

Delft University of Technology

Predictive routing for autonomous mobility-on-demand systems with ride-sharing

Alonso-Mora, Javier; Wallar, Alex; Rus, Daniela

DOI
10.1109/IROS.2017.8206203
Publication date
2017
Document Version
Accepted author manuscript
Published in
Proceedings 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

Citation (APA)
Alonso-Mora, J., Wallar, A., & Rus, D. (2017). Predictive routing for autonomous mobility-on-demand
systems with ride-sharing. In A. Bicchi, & T. Maciejewski (Eds.), Proceedings 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (pp. 3583-3590). Article 8206203 IEEE.
https://doi.org/10.1109/IROS.2017.8206203
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/IROS.2017.8206203
https://doi.org/10.1109/IROS.2017.8206203

Predictive Routing for Autonomous Mobility-on-Demand Systems
with Ride-Sharing

Javier Alonso-Mora∗,†, Alex Wallar∗ and Daniela Rus∗

Abstract— Ride-sharing, or carpooling, systems with au-
tonomous vehicles will provide efficient and reliable urban mo-
bility on demand. In this work we present a method for dynamic
vehicle routing that leverages historical data to improve the
performance of a network of self-driving taxis. In particular,
we describe a constrained optimization method capable of
assigning requests to autonomous vehicles in an informed way,
to minimize the expected cost of serving both current and future
travel requests. We allow several passengers with independent
trips to share a vehicle and allow vehicles to pick additional
passengers as they progress through their route. Based on
historical data, we compute a probability distribution over
future demand. Then, samples from the learned probability
distribution are incorporated into a decoupled vehicle routing
and passenger assignment method to take into account the
predicted future demand. This method consists of three steps,
namely pruning of feasible trips, assignment of trips to vehicles
and rebalancing of idle vehicles. We show the benefits and trade-
offs of this predictive approach in an experimental evaluation
with over three million rides extracted from a dataset of taxi
trips in New York City. Our method produces routes and
assignments that, in expectation, reduce the travel and waiting
times for passengers, with respect to a purely reactive approach.
Besides the mobility on demand application, the method we
present is general and could also be applied to other multi-task
multi-vehicle assignment and routing problems.

I. INTRODUCTION

Ride sharing services, such as UberPool and Lyft Line, are
transforming urban mobility. Also know as vehicle pooling
options, these systems allow several passengers, typically
limited to two, to share a vehicle when traveling along similar
routes. Similar services include Via, which provides vehicle
pooling with vans, and Bridj, which provides an alternative to
buses. Currently these companies relay on drivers to operate
the vehicles, but there is a push in the industry towards
autonomous self-driving vehicles. Examples include Google,
Uber, Nutonomy and other major car manufacturers. These
fleets of autonomous vehicles are expected to provide safe,
reliable and affordable transportation.

Efficient algorithms capable of assigning travel requests
to a fleet of vehicles, and routing the vehicles efficiently, are
required. In this work, we present a constrained optimization
method which accounts for future, predicted, requests to

∗ The authors are at the Computer Science and Artificial
Intelligence Laboratory of the Massachusetts Institute of
Technology, 32 Vassar St, 02139 Cambridge MA, USA
{jalonsom,wallar,rus}@csail.mit.edu
† The author is currently at the Delft Center for Systems and Control

of the Delft University of Technology, Mekelweg 2, 2628 CD Delft,
Netherlands {jalonsom,wallar,rus}@csail.mit.edu

*This work was supported in part by pDOT ONR N00014-12-1-1000 and
the MIT-Singapore Alliance on Research and Technology under the Future
of Urban Mobility

route the vehicles. Based on historical data, we first describe
a method to compute a probability distribution over future
demand. Then, we describe a method for vehicle routing and
passenger assignment that takes into account the future de-
mand to produce routes and assignments that, in expectation,
reduce the travel and waiting times. Our method can assign
thousands of requests to thousands of autonomous vehicles
in real time, where we allow that several passengers with
independent trips share a vehicle and that a vehicle picks
additional passengers as it progresses in its route. It further
refines the quality of the assignment over time.

This work could also be applied to other problems which
require routing of large fleets of mobile robots to satisfy a
set of tasks, i.e. the multi-task multi-robot problem.

A. Related works

Informed driving is becoming a key feature to increase
the sustainability of taxi companies and with a combination
of readily available large datasets and powerful data mining
tools, estimation of future patterns from data is an active field
of research. Several works have looked at estimating future
demand given past taxi data, for example, [1], [2] and [3].
We adopt a frequentist approach thanks to the large data
available and focus on its integration in the assignment and
routing problem.

