition 6) non-inertial

fluent B

Fig. 5: An overview of the semantics, depicting the transition from the initial state to the next state and
state closure.

For example, in our running case study a multi-level governance institution is 〈T ,R〉 with a hierarchy
of institutions comprising the UK-DRR, the EU-DRD and the EU-CFR such that T = 〈Idrr,Idrd,Icfr〉
and R = {〈drr,drd〉,〈drd,cfr〉}. To demonstrate the representation in its full entirety, the case study is
formalised in Appendix A.

According to these definitions, we can represent the three main aspects of multi-level governance we
focus on in this paper. Firstly, regulations that regulate other regulations in higher level institutions with
higher-order normative fluents in prescriptive rules. Secondly, the links between lower level institutions
governed by higher level institutions by composing multi-level governance institutions. Thirdly, the
interpretation of concrete concepts and normative fluents as more abstract concepts and normative fluents.

In our framework abstraction can occur in institutions related via multi-level governance in two
ways. Firstly with constitutive rules, which state concrete concept counts-as a more abstract concept in a
particular context. Such abstracting constitutive rules are represented as the event generation function and
the fluent derivation function. The event generation function represents abstracting constitutive rules of
the form “a concrete event A counts-as a more abstract event B in the context C”. The fluent derivation
function represents abstracting constitutive rules of the form “a concrete fluent A counts-as an abstract
fluent B in the context C”. The second abstraction method is the implicit abstraction of concrete normative
fluents regulating concrete concepts to more abstract normative fluents regulating abstract concepts.
Normative fluent abstraction requires no explicit representation, since it is defined semantically based on
constitutive rules between concrete and abstract concepts according to the event generation and fluent
derivation functions.

4.2 Semantics

In this section we present the formal semantics for multi-level governance. Given a multi-level governance
institution specification the semantics define a model, comprising for each institution states transitioned
between by events, in response to a supplied trace of observable events. The key idea behind the semantics,
depicted in Figure 5 is to transition from one state to another, driven by generated events, by initiating
and terminating inertial fluents. Then each state is closed by deriving non-inertial fluents according to an
institution’s fluent derivation function and abstracting concrete fluents to non-inertial abstract normative
fluents according to normative fluent abstraction. Given a multi-level governance institution model it
can be determined whether individual institutions are compliant with the institutions that govern them in

Automated Multi-level Governance Compliance Checking 19

different contexts. The formal semantics provide a mechanism for automated compliance-checking in
multi-level governance.

In order to reduce repetition the following definitions are with respect to several common objects. First,
a multi-level governance institutionML = 〈T ,R〉 where T = 〈I1, ...,In〉 is a tuple of institutions with
typical elements being ∀i ∈ [1,n] : I i = 〈E i,F i,C i,G i,Di,∆ i〉. Second, a tuple of states, representing the
state of each institution for a single point in time j - 〈S1

j , ...,S
n
j〉. Third, a tuple of event sets, representing

the events occurring in each institution for a single point in time j - 〈E1
j , ...,E

n
j 〉.

4.2.1 State Conditions

Institutional rules are conditional on states and the occurrence of events. Therefore, determining if a rule
is ‘fired’ requires determining in part if its state condition, a social context, holds in a state. We begin by
defining when contexts are modelled by (hold in) a state.

Informally, a state formula is modelled by a state if for each positive fluent in the formula there is an
equivalent fluent that is a member of the state and for each negative fluent in the formula there is not an
equivalent fluent that is a member of the state. Rather than defining modelling a state formula in terms of
whether the positive/negative fluent is in the state, we use equivalence. This is because two normative
fluents can have an equivalent semantics whilst being syntactically different - this is not unusual, in
‘Standard Deontic Logic’ [76] forbidden X is defined as obliged not X.

In our case, we define equivalences between two fluents based on whether they are are syntactically
identical and two normative fluents based on whether their (non-) compliance coincide. Referring again to
Figure 4, there is an obligation for an event/fluent a to occur/hold before or at the same time as a deadline
d when the obligation fluent obl(a, d) holds, likewise a is prohibited strictly before d when the prohibition
fluent pro(a,d) holds. Given two normative fluents obl(a, d) and pro(a′,d′) where a is equivalent to d′

and d equivalent to a′ the obligation’s and prohibition’s discharge and violation coincide and therefore
they are equivalent. The equivalences (≡) of obligations and prohibitions according to their discharge
and violation is summarised as obl(a,d)≡ pro(a′,d′) if a≡ d′ and d ≡ a′, a definition that generalises to
higher-order normative fluents2.

Accordingly, we define modelling a state formula as:

Definition 4 State Formulae Let f ∈ F i be a fluent. We define ≡ and |= for all contexts X ∈ X i as:

f ≡ f
obl(a,d)≡ pro(a′,d′) ⇔ a≡ d′ and d ≡ a′

Si |= f ⇔ ∃ f ′ ∈ Si : f ≡ f ′

Si |= ¬ f ⇔ @ f ′ ∈ Si : f ≡ f ′

Si |= X ⇔ ∀x ∈ X : Si |= x

4.2.2 Events

In this section we semantically define the events occurring in an institution, in response to other events in
specific contexts. Precisely, an event generation operation GRi defines for an institution I i in a multi-level
governance institution which events occur in a state Si in response to a set of events E i. An event occurs
in an institution if it is generated by the institution’s event generation function G i, or if it represents the
discharge/violation of a discharged/violated normative fluent holding in the institution’s state or that of a
lower-level institution the institution governs. The event generation operation is formalised below and
explained subsequently:

Definition 5 Event Generation Operation The event generation operation GRi : Σ i×2E
i → 2E

i
is de-

fined for each institution I i w.r.t. the tuple of multi-level governance states 〈S1
j , ...,S

n
j〉 and event sets

2 An example of higher-order equivalence generalisation is obl(obl(a,d),d′)≡ obl(pro(d,a),d′)≡ pro(d′,obl(a,d)), etc.

Automated Multi-level Governance Compliance Checking 20

〈E1
j , ...,E

n
j 〉. The operation is defined as GRi(Si,E i) = E ′ iff E ′ minimally (w.r.t. set inclusion) satisfies

all of the following conditions:

now ∈ E ′ (D5.1)

E i ⊆ E ′ (D5.2)

∃X ∈ X i,e ∈ E ′,e′ ∈ G i(X ,e) : Si |= X ∧Si |= pow(e′)⇒ e′ ∈ E ′ (D5.3)

Si |= obl(a,d)∧ (a ∈ E ′∨Si |= a)⇒ disch(obl(a,d)) ∈ E ′ (D5.4)

Si |= obl(a,d)∧ (d ∈ E ′∨Si |= d)∧disch(obl(a,d)) 6∈ E ′⇒ viol(obl(a, d)) ∈ E ′ (D5.5)

Si |= pro(a,d)∧ (d ∈ E ′∨Si |= d)⇒ disch(pro(a,d)) ∈ E ′ (D5.6)

Si |= pro(a,d)∧ (a ∈ E ′∨Si |= a)∧disch(pro(a,d)) 6∈ E ′⇒ viol(pro(a,d)) ∈ E ′ (D5.7)

∃〈h, i〉 ∈ R,e ∈ Eh
norm∩E i

norm⇒ e ∈ E ′ (D5.8)

In more detail:

– D5.1 - the event of now always occurs.
– D5.2 - events that have already occurred still occur (monotonicity).
– D5.3 - an event generated by the institution’s event generation function in response to another event,

conditional on a social context modelled by the state and the event being empowered to occur.
– D5.4 to D5.7 - a compliance event occurring signifying a normative fluent is discharged or violated in

a state, by an obliged/prohibited event, fluent or another normative fluent. Compliance events do not
need to be empowered in order to occur.

– D5.8 - norm compliance events occurring in lower level institutions linked to this institution, also
occur in this institution.

Collectively, these conditions and the minimality constraint close a set of events by producing all
events in response to those events (etc.). Note that GRi is increasingly monotonic, well-defined and can be
a partial function. The function GRi is partial if there is a fault in the institutional specification or the set
of events passed are inconsistent. Specifically, if an institution is defined such that violating a normative
fluent causes an event that discharges the same normative fluent via the event generation function G
(either directly or transitively). We will see later in subsection 4.2.5 how events generated cause fluents to
be initiated and terminated when all the definitions are put together to define a multi-level governance
institution model in definition 13.

4.2.3 Derived Fluents

In this section we semantically define deriving fluents from other fluents in a given state. We define a fluent
derivation operation FDi which, operating on an institutional state, extends the state to include derived
fluents based on fluent derivation rules of the form “fluent A derives fluent B in context C” described by
the fluent derivation function Di. These derived fluents are the ‘Bs’ from fluent derivation rules where
the context ‘C’ holds and the fluent ‘A’ is modelled by the state. By deriving fluents from other fluents
in a state, it is possible further fluents should be derived. Thus, the fluent derivation operation FDi is
defined to close a state by producing an extended state that includes all derived fluents with respect to the
extended state itself. The fluent derivation operation is formally defined as:

Definition 6 Fluent Derivation Operation The fluent derivation operation FDi : Σ i→ Σ i is defined for
each institution I i and a state Si ∈ Σ i such that FDi(Si) = S′ iff S′ minimally (w.r.t. set inclusion) satisfies
all of the following conditions:

Si ⊆ S′ (D6.1)

∃X ∈ X , f ∈ S′, f ′ ∈Di(X , f) : S′ |= X ⇒ f ′ ∈ S′ (D6.2)

Automated Multi-level Governance Compliance Checking 21

obl(a0,d)
counts-as
obl(b,d)

obl(a1,d)
counts-as
obl(b,d)

...
obl(an,d)
counts-as
obl(b,d)

pro(a0,d),
pro(a1,d),
... and
pro(an,d)
counts-as
pro(b,d)

a0 counts-as b a1 counts-as b ... an counts-as b

Deontological counts-as
between normative flu-
ents based on ai counting
as b

An event, fluent or normative
fluent ai counts-as an event, fluent
or normative fluent b in a state
according to event generation,
derived fluents and deontological
counts-as functions

Fig. 6: Overview for deontological counts-as semantics between concrete and abstract normative fluents,
based on counts-as relations between the elements they prescribe holding in a context entailed by a single
state.

In more detail:

– D6.1 - Closure of the state does not remove any fluents from the input state.
– D6.2 - A fluent derived from another fluent conditional on a social context modelled by the state

according to the institution’s fluent derivation function is a member of the closed state.

Collectively, these conditions and the minimality constraint close a state under fluent derivations.
Note that the fluent derivation operation is undefined if an institution’s fluent derivation function has an
output that is inconsistent with its input. For example D({¬B},A) 3 B or in words “A counts-as B in the
context that B does not hold”. In other cases, the fluent derivation operation is multi-valued if at least
two rules defined by the institution’s fluent derivation function are mutually inconsistent. For example
D({¬B2},A) 3 B1 and D({¬B1},A) 3 B2, or in words “A counts-as B1 in the context that B2 does not
hold” and vice versa “A counts-as B2 in the context that B1 does not hold”. Such properties indicate an
institution design problem, which should be resolved by the institution designer.

4.2.4 Abstracting Normative Fluents

This section presents a semantics for abstracting concrete normative fluents. The basic idea, depicted in
Figure 6, is to establish new counts-as relations between concrete normative fluents and abstract normative
fluents, based on the concrete concepts they prescribe counting-as more abstract concepts. Before we go
into the actual semantics for abstracting concrete normative fluents, we describe the intuition and general
semantics, then give numerous examples and finally the formalisation.

We call the relation between concrete and abstract normative fluents deontological counts-as and
derive it based on three counts-as rule types (referring again to Figure 6). Firstly, based on counts-as
between events according to an institution’s event generation function. Here, we derive relations stating
concrete normative fluents about events count-as an abstract normative fluent about an event. Secondly,
based on counts-as between fluents according to an institution’s fluent derivation function. Here, we derive
relations stating concrete normative fluents about fluents count-as an abstract normative fluent about a
fluent. Thirdly, based on counts-as between normative fluents themselves according to the deontological
counts-as relation we define. Here, we derive relations stating higher-order concrete normative fluents
prescribing normative fluents count-as a more abstract higher-order normative fluent prescribing a
normative fluent. So, a deontological counts-as relation between concrete and abstract normative fluents is
derived from more primitive ontological counts-as relations according to an institution’s event generation

Automated Multi-level Governance Compliance Checking 22

and fluent derivation functions, and deontological counts-as itself in order to derive deontological counts-as
between higher-order normative fluents.

How the deontological counts-as relations between concrete and abstract normative fluents are derived
is described as follows. The intuition is that concrete normative fluents count-as a more abstract normative
fluent if and only if: the events or fluents that cause compliance with the concrete normative fluents (i.e.,
discharging or not violating) in turn count-as a certain institutional event to occur or fluent to hold that
guarantees the abstract normative fluent is also complied with (i.e., discharged or not violated).

Following this intuition, we start by describing deontological counts-as for obligations. In reference to
Figure 6, whenever any of a0 to an occur or hold we are guaranteed b occurs/holds. If there is a concrete
obligation imposed on one of a0, ...,an to occur/hold before a deadline d, then it is guaranteed that
complying with the concrete obligation (discharging or not violating) means a more abstract obligation
for b to hold before the same deadline d is also guaranteed to be discharged or not violated. Therefore, we
derive a deontological counts-as relation stating that a concrete obligation on any of a0, ...,an before d
counts-as a more abstract obligation for b to occur before d.

Prohibitions are different. If a0, ...,an count-as b, then unlike obligations we cannot apply modus
ponens and say that prohibiting a0 before d counts-as prohibiting b before d. The reason being, a0 not
occurring/holding does not mean b does not occur/hold. Thus, prohibiting a0 on its own does not mean
b should not occur. In other words, discharging or not violating a prohibition on a0 before d does not
guarantee that a prohibition on b before d is discharged or not violated. The reason is b can occur due
to any of a1, ...,an occurring/holding (all counting-as b) and thus violate a prohibition on b before d.
We might be tempted to apply modus tollens and say that b not occurring/holding means a0, ...,an do
not occur/hold, therefore prohibiting b before d counts-as prohibiting a0, ...,an before d. However, this
would be concretisation since a0, ...,an are more concrete than b (recall that concrete concepts count-as
abstract concepts, and a0, ...,an count-as b). On the other hand, we are interested in abstraction. To
summarise, unlike obligations modus ponens is incorrect to base counts-as between prohibitions on (since
a prohibition is an obligation to the contrary), whilst modus tollens is inappropriate since it concretises
rather than abstracts.

Instead, we derive a deontological counts-as relation between prohibitions stating that prohibiting
all of a0, ...,an from occurring/holding before d counts-as a prohibition on a more abstract event/fluent b
occurring/holding before d. This is based on the fact that counts-as is ascriptive, with reference to the
discussion in Section2, defining all ways an abstract institutional concept can occur/hold when more
concrete concepts occur/hold. Since abstract institutional events/fluents are ascribed by an institution’s
counts-as rules, if none of a0, ...,an occur/hold then b is not ascribed and therefore does not occur/hold.
Note that this is entirely different from material implication. For example, given if it rain then the grass
will be wet, the fact that it does not rain does not mean the grass is not wet. Counts-as rules in contrast
make institutional facts possible, if some institutional fact B has no counts-as rules ascribing it, then
that institutional fact cannot exist in an institution’s social reality. In reference to the discussion in the
background section, counts-as rules introduce institutional facts. Thus, complying with (discharging or
not violating) all prohibitions on a0, ...,an occurring/holding before d guarantees that a prohibition on b
before d is also complied with (discharged or not violated) - if a0, ...,an should not occur/hold before d
then neither should b before d.

These informal semantics abstract concrete normative fluents with different concrete aims to an
abstract normative fluent with a more abstract aim. Normative fluents’ deadlines are also abstracted.
However, as we observed when defining equivalences between normative fluents, the aim of an obligation
is by definition obliged, whilst the deadline is prohibited and vice versa for prohibitions. Thus, the
abstraction of obligation fluents’ deadlines should be under the same semantics as prohibitions’ aims and
vice versa for prohibitions. So, given that a0 counts-as b, a prohibition for z to occur before a0 counts-as a
prohibition for z to occur before b. Alternatively, we can just apply the equivalences between normative
fluents such that we have an obligation for a0 to occur before z that counts-as an obligation for b to occur
before z, which is in turn equivalent to a prohibition for z to occur before b. Since a state with a prohibition

Automated Multi-level Governance Compliance Checking 23

fluent also models an equivalent obligation fluent and vice versa, we define deontological counts-as based
on the normative fluents a state models and obtain the abstraction of normative deadlines ‘for free’.

This summarises the intuition behind deontological counts-as. More formally, deontological counts-as
is defined as the function DCi : Σ i→ 2F

i
norm ×F i

norm. The function specifies for a state (S) a relationship
(〈N,n〉 ∈ DC(Si)) between sets of relatively concrete normative fluents (N) that count-as an abstract
normative fluent (n) in the state Si.

We exemplify the deontological counts-as function using our running case study. We focus on the
EU-DRD’s prescriptions formalised as an institution Idrd. Counts-as between events according to the
DRD’s event generation G function state that a communications provider (isp) storing the content of a
user’s (ada) communications data (storeData(isp, ada, content)) counts-as (causes the institutional event
of) storing personal data (storeData(isp, ada, personal)). Likewise, storing communications’ metadata
(storeData(isp, ada, metadata)) counts-as storing personal data.

Storing metadata or content data counts-as storing personal data. Thus, obliging metadata or obliging
content data is stored immediately counts-as obliging personal data is stored immediately, since if a
communications provider stores metadata or content data then it also stores personal data:

〈{obl(storeData(isp, ada, content), now)},obl(storeData(isp, ada, personal), now)〉 ∈DCi(Si)

〈{obl(storeData(isp, ada, metadata), now)},obl(storeData(isp, ada, personal), now)〉 ∈DCi(Si)

Prohibiting storing both content and metadata indefinitely counts-as prohibiting storing personal data
indefinitely:

〈{pro(storeData(isp, ada, content), never),

pro(storeData(isp, ada, metadata), never)},pro(storeData(isp, ada, personal), never)〉 ∈ DCi(Si)

Higher-order normative fluents are abstracted using the same intuitions as first-order normative
fluents, but with abstraction based on deontological counts-as. According to our case study, obliging an
obligation to store content data counts-as obliging an obligation to store personal data. Likewise, obliging
an obligation to store metadata counts-as obliging an obligation to store personal data.

