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Abstract: Due to a variety of contaminants in floodwater, exposure to urban pluvial flooding may
pose a health risk to humans. In-sewer defects may cause increased pluvial flooding, possibly
increasing health risks. This paper addresses the impact of in-sewer defects on urban pluvial flooding
and, subsequently, on infection probabilities for humans. As such, it provides a necessary input
for risk-informed sewer maintenance strategies in order to preserve the hydraulic performance
of a sewer system. Critical locations in sewer networks can be safeguarded through detecting
changes in hydraulic properties of the sewer system, by using monitoring equipment or alternative
inspection methods. Two combined sewer systems in The Netherlands with different characteristics
are studied. The catchment-wide average infection probability was calculated using Quantitative
Microbial Risk Assessment (QMRA) and flooding frequencies from Monte Carlo simulations with a
hydrodynamic model. For the studied catchments, it is concluded that the occurrence of flooding
is significantly affected by sediment deposits and, consequently, the infection probability as well.
The impact of sediment deposits on infection probabilities depends on sewer systems characteristics
and varies within the catchment. The results in this paper also demonstrate that further research on
the relationship between flood duration and infection probabilities is required.

Keywords: hydrodynamic modelling; health risk; urban drainage; sewer maintenance

1. Introduction

Exposure to urban pluvial flooding may pose a health risk to humans, since the floodwater may
contain a variety of contaminants depending on its origin. During the past years, there has been
an increased interest in microbial impacts through pluvial flooding, see, e.g., [1–9] and combined
sewer overflow (CSO) spills [10], as well as economic, social, and psychological impacts of urban
flooding [11]. The latter are expressed as stressors on communities due to repeated flood events.

Originating from rainfall-generated surface runoff, pluvial flooding may be contaminated by dirt
from paved surfaces (e.g., dog faeces and bird droppings). From combined sewer systems, it will be
contaminated with wastewater and from storm sewers due to illicit connections. The contaminations
include human enteric pathogens (e.g., norovirus and enterovirus) from urban wastewater [12],
and Campylobacter, Giardia, and Cryptosporidium from both animal faeces and human wastewater [13,14].
According to De Wit et al. [15] and Mead et al. [16], these pathogens account for the majority of
gastrointestinal illnesses in The Netherlands and the US. Harder-Lauridsen et al. [10] demonstrated
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that the risk of illness from water intake by physically fit, long distance swimmers when swimming in
sea water shortly after an extreme rainfall event is considerably larger than from non-polluted water.

In-sewer defects affect the hydraulic performance of a sewer system and may cause
increased pluvial flooding. Possible defects include sedimentation, root intrusion, surface damage,
attached/settled deposits, corrosion, protruding objects, joint eccentricity, and subsidence, see, e.g., [17,
18]. Van Bijnen et al. [19] demonstrated the impact of defects on flooding using data from visual
inspections and Monte Carlo simulations for a full hydrodynamic model. The studied defects are
sedimentation, root intrusion, surface damage, and attached/settled deposits. The results show that
in-sewer defects significantly affect flooding with sedimentation as the predominant factor.

Health risks of exposure to pluvial flooding from urban drainage, including combined sewers,
were quantified by De Man et al. [5] using Quantitative Microbial Risk Assessment (QMRA).
This requires information on the concentration of pathogens in the water or on the correlation
between indicator bacteria and pathogens in the water, the exposure of people to these pathogens,
and dose-response relations for different pathogens.

This paper addresses the impact of in-sewer defects on urban pluvial flooding and, subsequently,
on health risks to humans. The analysis is based on flooding frequencies from Monte Carlo simulations
as presented by Van Bijnen et al. [19] and infection probabilities due to the ingestion of urban floodwater
as presented by De Man et al. [5]. The average infection probability for the whole catchment per year
is based on a weighted average accounting for the number of inhabitants per manhole. The results
show that the occurrence of flooding, and therefore the infection probability, are substantially enlarged
by in-sewer defects.