Much of the fleet management literature for mobility-
on-demand systems consider the case of ride-sharing with-
out pooling requests, focusing on fluid approximations [4],
queuing based formulations [5], case studies in specific
regions (e.g., Singapore [6]) and operational considerations
for fleet managers [7]. With the growing interest and rapid
developments in autonomous vehicles, there has also been
an increasing focus on autonomous mobility-on-demand sys-
tems [4], [7], [8]. However, none of these works consider
the ride-pooling problem of servicing multiple rides with a
single trip, nor the prediction of future requests. A study in
New York City showed that up to 80% of the taxi trips in
Manhattan could be shared by two riders with an increase
in the travel time of a couple minutes [9] and also showed
the gains attainable by a ”global oracle” with full knowledge
of the future. These results were confirmed by [10], which
introduced an algorithm for real-time request matching and
vehicle routing in low and high capacity vehicles.

We build on the constrained optimization approach of
[10], which only took into account the state of the fleet
and the requests at the current time instance. In this paper
we incorporate a prediction of future demand, which aims

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

at better positioning the fleet of vehicles towards satisfying
future requests.

B. Contribution

We present an efficient constrained optimization method
for vehicle routing and multi-request multi-vehicle assign-
ment that takes into account a prediction of the future
demands.

In Section III we describe a method to predict future
requests based on historical data from taxi trips. These pre-
dicted requests are then incorporated in the main algorithm.

The main contribution is a method, described in Sec-
tion IV, which takes into account the predicted future
demand to influence both the vehicle routing and the as-
signment of requests to vehicles. The method works in the
context of ride sharing, and extends the planning horizon
beyond the current requests.

Finally, in Section V, we present experimental results with
over three million real trip requests extracted from the New
York City taxi dataset [11].

II. PRELIMINARIES

In this section we introduce the notation employed
throughout this paper, followed by the problem formulation
and an overview of the method.

A. Definitions

We consider a fleet V of m vehicles of capacity ν, the
maximum number of passengers each vehicle can have at any
given time. Denote the set of vehicles V = {v1, . . . , vm}.
The current state of a vehicle v is given by a tuple
{qv, tv,Pv}, indicating its current position qv , the current
time tv and its passengers Pv = {p1, . . . , pnpass

v
}. A pas-

senger p is a request that has been picked-up by a vehicle.
We also consider a set of requests R = {r1, . . . , rn}.

Where each travel request consists of the time of request, a
pick-up location and a drop-off location. Formally, a request
r is defined by a tuple {or, dr, trr, tplr , t∗r}, indicating its origin
or, its destination dr, the time of the request trr, the latest
acceptable pick-up time tplr (initially given by tplr = trr + Ω
with Ω the maximum waiting time), and the earliest possible
time at which the destination could be reached t∗r = trr +
τ(or, dr). The pick-up time is denoted by tpr and the expected
drop off time tdr .

Given a graph of the streets with estimated travel times, a
function τ(q1, q2) computes the travel time from q1 to q2, two
positions in space encoded by their latitude and longitude
coordinates. When a network representation of the map
is available, standard techniques for efficiently computing
shortest paths can be used [12].

We further define a trip T = {r1, . . . , rnT
} as a set of

requests that can be combined and served by a single vehicle.
A trip may have one or more candidate vehicles for execution
and contain more requests than the capacity of the vehicle if
they are picked-up and dropped-off in a way that the capacity
limit is satisfied at all times.

B. Problem formulation

We define the following problem.
Problem 1 (Informed batch assignment): Consider a set

of requests R, a set of vehicles V at their current state
including passengers, and a function to compute travel times
on the road network. Compute the optimal assignment Σ
of requests to vehicles that satisfies a set of constraints Z ,
including a maximum capacity ν of passengers per vehicle,
and that minimizes a cost function C = Cnow + Cfuture,
where Cnow could be the sum of travel delays for the current
passengers and requests and Cfuture is a term which includes
the cost of satisfying future predicted travel requests.

Our formulation follows [10] and is flexible with respect
to physical and performance-related constraints Z . In our
implementation we consider the following ones:
• For each request r, the waiting time ωr, given by the

difference between the pick-up time tpr and the request
time trr, must be below a maximum waiting time Ω, for
example 5 minutes.