〈{obl(obl(storeData(isp, ada, content), now), now)},
obl(obl(storeData(isp, ada, personal), now), now)〉 ∈ DCi(Si)

〈{obl(obl(storeData(isp, ada, metadata), now), now)},
obl(obl(storeData(isp, ada, personal), now), now)〉 ∈ DCi(Si)

Likewise, but for prohibitions, prohibiting storing metadata and prohibiting storing content data
counts-as prohibiting storing personal data. Thus, obliging to immediately prohibit storing metadata and
obliging to immediately prohibit content data counts-as obliging to immediately prohibit storing personal
data. Only obliging to prohibit storing content data, does not mean it is obliged to prohibit storing personal
data:

〈{obl(pro(storeData(isp, ada, content), never), now),

obl(pro(storeData(isp, ada, metadata), never), now)},
obl(pro(storeData(isp, ada, personal), never), now)〉 ∈ DCi(Si)

Higher-order prohibition abstraction semantics generalises the intuition of deontological counts-as for
first-order prohibitions, but based on deontological counts-as itself. Prohibiting all concrete normative
fluents that count-as a more abstract normative fluent, counts-as prohibiting the more abstract normative
fluent.

Automated Multi-level Governance Compliance Checking 24

According to our case study, indefinitely prohibiting obliging storing content data and prohibiting to
oblige storing metadata, counts-as indefinitely prohibiting obliging storing personal data. Likewise, for
prohibiting prohibitions.

〈{pro(obl(storeData(isp, ada, content), now), never),

pro(obl(storeData(isp, ada, metadata), now), never)},
pro(obl(storeData(isp, ada, personal), now), never)〉 ∈ DCi(Si)

〈{pro(pro(storeData(isp, ada, content), never), never),

pro(obl(storeData(isp, ada, metadata), never), never)},
pro(pro(storeData(isp, ada, personal), never), never)〉 ∈ DCi(Si)

Abstracted normative fluents can also be further abstracted. To give an example, in the EU-DRD the
event of storing personal data without someone’s consent counts-as a non-consensual data processing
event. Hence in the context that the agent Ada has not consented (S |= ¬consentedDataProcessing(ada))
we have the following deontological counts-as relation. It states the EU-DRD is effectively obliging an
obligation for data to be processed non-consensually:

〈{obl(obl(storeData(isp, ada, personal), now), now)},
obl(obl(nonConsensualDataProcessing(ada), now), now)〉 ∈ DCi(Si)

Deontological counts-as relations are also derived from the fluent derivation functionDi. To exemplify,
we take the previous example where we have an abstract obligation obliging Ada’s data is stored non-
consensually. Loosely speaking, the ECJ judged [21] that the EU-DRD, by obliging an obligation for
non-consensual data processing, violated the EU-CFR’s prohibition on unfair data processing (e.g.,
pro(unfairDataProcessing(ada), never)). But how do we go from a second-order obligation for data to be
processed non-consensually to violating a first-order prohibition on unfair data processing? One possibility
is that the EU-CFR’s fluent derivation function (Dcfr) states that obliging non-consensual data processing
counts-as unfair data processing, such that Dcfr(/0,obl(nonConsensualDataProcessing(ada)), now)) 3
unfairDataProcessing(ada). Thus we have the following relation stating the second-order obligation for
non-consensual data processing deontologically counts-as, more abstractly, obliging data is processed
unfairly:

〈{obl(obl(nonConsensualDataProcessing(ada)), now), now)},
obl(unfairDataProcessing(ada), now)〉 ∈ DCi(Si)

However, obliging data is processed unfairly does not violate the EU-CFR prohibition on unfair data
processing, pro(unfairDataProcessing(ada), never). This is unsurprising, the EU-CFR does not impose
an explicit second-order prohibition, or contain any explicit higher-order norms for that matter (both
in reality and in our formalisation). Unfair data processing is somehow derived from an obligation to
oblige non-consensual data processing. One possibility is as follows: i according to the fluent derivation
function obliging non-consensual data processing counts-as unfair data processing, thus ii obliging an
obligation to process data non-consensually counts-as obliging unfair data processing. iii The EU-CFR
considers whether data is processed unfairly or obliged to be processed unfairly as irrelevant, both are
viewed as unfair data processing. iv Thus, an obligation to process data unfairly counts-as unfair data
processing according to the fluent derivation function,Dcfr(/0,obl(un f airDataProcessing(ada)),now))3
unfairDataProcessing(ada). That is, normative fluents about abstract concepts are reduced to (ascribed
as) those abstract concepts, in this way first-order norms can indirectly govern other norms.

The idea here does not mean what ought to be the case is the case (e.g., unfair data processing). Rather,
unfair data processing is an abstract concept, which has many meanings, including obliging unfair data

Automated Multi-level Governance Compliance Checking 25

processing itself. Note that this means not only is an obligation to process data unfairly reduced to unfair
data processing, but so is a second-order obligation, a third-order obligation, etcetera. Formally:

〈{obl(obl(unfairDataProcessing(ada), now), now)},
unfairDataProcessing(ada)〉 ∈ DCi(Si)

〈{obl(obl(obl(unfairDataProcessing(ada), now), now), now)},
unfairDataProcessing(ada)〉 ∈ DCi(Si)

...

It is worth discriminating between issuing norms and re-interpreting norms at different abstraction
levels, now that we have given a general argument for norm interpretation and its application according
to constitutive rules. From an institution design perspective, it is most straightforward to issue norms
at the abstraction level of an institutional fact we wish to regulate (e.g., prohibiting storing content
data). An alternative method is to issue norms at a more concrete level of abstraction (e.g., prohibiting
storing message content, telephone calls, etc.), where the concrete detached obligations/prohibitions
are collectively re-interpreted as an obligation/prohibition on the more abstract institutional fact (e.g.,
prohibiting storing content data). The second approach is certainly possible, since an institution defines
all of the ways in which an abstract institutional fact is constituted according to its counts-as rules, as
we have discussed previously. Moreover, in our framework the domains we consider are finite and hence
it is possible to enumerate all concretisations. However, this is a less convenient approach since an
abstract concept can have a large number of concretisations that need to be accounted for. Moreover, when
counts-as rules in an institution change over time (e.g., introducing a rule stating that storing message’s
subject counts-as storing content data) further concrete norms may need to be introduced (e.g., prohibiting
storing message subjects) in order to continue regulating the same abstract fact (e.g., prohibiting storing
content data). The most convenient approach to regulating abstract institutional facts or norms is to
directly regulate those abstract institutional facts or norms and rely on abstraction of relatively concrete
facts/norms in each social context to determine compliance.

Following this discussion, we formally define deontological counts-as, based on counts-as relations
that hold in a state according to the event generation function, fluent derivation function and deontological
counts-as itself. For convenience, we collect the event generation and fluent derivation counts-as relations
into a single set Ai that forms the deontological counts-as function’s base cases. Since deontological
counts-as is also defined based on its own counts-as relations (in order to generalise to higher-order
normative fluents), deontological counts-as is defined recursively. Formally, deontological counts-as is
defined as:

Definition 7 Deontological Counts-as Given a state Si, the deontological counts-as function DCi : Σ i→
2F

i
norm ×F i

norm is defined for the state Si ∈ Σ i such that DCi(Si) is the minimal (w.r.t. set inclusion) set of
all pairs 〈N′,n′〉 where N′ 6= /0 that satisfy the following:

N′ = {obl(a,d) | a ∈ A}s.t.〈A,b〉 ∈Ai(Si)∪DCi(Si)∧n′ = obl(b,d) ∈ F ′norm or (D7.1)

N′ = {pro(a,d) | 〈A,b〉 ∈Ai(Si)∪DCi(Si)∧a ∈ A}∧n′ = pro(b,d) ∈ F i
norm (D7.2)

Where the set of abstracting counts-as relations Ai(Si) for the state Si is defined as:

A(Si) ={〈{a},b〉 | X ∈ X i,a ∈ E i,b ∈ G i(X ,a)∧Si |= pow(b)}∪ (D7.3)

{〈{a},b〉 | X ∈ X i,a ∈ F i,b ∈Di(X ,a)} (D7.4)

A state closed under deontological counts-as function is the function DCi : Σ i→ Σ i, such that S′ =DCi
(Si)

iff it minimally (w.r.t. set inclusion) satisfies all of the following conditions:

Si ⊆ S′ (D7.6)

∃〈N′,n′〉 ∈ DCi(Si) : N′ ⊆ S′∧n′ ∈ F i
anorm⇒ n′ ∈ S′ (D7.7)

Automated Multi-level Governance Compliance Checking 26

In more detail. Concrete obligations count-as a more abstract obligation according to D7.1. Concrete
prohibitions count-as a more abstract prohibition according to D7.2. These counts-as relations are derived
from relations between concrete concepts counting-as an abstract concept defined by the event generation
function and fluent derivation function according to D7.3 - D7.4 (the base cases) and with respect to
deontological counts-as itself since it is defined recursively.

Deontological counts-as does not describe whether normative fluents in a state Si are abstracted, but
rather whether they could be. Closing a state under deontological counts-as is according to the operation
DCi. Condition D7.6 ensures any fluents already in the state remain in the state. Condition D7.7 ensures
if concrete normative fluents, should they hold in a state are abstracted to a normative fluent, and they
do indeed hold, then the abstracted normative fluent also holds. Note that in D7.7 it is ensured only
normative fluents that belong to the abstract set of normative fluents can hold in a state due to being
derived from concrete normative fluents. Consequently, deontological counts-as only adds non-inertial
abstract normative fluents to a state.

Note that DCi is a partial function if there is a fault in the institutional specification. For example,
if an institution obliges an event a to occur in some state, and the event a generates the event b in that
state, then b is also obliged to occur in that state. However, if a generates the event b conditional on b not
being obliged then there is a problem. We have that b is obliged since a is obliged. But, if b is obliged
then a does not count-as b, thus obliged a does not count-as obliged b and so there is no obligation for b
to occur. Again, in principle there is nothing wrong with the possibility of this paradox occurring since
it is an institutional design fault. If we have DCi

(S) =⊥ then we have detected an institutional design
problem in the state S for the institution designer to rectify.

4.2.5 Models

In this section we provide a multi-level governance institutional model definition, which captures how
each institution in a multi-level governance institution evolves from one state to the next, driven by
observable events that potentially generate institutional events in state transitions. A model is defined in
response to a trace of observable (exogenous) events.

The approach we take is to put together all of the previous operations according to the following
description. An institution starts at an initial state that includes the institution’s initial set of inertial fluents
(∆ i) and the state closed under the fluent derivation and deontological counts-as operations. The institution
transitions between states with a set of events generated by the event generation operation in response
to an observable event in the event trace. Each state transitioned to contains the fluents that held in the
previous state that were not terminated, any newly initiated fluents as well as closing the state under
the fluent derivation and deontological counts-as operations. Additionally, an institution’s evolution is
affected by the evolution of other institutions it governs. This means that a higher level institution’s state
includes normative fluents from lower level institutions it governs. These normative fluents are ‘passed
up’ to the higher level institution in order to abstract the lower levels normative fluents and determine if
they are compliant in their abstract interpretation.

We begin by defining the initial state of each individual institution. Formally and described subse-
quently:

Definition 8 Initial States The initial state Si
0 for each individual institution I i w.r.t.ML = 〈T ,R〉 and

a tuple of initial states 〈S1
0, ...,S

n
0〉 is the set Si

0 if and only if Si
0 minimally (w.r.t. set inclusion) satisfies the

following:

Si
0 ⊆ ∆

i (D8.1)

∃〈h, i〉 ∈ R,n ∈ (F h
cnorm∪F h

anorm)∩F i
ninert : n ∈ Sh

0⇒ n ∈ Si
0 (D8.2)

Si
0 = FDi(Si

0) (D8.3)

Si
0 = DCi

(Si
0) (D8.4)

Automated Multi-level Governance Compliance Checking 27

– D8.1 - an institution’s initial set of inertial fluents is included in the institution’s initial state.
– D8.2 - if the institution governs a lower level institution then it contains any normative fluents holding

in that lower level institution’s initial state.
– D8.3 - the initial state is closed under the fluent dependency operation, such that all derived fluents

are included.
– D8.4 - the initial state is closed under deontological counts-as such that all abstracted normative

fluents are included.

Now we define which fluents are initiated and terminated from one state to the next in response to a
generated set of events (i.e., by the event generation operation). The set of fluents that are initiated (INITi)
and terminated (TERMi) from one state to the next are formally defined as and subsequently described:

Definition 9 Fluent Initiation and Termination The sets of all initiated and terminated fluents for I i

are respectively defined with the functions INITi : Σ i×2E
i → 2F

i
and TERMi : Σ i×2E

i → 2F
i
:

INITi(Si,E i) = { f | ∃e ∈ E i,∃X ∈ X i : f ∈ C i↑(X ,e)∧Si |= X} (D9.1.1)

TERMi(Si,E i) = { f | ∃e ∈ E i,X ∈ X i :Si |= f ∧ f ∈ C i↓(X i,e)∧Si |= X or (D9.2.1)

Si |= f ∧ (viol(f) ∈ E i∨disch(f) ∈ E i)} (D9.2.2)

Condition D9.1.1 specifies the set of initiated inertial fluents according to the institution’s consequence
function. An inertial fluent is initiated by the state consequence function conditional on an event occurring
and a social context holding in the state. Conversely, D9.2.1 specifies that the set of terminated inertial
fluents includes any inertial fluents terminated according to the institution’s consequence function.
Condition D9.2.2 states that any discharged or violated inertial (concrete) normative fluents are also
terminated, meaning dishcarged/violated normative fluents do not persist by default3.

A state transition operation (TRi(Si,E i)) produces a new institutional state based on the previous
state (Si) due to the occurrence of events (E i). The new state includes any inertial fluents that held in the
previous state and have not been terminated, any newly initiated fluents, normative fluents holding, and
the state’s closure under the fluent derivation and deontological counts-as operations.

Definition 10 State Transitions The state transition operation TRi : Σ i×2E
i → Σ i is defined for each

institution I i, a state Si and a set of events E i w.r.t. the states of other institutions 〈S1
j , ...,S

n
j〉 holding at

the same time andML = 〈T ,R〉, such that TRi(E iSi) = S′ iff S′ minimally (w.r.t. set inclusion) satisfies
all of the following conditions:

∀ f ∈ (Si∩F i
inert)\TERMi(Si,E i)⇒ f ∈ S′ (D10.1)

∀ f ∈ INITi(Si,E i)⇒ f ∈ S′ (D10.2)

∃〈h, i〉 ∈ R,n ∈ (F h
cnorm∪F h

anorm)∩F i
ninert : n ∈ Sh

j ⇒ n ∈ S′ (D10.3)

S′ = FDi(S′) (D10.4)

S′ = DCi
(S′) (D10.5)

– D10.1 - non-terminated inertial fluents persist from one state to the next, following the common sense
law of inertia.

– D10.2 initiated fluents hold in the next state.
– D10.3 a higher level institution’s state contains all normative fluents that hold in the same state of a

lower level institution the higher level governs.

3 Meaning, if you discharge or violate an obligation you are no longer obliged and likewise for prohibitions. In some cases,
it can make sense for a discharged/violated normative fluent to persist. For example, if you violate a prohibition on murder, it
is often the case that you are still prohibited from committing murder. For an extensive discussion on when it does and does
not make sense for obligations and prohibitions to persist after discharge/violation see [36].

Automated Multi-level Governance Compliance Checking 28

– D10.4 the newly transitioned to state includes all normative fluents that can be derived according to
the fluent derivation operation.

– D10.5 the newly transitioned state contains all normative fluent abstractions according to deontological
counts-as.

We now proceed to event traces. The trace a model is defined in response to is a sequence of observable
events recognised by the institutions involved in a multi-level governance relationship. That is, it is a trace
of only those events that can affect the institutions involved, driving their evolution and the multi-level
governance institution’s evolution as a whole. Each event in a trace needs to be recognised by at least one
institution to drive its evolution over time. We call such a trace, a composite event trace, formally:

Definition 11 Composite Event Trace LetML= 〈T ,B〉 be a multi-level governance institution where
T = 〈I1, ...,In〉. ctr = 〈e0, ...,ek〉 is a composite trace forML iff ∀ j ∈ [0,k],∃i ∈ [n] : e j ∈ E i

obs

Synchronisation issues can arise between institutions. These issues occur if a composite trace includes
an event recognised by one institution, therefore driving its state forward, but not recognised by another
institution meaning its state does not evolve. If an event in a composite trace is not recognised by an
institution, then the institution should still transition to a new state to ensure it is evolving at the same
rate as other institutions. We replace unrecognised events by the event of no change, the null event, in a
synchronised trace for each institution derived from a composite trace. Formally:

Definition 12 Synchronised Trace Let I be an institution, and ctr = 〈e0, ...,ek〉 be a composite event
trace. A trace str = 〈se0, ...,sek〉 is a synchronised trace of ctr for I iff ∀i ∈ [0,k] : if ek ∈ Eobs, sek = ek
and sek = enull otherwise.

We now define a multi-level governance institution model. A model comprises sequences of states (S)
and events (E). One state sequence for each individual institution (Si) and one sequence of event sets for
each individual institution (E i) driving its state transitions. A model is defined in response to a composite
trace such that the corresponding synchronised trace for each institution drives its evolution over time,
causing events to occur and driving state transitions forward. Each state and set of transitioning events is
defined for each institution assuming that the states and set of transitioning events exist for every other
institution. Formally:

Definition 13 Multi-level Governance Institution Model Let M = 〈M1, ...,Mn〉 be a tuple of state and
event sequence pairs for each institution I i with typical element Mi = 〈Si,E i〉where Si = 〈Si

0, ...,S
i
k+1〉 and

E i = 〈E i
0, ...,E

i
k〉. Let ctr be a composite trace forML= 〈T ,R〉 and stri = 〈sei

0, ...,sei
k〉 be a synchronised

trace of ctr for each institution I i. Let ∀i∈ [1,n],∀ j ∈ [0,k] : GRi(Si
j,E

i
j) be the event generation operation

for I i w.r.t. 〈S1
j , ...,S

n
j〉 and 〈E1

j , ...,E
n
j 〉. Let ∀i ∈ [1,n],∀ j ∈ [0,k] : TRi(Si

j,E
i
j) be the state transition

operation for each institution I i w.r.t. 〈S1
j , ...,S

n
j〉. The tuple M is a model ofML w.r.t. ctr if and only if:

∀i ∈ [1,n] : Si
0 is the initial state of each institution I i w.r.t. 〈S1

0, ...,S
n
0〉 (D13.1)

∀i ∈ [1,n],∀ j ∈ [0,k] : E i
j = GRi(Si

j,{sei
j}) (D13.2)

∀i ∈ [1,n],∀ j ∈ [0,k] : Si
j+1 = TRi(Si

j,E
i
j) (D13.3)

– D13.1 - the initial state of each individual institution, which is defined with respect to the initial
state of every other institution (meaning a higher-level institution includes normative fluents from a
lower-level institution).

– D13.2 - each institution’s set of events transitioning to a new state comprises all events generated
from the corresponding event in the synchronised trace and the previous state according to the
event generation operation. The event generation operation is also defined with respect to the states
and events from every other institution, such that norm compliance events are ‘passed up’ between
governance levels.