2. Materials and Methods

An overview of the data utilised and analysed in this study is shown in Figure 1. The catchments
of ‘Tuindorp’ and ‘Loenen’ have been analysed accordingly. A detailed description is given in
Sections 2.1–2.7. The impact of sewer condition on urban flooding has been quantified using Monte
Carlo simulations accounting for in-sewer defects, in particular sedimentation. Based on the simulation
results, the summed frequency of threshold exceedances has been calculated for each manhole.
From this result, the catchment-wide average infection probability per year has been calculated
using infection probabilities from De Man et al. [5].

2.1. Research Catchments

Two combined sewer systems with different characteristics are studied: ‘Tuindorp’ (Utrecht,
The Netherlands) and ‘Loenen’ (Apeldoorn, The Netherlands).

The ‘Tuindorp’ catchment area is a combined sewer system constructed in the 1970s as a looped
gravity flow system. The catchment is relatively flat. It comprises a range of contributing areas in
terms of types of roofs and types of pavement. The collected sewage is transported to the pumping
station in the southern part of the catchment. The sewer system contains five combined sewer overflow
(CSO) structures (see Figure 2). One of the CSOs discharges into a storage-settling tank. There are no
discharges and inflows from adjacent systems into the catchment. The characteristics of this catchment
are summarized in Table 1. The layout of the sewer system is presented in Figure 2.

The ‘Loenen’ catchment is also a combined sewer system. It has been constructed as a partly
branched gravity system and the catchment is mildly sloping. The sewer system is equipped with
one pumping station and two CSO structures. One of these CSO structures discharges into a large
pond. There is a relatively large average dry weather flow per inhabitant because of several industrial
discharges and an inflow from an adjacent catchment. The characteristics of this catchment are
summarized in Table 1. The layout of the sewer system is presented in Figure 2.
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Table 1. Main characteristics of ‘Tuindorp’ and ‘Loenen’ catchments.

Characteristics Tuindorp Catchment Loenen Catchment

Area use Residential Residential
Catchment area Flat Mildly sloping

System type Combined Combined
System structure Looped Partly branched

Ground level/surface level (m above average sea level) 0.75–2.25 17.8–28.6
Average surface slope (mm/m) 3.0 8.8

Average pipe slope (mm/m) 2.8 3.8
Contributing area (ha) 56.9 23.4

Number of CSO structures (-) 5 2
Storage volume (m3) 4669 (=8.2 mm) 900 (=3.85 mm)

Volume storage settling tank (m3) 822 (=1.4 mm) 0
Number of pumping stations (-) 1 1

Pumping capacity (m3/h) 800 a 209
Number of inhabitants (-) 10,656 2100

Dry weather flow (m3/h) (including leakage water) 157 78

Note: a Based on flow measurements as described in Van Bijnen et al. [20]. According to the municipal
administration, the pumping capacity is 540 m3/h.
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2.2. Description of In-Sewer Defects

Observed sediment depths [19] were used to include sediment deposition in the hydrodynamic
model. Crabtree [21] describes five categories of sediment deposits, based on observations of the
provenance, nature, and location of the deposits within the sewer system. Sediment deposits
in The Netherlands can typically be classified as type C: mobile, fine grained deposits found in
slack flow zones. In this study, sediments are defined as type C deposits, which can be removed
from a pipe by means of jetting. In Utrecht, sediment depths are registered by cleaning engineers
before jetting individual pipes while carrying out the annual cleaning program. Attached deposits
that have to be removed by other techniques can only be detected by detailed visual inspection
of sewer pipes. Sediment depths are classified according to the percentage of obstructed pipe
height. The accuracy of observed sediment depths depends on cleaning engineers’ experience and
opinion [22,23]. Before jetting an individual pipe, the cleaning engineer makes an estimation of the
sediment depth as can be seen from ground level after opening the manhole. After jetting the pipe,
the removed amount of sediment for each pipe is also estimated. Sediment depths are registered as
a relative depth (ratio of observed sediment depth and conduit height).