• For each request r (or passenger p) the total travel
delay δr = tdr − t∗r (δp = tdp − t∗p) must be lower than
a maximum travel delay ∆, for example 10 minutes,
where tdr is the drop-off time and t∗r = trr+τ(or, dr) the
earliest possible time at which the destination could be
reached if the shortest path between the origin or and
the destination dr was followed without any waiting
time. The total travel delay δr includes both the in-
vehicle delay and the waiting time.

• For each vehicle v, a maximum number of passengers,
npassv ≤ ν, for example capacity four.

Ideally, all the requests shall be assigned to a vehicle,
but given the constraints, this might not always be the case.
Denote by Rok the set of requests assigned to a vehicle and
Rko the set of requests that are not served by any vehicle.

Following [10], we define the cost Cnow of an assignment
Σ as the sum of travel delay over all passengers P and all
assigned requests plus a large enough cost cko for each non-
assigned request. Formally,

Cnow(Σ) =
∑
p∈P

(tdp − t∗p) +
∑
r∈Rok

(tdr − t∗r) +
∑
r∈Rko

cko (1)

To account for the future performance of the system, we
introduce a new term Cfuture, which is the expected cost
of serving future requests. This cost term is based on the
predicted future demand with the objective of achieving a
better routing and assignment of the fleet towards the future
requests. This will be discussed in Section IV.

For real-time fleet management, the method can be ap-
plied to continuous discovery and assignment of incoming
requests. The proposed approach is to perform batch assign-
ment of the requests within a short time span, for example
every 30 seconds, to the fleet of vehicles. Problem 1 is
invoked with the predicted state of the fleet at the assignment
time and the cumulated requests. Requests that have not been
picked-up by a vehicle within the previous assignment round
are kept in the pool for assignment.

	

Travel	 requests	

Vehicle	 fleet	 status	

Pairwise	 	
RV-‐graph	 RTV-‐graph	 Assignment	

problem	 ILP	

Assignment	 Σ 	 	

Rebalancing	 LP	 KO	

OK	

	

	
	

	 	 	
	

(a)	 (b)	 (c)	 (d)	 (e)	

Predicted	 requests	

Fig. 1. Schematic overview of the proposed method for batch assignment of multiple requests to multiple vehicles of capacity ν. The method consists
of several steps leading to an integer linear optimization which provides an assignment that can be refined over time. The main differences with respect
to [10] are the addition of predicted future requests and a modified formulation of the ILP assignment. (a) Example of a street network with two requests
(orange human = origin, red triangle = destination), two predicted requests (blue human = origin, red triangle = destination) and two vehicles (yellow car
= origin, red triangle = destination of a passenger). Vehicle 1 has one passenger and vehicle 2 is empty. (b) Pairwise shareability RV-graph of requests
and vehicles. Cliques of this graph are potential trips. (c) RTV-graph of candidate trips and vehicles which can execute them. A node (yellow triangle)
is added for requests that can not be satisfied. (d) Optimized assignment given by the solution of the ILP, where vehicle 1 serves requests 2 and 3 and
vehicle 2 serves requests 1 and 4. (e) Planned route for the two vehicles and their assigned requests. The predicted requests alter the route of the vehicles,
driving them towards areas of likely future requests.

C. Method overview

The first step of the method consists of estimating, for each
time of the day and for each day of the week the amount of
requests from each origin in the city to each destination. This
is a probability distribution that is computed from historical
data. We describe this step in Sec. III.

The main step of the method consists of solving Prob-
lem 1. To do so, at each assignment round we sample
future requests from the estimated probability distribution
and introduce them in the assignment and routing problem,
albeit with lower cost that the real requests. This is described
in Sec. IV. Fig. 1 shows a schema with the steps of the
method, which we describe in the following.

The assignment and routing method is inspired by [10]
and consists of the following four steps.
• Computing a pair-wise request-vehicle shareability

graph (RV-graph). In this graph, requests r, predicted
requests rpred and vehicles v are pairwise connected
if r, or rpred, can be satisfied by v within the defined
constraints and given the current state of v.

• Computing a graph (RTV-graph) of feasible trips
(formed by one or more requests and/or predicted
requests) and the vehicles that can serve them within
the specified constraints.

• Solving an Integer Linear Program (ILP) to compute
the best assignment of vehicles to trips.

• Rebalancing the remaining idle vehicles towards areas
with a deficit of vehicles and too many requests via a
Linear Program (LP).