Automated Multi-level Governance Compliance Checking 29

– D13.3 - the next state transitioned from the previous state by the set of transitioning events. The state
transition operation is also defined with respect to the states and events from every other institution,
such that normative fluents are ‘passed up’ between governance levels.

This concludes multi-level governance institution semantics.

4.2.6 Compliance Monitoring

A multi-level governance institution model monitors the compliance of other institution’s regulations and
their outcomes. A model determines if the concrete regulatory effects of one institution are non-compliant
with the more abstract regulations of a higher level institution in a particular context. This is by ‘passing
up’ any concrete normative fluents from a lower level institution to the higher level institution that
governs it. Then, abstracting those concrete normative fluents in the higher level institution according
to the higher level institution’s abstracting constitutive rules (i.e., under the semantics of deontological
counts-as). Then, taking the more abstract interpretation of the lower levels’ concrete normative fluents,
generating any discharge and violation events of the higher level institution’s higher-order norms that
oblige/prohibit the abstracted lower level institution’s concrete norms. All that is needed to determine
if there is non-compliance is to collect a set of violation events from the multi-level governance model
for each institution. Formally, the set of sets of violation events for each individual institution denoting
non-compliance is:

Definition 14 Multi-level Governance Violations LetML = 〈T ,R〉 be a multi-level governance in-
stitution and M = 〈M1, ...,Mn〉 a model of ML w.r.t. a composite trace ctr such that ∀i ∈ [n] : Mi =
〈Si,E i〉,Si = 〈Si

0, ...,S
i
k+1〉,E i = 〈E i

0, ...,E
i
k〉. The tuple V = 〈V1, ...,Vn〉 is the set of multi-level governance

violations forML w.r.t. ctr if and only if:

∀i ∈ [1,n] : Vi = {e | ∃ f , j : f ∈ F i
cnorm∪F i

anorm, j ∈ [k]∧ viol(f) ∈ E i
j ∧ e = viol(f)} (D14.1)

Non-compliance is found if the set of violation events is non-empty. For an institution governing a
society this implies that the society is non-compliant (either in reality if compliance checking is performed
before run-time or hypothetically if not). For a higher level institution governing a lower level institution
non-compliance denotes that the regulatory effects are non-compliant if the violated norms belong to
the higher level institution. Such non-compliant regulatory effects can be due to having a more abstract,
non-compliant, meaning.

5 Computational Framework

In this section we provide a practical approach to reasoning about multi-level governance with a computa-
tional framework that corresponds to the formal framework. The idea of the computational framework is
to use Answer-Set Programming, a declarative programming language where the commonly accepted
syntax is AnsProlog, which we describe in section 5.1. An AnsProlog program in our framework produces
models of a multi-level governance institution for a trace of events.

There are two main components in the computational framework. Firstly, a general AnsProlog
program that implements the multi-level governance semantics from the previous section. Secondly,
specific AnsProlog programs that represent each individual institution, their multi-level governance
relationships and norm abstractions. By executing these AnsProlog programs together we can automate
compliance checks. We describe, for brevity, these AnsProlog programs in section 5.2 and give the
representation in full in Appendix B. To show that the computational framework provides a practical
implementation of the formal framework we provide soundness and completeness theorems between the
two frameworks in section 5.5. The theorems are proven in Appendix C. Moreover, we provide general
properties of the computational framework’s complexity for given institutions in a multi-level governance
relationship in Section 5.6

Automated Multi-level Governance Compliance Checking 30

The corresponding AnsProlog programs that represent institutions, their multi-level governance
relationships and norm abstractions are specific to each set of institutions in a multi-level governance
relationship. Consequently, it would be a lot of effort for a user to manually write AnsProlog programs
for each institution they wish to use in a multi-level compliance check. For this reason, we use a compiler
that takes as input institutions described in a high-level language, similar to the formal representation
used for institutions albeit with additional useful constructs such as variables and types. The compiler
outputs executable AnsProlog programs for individual institutions, their norm abstractions and the general
AnsProlog program representing multi-level governance semantics. By executing these compiled programs
together, we can automatically detect compliance without having to write AnsProlog code by hand. We
give an overview of the implemented compiler and demonstrate the result of executing the AnsProlog
programs for our running case study, with a compliance check corresponding to the real-world judgements
of the European Court of Justice, in Section 5.3.

5.1 Answer Set Programming

Answer-Set Programming is a non-monotonic logic-programming language [8, 32], for declaring problems
according to the syntax of AnsProlog as a set of first-order rules. AnsProlog is fully declarative in the sense
that the ordering of logical formulae (horn clauses and facts) makes no semantic difference. Executing an
AnsProlog program solves the declared problems by first running a grounder, which grounds all rules,
replacing variables with ground terms, and then running a solver against the ground program. A solver
computes the set of answer-sets, where each answer-set is a model of the AnsProlog program and a
solution to the problem declared. Answer-sets are computed according to the stable-model semantics [32].

We use AnsProlog for two main reasons. Firstly, it provides a natural representation of individual
and multi-level governance institutions, where institutions’ functions are represented as AnsProlog rules.
Secondly, it supports meeting the goal of our framework: automatically checking different contexts, or
traces of exogenous events, for whether regulations in a lower level institution are non-compliant. Using
AnsProlog, a single trace of events can be supplied to check for compliance, but we can also specify a
partial trace and that all variants of that trace must be used to check compliance or even all possible traces
up to a specific length must be checked for compliance. It is also possible to declare that each answer-set
produced must have a particular property, such as ‘there must be at least one violation of a norm in a
higher level institution’. In this case the property implies that if no answer-sets are produced then there
is full compliance for all traces up to a certain length. In summary, Answer-Set Programming provides
a natural representation of multi-level governance institutions and an easy way to perform a contextual
search for compliance.

There are many answer-set solvers available (e.g., [20, 30]). We briefly reintroduce the main definitions
to give context for what follows, focussing on the syntax of the CLINGO [30] grounder and solver making
use of a number of its unique constructs. In more detail, an AnsProlog program is built from atoms
and predicates. Predicates can be ground, such as lays_eggs(slinky) or non-ground predicates
containing variables representing the ground instance schemas, such as bird(X). Atoms and predicates
can be weakly negated, such as not 4. A rule r is typically of the form p_0 :- p_1, ..., p_n
comprising a head atom denoted H(r) and a set of body literals denoted B(r), which can be delineated
into the positive body atoms B+(r) and atoms appearing negated in the body B−(r). A rule r can also
be a fact by having an empty body such that B(r) = /0 containing only a single head atom such as
lays_eggs(slinky). To give an example adapted from [8], the following program declares that a
bird is an animal that lays eggs and is not a reptile, a reptile is an animal that lays eggs that is not a bird
and slinky is an animal that lays eggs:

bird(X) :- lays_eggs(X), not reptile(X).
reptile(X) :- lays_eggs(X), not bird(X).

4 we ignore the case of strong negation since it is unnecessary in our use of AnsProlog

Automated Multi-level Governance Compliance Checking 31

lays_eggs(slinky).

A (total) interpretation of an answer-set program is a truth-assignment to literals, comprising a set
of the atoms assigned the value of ‘true’. An answer-set is a minimal interpretation containing all atoms
that are justified in being true. Precisely, for a rule r, the head atom denoted H(r) is justified in being
true if all positive body atoms, denoted B+(r), are true, and none of the weakly negated body atoms,
denoted B−, are true. This implies facts are always justified in being true (e.g., lay_eggs(slinky)).
Looking at the previous example there can be more than one answer-set. If bird(slinky) is in an
interpretation then reptile(slinky) cannot be in the interpretation for it to be an answer-set, and
vice versa. These answer-sets are:

– { bird(slinky), lays_eggs(slinky) }
– { reptile(slinky), lays_eggs(slinky) }

Determining if an interpretation is an answer-set requires knowing which atoms are justified according
to the program’s rules. In the presence of weak negation this means we should only consider the rules that
do not contain weakly negated atoms that are in the answer-set. Furthermore, for those rules that remain
we do not need to consider their weakly negated literals to determine if the head is justified. Removing all
rules in a program with weakly negated literals that are in an interpretation and all weakly negated literals
from the remaining rules is called the reduct of the program, formally from [31]:

Definition 15 Reduct Let Π be an Answer-Set Program and X an interpretation of Π , the reduct denoted
Π X is the set:

{H(r)← B+(r) | r ∈Π and B−(r)∩X = /0}

We want to determine for a reduct and a set of atoms, whether that set of atoms is closed under the
program (containing all justified atoms) and whether it is minimal (containing no atoms that are not
justified). To give an example, if we have a reduct
Π = { lays_eggs(slinky). bird(slinky) :- lays_eggs(slinky). }, then the set
{lays_eggs(slinky), bird(slinky), some_atom} is closed since
lays_eggs(slinky) and bird(slinky) are justified but it is not minimal due to the presence of
some_atom. Formally adapted from [31]:

Definition 16 Let Π be a reduct and X a set of atoms. The set of atoms X is closed under Π X if for all
r ∈Π X , we have H(r) ∈ X iff B+(r)⊆ X . The smallest set of atoms closed under Π X is denoted Cn(Π X).

An answer-set is simply a minimal interpretation of a reduct of the program for the interpretation:

Definition 17 Answer-Set Let Π be an Answer-Set Program and X be an interpretation of Π and Π X

be the reduct of Π w.r.t. X . X is an answer-set of Π iff X = Cn(Π X).

In addition to the Answer-Set Programming semantics given above we use three constructs present
in CLINGO [30]. Namely, constraints, choice rules and conditional literals. Constraints are a special
type of rule of the form :−b1, ...,bn. representing a rule with falsity in the head such that if all of b1
to bn are true in an interpretation then there is a contradiction and therefore the interpretation is not an
answer-set. Choice rules are of the form {a1, ...,an} :−b1, ...,bn., meaning that any atom in a1, ...,an
can arbitrarily be picked for inclusion in an answer-set if b1, ...,bn. is true. Aggregates are present in
the body of rules and are of the form l{b1; ...;bn}u where l and u are positive integers meaning that
at least l and at most u elements of b1, ...,bn must be true for the aggregate to be true. Omitting l or u
removes the respective constraint. Finally, conditional literals are special literals that can be contained in
the body of a rule or within in an aggregate and are of the form b1 : b2, ...,bn. They follow the semantics
of material implication; conditional literals are true if the head is true or the body is false. Note that there
are no conditional literals within aggregates, rather a rule of the form l{b1 : b2, ...,bn}u means that b1 is
counted as being true when restricted to the domain of b2, ...,bn. Without variables this simply means that
b1 is counted as true when b2, ...,bn is true.

Automated Multi-level Governance Compliance Checking 32

5.2 Mapping

In this section we give the general idea behind mapping between the formal representation and semantics
of multi-level governance institutions and their representation in AnsProlog. For a detailed account, we
refer the reader to Appendix B.

The approach we take is to represent the events and fluents that can hold in each institution, as
AnsProlog facts, and the functions as non-factual AnsProlog rules. Each rule antecedent corresponds
to the parameters the functions take. For the event generation and state consequence functions, the
corresponding AnsProlog rules’ antecedents comprise the occurrence of events and the state conditions.
For the fluent derivation function, expressing constitutive rules of the form “fluent A derives (counts-as)
fluent B in context C” the corresponding AnsProlog rules’ antecedents comprise conditions on the state
containing fluent A and modelling the context C. The consequence of a rule corresponds to the effect
of the function’s returned value on a multi-level governance institution model. The resulting effect is
an event caused to occur according to G, the initiation and termination of fluents according to C, and
non-inertial fluents holding in a state according to a fluent derivation function D.

Multi-level governance institution semantics is represented in AnsProlog as more general rules. For
example, stating that if an inertial fluent is initiated then it holds until it is terminated. The exception is
the semantics of deontological counts-as, which is represented as a set of specific AnsProlog rules that
ensure normative fluent abstractions are included in states. Finally, composite traces are mapped to a
corresponding AnsProlog representation as sets of facts, each stating that an event has been observed at a
particular point in time.

The computational framework’s AnsProlog rules make use of the same common predicates used
previously in work extending InstAL to settings with multiple institutions [54, 55, 56]. In turn these are
similar to Event Calculus [53] constructs. To give context for what follows, the predicates are summarised
in their non-ground form:

– holdsat(F,In,I) denotes that the fluent F holds in the institution In at time I.
– observed(E,In,I) denotes that the event E is observed by the institution In at time I corresponding

to the exogenous event that has occurred in the synchronised trace for the institution.
– occurred(E,In,I) denotes that the event E occurs in the institution In at time I.
– initiated(F,In,I) denotes that the fluent F is initiated in the institution In at time I.
– terminated(F,In,I) denotes that the fluent F is terminated in the institution In at time I.
– instant(I) denotes I is a time instant.
– start(I) denotes I is the first time instant.
– final(I) denotes I is the last time instant.
– next(I,J) denotes J is a time instant that is strictly after I such that there is no time instant between
I and J.

The aforementioned predicates are used in both antecedents and consequents of rules. Such as, stating
conditional on particular fluents (not) holding in a state one event causes another event to occur. This
means events in function parameters correspond to occurred/3 whilst state conditions correspond to
sets containing positive and negative holdsat/3 predicates5.

5.2.1 Multi-level Governance Translation

The main idea is to translate the formal representation of a multi-level governance institution and its
semantics into a a set of AnsProlog rules.

The translation for representing a multi-level governance institution, comprising a set of AnsPro-
log rules, comprises the translation of the individual institutions and the translation of the multi-level
governance links between them.

5 an empty state condition (the empty set) is always true and replaced with the special atom #true for technical reasons.

Automated Multi-level Governance Compliance Checking 33

Starting with individual institutions, their institutional events and fluents are represented as AnsProlog
facts. For example in the EU-CFR, exConsent is an exogenous event, consent is an institutional
event and consentedDataProcessing(ada,isp) is an inertial fluent:

1 evtype(exConsent,cfr,ex).
2 evtype(consent,cfr,in).
3 ifluent(consentedDataProcessing(ada,isp),cfr).

An institution’s event generation function is translated to rules. Each rule containing an occurred/3
atom in the head representing the event that is caused to occur. Each rule’s body comprising an
occurred/3 atom representing the causal event, and positive and negative holdsat/3 atoms rep-
resenting the rule’s state conditions. For example, the following rule states that non-consensual data
processing occurs if Ada’s personal data has been stored and she has not consented, where non-consensual
data processing is empowered to occur:

1 occurred(nonConsensualDataProcessing(ada),cfr,I) :-
2 occurred(storeData(isp,ada,personal),cfr,I),
3 holdsat(pow(cfr,nonConsensualDataProcessing(ada)),cfr,I),
4 not holdsat(consentedDataProcessing(ada,isp),cfr,I), instant(I).

An institution’s consequence function is translated to AnsProlog rules, using initiated/3 and
terminated/3 atoms in the head for the initiation and termination of fluents. Each fluent initiation and
termination rule’s body comprises an occurred/3 atom representing the event causing a fluent to be
initiated/terminated, and positive and negative holdsat/3 atoms representing the context in which the
fluent initiation/termination is conditional on. For example, in the EU-CFR institution the fluent stating
ada has consented to data processing is initiated if she consents. In the EU-DRD institution the obligation
to oblige metadata is stored is initiated (i.e., imposed) when Ada uses electronic communications:

1 initiated(consentedDataProcessing(ada,isp),cfr,I) :-
2 occurred(consent(ada,isp),cfr,I), instant(I).
3 initiated(obl(obl(storeData(isp,ada,metadata),now),now),drd,I) :-
4 occurred(useElectronicCommunication(ada,isp),drd,I), instant(I).

An institution’s fluent derivation function is represented as AnsProlog rules with holdsat/3 atoms
in the head and body. For example, in the institution ‘unfair data processing’ is derived from an obligation
to process data non-consensually:

1 holdsat(obl(nonConsensualDataProcessing(ada),now),cfr,I) :-
2 holdsat(unfairdataprocessing(ada),cfr,I), instant(I).

The links between institutions are also represented as rules. Generally, a link from a lower level
institution institution L to a higher level institution H that governs L, comprises rules with occurred/3
and holdsat/3 atoms in the head. The occurred rules state a norm discharge/violation event occurs
in the institution H when it occurs in the institution L. Likewise, a normative fluent holds in H when it
holds in L. All of these rules are produced such that only the discharge/violation events occurring in L
and consequently in H are about normative fluents L imposes. Likewise, further rules state only normative
fluents hold in H when they hold in L for those normative fluents that L itself imposes. Thus, if L receives
norm discharge/violation events or normative fluents from another institution, these do not get passed up
to H from L.

To give an example, the following rule states that when the prohibition on deleting data before 12
months holds in the UK-DRR, then it also holds in the EU-DRD for checking compliance.

1 holdsat(pro(deleteData(isp, ada, metadata),time(m12)),drd,I) :-
2 holdsat(pro(deleteData(isp, ada, metadata),time(m12)),drr,I),instant(I).

Abstraction according to deontological counts-as is also represented as rules, where the head is a
holdsat atom representing the abstract normative fluent conditional on some concrete normative fluents
holding. For brevity we do not give details but refer the interested reader to Appendix B.1.

Automated Multi-level Governance Compliance Checking 34

Finally, the semantics is represented as more general rules. For example, the following rules state that
an inertial fluent holds in a state if it is initiated or if it held in the previous state and was not terminated
(capturing the common-sense law of inertia):

1 holdsat(P,In,J) :- holdsat(P,In,I),
2 not terminated(P,In,I), next(I,J), ifluent(P, In).
3 holdsat(P,In,J) :- initiated(P,In,I), next(I,J), ifluent(P, In).

The translation, where here we give its intuition (see Appendix B.1 for details), allows us to automate
compliance checks for institutions operating in a multi-level governance relation. Moreover, the translation
to an AnsProlog program is equivalent in the sense of producing answer-sets that correspond to the formal
models in the formal framework. That is, we have soundness and completeness properties which we
present later in Section 5.5.

5.3 Specification Language and Compiler

The computational framework is implemented as a high-level specification language for declaring in-
stitutions in a multi-level governance relationship and a compiler for producing executable answer-set
programs. The implementation extends the InstAL specification language and compiler [12]. The system
is demonstrated with the results of formalising our case study in the high-level specification language and
executing the compiled AnsProlog code for a trace of exogenous events.