Observed depths were translated into model parameters accounting for pipe shape (circular,
egg) and pipe height (250–1250 mm). For that purpose, a beta distribution function was fitted on
observed sediment depths [19] in order to statistically describe the sediment depth for each pipe
category (combinations of shape and height). In the hydrodynamic model simulations, the relative
sediment depths in the pipes were randomly drawn from the corresponding distribution.

2.3. Model Set-Up

InfoWorks was used for the hydraulic calculations. The InfoWorks models of both sewer systems
have been validated but not calibrated. The validation aims at the removal of systematic errors
from the model. This is done according to the method described in Van Mameren and Clemens [24],
Clemens [25], and Stichting Rioned [26]. This implies that system data on structural and geometrical
data, ground levels, pumping capacities, etc., are verified in the field and that a comparison is made
between call data on flooding events and locations where the model predicts flooding (see Section 2.4).

Van Bijnen et al. [20] showed for the ‘Tuindorp’ system that calibrated model parameters based on
different storm events vary considerably. Since the calibration parameter set predominantly contains
runoff parameters, which change between different rainfall events because the values also incorporate
the antecedent condition of the catchment area, it is impossible to find one single parameter value
set which can be used for a long time series. In addition, the values of calibrated model parameters
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and their correlations are affected by the presence of the in-sewer defects because these defects are
local obstructions to the flow and cannot be included as uniquely identifiable calibration parameters.
As a result, the presence of defects will affect the values of the calibrated parameters values which
are mainly related to runoff. Considering that the characteristics of the network (i.e., the system state)
in the Monte Carlo simulations change each run due to defects at randomly chosen locations, it is
nearly impossible to use a set of calibrated parameters derived from a single model state with defects
at different locations.

An integrated 1D/1D model has been applied to describe the interaction between the underground
sewer network and surface flooding. This modelling approach is sufficient for flat catchments. Leandro
et al. [27] showed, for a relatively flat catchment, that a validated 1D/1D model is able to replicate the
1D/2D maximum flood extent. This is a safe assumption, as the gradient of the catchment presented
in [27] as a case study, is larger than in the ‘Tuindorp’ and ‘Loenen’ catchments (‘Tuindorp’ factor 10
and ‘Loenen’ factor 2). Furthermore, the calculation time in the case of a 1D/2D model in combination
with long-term rainfall series would not be within acceptable limits.

2.4. Model Validation

For the model validation, a comparison between call data on flooded streets and simulated flood
locations was made for the rainfall event on 4 November 2013. This event was chosen because in 2012,
the whole ‘Tuindorp’ sewer system was cleaned, and between January and July 2013, observed defects
were removed, except for root intrusions in the central part of the sewer system. Following these
actions, the sewer system was considered “clean” and suitable for validating the InfoWorks model.

Reported incidents from the call data of the municipality supplemented with interviews with
residents were compared with model results. For the storm event on 4 November 2013, this comparison
is shown in Figure 3. Most of the locations that suffered from flooding in reality coincide with the
model results, although some reported incidents in the northern part of the catchment are not present
in the simulations. This may be caused by call data systematically underestimating the extent of
flooding due to underreporting [28].
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rainfall event on 4 November 2013 in order to validate the InfoWorks model.

2.5. Monte Carlo Simulations

Monte Carlo simulations were used to evaluate the impact of in-sewer defects on flooding
frequencies at each manhole. Detailed InfoWorks models were used for the simulations. Because of
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the random changes in the characteristics of the network (i.e., the system state) in each run during the
Monte Carlo procedure, it is impossible to predict beforehand which storm events will cause flooding.
Therefore, in the Monte Carlo simulations, long-term rainfall series were used. This series was
observed by the Royal Dutch Meteorological Institute in De Bilt (The Netherlands) during the period
1955–1964. This series comprises continuous series of rainfall volumes in De Bilt, as observed with
an interval of 15 min (Figure 4). This time series is generally used in The Netherlands to evaluate the
design performance of sewer systems [29]. In the case of the ‘Tuindorp’ catchment, 322 independent
storm events were filtered from the 10-year time series. This filter is based on in-sewer storage
volume, pumping capacity, and required length of dry periods between storm events. For the ‘Loenen’
catchment, 572 events remained after filtering. The rain volume and the time in between storms are
such that the system has returned to a stable dry weather flow configuration. As a result, the initial
conditions are the same for each storm so as to prevent interdependence between storm events.