Given that the problem at hand is NP hard, obtaining
an optimal assignment can be computationally expensive.
For practical applications it is required that a sub-optimal
solution is returned within an allocated runtime budget,
which might be improved incrementally up to optimality.
The proposed algorithm does present this anytime-optimal
property in the sense that the assignment is refined over time.
Yet, to find the truly optimal assignment, a potentially infinite
amount of future samples and requests would be required.

III. PREDICTION OF FUTURE DEMAND

In a preprocessing step, the probability distribution of
origin-destination requests is computed for fixed intervals of
the week. We do so by discretizing the area into regions and
cumulating requests from a year of historical taxi data.

A. Estimation of historical demand

Using a list of all intersections, we discretize the area into
regions given by a distance parameter r which relates to the
acceptable distance a person would need to walk. With this
discretization, we can then assign the origin and destination
of the requests from the historical data to the closest region
centers. Using a frequentist approach, for each 15 minute
interval of the week, we count the number of requests going
from every origin region to every destination region. With
this frequency table we are able to determine the probability
of a given destination region given the origin region, time
interval, and day of the week.

1) Discretization into regions: Given a list C0 of all the
intersections in the road network of the city, we compute the
set C of region centers such that in the resulting list no two
centers are within a given radius r of each other, i.e. ∀i, j ∈
C, ||i− j|| > r. We do this incrementally with Algorithm 1,
where BALLTREE is a space partitioning data structure that
allows for fast radius bounded nearest neighbor lookup. The
data structure has a query function QUERY(c, r), that returns
all the points within r of a point c. In Fig. 2 we show the
centers of the regions from a discretization of Manhattan,
where a radius of 150 meters was used.

Algorithm 1 Incremental Pruning of region centers
1: C = C0; i = 0;
2: T ← BALLTREE(C0)
3: while i < |C| do
4: ci = C[i] # i-th element in C
5: C ← C \ T .QUERY(ci, r)
6: i = i+ 1
7: end while

2) Probability distribution: Given the set of region cen-
ters, we construct a probability distribution, P (p, d | ξ, w),
which is the probability of a request appearing in the origin
region p and with destination region d, given the , time
interval ξ, and day of the week w. We partition each day
into 15 minute intervals resulting in 1 ≤ ξ ≤ 96.

This probability distribution can be generated via a fre-
quentist approach. We used one year of historical taxi data
consisting of 165,114,362 trips [13]. Each trip contained the
origin and destination coordinates along with the time and
date of the pick up. Using this data, we were able to populate
a 96× 7× |C| × |C| table, F , indexed by the time interval,
day of the week, origin region, and destination region with
the number of times a given trip occurred. This allows us
to determine the probability of a destination given the origin
and a time period. The time period is defined as an initial and
final time interval and the day of the week, I = (ξ0, ξ1, w),
resulting in the probability distribution of origin-destination

P (d, p | I) = P (p | I) · P (d | p, I) (2)

where

P (p | I) =

∑ξ1
ξ=ξ0

∑|C|
i=1 Fξ,w,p,i∑ξ1

ξ=ξ0

∑|C|
i=1

∑|C|
j=1 Fξ,w,i,j

(3)

Fig. 2. Region centers determined by the greedy station algorithm that
were used in our experiments

and

P (d | p, I) =

∑ξ1
ξ=ξ0
Fξ,w,p,d∑ξ1

ξ=ξ0

∑|C|
i=1 Fξ,w,p,i

(4)

In Fig. 3 we show an example of the predicted demand
for two fixed origins and two different time periods. From
this probability distribution we can sample future requests to
anticipate demand.

B. Sampling of future demand

Consider a given period of time ξ = (ξ0, ξ1) and a day
of the week w, and recall that I = [ξ, w]. We construct a
list S, consisting of the cumulative sum of frequencies from
the start time to the end time and another list L, of the
same size, consisting of the corresponding origin-destination
pairs. To sample requests we then generate a random number
s, from 0 to max(S) and determine the index i of S such
that Si−1 ≤ s ≤ Si. We then return Li which is the
corresponding origin-destination pair of the cumulative sum
of frequencies interval. This process, see Algorithm 2, allows
us to draw samples from D(I) ∼ P (p, d | I). The function
RAND(0, N) returns a uniformly distributed random number
from 0 to N . FINDINTERVAL(S, s) returns the index i such
that Si−1 ≤ s ≤ Si if s > S0, otherwise it returns 0. This is
done using binary search since S is sorted.