The high-level specification language allows users to declare individual institutions and links between
them. The language constructs provided to users correspond to much the same representation elements as
in the formal framework, with the addition of types and variables to provide users with a concise way to
represent institutions over large domains. Below, is a fragment of the EU-DRD institution from our case
study written in the specification language, which we subsequently describe:

1 institution drd;
2 type Agent;
3 type CommServProv;
4
5 exogenous event exUseElectronicCommunication(Agent, CommServProv);
6 inst event useElectronicCommunication(Agent, CommServProv);
7
8 fluent pow(useElectronicCommunication(Agent, CommServProv);
9 obligation fluent obl(obl(storeData(CommServProv, Agent, Data), now), now);

10
11 exUseElectronicCommunication(Ag, Co) generates useElectronicCommunication(Ag, Co);
12 initially pow(useElectronicCommunication(Ag, Co));
13 useElectronicCommunication(Ag, Co) initiates
14 obl(obl(storeData(Co, Ag, metadata), now), now);

The name of the institution is declared on line 1, and the types of agent and communications
service provider on lines 2 and 3. Lines 5 and 6 declare the institution’s events. Lines 8 and 9 declare
the institution’s fluents. Line 11 corresponds to the notion of the mapping between events provided
by an institution’s event generation function. It states that the exogenous event of using electronic
communications generates an institutional event of using electronic communications. Line 12 declares
that a fluent holds in an institution’s initial state, in this case the fluent empowering the event to use
electronic communication to occur in the institution. Line 13 represents a mapping provided by the
institution’s consequence function, in this case the descriptive rule stating that if an agent uses electronic
communication then it is obliged that the communications provider is obliged to store the communications’
metadata immediately.

A separate file, called a domain file, declares the terms of each type, such as who is an agent or
a communications provider. The compiler processes the files declaring the individual institutions and
outputs a set of AnsProlog files representing each institution and their semantics.

Automated Multi-level Governance Compliance Checking 35

The AnsProlog files are then processed by the grounder and AnsProlog solver CLINGO, together with
a timeline program declaring a sequence of events and a special program declaring the links between each
institution. A short example of a link between two institutions is the following program. The program
specifies the governance relation between the institutions on lines 1 and 2. On line 3 a rule states an
obligation in a lower-level institution that holds and is a non-inertial fluent in the higher-level institution,
also holds in the higher-level institution.

1 governs(cfr, drd).
2 governs(drd, drr).
3 holdsat(obl(A, D), HIn, I) :-
4 holdsat(obl(A, D), LIn, I), nifluent(obl(A, D), HIn), governs(HIn, LIn).

The result of executing the AnsProlog programs together is a multi-level governance institution model
for the sequence of events provided. The model can be inspected for compliance of regulations, denoted
with compliance events, and other properties.

5.4 Running the Case Study

We have written the case study in the high-level computational framework specification language. By
compiling from the specification language to an AnsProlog representation we are able to assess compliance
in our case study’s multi-level governance institution. This is by executing the resulting AnsProlog program
together with a trace of events.

The case study is instantiated for a domain comprising four types. Firstly the agents acting in
the system (ada and charles). Secondly, we specify various types of role, since we need to distin-
guish between the agents/organisations and their social status. The case study differentiates between
citizens and law enforcement officials as well as Internet Service Providers (ISPs) thus we have the
roles lawEnforcement and isp. Thirdly, we distinguish between different data types (content,
metadata and personal).

The case study is run against an observable event trace. We chose an observable event trace that shows
the framework’s context-sensitivity to abstract norm reasoning. This is by testing the use of electronic
communications and ISP’s fulfilment of metadata storage obligations in different social contexts. Namely,
the context that an agent, Ada, has not consented and the context that she has. The trace is given below:

1 observed(exUseElectronicCommunication(ada, isp), 0).
2 observed(exStoreData(isp, ada, metadata), 1).
3 observed(exRequestData(charles, isp, ada), 2).
4 observed(exSignedConsentForm(ada, isp, personal), 3).
5 observed(exUseElectronicCommunication(ada, isp), 4).
6 observed(exStoreData(isp, ada, metadata), 5).
7 observed(exSignedConsentForm(ada, isp, voicerecording), 6).
8 observed(exSignedConsentForm(ada, isp, emailsubject), 7).
9 observed(exRequestData(ada, isp, bertrand), 8).

10 observed(exCloseInvestigation(charles, ada), 9).
11 observed(exChangeDataStorageLocation(isp, newzealand), 10).
12 observed(exUnauthoriseDataStorageLocation(bertrand, newzealand), 11).
13 observed(exUnauthoriseDataStorageLocation(bertrand, noneu), 12).
14 observed(exRequestData(charles, isp, bertrand), 13).
15 observed(exAuthoriseDataStorageLocation(bertrand, newzealand), 14).
16 observed(exOpenInvestigation(charles, bertrand), 15).
17 observed(exRequestData(charles, isp, bertrand), 16).

First the agent Ada uses electronic communications provided by the service provider ISP. Then, the
service provider, ISP, stores Ada’s commnications metadata. An agent, Charles, requests data from ISP
concerning Ada. Ada signs a consent form for her data being stored (after the fact). Ada uses ISP’s
electronic communications again. Finally, ISP stores Ada’s metadata again. Thus Ada’s data is stored
without her consent and then Ada’s data is stored after she has given consent.

Automated Multi-level Governance Compliance Checking 36

S0

1) + is(charles, lawEnforcement): drd, drr
+ is(ada, suspect): drd, drr
+ is(bertrand, dataregulationbody): drr
2) + pro(dataUnprotected(ada, personal),

never): cfr
3) + pro(privacyDisrespected, never): cfr
4) + pro(uncontrolByIndepAuth, never): cfr
5) + pro(unfairDataProcessing(ada), never):

cfr
6) – + obl(pro(storeData(isp, ada, content),

never), now): cfr, drd
7) + pro(storeData(isp, ada, emailbody;

emailsubject; textmessage;
voicerecording), never): cfr, drd, drr

8) + pro(storeData(isp, ada, content),
never): cfr, drd(from 7)

9) + dataStorageLocation(isp, australia): drr

S1

useElectronicCommunication(ada, isp): cfr,
drd, drr

disch(obl(pro(storeData(ada, content),
never), now)) : cfr, drd

1) is(charles, lawEnforcement): drd, drr
is(ada, suspect): drd, drr
is(bertrand, dataregulationbody): drr
2) – pro(dataUnprotected(ada, personal),

never): cfr
3) – pro(privacyDisrespected, never): cfr
4) – pro(uncontrolByIndepAuth, never): cfr
5) – pro(unfairDataProcessing(ada), never):

cfr
6) pro(storeData(isp, ada, content), never):

cfr, drd, drr
7) – + obl(storeData(isp, ada, metadata),

now): cfr, drd, drr
8) – + obl(obl(storeData(isp, ada, metadata),

now), now): cfr, drd
9) – + obl(obl(storeData(isp, ada,

personal), now), now) : cfr(from 8)
10) – + obl(obl(

nonConsensualDataProcessing(ada),
now), now): cfr (from 9)

11) – + obl(dataProcessed, now) : cfr
(from 9)

12) – + obl(dataUnprotected(ada,
personal), now): cfr (from 9)

13) – + obl(
nonConsensualDataProcessing(ada),
now) : cfr (from 10)

14) – + obl(privacyDisrespected, now) :
cfr (from 9)

15) – + obl(unfairDataProcessing(ada),
now) : cfr (from 13)

16) + dataProcessed : cfr (from 11)
17) + dataUnprotected(ada, personal) :

cfr (from 12)
18) + privacyDisrespected : cfr (from 14)
19) + uncontrolByIndepAuth : cfr (from

16)
20) + unfairDataProcessing(ada) (from

15) : cfr
21) pro(storeData(isp, ada, emailbody;

emailsubject; textmessage;
voicerecording), never): cfr, drd, drr

22) pro(storeData(isp, ada, content),
never): cfr, drd(from 21)

23) dataStorageLocation(isp, australia): drr

S2

storeData(isp, ada, metadata): cfr, drd, drr
nonConsensualDataProcessing(ada): cfr

disch(obl(obl(storeData(ada, metadata),
now), now)) : cfr, drd

disch(obl(storeData(i ada, metadata),
now)) : cfr, drd, drr

storeDataIn(australia): drr
storeDataIn(noneu): drr

viol(pro(uncontrolByIndepAut never)) :
cfr

viol(pro(privacyDisrespecte never)) : cfr
viol(pro(dataUnprotected(a personal),

never)) : cfr
viol(pro(unfairDataProcessing(ad

never)) : cfr

1) is(charles, lawEnforcement): drd, drr
is(ada, suspect): drd, drr
is(bertrand, dataregulationbody): drr
2) pro(storeData(isp, ada, content), never):

cfr, drd, drr
3) pro(storeData(isp, charles, content),

never): cfr, drd, drr
4) + pro(dataUnprotected(ada, personal),

never): cfr
5) + pro(deleteData(isp, ada, metadata),

time(m12)): drd, drr
6) + pro(privacyDisrespected, never): cfr
7) + pro(uncontrolByIndepAuth, never): cfr
8) + pro(unfairDataProcessing(ada), never):

cfr
9) + pro(unfairDataProcessing(charles),

never): cfr
10) + obl(deleteData(isp, ada, metadata),

time(m13)): drd, drr
11) + pro(deleteData(isp, ada, metadata),

time(m12)): drd, drr
12) – + obl(ensure data retention period(ada,

isp, metadata, m6, m24), now) : cfr, drd
+ ensure data retention period(ada, isp,

metadata, m6, m24) : drd from 10 and
11

13) pro(storeData(isp, ada, emailbody;
emailsubject; textmessage;
voicerecording), never): cfr, drd, drr

14) pro(storeData(isp, ada, content),
never): cfr, drd(from 13)

15) dataStorageLocation(isp, australia): drr

Fig. 7: Case study execution. The originating institutions for a fluent are in bold, ‘+’ indicates an initiated
fluent, ‘–’ indicates a terminated fluent. non-inertial fluents are in bold denoting they are derived from
other fluents according to the fluent derivation and deontological counts-as (norm abstraction) operations.
Norm discharge and violation events are highlighted.

Then, Ada signs a consent form for voice recordings to be stored and subsequently email subjects. Ada
requests Bertrand’s data from ISP. Charles closes the investigation on Ada. ISP changes the data storage
location to New Zealand. Bertrand unauthorises New Zealand as a storage location and subsequently all
non-EU countries. Charles requests ISP to provide Bertrand’s Data, then Charles opens an investigation
about Bertrand and finally Charles requests Bertrand’s data again. The main points about this latter half of
the trace are that Ada consents to storing two types of content data, a ban is placed on storing data first
in a specific non-EU country and then any country outside of the EU and finally Charles tries to obtain
Bertrand’s data before an investigation is opened and then afterwards.

The resulting multi-level governance institution model is depicted in Figure 7, for brevity edited to
just containing those fluents that are relevant to the discharge and violation of norms or demonstrate
semantic features. The model is described subsequently.

We first look at the interaction between the UK-DRR and the EU-DRD which governs the UK-DRR.
Accordingly:

– State S0 - Contains fluents stating the agent charles is playing the role of lawEnforcement
ada is a suspect and bertrand is a dataregulationbody officer. A fluent states that isp
stores data in Australia. The EU-DRD obliges that it is prohibited for isp to store the content of
ada’s data. The UK-DRR does indeed prohibit isp from storing the content of ada’s communications
data. Thus, the obligation to prohibit storing content data in the EU-DRD is immediately discharged
as denoted by the discharge event occurring in the transition to the next state. The transition to the
next state also includes the event of ada using electronic communications provided by isp, due to
the occurrence of the exogenous event in the timeline program stating the same.

– State S1 - Includes new fluents. Firstly, the EU-DRD imposes an obligation on the UK-DRR to
oblige isp to store ada’s communications’ metadata. Secondly, the UK-DRR imposes an obligation
for isp to store ada’s communications’ metadata. The UK-DRR’s first-order obligation to store
metadata discharges the EU-DRD’s second-order obligation to oblige an obligation to store metadata.
The transition to state S2 includes the event of ada’s communications’ metadata being stored by isp
in Australia and consequently in a non-EU country, and consequently the discharge of the obligation
from the UK-DRR for isp to store Ada’s communications metadata.

– State S2 - The EU-DRD, which governs the UK-DRR, obliges data retention to be ensured for between
6 and 24 months. In comparison, the UK-DRR, both obliges that Ada’s communications metadata is
deleted before 13 months and prohibits deletion before 12 months. Hence, the UK-DRR requires that
metadata is stored for between 12 and 13 months, which is abstractly interpreted in the EU-DRD as
ensuring data is retained between 6 and 24 months
(ensure_data_rention_period(ada, isp, metadata, m6, m24) discharging the
EU-DRD’s obligation for data to be stored within this timeframe. In the transition to state S3 charles
requests Ada’s data from isp.

– State S3 - Since charles is playing the role of lawEnforcement, this causes the EU-DRD to
oblige that isp is obliged to provide the data before any undue_delay. Meanwhile, the UK-DRR
obliges isp to provide charles with the data within one month (m1). According to the EU-DRD
anything occurring before one month counts-as the event of undue_delay. Thus the EU-DRD
interprets the obligation to provide data within one month as the abstract obligation to provide data
before any undue delay. This causes discharge of the obligation to oblige data is provided before any
undue delay.

– States S4 to S6 follow largely the same pattern. In the transition to the next state S4 ada consents to
her data being stored, which has no affect on the UK-DRR or the EU-DRD. Transitioning to state S5
ada uses electronic communications, then ada’s data is stored, causing the same obligations and
prohibitions to be imposed by the UK-DRR and EU-DRD when these events occurred previously.
Consequently, the transition from state S6 includes the second discharge of the obligation to ensure
data retention between 6 and 12 months.

– State S7 removes the prohibition in the drr on storing Ada’s voice recording data and consequently
the abstract prohibition on storing content data no longer holds either (since it was derived from the

Automated Multi-level Governance Compliance Checking 37

S3

requestData(charles, isp, ada): cfr, drd, drr
disch(obl(ensure data retention period(ada,
isp, metadata, m6, m24), now)) : cfr, drd

1) is(charles, lawEnforcement): drd, drr
is(ada, suspect): drd, drr
is(bertrand, dataregulationbody): drr
2) obl(deleteData(isp, ada, metadata), time(

m13)): drd, drr
3) pro(deleteData(isp, ada, metadata), time(

m12)): drd, drr
4) pro(dataUnprotected(ada, personal),

never): cfr
5) pro(privacyDisrespected, never): cfr
6) pro(storeData(isp, ada, content), never):

cfr, drd, drr
7) pro(uncontrolByIndepAuth, never): cfr
8) pro(unfairDataProcessing(ada), never): cfr
9) ensure data retention period(ada, isp,

metadata, m6, m24) : drd from 2 and 3
10) + obl(provideData(isp, charles, ada),

time(m1)): drd, drr
11) + obl(provideData(isp, charles, ada),

undue delay) : drd from 10
12) – + obl(obl(provideData(isp, charles,

ada), undue delay), now) : drd
13) pro(storeData(isp, ada, emailbody;

emailsubject; textmessage;
voicerecording), never): cfr, drd, drr

14) pro(storeData(isp, ada, content),
never): cfr, drd(from 13)

15) dataStorageLocation(isp, australia): drr

S4

consent(ada, isp, personal): cfr, drr
disch(obl(obl(provideData(charles,
ada), undue delay), now)) : cfr, drd

1) is(charles, lawEnforcement): drd, drr
is(ada, suspect): drd, drr
is(bertrand, dataregulationbody): drr
2) obl(deleteData(isp, ada, metadata), time(

m13)): drd, drr
3) pro(deleteData(isp, ada, metadata), time(

m12)): drd, drr
4) obl(provideData(isp, charles, ada), time(

m1)): drd, drr
5) pro(dataUnprotected(ada, personal),

never): cfr
6) pro(privacyDisrespected, never): cfr
7) pro(storeData(isp, ada, content), never):

cfr, drd, drr
8) pro(uncontrolByIndepAuth, never): cfr
9) pro(unfairDataProcessing(ada), never): cfr
10) ensure data retention period(ada, isp,

metadata, m6, m24) : drd from 2 and 3
11) + consentedDataProcessing(ada, isp,

personal): cfr
12) pro(storeData(isp, ada, emailbody;

emailsubject; textmessage;
voicerecording), never): cfr, drd, drr

13) pro(storeData(isp, ada, content),
never): cfr, drd(from 12)

14) dataStorageLocation(isp, australia): drr

S5

useElectronicCommunication(ada, isp): cfr,
drd, drr

1) is(charles, lawEnforcement): drd, drr
is(ada, suspect): drd, drr
is(bertrand, dataregulationbody): drr
2) pro(dataUnprotected(ada, personal),

never): cfr
3) pro(privacyDisrespected, never): cfr
4) pro(uncontrolByIndepAuth, never): cfr
5) consentedDataProcessing(ada, isp,

personal): cfr
6) obl(provideData(isp, charles, ada), time(

m1)): drd, drr
7) obl(provideData(isp, charles, ada),

undue delay): drd
8) pro(dataUnprotected(charles, personal),

never): cfr
9) pro(unfairDataProcessing(ada), never): cfr
10) pro(storeData(isp, charles, content),

never): cfr, drd, drr
11) + obl(deleteData(isp, ada, metadata),

time(m13)): drd, drr
12) pro(deleteData(isp, ada, metadata), time(

m12)): drd, drr
13) – + obl(storeData(isp, ada, metadata),

now): cfr, drd, drr
14) – + obl(obl(storeData(isp, ada, metadata),

now), now): cfr, drd
15) ensure data retention period(ada, isp,

metadata, m6, m24) : drd from 11 and
12

16) – + obl(obl(storeData(isp, ada,
personal), now), now) : cfr from 14

17) – + obl(privacyDisrespected, now): cfr
from 16

18) – + obl(dataProcessed, now): cfr from
16

19) – + obl(dataUnprotected(ada,
personal), now): cfr from 16

20) + dataUnprotected(ada, personal) :
cfr from 18

21) + privacyDisrespected : cfr from 17
22) + uncontrolByIndepAuth : cfr from

18
23) pro(storeData(isp, ada, emailbody;

emailsubject; textmessage;
voicerecording), never): cfr, drd, drr

24) pro(storeData(isp, ada, content),
never): cfr, drd(from 23)

25) dataStorageLocation(isp, australia): drr

Fig. 7 (cont.)

fact that all types of communications content storage was prohibited on a case by case basis: voice
recordings, email subject’s, email bodies, etc.).

– Similarly state S8 no longer contains a prohibition on storing Ada’s email subject data.
– When transitioning to state S9 Ada requests Bertrand’s data from ISP, but no obligation is imposed on

ISP in the drr because Ada is not a law enforcement officer.
– In state S10 Charles closes the investigate on Ada, causing her to no longer be a suspect.
– State S11 has the data storage location of ISP changed to New Zealand in the drr.
– State S12 contains a prohibition on storing data in New Zealand after Bertrand, the data regulation

body officer, unauthorises data storage in New Zealand. However, note that there is not consequently a
prohibition on storing data in non-EU countries, because although New Zealand is a non-EU country
there are also other non-EU countries where data can, permissibly, be stored.

– In state S13 data is prohibited from being stored in non-EU countries after Bertrand explicitly places
a blanket ban on storing data in any non-EU country.

– Although Charles requests Bertrand’s data from ISP when transitioning to state S14, there is no such
obligation since Bertrand is not a suspect.