A single run in the Monte Carlo procedure is defined as the hydrodynamic simulation of the
complete collection of the selected (and independent) storm events for a single system state. In each
Monte Carlo run, the relative sediment depth of each pipe was randomly drawn from the beta
distributions describing the presence of sediments. As a result, the network will have a different
configuration in each Monte Carlo run. For reliable estimates of flooding frequencies, 750 Monte Carlo
runs were performed. This number of runs is sufficient because the mean and standard deviation of
the average infection probability per year become stable after approximately 600 runs (Figure 5).
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1-day time series of rainfall.
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The sediment depth at the pipe bottom reduces the hydraulic capacity of the pipe. The sediment is
modelled as permanent sediment deposits in the InfoWorks model. Erosion or deposition of sediment
and transport of sediment through the system are not accounted for in the applied model approach.

2.6. Quantification Flooding Frequencies

Calculated water levels exceeding manhole cover levels are considered as flooding. Since overland
flow is not considered in the 1D/1D approach chosen for this study, the storage of floodwater is
included in the model by adding a ‘cone’ on top of the manhole. In modeling terms, this floodwater is
stored above ground in a flood cone. The volume of water held by the cone will be discharged into
the sewer system as the water level drops again. The shape of the flood cone is sketched in Figure 6.
The floodable area (Afloodable) is the total area available for the storage of floodwater at a specific node.
As a result, it is the sum of the contributing areas draining to this node.

The shape of the flood cone (Figure 6) determines the relationship between flood volume and
water level above street. Flood volume is defined as the calculated water volume on street level
due to a flooding event at a specific manhole. The part of the flood cone below 0.1 m represents the
contributing areas of streets and adjacent pavements (Figure 6). This equals approximately 50% of the
total floodable area at each node, which corresponds to the average value of contributing impervious
and semi-pervious areas of all nodes. The second part runs from 0.1 m to 0.5 m, with a linear increase in
floodable area from 50% to 100%. Above 0.5 m, the floodable area remains 100% (Figure 6). This implies
that, with flood depths below 0.1 m, the flooded area stays between the sidewalks, whereas for larger
depths, the flooded area spreads across the entire contributing area of a node.
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Figure 6. Flood cone on top of a manhole in the hydrodynamic model storing water above street level.
(a) The relationship between flood volume and water level above the street; (b) Three threshold areas
50, 75, and 100 m2, including the corresponding threshold water levels h50, h75, and h100 for assessing
the sensitivity of the results.

The severity of exposure to floodwater depends on the amount of floodwater and the duration
of the flooding event. De Man et al. [5] took samples of pluvial flooding if the flooded area was
larger than 100 m2. In order to assess the sensitivity of the results for the flooded area, next to this
value, threshold values for the flooded area of 50 and 75 m2 are applied as well. For each threshold
area, a corresponding threshold water level is calculated given the shape of the flood cone (Figure 6).
The maximum threshold level for the flood depth is limited to 0.15 m in order to avoid levels above the
sidewalks and to exclude the part of the flood cone representing flat and inclining roofs. This limitation
is only necessary at locations with very small contributing areas.

For each manhole, the number of exceedances of threshold water levels is calculated from the
10-year rainfall series. An exceedance is defined as an event in which the calculated flood depth
in the sewer system exceeds the threshold water levels corresponding with a specific threshold
value of the flooded area at an individual manhole. Consequently, exceedance of a threshold at two
different manholes during the same time step is counted as two separate threshold exceedances.
Finally, the summed frequency of exceedances at each manhole per system state per year is calculated.