Algorithm 2 Sampling origin-destination pairs over time
1: S ← {}, L← {}
2: for ξ ∈ [ξ0, ξ1] do
3: for (p, d) ∈ [1, |C|]2 do
4: S ← S ∪ {max(S) + Fξ,w,p,d}
5: L← L ∪ {(p, d)}
6: end for
7: end for
8: s← RAND(0,max(S))
9: i← FINDINTERVAL(S, s)

10: return Li

IV. METHOD FOR ROUTING AND ASSIGNMENT

The goal is to bias the vehicles towards areas where
future requests are more likely to appear. The method takes
into account the current state of the fleet, the current set
of requests, as well as the predicted demand, consisting
of both origins and destinations. The method computes a
batch assignment of the current requests in the requests pool
R to the vehicles of the fleet V . For real scenarios with
incoming requests, this routing and assignment is performed
at a constant frequency, which in our experiments was once
every 30 seconds. Fig. 1 shows a schema with the steps of
the method, which we describe in the following.

A. Sampling of future requests

In each iteration of the batch optimizer, a set of additional
requests Rfuture are sampled from a historical probability
distribution of future demand with the method described in

(a) Westside, 7:30 – 8:00 (b) Westside, 21:30 – 22:00 (c) Eastside, 7:30 – 8:00 (d) Eastside, 21:30 – 22:00

Fig. 3. Heatmaps depicting the destination demand distribution. For this example, two locations in Manhattan are used as origins with a 30 minute interval
to show the distribution. For each location, two intervals are used to show different snapshots of the demand throughout the day.

Sec. III-B. We first define a time interval for the predictions
Ipred = [tnow, tpred, w], where tnow is the current time and
tpred a time in the future, which in our experiments is set
to tnow + 1800s for an interval of 30 minutes in the future,
and w is the day of the week. We also define a maximum
number of samples nmaxpred.

At run time, the number of samples is given by

npred = min(nmaxpred, E(D(Ipred))), (5)

where E(D(Ipred)) denotes the number of expected requests
in interval Ipred, given the distribution D estimated in
Sec. III.

Each future request rpredi ∈ Rfuture is sampled, via
Algorithm 2, from D and the time interval,

rpredi ∼ D(Ipred). (6)

At each time step, after each batch assignment, the set
Rfuture is cleared. New future requests will be sampled in
the following time step, every 30 seconds in our experiments.

B. Optimization
These requests are added to the pool of requests R+ :=
R ∪ Rfuture for the current iteration (and removed after-
wards). Vehicles can then be matched with trips containing
future requests in Rfuture and may make progress towards
them (although they can not be picked since they are virtual).

The additional requests Rfuture are subject to the same
constraints Z as the real requestsR, and enter the assignment
problem via the additional term in the optimization cost
Cfuture. Following Eq. (1), this term is defined as

Cfuture(Σ) =
∑

r∈Rpred
ok

(tdr − t∗r) +
∑

r∈Rpred
ko

cpredko , (7)

where Rpredok is the set of assigned future requests and Rpredko

the set of unassigned future requests, such that Rpredok ∪
Rpredko = Rfuture. The cost of a future request being ignored
satisfies cpredko << cko, much lower than that of real requests.
This process gives preference to real requests, with a bias in
the assignment and routing towards servicing areas of higher
expected future demand.

Following Sec. II-C the batch assignment algorithm con-
sists of the following steps:

• Sample a set of requests Rfuture ∼ D.
• Compute a pair-wise request-vehicle shareability graph

(RV-graph) between the requests R+ and the vehicles
V . In this graph, request r and vehicle v are connected
if, given the current state of v, request r can be satisfied
by v while respecting the defined constraints Z for
maximum waiting time, delay and vehicle capacity.

• Compute a graph (RTV-graph) of feasible trips (formed
by one or more requests) and the vehicles that can serve
them within the specified constraints. Each trip may
contain both real and predicted requests. Feasible trips
are computed incrementally for each vehicle. Each trip
is linked in the graph to the requests that form it and the
vehicles that can serve it while respecting the constraints
Z .

• Compute a greedy assignment Σgreedy, where trips are
assigned to vehicles iteratively in decreasing size of the
trip and increasing cost. The idea is the maximize the
amount of requests served while minimizing cost.