Automated Multi-level Governance Compliance Checking 38

S6

storeData(isp, ada, metadata): cfr, drd, drr
storeData(isp, ada, personal): cfr

nonConsensualDataProcessing(ada,
metadata): cfr

disch(obl(storeData(i ada, metadata),
now)) : cfr, drd, drr

viol(pro(uncontrolByIndepAut never)) :
cfr

viol(pro(privacyDisrespecte never)) : cfr
viol(pro(dataUnprotected(a personal),

never)) : cfr

1) is(charles, lawEnforcement): drd, drr
is(ada, suspect): drd, drr
is(bertrand, dataregulationbody): drr
2) obl(provideData(isp, charles, ada), time(

m1)): drd, drr
3) obl(provideData(isp, charles, ada),

undue delay): drd
4) pro(dataUnprotected(ada, isp,

voicerecording; personal), never): cfr
5) pro(privacyDisrespected, never): cfr
6) pro(storeData(isp, ada, content), never):

cfr, drd, drr
7) pro(uncontrolByIndepAuth, never): cfr
8) pro(unfairDataProcessing(ada), never):

cfr
9) consentedDataProcessing(ada, isp,

personal): cfr
10) obl(deleteData(isp, ada, metadata), time(

m13)): drd, drr
11) pro(deleteData(isp, ada, metadata), time(

m12)): drd, drr
12) ensure data retention period(ada, isp,

metadata, m6, m24): drd from 10 and
11

13) – + obl(ensure data retention period(ada,
isp, metadata, m6, m24), now): cfr, drd

dataStorageLocation(isp, australia): drr
14) pro(storeData(isp, ada, emailbody;

emailsubject; textmessage), never): cfr,
drd, drr

15) – pro(storeData(isp, ada, voicerecording),
never): cfr, drd, drr

16) – pro(storeData(isp, ada, content),
never): cfr, drd(from 14 and 15)

17) dataStorageLocation(isp, australia): drr

S7

consent(ada, isp, voicerecording): cfr, drr
disch(obl(ensure data retention period(

a isp, metadata, m6, m24), now)) : cfr, drd

1) is(charles, lawEnforcement): drd, drr
is(ada, suspect): drd, drr
is(bertrand, dataregulationbody): drr
2) obl(provideData(isp, charles, ada), time(

m1)): drd, drr
3) obl(provideData(isp, charles, ada),

undue delay): drd
4) pro(dataUnprotected(ada, isp,

voicerecording; personal), never): cfr
5) pro(privacyDisrespected, never): cfr
6) pro(storeData(isp, ada, content), never):

cfr, drd, drr
7) pro(uncontrolByIndepAuth, never): cfr
8) pro(unfairDataProcessing(ada), never):

cfr
9) consentedDataProcessing(ada, isp,

personal): cfr
10) obl(deleteData(isp, ada, metadata), time(

m13)): drd, drr
11) pro(deleteData(isp, ada, metadata), time(

m12)): drd, drr
12) ensure data retention period(ada, isp,

metadata, m6, m24): drd from 10 and
11

13) pro(storeData(isp, ada, emailbody;
textmessage), never): cfr, drd, drr

14) – pro(storeData(isp, ada, emailsubject),
never): cfr, drd, drr

15) dataStorageLocation(isp, australia): drr
16 + consentedDataProcessing(ada, isp,

voicerecording): cfr, drr

S8

consent(ada, isp, emailsubject): cfr, drr

1) is(charles, lawEnforcement): drd, drr
is(ada, suspect): drd, drr
is(bertrand, dataregulationbody): drr
2) obl(provideData(isp, charles, ada), time(

m1)): drd, drr
3) obl(provideData(isp, charles, ada),

undue delay): drd
4) pro(dataUnprotected(ada, isp,

voicerecording; personal), never): cfr
5) pro(privacyDisrespected, never): cfr
6) pro(storeData(isp, ada, content), never):

cfr, drd, drr
7) pro(uncontrolByIndepAuth, never): cfr
8) pro(unfairDataProcessing(ada), never):

cfr
9) consentedDataProcessing(ada, isp,

personal; voicerecording): cfr
10) obl(deleteData(isp, ada, metadata), time(

m13)): drd, drr
11) pro(deleteData(isp, ada, metadata), time(

m12)): drd, drr
12) ensure data retention period(ada, isp,

metadata, m6, m24): drd from 10 and
11

13) pro(storeData(isp, ada, emailbody;
textmessage), never): cfr, drd, drr

15) dataStorageLocation(isp, australia): drr
16 + consentedDataProcessing(ada, isp,

emailsubject): cfr, drr

Fig. 7 (cont.)

– State S15 lifts the ban on storing data in New Zealand, although there is still a ban on storing data in
all non-EU countries.

– Finally, Charles opens an investigation into Bertrand, he becomes a suspect in state S16. Then when
Charles requests Bertrand’s data from ISP there is an obligation to provide it within one month in
state S17 since Bertrand is now a suspect, and consequently there is an obligation to provide the data
before any undue delay as interpreted by the drd.

In conclusion, for this trace of events the UK-DRR is compliant with the EU-DRD. All of the EU-
DRD’s normative fluents it imposes are discharged and none are violated. In comparison, the EU-DRD is
non-compliant with the EU-CFR as we will see:

– State S0 - the EU-CFR prohibits the EU-DRD’s regulations from being uncontrolled by an independent
authority. What this means is that data retention should be within the EU jurisdiction. Likewise, the
EU-CFR also prohibits data from being unprotected (i.e., stored without anonymisation), privacy from
being disrespected (i.e., personal data being stored) and data being processed unfairly (i.e., personal
data being stored without an agent’s consent).

– State S1 - a number of the EU-CFR’s prohibitions are violated:
– Violation of the CFR’s prohibition on regulations not being controlled by an independent

authority (meaning, compliance with the EU-CFR’s data protection rights must be observable
by an independent authority, such as by ensuring data is retained within the EU). The EU-DRD

Automated Multi-level Governance Compliance Checking 39

S9

requestData(ada, isp, bertrand): cfr, drd, drr

1) is(charles, lawEnforcement): drd, drr
is(bertrand, dataregulationbody): drr
2) obl(provideData(isp, charles, ada), time(

m1)): drd, drr
3) obl(provideData(isp, charles, ada),

undue delay): drd
4) pro(dataUnprotected(ada, isp,

voicerecording; personal), never): cfr
5) pro(privacyDisrespected, never): cfr
6) pro(storeData(isp, ada, content), never):

cfr, drd, drr
7) pro(uncontrolByIndepAuth, never): cfr
8) pro(unfairDataProcessing(ada), never):

cfr
9) consentedDataProcessing(ada, isp,

personal; voicerecording; emailsubject):
cfr

10) obl(deleteData(isp, ada, metadata), time(
m13)): drd, drr

11) pro(deleteData(isp, ada, metadata), time(
m12)): drd, drr

12) ensure data retention period(ada, isp,
metadata, m6, m24): drd from 10 and
11

13) pro(storeData(isp, ada, emailbody;
textmessage), never): cfr, drd, drr

15) dataStorageLocation(isp, australia): drr
16) – is(ada, suspect) : drd, drr

S10

closeInvestigation(charles, ada): drr

1) is(charles, lawEnforcement): drd, drr
is(bertrand, dataregulationbody): drr
2) obl(provideData(isp, charles, ada), time(

m1)): drd, drr
3) obl(provideData(isp, charles, ada),

undue delay): drd
4) pro(dataUnprotected(ada, isp,

voicerecording; personal), never): cfr
5) pro(privacyDisrespected, never): cfr
6) pro(storeData(isp, ada, content), never):

cfr, drd, drr
7) pro(uncontrolByIndepAuth, never): cfr
8) pro(unfairDataProcessing(ada), never):

cfr
9) consentedDataProcessing(ada, isp,

personal; voicerecording; emailsubject):
cfr

10) obl(deleteData(isp, ada, metadata), time(
m13)): drd, drr

11) pro(deleteData(isp, ada, metadata), time(
m12)): drd, drr

12) ensure data retention period(ada, isp,
metadata, m6, m24): drd from 10 and
11

13) pro(storeData(isp, ada, emailbody;
textmessage), never): cfr, drd, drr

14) – dataStorageLocation(isp, australia): drr

S11

changeDataStorageLocation(isp, newzeland):
drr

1) is(charles, lawEnforcement): drd, drr
is(bertrand, dataregulationbody): drr
2) obl(provideData(isp, charles, ada), time(

m1)): drd, drr
3) obl(provideData(isp, charles, ada),

undue delay): drd
4) pro(dataUnprotected(ada, isp,

voicerecording; personal), never): cfr
5) pro(privacyDisrespected, never): cfr
6) pro(storeData(isp, ada, content), never):

cfr, drd, drr
7) pro(uncontrolByIndepAuth, never): cfr
8) pro(unfairDataProcessing(ada), never):

cfr
9) consentedDataProcessing(ada, isp,

personal; voicerecording; emailsubject):
cfr

10) obl(deleteData(isp, ada, metadata), time(
m13)): drd, drr

11) pro(deleteData(isp, ada, metadata), time(
m12)): drd, drr

12) ensure data retention period(ada, isp,
metadata, m6, m24): drd from 10 and
11

13) pro(storeData(isp, ada, emailbody;
textmessage), never): cfr, drd, drr

14) + dataStorageLocation(isp, newzealand):
drr

Fig. 7 (cont.)

obliges the UK-DRR to oblige ada’s communications’ metadata is stored. According to the
EU-CFR obliging storing data (of any type) counts-as data being processed, hence an obligation
to oblige storing metadata is abstracted to an obligation to process data, which is abstracted
further to processing data. The EU-CFR views processing data without a prohibition on it being
stored outside of the EU counting-as regulations not being controlled by an independent authority.
Hence, the prohibition on regulations being uncontrolled by an independent authority is violated.

– Violation of the CFR’s prohibition on unfair data processing. The EU-CFR interprets storing
metadata as storing personal data, thus it determines that there is an abstract obligation to oblige
personal data is stored. In the EU-CFR, storing personal data in the context that an agent has not
consented counts-as non-consensual data processing (nonConsensualDataProcessing(ada)).
Thus the EU-CFR determines that there is an obligation to oblige non-consensual data processing
of ada’s data. According the EU-CFR an obligation to store data non-consensually counts-as
unfair data processing, hence an obligation to oblige non-consensual data processing is abstracted
to an obligation to process data unfairly. An obligation to process data unfairly in turn, counts-as
unfair data processing (i.e., from the perspective of the EU-CFR it does not matter if data is
actually processed unfairly or just obliged, both are unfair data processing). This causes the
EU-CFR’s prohibition on processing data unfairly to be violated.

– Violation of the CFR’s prohibition on disrespecting privacy. The obligation to oblige storing
metadata imposed by the EU-DRD is abstracted to an obligation to oblige storing personal data.
In the EU-CFR obliging storing personal data counts-as the non-inertial fluent for privacy to be
disrespected. Hence, obliging an obligation to store personal data is further abstracted to obliging
privacy is disrespected which also counts-as simply disrespecting privacy. Hence the EU-CFR’s
prohibition on disrespecting privacy is violated.

– Violation of the CFR’s prohibition on data being unprotected. The obliges an obligation for
Ada’s metadata to be stored (according to the an obligation to oblige personal data to be stored)
even in the context that it is not anonymised. The EU-CFR views an obligation to oblige storing
personal data as being the same thing as processing data, which in the context that the data is

Automated Multi-level Governance Compliance Checking 40

S12

unauthoriseDataStorageLocation(bertrand,
newzealand): drr

1) is(charles, lawEnforcement): drd, drr
is(bertrand, dataregulationbody): drr
2) obl(provideData(isp, charles, ada), time(

m1)): drd, drr
3) obl(provideData(isp, charles, ada),

undue delay): drd
4) pro(dataUnprotected(ada, isp,

voicerecording; personal), never): cfr
5) pro(privacyDisrespected, never): cfr
6) pro(storeData(isp, ada, content), never):

cfr, drd, drr
7) pro(uncontrolByIndepAuth, never): cfr
8) pro(unfairDataProcessing(ada), never):

cfr
9) consentedDataProcessing(ada, isp,

personal; voicerecording; emailsubject):
cfr

10) obl(deleteData(isp, ada, metadata), time(
m13)): drd, drr

11) pro(deleteData(isp, ada, metadata), time(
m12)): drd, drr

12) ensure data retention period(ada, isp,
metadata, m6, m24): drd from 10 and
11

13) pro(storeData(isp, ada, emailbody;
textmessage), never): cfr, drd, drr

14) dataStorageLocation(isp, newzealand):
drr

15) + pro(storeDataIn(newzealand), never):
cfr, drd, drr

S13

unauthoriseDataStorageLocation(bertrand,
noneu): drr

1) is(charles, lawEnforcement): drd, drr
is(bertrand, dataregulationbody): drr
2) obl(provideData(isp, charles, ada), time(

m1)): drd, drr
3) obl(provideData(isp, charles, ada),

undue delay): drd
4) pro(dataUnprotected(ada, isp,

voicerecording; personal), never): cfr
5) pro(privacyDisrespected, never): cfr
6) pro(storeData(isp, ada, content), never):

cfr, drd, drr
7) pro(uncontrolByIndepAuth, never): cfr
8) pro(unfairDataProcessing(ada), never):

cfr
9) consentedDataProcessing(ada, isp,

personal; voicerecording; emailsubject):
cfr

10) obl(deleteData(isp, ada, metadata), time(
m13)): drd, drr

11) pro(deleteData(isp, ada, metadata), time(
m12)): drd, drr

12) ensure data retention period(ada, isp,
metadata, m6, m24): drd from 10 and
11

13) pro(storeData(isp, ada, emailbody;
textmessage), never): cfr, drd, drr

14) dataStorageLocation(isp, newzealand):
drr

15) pro(storeDataIn(newzealand), never): cfr,
drd, drr

16) + pro(storeDataIn(noneu), never): cfr,
drd, drr

S14

requestData(charles, isp, bertrand): cfr, drd,
drr

1) is(charles, lawEnforcement): drd, drr
is(bertrand, dataregulationbody): drr
2) obl(provideData(isp, charles, ada), time(

m1)): drd, drr
3) obl(provideData(isp, charles, ada),

undue delay): drd
4) pro(dataUnprotected(ada, isp,

voicerecording; personal), never): cfr
5) pro(privacyDisrespected, never): cfr
6) pro(storeData(isp, ada, content), never):

cfr, drd, drr
7) pro(uncontrolByIndepAuth, never): cfr
8) pro(unfairDataProcessing(ada), never):

cfr
9) consentedDataProcessing(ada, isp,

personal; voicerecording; emailsubject):
cfr

10) obl(deleteData(isp, ada, metadata), time(
m13)): drd, drr

11) pro(deleteData(isp, ada, metadata), time(
m12)): drd, drr

12) ensure data retention period(ada, isp,
metadata, m6, m24): drd from 10 and
11

13) pro(storeData(isp, ada, emailbody;
textmessage), never): cfr, drd, drr

14) dataStorageLocation(isp, newzealand):
drr

15) – pro(storeDataIn(newzealand), never):
cfr, drd, drr

16) pro(storeDataIn(noneu), never): cfr, drd,
drr

Fig. 7 (cont.)

not anonymised is abstractly the same thing as data being unprotected. Hence, the EU-CFR’s
prohibition on data being unprotected is violated.

Each violated prohibition in the EU-CFR is initiated in the next state.
– States S2 and S3 contain nothing of interest from the perspective of the EU-CFR. In the transition to

state S4 Ada consents to her personal data being stored.
– State S4 contains a fluent stating Ada has consented to her personal data being stored.
– State S5 also contains prohibitions in the EU-CFR which are violated by the EU-DRD, as in state S1,

with one difference:
– The CFR’s prohibition on data being processed unfairly is not violated. The EU-DRD, from

the perspective of the EU-CFR, obliges an obligation to store personal data. However, since
Ada has consented the obligation to oblige personal data being stored is not abstracted to an
obligation to oblige non-consensual data processing and not subsequently abstracted to ‘unfair
data processing’. Hence, in state S5, unlike in state S2 the EU-CFR’s prohibition on unfair data
processing is not violated since the context is different (Ada has consented to her data being
stored). Meanwhile, the rest of the EU-CFR’s prohibitions are violated (for the second time).

– Subsequent states are less interesting to the cfr, however it is important to note that in the final
state S17 there is no violation of the EU-CFR’s prohibition on regulations not being controlled by an
independent authority (within the EU), since there is now a prohibition on storing data in non-EU
countries. Hence, the context change caused by Bertrand prohibiting data storage outside of the EU
results in different compliance effects.

From this case study we can see the UK-DRR is compliant with the EU-DRD (i.e., the UK’s legislation
correctly implements the directive). On the other hand, the EU’s data retention directive is non-compliant

Automated Multi-level Governance Compliance Checking 41

S15

authoriseDataStorageLocation(bertrand,
newzealand): drr

1) is(charles, lawEnforcement): drd, drr
is(bertrand, dataregulationbody): drr
2) obl(provideData(isp, charles, ada), time(

m1)): drd, drr
3) obl(provideData(isp, charles, ada),

undue delay): drd
4) pro(dataUnprotected(ada, isp,

voicerecording; personal), never): cfr
5) pro(privacyDisrespected, never): cfr
6) pro(storeData(isp, ada, content), never):

cfr, drd, drr
7) pro(uncontrolByIndepAuth, never): cfr
8) pro(unfairDataProcessing(ada), never):

cfr
9) consentedDataProcessing(ada, isp,

personal; voicerecording; emailsubject):
cfr

10) obl(deleteData(isp, ada, metadata), time(
m13)): drd, drr

11) pro(deleteData(isp, ada, metadata), time(
m12)): drd, drr

12) ensure data retention period(ada, isp,
metadata, m6, m24): drd from 10 and
11

13) pro(storeData(isp, ada, emailbody;
textmessage), never): cfr, drd, drr

14) dataStorageLocation(isp, newzealand):
drr

15) pro(storeDataIn(noneu), never): cfr, drd,
drr

S16

openInvestigation(charles, bertrand): drr

1) is(charles, lawEnforcement): drd, drr
is(bertrand, dataregulationbody): drr
2) obl(provideData(isp, charles, ada), time(

m1)): drd, drr
3) obl(provideData(isp, charles, ada),

undue delay): drd
4) pro(dataUnprotected(ada, isp,

voicerecording; personal), never): cfr
5) pro(privacyDisrespected, never): cfr
6) pro(storeData(isp, ada, content), never):

cfr, drd, drr
7) pro(uncontrolByIndepAuth, never): cfr
8) pro(unfairDataProcessing(ada), never):

cfr
9) consentedDataProcessing(ada, isp,

personal; voicerecording; emailsubject):
cfr

10) obl(deleteData(isp, ada, metadata), time(
m13)): drd, drr

11) pro(deleteData(isp, ada, metadata), time(
m12)): drd, drr

12) ensure data retention period(ada, isp,
metadata, m6, m24): drd from 10 and
11

13) pro(storeData(isp, ada, emailbody;
textmessage), never): cfr, drd, drr

14) dataStorageLocation(isp, newzealand):
drr

15) pro(storeDataIn(noneu), never): cfr, drd,
drr

16) + is(bertrand, suspect): drd, drr

S17

requestData(charles, isp, bertrand): cfr, drd,
drr

1) is(charles, lawEnforcement): drd, drr
is(bertrand, dataregulationbody): drr
is(bertrand, suspect): drr
2) obl(provideData(isp, charles, ada), time(

m1)): drd, drr
3) obl(provideData(isp, charles, ada),

undue delay): drd
4) pro(dataUnprotected(ada, isp,

voicerecording; personal), never): cfr
5) pro(privacyDisrespected, never): cfr
6) pro(storeData(isp, ada, content), never):

cfr, drd, drr
7) pro(uncontrolByIndepAuth, never): cfr
8) pro(unfairDataProcessing(ada), never):

cfr
9) consentedDataProcessing(ada, isp,

personal; voicerecording; emailsubject):
cfr

10) obl(deleteData(isp, ada, metadata), time(
m13)): drd, drr

11) pro(deleteData(isp, ada, metadata), time(
m12)): drd, drr

12) ensure data retention period(ada, isp,
metadata, m6, m24): drd from 10 and
11

13) pro(storeData(isp, ada, emailbody;
textmessage), never): cfr, drd, drr

14) dataStorageLocation(isp, newzealand):
drr

15) pro(storeDataIn(noneu), never): cfr, drd,
drr

16) + obl(provideData(isp, charles, bertrand),
time(m1)): cfr, drd, drr

17) + from 16 obl(provideData(isp,
charles, bertrand), undue delay): drd

Fig. 7 (cont.)

with the EU-CFR. In particular, the EU-DRD was found to be non-compliant in a particular social context
with particular prohibitions issued by the EU-CFR. In different contexts the same prohibitions might
not be violated. As we saw in the context that Ada had consented to her personal data being processed,
the directive did not the violate the prohibition on unfair data processing. This is because the directive’s
normative fluents were not interpreted by the charter as more abstractly counting-as unfair data processing.
Hence, whether there is compliance depends on the context, which determines the abstract meaning of
normative fluents.