2.7. Quantification of Health Risks

Due to backflow from combined sewer systems, pluvial flooding may contain high amounts of
pathogenic micro-organisms [30]. Consequently, exposure to this floodwater entails a risk for public
health. In De Man et al. [5], infection risks from exposure to urban pluvial flooding were assessed
using QMRA. Urban floodwater was sampled to quantify the presence of waterborne pathogens
Campylobacter, Cryptosporidium, Giardia, norovirus, and enterovirus. Samples of approximately 20 L
were taken during flood incidents in The Netherlands and the concentrations of the pathogens were
analysed according to ISO standards [5]. Questionnaires were used for an estimation of the volume
of floodwater ingested by people during exposure. Based on pathogen data and exposure data,
the probability of infection due to flooding from combined sewers, storm sewers, and rainfall generated
surface runoff was quantified.

A distinction was made between children and adults in terms of infection probabilities because of
the higher ingestion probability for children. For adults, the average probability of infection equals
3.9% per event. For children, this probability is almost ten times higher and amounts to 33%.
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De Man et al. [5] applied dose-response relationships for the quantification of the probability of
infection per exposure event (Pevent) for the different pathogens Campylobacter, Cryptosporidium, Giardia,
norovirus, and enterovirus. It is assumed that, except for enteroviruses, all waterborne pathogens
are infectious. This can be justified by the fact that the different pathogens lead to similar complaints
concerning public health and that one pathogen was likely to prevail to cause a gastrointestinal
infection. As a result, the overall probability of infection per exposure event (Pinfection/event) is
quantified by summation of the values for each pathogen.

The infection probability per year is calculated from the overall probability of infection per
exposure event and the frequency of flooding events (i.e., exceedances of defined thresholds values of
floodable area), as follows:

Pinfection/year = 1 −
n

∏
i=1

(1 − Pinfection/event) = 1 − (1 − Pinfection/event)
n (1)

where n is the frequency of exposure events to flooding per year. Using equation (1), the infection
probability per year at each manhole is calculated. Based on these probabilities, the average infection
probability per year was determined as a weighted average based on the number of inhabitants per
manhole.

3. Results

3.1. Results ‘Tuindorp’ Catchment

3.1.1. Frequency of Flooding

Exposure to floodwater is influenced by the frequency of flooding [31,32]. De Man et al. [31]
showed that floodwater-associated diseases occur in urban areas after flood events due to extreme
rainfall. The total number of people visiting the general practitioner for gastrointestinal, influenza-like
illness, and dermatological complaints increased by 13% compared to a situation without flooding.

Flooding frequency varies across the ‘Tuindorp’ catchment (Figure 7). This Figure shows the
average number of flooding events per manhole in the catchment, which is calculated from the results
of the 750 Monte Carlo runs. Spatial differences indicate the sensitivity to flooding of a location or area.
The eastern and north-western parts of the catchment are more sensitive to flooding. The eastern part
is more sensitive because it is a sub-catchment with a very limited number of direct connections to
CSO structures.

Water 2018, 10, x FOR PEER REVIEW  9 of 19 

 

pathogens are infectious. This can be justified by the fact that the different pathogens lead to similar 
complaints concerning public health and that one pathogen was likely to prevail to cause a 
gastrointestinal infection. As a result, the overall probability of infection per exposure event 
(Pinfection/event) is quantified by summation of the values for each pathogen. 

The infection probability per year is calculated from the overall probability of infection per 
exposure event and the frequency of flooding events (i.e., exceedances of defined thresholds values 
of floodable area), as follows: 

n
n

infection/ year infection/event infection/event
i 1

P 1 (1 P ) 1 (1 P )


       (1) 

where n is the frequency of exposure events to flooding per year. Using equation (1), the infection 
probability per year at each manhole is calculated. Based on these probabilities, the average infection 
probability per year was determined as a weighted average based on the number of inhabitants per 
manhole. 

3. Results 

3.1. Results ‘Tuindorp’ Catchment 

3.1.1. Frequency of Flooding 

Exposure to floodwater is influenced by the frequency of flooding [31,32]. De Man et al. [31] 
showed that floodwater-associated diseases occur in urban areas after flood events due to extreme 
rainfall. The total number of people visiting the general practitioner for gastrointestinal, influenza-
like illness, and dermatological complaints increased by 13% compared to a situation without 
flooding. 