• Starting from the greedy assignment solve an Integer
Linear Program to compute an optimal assignment
Σoptim of vehicles to trips, and therefore to requests,

Algorithm 3 Optimal assignment
1: Initial guess: Σgreedy
2: Σoptim := arg min

X

∑
i,j∈ETV

ci,jεi,j+

3: +
∑
∀rk∈R

ckoχk +
∑

∀rk∈Rfuture

cpredko χk

4: s.t.
∑

i∈ITV =j

εi,j ≤ 1 ∀vj ∈ V

5:
∑

i∈ITR=k

∑
j∈IVT=i

εi,j + χk = 1 ∀rk ∈ R+

for the cost function. Following [10], a binary variable
is added for each link between a feasible trip and
a vehicle that can execute it within the RTV-graph.
This assignment also provides the optimal routes, as
computed in the RTV-graph.

• Rebalance the remaining idle vehicles towards areas
with a deficit of vehicles and too many requests via
a Linear Program. The idle vehicles are assigned to the
unassigned requests of the previous step.

Following the notation of [10], the new Integer Linear
Program (fifth step of the method, see Algorithm 3) consists
of the following binary variables

X = {εi,j , χk; ∀(Ti, vj) edge in RTV-graph, ∀rk ∈ R+}.

From Eq. (1) and Eq. (7) the cost terms ci,j are given
by the sum of delays for all the passengers and requests
associated to a trip Ti, as served by a vehicle vj

ci,j =
∑

r∈IRT=i,V =j

(tdr − t∗r) +
∑

p∈IPV =j

(tdp − t∗p), (8)

where IRT=i,V=j denotes the requests in trip Ti as served by
vehicle vj , and IPV=j the passengers of vehicle vj .

The optimal assignment is obtained by solving the ILP of
Algorithm 3. Recall that: ETV denotes the edges between a
trip Ti and a vehicle vj in the RTV-graph (i.e. there exists a
route for which vehicle vj can serve trip Ti within the given
constraints Z); ITV=j denotes the trips that can be served by
vehicle vj ; ITR=k denotes the trips (combinations of requests)
in which request rk can be served; and IVT=i denotes the
vehicles that can serve trip Ti.

After assignment and routing, the vehicles make progress
towards their assigned requests, picking requests (which
become passengers) as they reach them, and the set Rfuture
is cleared. Then, this process is repeated at the desired
frequency with the incoming requests.

C. Properties

1) Complexity.: The number of variables in the ILP is
equal to the number of edges e(T, v) in the RTV graph plus
the number of requests in R+. In the worst case, it is of
order O(m(n + npred)

ν), only reached with complete RV-
and RTV-graphs where all vehicles can serve all requests and
all requests can be combined with each other. In practice, the
number of variables is orders of magnitudes lower and related
to the size of the cliques in the RV-graph, but does scale

poorly with the number of predicted requests npred, since
they can typically be combined with many of the current
requests (since they are at a future time at which some of
the passengers might have been dropped off). The number
of constraints is n+ npred +m.

2) Anytime optimality.: The proposed model includes the
constraints Z and the cost term C = Cnow + Cfuture
which aim at minimizing the total delay in expectation, with
respect to the current passengers, the current requests and
the expected future demand D. With respect to the model,
and the sampled requests, this method guarantees optimality
of the assignment, while satisfying the constraints Z , if
all the steps are executed until termination and exploration
of all possible trips and assignments. A potentially infinite
amount of samples might be required to achieve optimality
- in expectation - with respect to the original cost function.
In practice, time-outs are set both for the amount of time
spent generating candidate trips for each vehicle, and for
the amount of time spent exploring the branches of the ILP.
A limit on the number of vehicles considered per request,
the number of trips per vehicle or the optimality gap of
the ILP can also be set. These timeouts trade-off optimality
for tractability and their values will depend on the available
resources. In contrast to [10], the algorithm is not anymore
reactive but does take into account a prediction of the future
demand. The method seamlessly allows for parallelization in
all steps.

V. EVALUATION

A. Experimental setup

We assess the performance of the system with a fleet
of 1000, 2000, and 3000 vehicles of capacity two and
four passengers. We used a fixed maximum waiting time
of Ω = 5 minutes and a maximum delay of ∆ = 10
minutes. The minimum inter-station distance used for the
region discretization was 150 meters. For the experiments,
we use one week of historical taxi trip data from 00:00 on
Sunday May 5th, 2013 to 23:59 on Saturday May 11th, 2013
to assess the performance of our algorithm. This data comes
from a publicly available source of all taxi trips in Manhattan,
New York, USA [11]. This dataset contains the geographical
coordinates for the origins and destinations along with the
associated pick up and drop off dates and times for all trips
in executed by the 13,586 active taxis in New York City.
From this data we consider the request and pick up time
to be equal since the time for the request is not publicly
available.