5.5 Computational Framework Soundness and Completeness

We now demonstrate that the computational framework provides an executable implementation of the
formal framework. This is with theorems stating the computational framework is sound and complete
with respect to the formal framework (proofs are provided in Appendix C). We begin by packaging, for
convenience, the AnsProlog programs of the computational framework, given in Appendix B, into a single
AnsProlog program ΠML(k).

Definition 18 Multi-level Governance AnsProlog Program LetML = 〈T ,R〉 be a multi-level gov-
ernance institution. Let ctr be a composite trace for ML of length n. Let Π insts and Π abstr be the
institutional and deontic abstraction programs obtained for ML. Let, Π trace(n) be the trace program
obtained for ctr and let Π base(n) be a multi-level governance base program. A multi-level governance
institution AnsProlog program forML and a composite trace ctr is:

Π
ML(n) = Π

base(n)∪Π
trace(n)∪Π

abstr∪Π
insts

Automated Multi-level Governance Compliance Checking 42

We now give the soundness property for the deontic abstraction representation in AnsProlog with
respect to the formal definition of deontological counts-as. In doing so, we demonstrate that we have
provided a transformation that flattens the deontological counts-as function described in the formal
framework to an executable set of AnsProlog rules. The property states that a state in the answer-set for a
multi-level governance answer-set program is equivalent to the same state in the formal model for the
formal framework with the deontological counts-as function DCi applied.

Lemma 1 LetML = 〈T ,R〉 be a multi-level governance institution s.t. T = 〈I1, ...,In〉, and ctr be
a composite trace of length k. Let ∀i ∈ [1,n] Ini be a unique label for I i. Let ΠML(k) be the multi-
level governance AnsProlog program for ML and ctr. Let MP be an answer-set for the program
P∗ = ground(ΠML(k)). Given a set Si

j such that

∀i ∈ [1,m],∀ j ∈ [k] : MP |= holdsat(f , Ini, j)⇒ f ∈ Si
j

then Si
j = DCi

(Si
j).

Proof. See Appendix C.1.

The next property we are interested in is soundness for the translation to an AnsProlog program as a
whole. Specifically, the property states any answer-set for a multi-level governance AnsProlog program for
a given trace of events corresponds to a multi-level governance institution model in the formal framework
for the same trace of events.

Theorem 1 (Soundness) Given a multi-level governance institutionML = 〈T ,R〉 s.t. T = 〈I1, ...,In〉.
Let ctr = 〈e0, ...,ek〉 be a composite trace forML. Let ΠML(k) be the multi-level governance AnsProlog
program forML and ctr. Let ∀i ∈ [1,n] : stri = 〈sei

0, ...,sei
k〉 be a synchronised trace for I i w.r.t. ctr.

Let MP be an answer-set for the program P∗ = ground(ΠML(k)). Then M = 〈M1, ...,Mn〉 with ∀i ∈ [n] :
Mi = 〈Si,E i〉,Si = 〈Si

0, ...,S
i
k+1〉,E i = 〈E i

0, ...,E
i
k〉 such that:

∀h ∈ [1,n],∀ j ∈ [k], : MP |= holdsat(f , Inh, j)⇒ f ∈ Sh
j (T1.1)

∀h ∈ [1,n],∀ j ∈ [k],∀e 6= null : MP |= occurred(e, Inh, j)⇒ e ∈ Eh
j (T1.2)

∀h ∈ [1,n],∀ j ∈ [k] : MP |= occurred(null, Inh, j)⇒ enull ∈ Eh
j (T1.3)

is the model ofML w.r.t. ctr.

Proof. See Appendix C.2.

The next property we are interested in is completeness. This states that for any model of a multi-
level governance institution in the formal framework, for a trace of events, the multi-level governance
AnsProlog program produces a corresponding answer-set for the same trace of events.

Theorem 2 (Completeness) Given a multi-level governance institutionML= 〈T ,R〉 s.t. T = 〈I1, ...,In〉.
Let ctr = 〈e0, ...,ek〉 be a composite trace forML. Let ∀i ∈ [1,n] : stri = 〈stri

0, ...,stri
k〉 be a synchronised

trace for I i w.r.t. ctr. Let M = 〈M1, ...,Mn〉 be the multi-level governance institution modelML w.r.t.
ctr where ∀i ∈ [1,n] : Mi = 〈Si,E i〉,Si = 〈Si

0, ...,S
i
k+1〉,E i = 〈E i

0, ...,E
i
k〉. Let ΠML(k) be the multi-level

Automated Multi-level Governance Compliance Checking 43

structure AnsProlog program forML and a composite trace ctr. Let MP be the set of atoms:

∀i ∈ [1,n],∀ j ∈ [k+1] : Si
j |= f ⇒MP |= holdsat(f , Ini, j) (T2.1)

∀i ∈ [1,n],∀ j ∈ [k] : e ∈ E i
j⇒MP |= occurred(e, Ini, j) (T2.2)

∀i ∈ [1,n],∀ j ∈ [1,k] : f ∈ (S j\S j−1)∩F i
inert⇒MP |= initiated(f , Ini, j−1) (T2.3)

∀i ∈ [1,n],∀ j ∈ [1,k] : f ∈ (Si
j\Si

j+1)∩F i
inert⇒MP |= terminated(f , Ini, j+1) (T2.4)

∀i ∈ [1,n],∀ j ∈ [k] : e = ctr j⇒MP |= observed(e, Ini, j),

MP |= observed(e, j),

MP |= obs(j) (T2.5)

∀i ∈ [1,n],∀ j ∈ [k] : e = stri
j 6= enull⇒MP |= occurred(e, Ini, j) (T2.6)

∀i ∈ [1,n],∀ j ∈ [k] : enull = stri
j⇒MP |= occurred(null, Ini, j) (T2.7)

∀i ∈ [1,n],∀e ∈ E i
obs : MP |= evtype(e, Ini,ex) (T2.8)

∀i ∈ [1,n],∀e ∈ E i
inst : MP |= evtype(e, Ini,inst) (T2.9)

∀i ∈ [1,n],∀ f ∈ F i
inert : MP |= ifluent(f, Ini) (T2.10)

∀i ∈ [1,n],∀ f ∈ F i
ninert : MP |= nifluent(f, Ini) (T2.11)

∀i ∈ [1,n] : MP |= inst(Ini) (T2.12)

∀i ∈ [k] : MP |= instant(i) (T2.13)

MP |= start(0) (T2.14)

∀i, j ∈ [k] : j = i+1⇒MP |= next(i, j) (T2.15)

MP |= final(k) (T2.16)

Then, MP is an answer set of P∗ = ground(ΠML(k)).

Proof. See Appendix C.3.

This concludes the demonstration of the soundness and completeness of the formal and computational
frameworks, with respect to each other.

5.6 Computational Framework Complexity

The question remains over the computational framework’s complexity. There are three concerns surround-
ing an ASP program’s complexity relevant to our case. Firstly, the program grounding complexity, which
we measure as the worst-case growth in size of a ground program for a given input of institutions in a
multi-level governance relationship represented in the formal framework. The growth in size as a function
of institutions represented in the formal framework also accounts for any growth due to performing the
transformation from the formal framework’s institutional representation to an ASP program. Secondly,
the answer-set computation complexity, which we measure in terms of how many literals need to be tested
for inclusion in an answer-set as a function of the institutions in a multi-level governance relationship
represented in the formal framework. Thirdly, the number of answer-sets to compute. Assuming the
institutions are self-consistent then there will be at most one answer-set if a full event trace is provided as
input. If a full event trace is not provided but the institutions are self-consistent, then for a given number of
events |E | and number of undefined events in the trace m there is a combinatorial explosion of answer-sets
|E |m. If the institutions are not self-consistent then there are potentially zero, one or more formal models
and as a corollary of the soundness and completeness theorems the same number of answer-sets. However,

Automated Multi-level Governance Compliance Checking 44

as far as we are aware there is no feasible way to give a general analysis of the number of answer-sets for
the inconsistent institution design case, since they are dependent on the resulting ASP program’s structure.
Hence, we refer the interested reader to dynamic programming algorithms for the tricky problem of
counting answer-sets a-priori [24]. Consequently, we focus on complexity in terms of program size and
computing literal inclusion in an answer-set which can be determined together (i.e., grounding complexity
is given by the growth from the input to the resulting program size, and the resulting program size gives a
worst-case for computing one answer-set).

We give the ground program size for a multi-level governance institutionML as a function of, for
each institution I i: the number of events and fluents, and the sum of rules and their sizes (i.e., the size
of each rule is its context condition size plus two for the input and output event/fluent). The number of
events is denoted as |E i| and non-normative domain and empowerment fluents respectively as |F i

dom| and
|F i

pow|. It is important to note that higher-order norms have a more detrimental effect on complexity than
first-order norms. Hence, we also delineate between the number of normative fluents of a particular order
such that F i

norm(a:d) denotes the set of normative fluents, for I i, that have the order of complexity (nesting)
a for the aim and d for the deadline. For example, F i

norm(1:1) contains all of the first-order normative
fluents, F i

norm(2:1) contains all of the second-order normative fluents where a first-order normative fluent
is the aim and an event or domain fluent is the deadline, and so on. For rules, we mean specifically the
number and size of: state consequence rules for fluent initiation and termination (|C i|), event generation
rules (|G i|) captured by the event generation function, and fluent derivation rules (|Di|) captured by the
fluent derivation function.

An upper-bound on the size of the ground AnsProlog program (i.e., the number of ground facts, and
the sum of ground rules and their sizes) for a multi-level governance institutionML and composite trace
of length k, denoted as |ground(ΠML(‖))|, is given below.

|ground(ΠML(k))| ≤

([1,n]

∑
i

1+ |E i|+ |F i
dom|+ |F i

pow|
)
+

([1,n]

∑
i

[0,k]

∑
j
|C i|+ |G i|+ |Di|

)
+

([1,n]

∑
i

[0,k]

∑
j

N

∑
a,d

2a+d×|Fnorm(a:d)|×2
)
+

([1,n]

∑
i

[0,k]

∑
j

N

∑
a,d
|G i|× |Fnorm(a:d)|+ |Di|× |Fnorm(a:d)|

)
The first line is the number of facts in the ground ASP program representing each institution’s name,

events and non-normative fluents. The second line is the size and number of each institution’s rules
for each point in time in the ground ASP program. The third line is the number of rules for computing
equivalences between norms and their size (one head and one body literal). The fourth line represents
the worst-case number and size of rules that abstract normative fluents (note that it assumes the set of
normative fluents only contains obligations, since there are many more rules for abstracting obligations
than prohibitions and thus it represents the worst-case complexity). In summary the biggest impact on
program size is the complexity order of normative fluents, which require rules capturing normative fluent
equivalences and thus causing the ground program size to grow exponentially.

6 Related Work

This paper builds on our previous work for reasoning about what we called multi-tier institutions
in [49, 52] (which in turn built on preliminary work by King et al. [50]). In our prior work higher-

Automated Multi-level Governance Compliance Checking 45

tier institutions govern lower-tier institutions, which we extended in this paper to representing and
reasoning about multi-level governance. In turn, our work is influenced by the InstAL framework [13]
for institutional reasoning. Our framework bears the most similarity to other computational-focussed
institutional reasoning frameworks, hierarchical governance and higher-order normative reasoning, and
work on norm abstraction. We compare our work with each of these individual aspects in the literature.
However, we find no work that combines higher-order normative reasoning and abstraction, as required
for multi-level governance reasoning, or provides an obvious way to combine the two.

6.1 Institutional Reasoning and Verification

There have been many different approaches proposed to reason about institutions, normative systems and
organisations which we split into three broad types. Firstly, those proposing a high-level institution speci-
fication language (e.g., [61, 62, 19]) for institution designers to precisely specify an institution’s software
implementation. Secondly, those proposing or studying formal logics of norms and other institutional
rules (e.g., [10, 16, 63, 39, 41, 75]). Thirdly, those contributing frameworks for formally representing and
reasoning about institutions and normative systems, with an aim for practical implementations using an
algorithmic or logic-programming based approach (e.g., [12, 13, 46, 54, 35, 36]). Our work most closely
relates to the latter practical frameworks, which we discuss in more detail.

The most closely related framework, on which we build, is the Institutional Action Language (InstAL)
first proposed by Cliffe et al. [13, 12]. Li et al. have made developments on InstAL for detecting conflicts
between norms [56], in particular in interacting institutions [55] and cooperating institutions [54]. In
the work of Li et al. institutions are linked with special bridge institutions such that events occurring in
one institution can cause events to occur in another institution and likewise for fluents being initiated or
terminated. Such bridge institutions have a similar role to our links between different levelled institutions,
but can be flexibly defined to ensure specific fluents are initiated in one institution by another. In our
framework, we do not require such flexibility since we only need to capture multi-level governance
relationships where regulatory effects are passed between institutions.

Further developments on InstAL were realised by Pieters et al. [65, 66] for reasoning about institutions
as a means to police and enforce security policies. In their work, Pieters et al. [65, 66] extend InstAL
with rules for non-inertial fluents that (in our own words) state “when context C holds then so does fluent
B”. These bear similarity to our fluent derivation rules of the form “fluent A counts-as (derives) fluent B
in context C”. But, in our case we view fluent derivation rules as firstly ascribing a special meaning to
a concrete fluent ‘A’ (hence they have a different form) and secondly serving as a basis for abstracting
normative fluents. Using a variant of Searle’s money example [70], in our framework a counts-as rule
might state “possessing a piece of paper marked with a Euro symbol counts-as (derives) possessing money
in the context of the Eurozone”, hence if it holds that such a piece of paper is possessed in the context
of the Eurozone, then it also holds that money is possessed. In the framework of Pieters et al. [65, 66]
the same rule would be “in the context of possessing a piece of paper marked with a Euro symbol in the
Eurozone then money is also possessed”. In the former case it is clearly possessing the piece of paper
that has the status symbol of possessing money, hence in the context of the Eurozone we can derive from
an obligation to possess that piece of paper another obligation to possess money. In the latter case, it is
not clear what, exactly, possessing money is. In this case, we cannot clearly derive that an obligation to
possess the right piece of paper counts-as an obligation to possess money, because it is not explicit that
the paper constitutes money. Hence in comparison to [65, 66] our rules for ascribing non-inertial fluents
are counts-as rules in the usual sense for the reason that it enables us to derive relations between concrete
and abstract normative fluents.

Finally, our work in this paper also extends our previous work, which was loosely based on InstAL
[49, 52], for reasoning about multi-tier institutions and higher-order norms. The main differences between
all of these developments and this paper is that we have extended InstAL for representation and reasoning
about multi-level governance. In more detail, there are differences in reasoning about permissive societies

Automated Multi-level Governance Compliance Checking 46

InstAL
[13, 12]

Li et al.
[55, 56, 54]

Pieters et al.
[65, 66]

King et al.
[49, 52] This paper

Individual Institutions
Empowerment
Bridged vs. Linked Institutions B L
Non-Inertial vs. Fluent Derivation rules NI D
Permissive Society
Instantaneous and Indefinite Norms
Higher-order Normative Reasoning
Norm Abstraction

Table 7: Comparison between closely related developments on InstAL.

(where anything not prohibited is permitted), instantaneous and indefinite norms, bridged versus linked
institutions, non-inertial fluent rules versus fluent derivation rules, and our main focus in this paper:
combining higher-order normative reasoning and norm abstraction. We summarise all of these differences
in Table 7.

Work that addresses reasoning about artificial societies or events and their effects bears resemblance
where similar techniques, such as the Event Calculus [53], are used. A series of papers by Artikis (et.
al.) uses Event Calculus-based reasoning to capture MAS’ normative dimension based on the events that
occur and consequently fluents that hold, or to determine the events occurring in the MAS themselves.
In [6, 7] Artikis et al. formerly use the Event Calculus and latterly the C+ language in a similar fashion
to our proposal. That is, in order to reason about the same core institutional concepts we adopt: deontic
positions, empowerment and counts-as rules. Whilst we adopt a generic notion of empowerment that
applies to events and can be applied to events that (presumably) denote agent actions, Artikis et al. offer
an empowerment fluent that specifically applies to agents. In the latter case where Artikis et al. use C+
as their foundational logic, the institutional language is richer in some ways compared to our proposal.
For example, both defaults (e.g., that by default everyone is empowerment to make a payment) and
constraints on performing actions can be expressed. In principle, the expressiveness of Artikis et al. could
be incorporated into our proposal, where ours differs significantly in aims (institutions governing other
institutional designs, where compliance is verified for supplied or generated event traces).