Flooding frequency varies across the ‘Tuindorp’ catchment (Figure 7). This Figure shows the 
average number of flooding events per manhole in the catchment, which is calculated from the results 
of the 750 Monte Carlo runs. Spatial differences indicate the sensitivity to flooding of a location or 
area. The eastern and north-western parts of the catchment are more sensitive to flooding. The eastern 
part is more sensitive because it is a sub-catchment with a very limited number of direct connections 
to CSO structures. 

 
Figure 7. Average number of flooding events per manhole based on the Monte Carlo simulations for 
the ‘Tuindorp’ catchment. 

Figure 7. Average number of flooding events per manhole based on the Monte Carlo simulations for
the ‘Tuindorp’ catchment.



Water 2018, 10, 245 10 of 18

3.1.2. Duration of Flooding

Next to frequency, the impact of exposure to floodwater depends on the duration of flooding.
This also varies across the catchment (Figure 8). This Figure shows the maximum flood duration per
manhole for different thresholds. Starting at the top left figure, the threshold of the maximum duration
per manhole increases clock-wise (30 min, one hour, two hours, and four hours respectively).
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than 30 min; (b) Larger than one hour; (c) Larger than two hours; (d) Larger than four hours.

Manholes with larger flood durations (>2 h) are concentrated in the eastern part of the catchment.
Durations over four hours occur at a limited number of top ends in the sewer system. Based on
a comparison of Figures 7 and 8, it is concluded that in the eastern part of the catchment, flooding
events occur more often and last longer relative to the rest of the catchment area. The coincidence of
higher frequencies and longer durations increases infection probabilities in this sub-catchment.

Table 2 presents the summary statistics for the duration of flooding events in the ‘Tuindorp’
catchment. Both mean values and 95% uncertainty intervals of average, minimum, and maximum
event duration (in minutes) are displayed for three different threshold area dimensions. An event is
defined as a combination of a rainfall event and a system state (i.e., 322 × 750 events).

The mean value of the average flood duration per event is limited to approximately 20 min.
However, the spread is relatively large (1–64 min), with a long tail towards the higher values. The mean
of the maximum flood duration per event is approximately 37 min, also exhibiting a large spread
(1–127 min).

Table 2 also demonstrates that the selected rainfall events are independent with respect to flood
impacts. The upper value of the 95% interval of the maximum flood duration per event (approximately
two hours) is much smaller than the total duration of the rainfall events (12 h and more).
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Table 2. Summary statistics of duration (in minutes) of flooding events in the ‘Tuindorp’ catchment.

Flooded Area

50 m2 75 m2 100 m2

Average event duration (min) Mean 19.60 19.32 19.05
95%-interval 2–64.08 1.67–63.98 1–63.62

Min. event duration (min)
Mean 4.23 4.17 4.02

95%-interval 1–36 1–33 1–31

Max. event duration (min)
Mean 37 36.77 36.49

95%-interval 3–127 3–127 1–127

3.1.3. Probability of Infection

Overall for ‘Tuindorp’, the average infection probability for adults increases (Figure 9). This figure
shows the catchment-wide density function of infection probabilities for three different threshold area
dimensions. The density function is calculated using kernel smoothing based on an Epanechnikov
kernel [33]. This kernel has the shape of the positive part of a parabola (i.e., has no long tails).
The selected bandwidth performs well for normal distributions.

The median value of the infection probability decreases with increasing threshold area.
This simply means that the probability of a smaller flooded area is larger and, as a result, the infection
probability is also larger. The spread is due to the different system states in the Monte Carlo sample.
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Figure 9. Infection probability for adults per year in the ‘Tuindorp’ catchment.

There is a shift in infection probabilities due to sedimentation. This shift equals an approximate
factor of 1.5 (Table 3). This table shows the summary statistics for adults in the ‘Tuindorp’ catchment.