In order to find routes for the taxis to execute, we consider
the entire road network of Manhattan. We estimate the travel
time for each road segment using the daily mean travel time
computed by the method in [9]. Different travel times were
used for weekdays, Saturday, and Sunday. The shortest paths
using these travel times were precomputed between every
two intersections in the road network and were stored in a
look-up table.

We initialize the vehicles each day at midnight at sampled
positions from the demand distribution. We then simulate the

(a) Mean service rate (b) Mean in-car travel delay δ − ω (c) Mean waiting time ω

(d) Mean distance travelled (e) Percentage of shared rides (f) Mean computational time

Fig. 4. Comparison of several performance metrics for varying number of sampled requests (No rebalancing, Reactive (0 samples), 200 samples, and
400 samples). The reactive method follows the algorithm of [10]. Each subplot corresponds to the vehicle capacity of 2 and 4 with the x-axis showing
the fleet size (1000, 2000, and 3000 vehicles). We analyze (a) service rate (percentage of requests serviced), (b) average in car delay δ − ω, (c) average
waiting time ω, (d) average distance travelled by each vehicle during a single day, (e) percentage of shared rides (number of passengers who shared a ride,
divided by the total number of picked-up passengers) and (f) average computational time for a 30 seconds iteration of the method, in a 24 core 2.5GHz
machine, including computation of the RV-graph, computation of the RTV-graph, ILP assignment including the sampled requests, rebalancing and writing
the data to file.

execution of the fleet by issuing the requests obtained from
the historical taxi dataset for the given day. The requests are
collected within a 30 second time window after which they
are assigned in batch to different vehicles using our algorithm
of Sec. IV. In each time interval, or assignment step, we
sample future requests up to 30 minutes in the future. We
vary the number of predictions by using 0, 200, and 400
sampled predicted requests (per interval). These predicted
requests enter the assignment problem of Algorithm 3,
but are removed immediately afterwards, with new future
requests being sampled in the following step. They do affect
the assignment and routing at that time.

A pool of requests are kept until they have been picked up
in case they can be reassigned to a better match. The number
of requests in a single day varies from 382,779 on Sunday
to 460,700 on Friday.

B. Results
We collect several metrics that characterize the system,

including the service rate, in-car travel delay, waiting time,
average distance traveled by the vehicles, percentage of
shared rides, and the computational time. We use the same
parameters as in [10], but with the additional sampled
requests and cost term. These metrics are plotted for vehicle
capacities two and four side by side in Fig. 4.

We observe that the service rate (number of requests
serviced) remains approximately constant independently of

the number of sampled requests, and it is close to 100% for
3,000 vehicles of capacity 4 (there are 13,000 active taxis per
day in Manhattan). By sampling predicted requests we are
able to reduce the mean in-car travel delay by 1.5 minutes
and the mean waiting time by around 1 minute, with respect
to the reactive approach.

Particularly, for the in-car travel delay and the waiting
time, we see that there is a large benefit in using rebalancing
and then a similar benefit by sampling predicted requests,
see Fig.4-b) and -c). However, increasing the number of
samples from 200 to 400 only marginally decreased the in-
car travel delay by 3.4 seconds, when using a four passenger
vehicle capacity and 3000 vehicles. It is likely that this small
improvement is due to the time-outs introduced for real-time
performance, which limit the benefit of additional samples.
We believe that the increase would be larger if the algorithm
was run to optimality.

We observe a trade-off between operational cost and
performance, since the travel distance by the vehicles and
the computational time of the approach do increase with the
number of samples. The increase in travel distance arises
from the fact that vehicles are routed towards predicted re-
quests which may or may not appear in reality. This reduces
mean waiting time and mean delay but does increase the
miles traveled by each vehicle. The increase in computational
time is due to the larger number of requests that enter the

routing and assignment problem. Furthermore, since they are
in the future, they can be combined with many different
trips, which leads to a potentially large number of feasible
trips to be accounted for in the assignment. Nonetheless, the
approach can be parallelized and would benefit from the large
parallel servers available for fleet management companies.

To sum up, our experimental study confirms that the
performance of a mobility-on-demand system with ride-
sharing via our algorithm improves with knowledge of future
demand. Yet, at a higher operational cost.