Social commitments (e.g., contracts, promises) have also been formalised [15, 43, 77] with ‘lifecycle’
elements not present in our notion of norms, such as the creation and deletion of the commitment/rule
(e.g., through an utterance) which in turn imposes obligations in particular circumstances. Higher-order
commitments are grammatical in some commitment-focused approaches (e.g., [43, 77]) but they do not
coincide with our notion of higher-order norms, as we now explain. In our case, a higher-order norm
represents a statement such as ‘if event A occurs then it is obliged that the outcome of your rules does not
oblige B in context C’. On the other hand, nested commitments represent statements such as ‘you have
promised to me that you will not create a commitment rule stating that when A occurs there is an obligation
to do B in context C’. In the case of commitments, the nesting is really a promise to (not) make a certain
commitment rule. Whilst in our case the nesting in a higher-order norm represents that there should (not)
be certain obligations and prohibitions imposed from any normative rule, regardless of their form, in
specified contexts. Moreover, in our case, the higher and first-order obligations and prohibitions may have
more abstract meanings which need to be determined through interpretation. Consequently, commitments
and nested commitments, come from a fundamentally different perspective and are not aligned with
our formalisation of regulations that govern other regulations nor do they capture norm/commitment
abstraction.

Another practical institutional reasoning approach is temporal defeasible deontic logic. Defeasible
logic is a non-monotonic logic designed to be implemented in Prolog [4, 64]. There are three rule types
in many defeasible logics, strict rules (→) whose conclusion is true so long as the antecedent is true,

Automated Multi-level Governance Compliance Checking 47

defeasible rules (⇒) whose conclusion is true when the antecedent is true unless the rule is rebutted or
undercut by another rule, and defeating rules () whose conclusion is never true but if the antecedent
is true rebuts or undercuts other rules that have a contradictory consequent or antecedent (respectively).
A defeasible logic often comprises a proof procedure where rule conclusions are tested for whether
they are true by first asserting them as an argument, then finding all counter-arguments by applying
defeating rules, and then recursively counter-attacking all attacks with further arguments, terminating
thanks to constraints on non-repeatability of arguments (e.g., [69]). Defeasible temporal deontic logics
formalised by Governatori et al. [35, 36] extend defeasible logic with rule types and proof procedures
for obligations and temporalised outcomes. In these proposals various legal concepts are formalised,
including constitutive rules and norms. But as far as we know there have been no developments on
these approaches towards norms governing norms and/or norm abstraction, such as for reasoning about
compliance in multi-level governance.

6.2 Hierarchical Governance and Governing Regulations

There appears to be little literature on hierarchical governance and the regulation of regulations. In [61]
López y López and Luck propose a framework for reasoning about norms governing agents, created
from a top-down governance perspective. Their framework, based on the Z specification language,
gives a precise specification language of a normative system/institution. In comparison, our framework
comprises a specification language and operationalisation (semantics) for institutions operating in multi-
level governance. Like our framework, theirs offers similar expressivity with temporal norms, rewards,
punishments, etcetera. In particular López y Lopez and Luck formalize what they call legislative norms,
which are special norms governing the act of norm changes in the sense of making it possible to amend
norms. This still presents a substantial difference to the method of hierarchical governance and regulation
governing regulations that we propose, since we use higher-order norms that govern the outcome of other
norms from which (non-)compliance is determined (typically pre-runtime). López y López and Luck’s
legislative norms on the other hand govern the changes to the norms (rules) themselves.

Boella and van der Torre [10] offer a conceptual formalisation of hierarchical normative systems in the
Input/Output Logic (a logic aimed at studying conditional norms [63]). In particular, they focus on the role
of permissions in hierarchical normative systems, where permissions are issued by higher authorities (e.g.,
existing in higher level institutions) and act to derogate (except) obligations to the contrary (prohibitions)
issued by lower level authorities. Their work is similar to ours with respect to governance hierarchies,
but at the same time quite different in that they are not concerned with the regulation of regulations and
non-compliant regulatory outcomes or a corresponding computational framework.

Lopes Cardoso and Oliveira [57, 58] focus on norms applied to different levels of what they call
context hierarchies. In their work institutions share concepts with our own formalisation, comprising
descriptive rules that create institutional facts and norms that create deontic positions. What differentiates
their work from our own is the idea that a norm can defeat another if it is applied to a lower-level context
and there is a normative conflict. In this sense, the more specific norms (i.e., applied to a narrower
context) are preferred in a similar vein to the lex specialis principle. In this way, agents are able to interact
according to a super-contract that applies in the top-most context and through this super-contract inherit
new norms in new sub-contractual relationships applied to more specific lower-level context as deemed
appropriate for a given social interaction. In contrast with our work, a semantics of abstraction is not
defined and instead the focus is on defeasibility based on context application.

Garcı́a-Camino et al. [29] also investigate hierarchical normative structures. In this case, where there
are hierarchical relations between activities and their constituent sub-activities. For example, ‘trading’
is an activity that has the sub-activity ‘auction’. In this hierarchical setting, activities are governed by
norms and so are their sub-activities. The central problem Garcı́a-Camino et al. investigate is not norms at
higher-levels governing those at lower-levels, but instead the possibility for conflicts to occur between

Automated Multi-level Governance Compliance Checking 48

norms in activities that are propagated down to their sub-activities. Garcı́a-Camino et al. propose a conflict
resolution mechanism to address this issue.

6.3 Abstracting Norms

There has already been a reduction of Standard Deontic Logic [76] to a logic of counts-as conditionals
representing evaluative norms [2], colloquially known as ‘Anderson’s reduction’ (as studied in [42, 38]).
For example, ‘B counts-as a violation in a context C’. Following this idea, Aldewereld et al. [1] propose
implemented reasoning for concretising abstract norms. This is done by representing abstract norms as
counts-as statements such as ‘B counts-as a violation in a context C’ and so B is forbidden in C. Then,
making use of the fact that more concrete concepts count-as more abstract concepts (e.g., ‘A counts-as B
in context C’). Finally, applying transitivity to concretise abstract norms (e.g., ‘A counts-as a violation in
context C’, since A counts-as B and B counts-as a violation). Alderwereld et al. provide a computational
approach to the normative reasoning with a rule-based computational language. The same warning against
this approach for multi-level governance that we make in the background on the governance concepts
(Section 2), applies to what differentiates it from our work. Specifically, that in our approach we can
represent higher-order norms simpler, such as ‘it is prohibited to oblige a user’s metdata to be stored in
the context that they have not consented”. That is, when compared to the more complicated representation
required using Anderson’s reduction, such as “(storing metadata counts-as being good in a context C)
counts-as being bad if context C is somehow compatible with the user not consenting”. Specifically, by
ignoring deontic modalities it is difficult to describe and reason about higher-order norms. Although
concretisation of norms is possible, higher-order normative reasoning (regulation governing regulations)
is not and neither is the abstraction of higher-order norms.

A description-logic based formalisation for reasoning about abstract institutional concepts is also
proposed by Grossi et al. [40]. Unlike our work, Grossi et al. do not propose abstraction of norms
themselves (in fact, they propose concretising concepts), since normative reasoning is not considered.
Rather, they offer guidance on how normative reasoning can be incorporated, either by the reduction of
norms to counts-as, which like us they acknowledge does neither supports nesting of deontic modalities
nor higher-order norms. They also offer an alternative path to normative reasoning that involves the
use of explicit deontic modalities (the same approach we adopt). However, this part of their proposal
is not formalised. Furthermore, our work still differs in that we are interested in abstracting rather than
concretising norms in a temporal-like setting.

In comparison, a series of papers by Fornara and Colombetti [26], Fornara [25] and Fornara, Okouya
and Colombetti [27] combine the semantic-web focussed description logic OWL2DL with normative
reasoning. In their proposal, obligations are about events with a time-indexed deadline. Time is not
integrated within the underlying logic, rather it is reasoned about using an external process that adds facts
to the knowledge-base (e.g., that an action has occurred, time has passed, etc.). Like our proposal and
many others, the deadline of an obligation occurring before the aim triggers violations and potentially
causes punishing obligations to be imposed. In comparison to the work of Grossi et al. they do explicitly
look at representing and reasoning about norms in description logic but do not aim to reason about the
relationship between concrete and abstract concepts or the concretisation/abstraction of norms. The same
differences apply when compared to our own work with the additional difference that we do not restrict
norms to being about events. Rather, in our proposal normative fluents can be higher-order and about
events or other fluents.

Criado et al. [14] look at agent reasoning for fulfilling agent desires about abstract institutional
concepts. Such desires may come about due to the presence of regulative norms (e.g., an obligation to be
married), but their focus is on the concretisation of these abstract institutional concepts (e.g., if an agent
wants to get married, what are the brute facts that need to be realised?). In relation to our work, Criado
et al. also view counts-as, as providing interpretive rules in which abstract institutional concepts can be
reasoned about. However, they do not explicitly look at how to transform abstract norms into concrete

Automated Multi-level Governance Compliance Checking 49

ones, or as we do concrete (higher-order) norms into abstract ones to check compliance. Rather, their
focus is on the interpretation of the abstract concepts in order to fulfil agents’ desires.

Related to our abstraction of temporal norms Lopes Cardoso and Oliveira propose reasoning and
monitoring for norms with flexible deadlines [59, 60]. In their proposal, the idea is that deadlines in
contractual norms are not always strict, but instead one party can violate a deadline (e.g., to deliver
goods) whilst the counter-party may be okay to waive the violation if the obligation is discharged within a
reasonable time after its violation (e.g., if the goods being delivered are more important than the sanction
for the misdemeanour). In contrast, our proposed semantics re-interprets temporal norms by abstracting
the constituent aim and deadline in the contexts it is applied. To some extent, we investigated temporal
conditions with a flexible meaning, for example where the data-retention regulations required data be
provided on request within a specific time limit and this constituted, according to the ECJ’s interpretation,
an obligation to provide data before any undue delay. Although we look into the idea of ambiguity
surrounding temporal conditions, Lopes Cardoso and Oliveira capture deadlines that can be defeated
under defeasible reasoning at run-time.

To summarise, published work proposing ways to reason about abstract and concrete norms or using
techniques that can be extended to do so is quite different from that which we describe here. Whilst
some work does look at the concretisation of abstract norms, there is apparently no work that looks at
the abstraction of concrete, potentially higher-order, norms. Furthermore, the aforementioned work that
explicitly looks at concretisation is not in a temporal setting. In contrast, our proposal focuses on the
temporal aspects where, as the institutional context evolves, so does the abstract meaning of concrete
norms and thus their compliance with abstract norms at higher governance levels.

6.4 Legal Power and Counts-as Rules

As we discussed previously, the notion of power we adopt differs from that of Jones and Sergot’s [47],
where an action is empowered to be taken if it can be ascribed by constitutive rules. This counts-as based
notion of empowerment has also been used to characterise rule change governance. Whilst in this paper
we focussed on the governance of institution designs, the jurist Hart [44] conceptualised secondary legal
rules that act to make legally possible the institutional action of rule change (e.g., through a majority vote
or physically changing the rule book). Later, Biagoli [9] argued that secondary legal rules are a sub-class
of Searle’s counts-as rules.

Based on these developments, Boella and van der Torre [11] formalised the notion of constitutive rules
that make it possible to legally change rules, which in themselves may also be legally changed. In their
formalisation, Boella and van der Torre focus on legislating games where participants aim to modify rules
for their own purposes in a static setting. Governatori et al. [34, 33] meanwhile adopt a kind of meta-rule
that acts to introduce rule changes into a legal system, in a similar vein to Boella and van der Torre’s
formalisation of Hart’s secondary rules, which legally empower rule change. In Governatori et al.’s work
the focus is on formalising a temporal defeasible logic of rule change and different classes of rule change
(e.g., annulment, abrogation, etc.). Later King et al. [51] and King [48, p.136–154] formalised the legality
of rule change, using counts-as rules, in a temporal setting where the focus was on the legality of rule
change being conditional on hypothetical effects (e.g., whether it would criminalise formerly innocent
people) and whether it would cause a paradox (e.g., a self-modifying rule). These papers capture a kind of
governance of institutional designers or legislators, compared to our formalisation of institutional design
governance by higher-level institutions.

Artikis [5] also formalises a notion of the legal power to change rules (legally). In Artikis’ approach the
Event Calculus is used to specify social protocols comprising familiar institutional concepts to direct and
guide agent interactions at the bottom-most level of the society. Adopting a hierarchical structure, agents
can also dispute and change a protocol according to a meta-protocol specifying the social choice procedure
that must be followed in order for the object-level protocol to be modified in a legally empowered way.
In turn the meta-protocol is also legally modifiable by a meta-meta- protocol and so on. Similar to our

Automated Multi-level Governance Compliance Checking 50

proposal, a governance hierarchy is employed, but unlike our work the focus is not on governing the
outcomes of institutional rules (obliging/prohibiting obligations and prohibitions) nor on abstraction in
multi-level governance. Instead, Artikis’ proposal bears closer resemblance to the aforementioned work
on the legal power to change rules.

7 Conclusions

In this paper we introduced a novel framework for determining compliance in multi-level governance. Our
framework contributes a formal representation and semantics, giving a rigorous account of multi-level
governance compliance independent of any particular implementation. We ensure our proposal is practical
by complementing the formal framework with a corresponding computational framework. We adopt
the usual notion of counts-as between concrete and abstract institutional facts. Based on the counts-as
ontological rules, we semantically defined the abstraction of norms, both first-order and higher-order,
with a semantics of deontological counts-as. In so doing, we proposed a novel semantics for assessing
the different contexts in which norms can be applied and abstracting the normative effects of lower level
institutions based on those contexts, where the abstract meaning evolves as the social context evolves.
Our framework uses this abstracting mechanism to determine if concrete norms in lower-level institutions
are non-compliant with more abstract higher-order norms in higher-level institutions. That is, we gave a
semantics of compliance in multi-level governance.

We assessed our proposal along three fronts. Firstly, with a comprehensive case study based on three-
levelled governance in EU law where abstraction and context-sensitivity are important in determining
non-compliance. Secondly, by proving that the practical implementation in Answer-Set Programming, the
computational framework, is indeed sound and complete with respect to the formal framework. We used
the fact that the formal framework corresponds to the computational framework to implement the proposal
by extending the InstAL compiler, thereby offering users a high-level language to specify institution
designs under multi-levelled governance and the means to automatically determine institutional design
compliance. Thirdly, we analysed the program complexity in terms of its size compared to its input
institution specifications. That is, our framework provides both a rigorous formal foundation for multi-
level governance representation, semantics and compliance checking, and the practical computational
means to automatically determine compliance.

Our approach and the framework we proposed show potential for further development, refinement and
wider application. Firstly, through investigation into the abstraction of temporal normative fluents to non-
temporal normative fluents based on counts-as between temporal formulae. For example, an obligation to
send communications’ metadata before one month counting-as an obligation to send communications’
metadata quickly. In part, such abstraction was not captured by our proposal due to the fact that temporal
formula cannot be said to count-as another (non-)temporal formula (e.g., “A before D counts-as B in
context C”). Consequently, we lacked an ontological rule on which to base a deontological counts-as
between temporal and explicitly non-temporal normative fluents. We foresee that a move to a full temporal
logic is necessary for this kind of abstraction. Further investigation is needed, since using a temporal logic
raises questions such as at which point in time from “A before D counts-as B in context C” we can derive
an institutional fact “B”. Defining answers to such questions in a temporal logic would enable us to apply
the intuitions of deontological counts-as we have set out here to a fully-temporal setting.

Another important future development is extending our semantics to support ontological alignment of
institutions. In our proposal lower level institutions’ regulatory effects were re-interpreted at the abstraction
of higher level institutions. In one sense, this means that lower level institutions’ regulations were aligned
with the abstraction of higher level institutions. For example, obliging the storing of communications
metadata in a lower level institution is abstracted to obliging the storing of personal data in a higher level
institution. However, we assumed that the terms shared by lower and higher level institutions have the
same meaning and are already ontologically aligned, by which we mean storing metadata in the lower
level institution coincides with storing metadata in the higher level institution. Thus, if the lower level

Automated Multi-level Governance Compliance Checking 51

obliges the storing of metadata, and the higher level views the storing of metadata as storing personal
data, then from the higher level institution’s perspective the lower level is obliging that personal data
is stored. The assumption of shared terms being aligned between institutions should be relaxed with a
correct formal treatment in order to compare regulations between institutions.

Another avenue for future work is extending the application of our theoretical work on multi-level
governance in human societies, to artificial societies. We envisage this as an important operationalisation
of two proposals. In what Pitt et al. [67] called polycentric governance, it is argued that in complex
artificial MAS a single one-size-fits-all institution is inadequate, since different localised parts of the
MAS may need different regulations. Therefore, separate lower level institutions should be designed,
appealing to subsidiarity, inline with overarching institutions abstractly prescribing what regulations
should be implemented. Similarly, a design methodology for institutions/organisations governing artificial
MASs has been proposed in the OMNI framework [18]. Here, the design methodology is focussed on a
regulation abstraction hierarchy where at the most abstract level statutes comprising values, objectives and
contexts should be designed, followed by abstract norms implementing these statutes and then concrete
norms implementing the abstract norms. In our framework we showed how constitutive rules provide the
ontological basis for capturing links between concrete and abstract norms an appropriate ontology for an
artificial society. Hence, we foresee our contributions supporting the design of governance for artificial and
socio-technical systems according to the design principles of [18, 67], based on an appropriate ontology
of constitutive rules for an artificial or socio-technical society.

Acknowledgements

We would like to thank the anonymous reviewers of JAAMAS for helping to improve the article. Thomas
C. King would like to thank John R. Searle for the correspondence on substitution-of-identicals which
illuminated some formerly implicit assumptions (now explicit) made in this paper. Thomas C. King was
supported by the SHINE 6 project of TU Delft.

References

1. Huib Aldewereld, Sergio Álvarez-Napagao, Frank Dignum, and Javier Vázquez-Salceda. Mak-
ing Norms Concrete. In Proceedings of the 9th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2010), pages 807–814, 2010. ISBN 978-0-9826571-1-9.
doi:10.1145/1838206.1838314.

2. A. R. Anderson. A reduction of deontic logic to alethic modal logic. Mind, 67(265):100–103, 1958.
ISSN 00264423. doi:10.1093/mind/LXVII.265.100.

3. Giulia Andrighetto, Guido Governatori, Pablo Noriega, and Leendert van der Torre. Normative
Multi-Agent Systems, volume 4. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2013. ISBN
9783939897514.

4. G Antoniou, D Billington, G Governatori, and M J Maher. Representation results for defeasible logic.
ACM Transactions on Computational Logic, 2(2):255–287, 2001.

5. Alexander Artikis. Dynamic Protocols for Open Agent Systems. In 8th International Conference on
Autonomous Agents and Multiagent Systems, pages 97–104, 2009.

6. Alexander Artikis, Jeremy Pitt, and Marek Sergot. Animated specifications of computational societies.
In Proceedings of the first international joint conference on Autonomous Agents and Multiagent
Systems, pages 1053 – 1061, New York, New York, USA, 2002. ACM Press. ISBN 1581134800.
doi:10.1145/545068.545070.