The shift from a reference to sewer system with sediment deposits has the same order of
magnitude for all three threshold area dimensions. The reference system represents a single run
of the hydrodynamic simulation with the complete collection of selected (and independent) storm
events for the sewer system without sediment deposits.
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Table 3. Summary statistics of probability of infection per year for adults in the ‘Tuindorp’ catchment.

Flooded Area Reference (×10−3)
(No Sedimentation)

Median (×10−3)
(MC Simulation) Shifta (×10−3) 95% (×10−3)

50 m2 5.3 8.1 2.8 1.4
75 m2 5.0 7.6 2.7 1.5
100m2 4.7 7.2 2.5 1.5

Note: Shifta = median − reference.

The shift from the reference to the median of the Monte Carlo simulations is statistically significant.
The significance is tested for each threshold area dimension (50, 75 and 100 m2) using a t-test. The test
statistic for the t-test is calculated as follows. The difference between the reference value and the median
of distribution function is divided by the standard error of the distribution function. This standard
error equals the standard deviation of the distribution function divided by the square root of the
sample size (i.e., the number of Monte Carlo runs). The corresponding p-value of the test statistic is
calculated using the cumulative distribution function of the Students’ t-distribution with 1 degree of
freedom for a one-tailed p-value. The calculated p-value is compared with a significance level of 0.5%.
Since the distribution functions are not Gaussian and, therefore, violate t-test assumptions, the data
are transformed prior to significance testing. For ‘Tuindorp’ the transformation equals 1/x3.

For children in the ‘Tuindorp’ catchment the infection probability increases as well due to sediment
deposits. Summary statistics are shown in Table 4. The calculated probability accounts for the
non-homogeneous distribution of children in the catchment area as shown in Figure 10.

Table 4. Summary statistics of probability of infection per year for children in the ‘Tuindorp’ catchment.

Flooded Area Reference (×10−2)
(No Sedimentation)

Median (×10−2)
(MC Simulation) Shifta (×10−2) 95% (×10−2)

50 m2 5.1 7.5 2.5 1.2
75 m2 4.8 7.1 2.4 1.3
100 m2 4.5 6.8 2.2 1.3

Note: Shifta = median − reference.
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and white dots (12% of population) [34].

Although the infection probability per event is 10 times higher for children compared to adults,
the average infection probability per year only increases by a factor of 9.6. This is due to the
afore-mentioned distribution of percentages of children [34]. Comparison of Figures 7 and 10 shows
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that the frequency of flooding events is higher in the area with a lower proportion of children (12% of
population) and lower in the area with a higher proportion (21% of population).

The spatial distribution of infection probabilities per manhole per year for children in the
‘Tuindorp’ catchment for one system state (i.e., one Monte Carlo run) and a threshold area of 100 m2 is
illustrated in Figure 11. This figure shows that the impact of sedimentation on infection probability
varies within the catchment.
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3.2. Results ‘Loenen’ Catchment

3.2.1. Frequency of Flooding

In the partly branched ‘Loenen’ catchment, the average number of flooding events per manhole
is more or less evenly distributed over the catchment area. The number of more sensitive sewers is
limited (Figure 12).Water 2018, 10, x FOR PEER REVIEW  14 of 19 
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3.2.2. Probability of Infection

The impact of in-sewer defects on infection probabilities for adults in the ‘Loenen’ catchment
is shown in Figure 13. As for ‘Tuindorp’, the density functions are calculated using kernel
smoothing. The figure shows that the infection probability increases for adults due to sedimentation.
Again, the calculated median probability for the different threshold area dimensions decreases with
increasing flooded areas.

For adults, the median of the probability distribution of the system with sediment deposits is
almost four times larger than the reference (Table 5). This shift from the reference to the median of the
Monte Carlo simulations is statistically significant. This was tested using a t-test. In order to avoid
violations of t-test assumptions, the data are transformed to normal with a factor of 1/x.Water 2018, 10, x FOR PEER REVIEW  15 of 19 
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Table 5. Summary statistics of probability of infection per year for adults in the ‘Loenen’ catchment.