VI. CONCLUSION

In this paper we have presented a method for vehicle
routing and request assignment inspired by [10] and which
incorporates a prediction of future demand. The method
seamlessly integrates sampled future requests in the request
assignment and vehicle routing. We showed experimentally
that the predictions do improve the positioning of the fleet of
vehicles towards satisfying future requests, reducing waiting
time and travel time. On the down side, we also observe that
such an approach may increase the distance traveled by each
vehicle and is computationally more expensive. Future works
will aim at improving the rebalancing of vehicles, computing
more accurate predictions including seasonal changes and
online adaptation, and reduce the computational load. Be-
sides intelligent transportation systems, we believe that this
method also has great potential for other persistent multi-task
multi-robot assignment problems.

REFERENCES

[1] P. S. Castro, D. Zhang, and S. Li, “Urban traffic modelling and
prediction using large scale taxi GPS traces,” International Conference
on Pervasive Computing, 2012.

[2] L. Moreira-Matias, J. Gama, and M. Ferreira, “On predicting the taxi-
passenger demand: A real-time approach,” International Conference
on Artificial Intelligence, 2013.

[3] E. J. Gonzales, C. Yang, E. F. Morgul, and K. Ozbay, “Modeling Taxi
Demand with GPS Data from Taxis and Transit,” Mineta National
Transit Research Consortium, 2014.

[4] M. Pavone, S. Smith, E. Frazzoli, and D. Rus, “Robotic load balancing
for mobility-on-demand systems,” International Journal of Robotics
Research, vol. 31, no. 7, pp. 839–854, 2012.

[5] R. Zhang and M. Pavone, “Control of robotic mobility-on-demand
systems: a queueing-theoretical perspective,” Proceedings of Robotics:
Science and Systems Conference, July 2014.

[6] K. Spieser, K. Treleaven, R. Zhang, E. Frazzoli, D. Morton, and
M. Pavone, Toward a systematic approach to the design and evaluation
of automated mobility-on- demand systems: a case study in Singapore.
Road Vehicle Automation, 2014.

[7] K. Spieser, S. Samaranayake, W. Gruel, and E. Frazzoli, “Shared-
vehicle mobility-on-demand systems: a fleet operator’s guide to rebal-
ancing empty vehicles,” Transportation Research Board 95th Annual
Meeting, Washington, D.C., 2016.

[8] G. H. de Almeida Correia and B. van Arem, “Solving the user
optimum privately owned automated vehicles assignment problem (uo-
poavap): A model to explore the impacts of self-driving vehicles
on urban mobility,” Transportation Research Part B: Methodological,
vol. 87, pp. 64–88, 2016.

[9] P. Santi, G. Resta, M. Szell, S. Sobolvesky, S. Strogatz, and C. Ratti,
“Quantifying the benefits of vehicle pooling with shareability net-
works,” Proceedings of the National Academy of Sciences, 2014.

[10] J. Alonso-Mora, S. Samaranayake, A. Wallar, E. Frazzoli, and D. Rus,
“On-demand high-capacity ride-sharing via dynamic trip-vehicle as-
signment,” Proceedings of the National Academy of Sciences, vol. 114,
pp. 462–467, Jan. 2017.

[11] B. Donovan and D. B. Work, “New York City Taxi Trip Data (2010-
2013).” http://dx.doi.org/10.13012/J8PN93H8, 2014.

[12] D. Delling, P. Sanders, D. Schultes, and D. Wagner, “Engineering
Route Planning Algorithms,” vol. 2, pp. 117–139, 2009.

[13] “2014 Yellow Taxi Trip Data.” https://data.
cityofnewyork.us/view/gn7m-em8n. Accessed: 2016-

09-12.

https://data.cityofnewyork.us/view/gn7m-em8n
https://data.cityofnewyork.us/view/gn7m-em8n

	I Introduction
	I-A Related works
	I-B Contribution

	II Preliminaries
	II-A Definitions
	II-B Problem formulation
	II-C Method overview

	III Prediction of future demand
	III-A Estimation of historical demand
	III-A.1 Discretization into regions
	III-A.2 Probability distribution

	III-B Sampling of future demand

	IV Method for routing and assignment
	IV-A Sampling of future requests
	IV-B Optimization
	IV-C Properties
	IV-C.1 Complexity.
	IV-C.2 Anytime optimality.

	V Evaluation
	V-A Experimental setup
	V-B Results

	VI Conclusion
	References