6 http://shine.tudelft.nl

http://dx.doi.org/10.1145/1838206.1838314
http://dx.doi.org/10.1093/mind/LXVII.265.100
http://dx.doi.org/10.1145/545068.545070
http://shine.tudelft.nl

Automated Multi-level Governance Compliance Checking 52

7. Alexander Artikis, Marek Sergot, and Jeremy Pitt. Specifying Electronic Societies with the Causal
Calculator. In Proceedings of the Workshop on Agent Oriented Software Engeneering III (AOSE),
volume LNCS 2585, 2003.

8. Chitta Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge
University Press, 2003. ISBN 9780511543357. doi:10.1017/CBO9780511543357.

9. Carlo Biagioli. Towards a legal rules functional micro-ontology. In Proceedings of the 1st LegOnt
Workshop on Legal Ontologies, 1997.

10. Guido Boella and Leendert van der Torre. Permissions and obligations in hierarchical normative
systems. In Proceedings of the 9th International Conference on Artificial Intelligence and Law, pages
109–118, 2003. ISBN 1581137478.

11. Guido Boella and Leendert van der Torre. Regulative and Constitutive Norms in Normative Mul-
tiagent Systems. In Proceedings of 9th International Conference on the Principles of Knowledge
Representation and Reasoning (KR’04), pages 255–265. AAAI Press, 2004.

12. Owen Cliffe. Specifying and Analysing Institutions in Multi-Agent Systems Using Answer Set
Programming. PhD thesis, University of Bath, 2007.

13. Owen Cliffe, Marina De Vos, and Julian Padget. Answer Set Programming for Representing and
Reasoning About Virtual Institutions. Computational Logic in Multi-Agent Systems, pages 60–79,
2007.

14. N Criado, E. Argente, P. Noriega, and V. Botti. Reasoning about constitutive norms in BDI agents.
Logic Journal of the IGPL, 22(1):66–93, 2013. ISSN 1367-0751. doi:10.1093/jigpal/jzt035.

15. Mehdi Dastani, Leendert van der Torre, and Neil Yorke-Smith. Commitments and interaction norms
in organisations. Autonomous Agents and Multi-Agent Systems, 31(2):207—-249, 2017. ISSN
1573-7454. doi:10.1007/s10458-015-9321-5.

16. F Dignum. Abstract Norms and Electronic Institutions. In International Workshop on Regulated
Agent-Based Social Systems: Theories and Applications (RASTA’02), pages 93 – 104, 2002.

17. F Dignum, H Weigand, and E Verharen. Meeting the deadline: on the formal specication of temporal
deontic constraints. International Symposium on Methodologies for Intelligent Systems, pages
243–252, 1996.

18. Virginia Dignum, Javier Vázquez-Salceda, and Frank Dignum. OMNI: Introducing Social Structure
, Norms and Ontologies into Agent Organizations. In Programming Multi-Agent Systems, pages
181–198. Springer Berlin Heidelberg, 2004. ISBN 978-3-540-24559-9.

19. Mark D’Inverno, Michael Luck, Pablo Noriega, Juan a. Rodriguez-Aguilar, and Carles Sierra.
Communicating Open Systems. Artificial Intelligence, 186:3146–3150, 2012. ISSN 10450823.
doi:10.1016/j.artint.2012.03.004.

20. Thomas Eiter, Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. The diagnosis frontend of the dlv
system. AI Communications, 12(1):99–111, 1999.

21. European Court Reports. C-293/12 Digital Rights Ireland Ltd v Minister for Communications,
Marine and Natural Resources; Minister for Justice, Equality and Law Reform; Commissioner of the
Garda Sı́ochána; Ireland; and The Attorney General and Others. C-594/12 Digital Rights Irela, 2014.

22. European Parliament and the Council of the European Union. Directive 2006/24/EC of the European
Parliament and of the Council of 15 March 2006 on the retention of data generated or processed in
connection with the provision of publicly available electronic communications services or of public
communications netwo, 2006.

23. European Union. Charter of Fundamental Rights of the European Union 2000/C 364/01. Official
Journal of the European Communities, 2000.

24. Johannes Klaus Fichte, Markus Hecher, Michael Morak, and Stefan Woltran. Counting Answer Sets
via Dynamic Programming. Informal Proceedings of the First Workshop on Trends and Applications
of Answer Set Programming, TAASP 2016, Klagenfurt, Austria, September 26, 2016, 2016.

25. N Fornara. Specifying and monitoring obligations in open multiagent systems using semantic web
technology. Semantic Agent Systems, pages 25–45, 2011. doi:10.1007/978-3-642-18308-9 2.

http://dx.doi.org/10.1017/CBO9780511543357
http://dx.doi.org/10.1093/jigpal/jzt035
http://dx.doi.org/10.1007/s10458-015-9321-5
http://dx.doi.org/10.1016/j.artint.2012.03.004
http://dx.doi.org/10.1007/978-3-642-18308-9_2

Automated Multi-level Governance Compliance Checking 53

26. N Fornara and M Colombetti. Representation and monitoring of commitments and norms using OWL.
AI Communications, 23(4):341–356, 2010. ISSN 09217126 (ISSN). doi:10.3233/AIC-2010-0478.

27. Nicoletta Fornara, Daniel Okouya, and Marco Colombetti. Using OWL 2 DL for expressing ACL
Content and Semantics. In European Workshop on Multi-Agent Systems, pages 97–113, 2012.

28. Dov Gabbay, John Horty, Xavier Parent, Ron van der Meyden, and Leendert van der Torre, editors.
Handbook of Deontic Logic and Normative Systems vol. 1. 2013.

29. A Garcı́a-Camino, Pablo Noriega, and Juan-Antonio Rodrı́guez-Aguilar. An algorithm for conflict
resolution in regulated compound activities. In Seventh Annual International Workshop Engineering
Societies in the Agents World, pages 193–208, 2006.

30. Martin Gebser, Benjamin Kaufmann, and Roland Kaminski. Potassco: The Potsdam answer set
solving collection. AI Communications, 24(2):107–124, 2011.

31. Michael Gelfond. Answer Sets. Foundations of Artificial Intelligence, 3:285–316, 2008. ISSN
15746526. doi:10.1016/S1574-6526(07)03007-6.

32. Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming. In
Logic Programming: Proceedings of the Fifth International Conference and Symposium, pages 1070
– 1080, 1988.

33. Guido Governatori and Antonino Rotolo. Changing Legal Systems: Legal Abrogations and Annul-
ments in Defeasible Logic. Logic Journal of IGPL, 18:157–194, 2010.

34. Guido Governatori, Monica Palmirani, Regis Riveret, Antonino Rotolo, and Giovanni Sartor. Norm
modifications in defeasible logic. In Legal Knowledge and Information Systems (JURIX 2005), pages
13–22. IOS Press, 2005.

35. Guido Governatori, Antonino Rotolo, and Giovanni Sartor. Temporalised normative positions in
defeasible logic. In Proceedings of the 10th international conference on Artificial intelligence
and law, pages 25 – 34, New York, New York, USA, 2005. ACM Press. ISBN 1595930817.
doi:10.1145/1165485.1165490.

36. Guido Governatori, Joris Hulstijn, and Antonino Rotolo. Characterising deadlines in Temporal Modal
Defeasible Logic. In Proceedings of the 20th Australian Joint Conference on Artificial Intelligence,
pages 486–496, 2007.

37. Davide Grossi. Pushing Anderson’s Envelope: The Modal Logic of Ascription. In 9th International
Conference on Deontic Logic in Computer Science (DEON 2008), pages 263–277, 2008.

38. Davide Grossi. Norms as ascriptions of violations: An analysis in modal logic. Journal of Applied
Logic, 9(2):95–112, 2011. ISSN 15708683. doi:10.1016/j.jal.2010.03.002.

39. Davide Grossi, John-Jules Meyer, and Frank Dignum. Modal logic investigations in the semantics
of counts-as. In Proceedings of the 10th international conference on Artificial intelligence and law
(ICAIL ’05), pages 1–19. ACM, 2005. ISBN 1595930817. doi:10.1145/1165485.1165487.

40. Davide Grossi, Huib Aldewereld, Javier Vázquez-Salceda, and Frank Dignum. Ontological aspects of
the implementation of norms in agent-based electronic institutions. Computational and Mathematical
Organization Theory, 12:251–275, 2006. ISSN 1381298X. doi:10.1007/s10588-006-9546-6.

41. Davide Grossi, John-Jules Ch Meyer, and Frank Dignum. Counts-as: Classification or constitution?
An answer using modal logic. Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), 4048 LNAI:115–130, 2006. ISSN
03029743. doi:10.1007/11786849 11.

42. Davide Grossi, J. J Ch Meyer, and Frank Dignum. The many faces of counts-as: A formal
analysis of constitutive rules. Journal of Applied Logic, 6(2):192–217, 2008. ISSN 15708683.
doi:10.1016/j.jal.2007.06.008.

43. A Günay and P Yolum. Detecting conflicts in commitments. Declarative Agent Languages and
Technologies IX, pages 51–66, 2012.

44. Herbert Lionel Adolphus Hart. The Concept of Law. Clarendon Press., Oxford, 1961.
45. Liesbet Hooghe and Gary Marks. Unraveling the central state, but how? Types of multi-level

governance. American political science review, 97(2):233–243, 2003.

http://dx.doi.org/10.3233/AIC-2010-0478
http://dx.doi.org/10.1016/S1574-6526(07)03007-6
http://dx.doi.org/10.1145/1165485.1165490
http://dx.doi.org/10.1016/j.jal.2010.03.002
http://dx.doi.org/10.1145/1165485.1165487
http://dx.doi.org/10.1007/s10588-006-9546-6
http://dx.doi.org/10.1007/11786849_11
http://dx.doi.org/10.1016/j.jal.2007.06.008

Automated Multi-level Governance Compliance Checking 54

46. Jie Jiang. Organizational Compliance: An Agent-based Model for Designing and Evaluating Organi-
zational Interactions. PhD thesis, TU Delft, Delft University of Technology, 2015.

47. Andrew J. I. Jones and Marek Sergot. A Formal Characterisation of Institutionalised Power. Journal
of IGPL, 4(3):427–443, 1996. ISSN 1367-0751. doi:10.1093/jigpal/4.3.427.

48. Thomas C. King. Governing Governance: A Formal Framework for Analysing Institutional
Design and Enactment Governance. PhD thesis, Delft University of Technology, 2016.
doi:10.4233/uuid:82438672-3e8b-477a-a39e-0ce189639e88.

49. Thomas C King, Tingting Li, Marina De Vos, Virginia Dignum, Catholijn M Jonker, Julian Padget,
and M Birna Van Riemsdijk. A Framework for Institutions Governing Institutions. In Proceedings
of the 2015 International Conference on Autonomous Agents and Multiagent Systems (AAMAS
2015), pages 473–481, Istanbul, Turkey, 2015. International Foundation for Autonomous Agents and
Multiagent Systems.

50. Thomas C King, M Birna Van Riemsdijk, Virginia Dignum, and Catholijn M Jonker. Supporting
Request Acceptance with Use Policies. In Coordination, Organizations, Institutions, and Norms in
Agent Systems X: COIN 2014 International Workshops, COIN@ AAMAS, Paris, France, May 6, 2014,
COIN@ PRICAI, Gold Coast, QLD, Australia, December 4, 2014, Revised Selected Papers, pages
114 – 131. Springer, 2015.

51. Thomas C King, Virginia Dignum, and Catholijn M Jonker. When Do Rule Changes Count-as Legal
Rule Changes? In Proceedings of the 22nd European Conference on Artificial Intelligence (ECAI
2016). Frontiers in Artificial Intelligence and Applications. Vol 285., pages 3 – 11, 2016. ISBN
9781614996729. doi:10.3233/978-1-61499-672-9-3.

52. Thomas C King, Tingting Li, Marina De Vos, Catholijn M Jonker, Julian Padget, and M Birna Van
Riemsdijk. Revising Institutions Governed by Institutions for Compliant Regulations. Coordination,
Organizations, Institutions, and Norms in Agent Systems XI: Lecture Notes in Computer Science, vol
9628. Springer, Cham, 9628:191 – 208, 2016. doi:10.1007/978-3-319-42691-4 11.

53. Robert Kowalski and Marek Sergot. A logic-based calculus of events. New Generation Computing, 4
(1):67–95, 1986.

54. Tingting Li. Normative Conflict Detection and Resolution in Cooperating Institutions. PhD thesis,
University of Bath, 2014.

55. Tingting Li, Tina Balke, Marina De Vos, Julian Padget, and Ken Satoh. Legal Conflict Detection
in Interacting Legal Systems. In 1st International Jurix Doctoral Consortium and Poster Sessions,
JURIX-DoCoPe 2013, in Conjunction with the 26th International Conference on Legal Knowledge
and Information Systems, JURIX 2013, 2013.

56. Tingting Li, Tina Balke, Marina De Vos, Ken Satoh, and Julian Padget. Detecting conflicts in legal
systems. New Frontiers in Artificial Intelligence, Lecture Notes in Computer Science, 7856:174 –
189, 2013.

57. Henrique Lopes Cardoso and E Oliveira. Norm defeasibility in an institutional normative frame-
work. In European Conference on AI (ECAI ’08), pages 468 – 473, 2008. ISBN 9781586038915.
doi:10.3233/978-1-58603-891-5-468.

58. Henrique Lopes Cardoso and Eugenio Oliveira. A context-based institutional normative environment.
In Coordination, Organizations, Institutions and Norms in Agent Systems IV, pages 140–155, 2009.
doi:10.1007/978-3-642-00443-8 10.

59. Henrique Lopes Cardoso and Eugénio Oliveira. Monitoring directed obligations with flexible
deadlines: A rule-based approach. In International Workshop on Declarative Agent Languages and
Technologies, pages 77 – 92, Budapest, Hungary, 2010. ISBN 3642113540. doi:10.1007/978-3-642-
11355-0 4.

60. Henrique Lopes Cardoso and Eugénio Oliveira. Directed deadline obligations in agent-based business
contracts. In Coordination, Organization, Institutions and Norms (COIN@AAMAS), volume 6069
LNAI, pages 225–240, 2010. ISBN 3642149618. doi:10.1007/978-3-642-14962-7 15.

61. Fabiola López Y López and Michael Luck. Modelling Norms for Autonomous Agents. In Proceedings
of The Fourth Mexican Conference on Computer Science, pages 238–245. IEEE Computer Society,

http://dx.doi.org/10.1093/jigpal/4.3.427
http://dx.doi.org/10.4233/uuid:82438672-3e8b-477a-a39e-0ce189639e88
http://dx.doi.org/10.3233/978-1-61499-672-9-3
http://dx.doi.org/10.1007/978-3-319-42691-4_11
http://dx.doi.org/10.3233/978-1-58603-891-5-468
http://dx.doi.org/10.1007/978-3-642-00443-8_10
http://dx.doi.org/10.1007/978-3-642-11355-0_4
http://dx.doi.org/10.1007/978-3-642-11355-0_4
http://dx.doi.org/10.1007/978-3-642-14962-7_15

Automated Multi-level Governance Compliance Checking 55

2003.
62. Fabiola López y López, Michael Luck, and Mark D’Inverno. A normative framework for agent-based

systems. Computational and Mathematical Organization Theory, 12(2-3):227–250, oct 2006. ISSN
1381-298X. doi:10.1007/s10588-006-9545-7.

63. D Makinson and Leendert van der Torre. What is input/output logic? Trends in Logic, 17:163–174,
2003.

64. Donald Nute. Defeasible logic. In Dov M. Gabbay, C. J. Hogger, and J .A. Robinson, editors,
Handbook of Logic in Artificial Intelligence and Logic Programming, volume 3. Oxford University
Press, 1987. ISBN 978-3-540-00680-0. doi:10.1007/3-540-36524-9 13.

65. W Pieters, Julian Padget, and F Dechesne. Obligations to enforce prohibitions: on the adequacy of
security policies. In Proceedings of the 6th International Conference on Security of Information and
Networks, pages 54–61, 2013. ISBN 9781450324984.

66. W. Pieters, J. Padget, F. Dechesne, V. Dignum, and H. Aldewereld. Effectiveness of qualitative and
quantitative security obligations. Journal of Information Security and Applications, 22:3 – 16, 2015.
ISSN 22142126. doi:10.1016/j.jisa.2014.07.003.

67. Jeremy Pitt and Alexander Artikis. The open agent society: retrospective and prospective views.
Artificial Intelligence and Law, 23(3):241–270, 2015. ISSN 0924-8463. doi:10.1007/s10506-015-
9173-y.

68. Jeremy Pitt and Ada Diaconescu. Structure and Governance of Communities for the Digital Society.
In IEEE International Conference on Autonomic Computing (ICAC), pages 279–284, 2015. ISBN
9781467369718. doi:10.1109/ICAC.2015.62.

69. H Prakken and G Sartor. A dialectical model of assessing conflicting arguments in legal reasoning.
Artificial Intelligence and Law, 4:331–368, 1996.

70. John R. Searle. Speech acts: An essay in the philosophy of language. Cambridge university press,
1969.

71. John R. Searle. Intentionality: An essay in the philosophy of mind. Cambridge university press, 1983.
72. John R. Searle. The Construction of Social Reality. The Free Press, New York, 1995.
73. John R. Searle. What is an institution? Journal of Institutional Economics, 1:1–22, 2005. ISSN

1744-1374. doi:10.1017/S1744137405000020.
74. UK. The Data Retention (EC Directive) Regulations 2009, No. 859, 2009.
75. L van der Torre and Y Tan. The temporal analysis of Chisholm’s paradox. In Proceedings of the

Fifteenth National Conference on Artificial Intelligence (AAAI’98), pages 650–655, 1998.
76. G H von Wright. Deontic logic. Mind, 60(237):1–15, 1951.
77. Pnar Yolum and MP Singh. Reasoning about commitments in the event calculus: An approach

for specifying and executing protocols. Annals of Mathematics and Artificial Intelligence, 42(1-3):
227–253, 2004.

http://dx.doi.org/10.1007/s10588-006-9545-7
http://dx.doi.org/10.1007/3-540-36524-9_13
http://dx.doi.org/10.1016/j.jisa.2014.07.003
http://dx.doi.org/10.1007/s10506-015-9173-y
http://dx.doi.org/10.1007/s10506-015-9173-y
http://dx.doi.org/10.1109/ICAC.2015.62
http://dx.doi.org/10.1017/S1744137405000020

Automated Multi-level Governance Compliance Checking 56

Appendices can be downloaded from http://thomascking.com/JAAMAS_Automated_Multilevel_
Governance_Compliance_Checking/appendices.pdf.

	Introduction
	Governance Concepts
	Approach
	Formal Framework
	Computational Framework
	Related Work
	Conclusions