Flooded Area Reference (×10−3)
(No Sedimentation)

Median (×10−3)
(MC Simulation) Shifta (×10−3) 95% (×10−3)

50 m2 0.64 2.5 1.8 3.6
75 m2 0.62 2.3 1.7 3.5
100 m2 0.58 2.1 1.6 3.4

Note: Shifta = median − reference.

4. Discussion

A comparison of the results for both catchments in this paper shows that the impact of sediment
deposits on infection probabilities is system-dependent. One difference is that the tail of the distribution
functions for the infection probability for ‘Loenen’ is much longer than for ‘Tuindorp’. This can most
probably be explained by the partly branched character of the sewer system and the steeper catchment
area in ‘Loenen’. As a result, the impact of sediment deposits in a relatively limited set of sewer
pipes most important for draining the area spreads out over a relatively large part of the catchment.
Another difference is that the distance between the median values of the probability distributions
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for the three threshold area dimensions is larger for ‘Tuindorp’ than for ‘Loenen’. This relates to the
looped character of the sewer system and the flatter catchment area in ‘Tuindorp’.

The average infection probability per year in this paper is determined from the overall probability
of infection per exposure event and the frequency of flooding events. Flood duration is not
incorporated in this approach. However, the results in this paper demonstrate that flood duration
may vary considerably over the catchment, possibly affecting infection probabilities. Despite recent
developments in methods to quantify infection risks [3,5,7], knowledge on the impact of flood duration
on infection probability is still very limited. Moreover, none of the methods take the timing of the
flooding event (time of the day, time of the year) into account, although it can be expected that the
infection probability is also strongly related to this. Consequently, further research is needed on the
impact of duration and timing on infection probabilities.

In this paper, flood cones are applied for estimating flooding levels above a street instead of a 2D
overland flow model (as in e.g., [8]). The use of flood cones significantly accelerates calculations, which
is useful for the Monte Carlo simulations. Compared to the situation in Dhaka as described in Mark
et al. [8], the flood levels in ‘Tuindorp’ and ‘Loenen’ are much lower and the differences in ground
levels are much smaller. Consequently, a 2D overland flow model is not crucial for accurate results in
‘Tuindorp’ and ‘Loenen’ in contrast to areas comparable to Dhaka.

Call data of the municipality have been used to validate model results. This shows that not all
locations with calculated flooding coincide with registered calls. Based on interviews with inhabitants
in the ‘Tuindorp’ catchment, it can be concluded that media attention emphasising the possible increase
of flooding events and impacts due to climate change reduces the tendency to call the municipality to
register a flooding event when the flood duration is relatively short. In addition, the registration of
calls is not always sufficient for correctly analysing reported flood events. For example, information
on the location of the flooding, duration, and the total affected area is not present or understandable.
For a better understanding of call data, further research is needed on the psychological background
of calls.

Van Bijnen et al. [19] demonstrated that the return period of flooding, number of flooded locations,
and flooded volumes are substantially affected by in-sewer defects. This increases the possibility
of exposure to pluvial flooding and its high amounts of pathogens. In order to reduce risks of
exposure, it is recommended that proactive maintenance strategies are developed to optimize hydraulic
performance. If the importance of an element for the total network is known, maintenance can be
adjusted accordingly instead of maintaining all elements to the same quality level. Methods to
determine the importance of individual elements in relation to the total network are described in
Arthur et al. [35], Arthur and Crow [36], Mair et al. [37], Möderl et al. [38], Möderl and Rauch [39],
and Meijer et al. [40]. When the critical elements are known, hydraulic properties of the sewer system
at these locations can be monitored to safeguard performance [20]. If no monitoring equipment
is available, rapid and cost-effective inspection methods, such as a manhole-zoom camera and the
Sewerbatt instrument, can be used to examine the sewer condition more often and to determine
whether maintenance is necessary [41].

The methods presented here may serve to further rationalise decision making in sewer asset
management. As shown by van Riel et al. [42], decision making in sewer asset management is largely
based on intuition and economic considerations, while the original motivation for constructing sewer
systems was protection from infectious diseases. Using the methods presented here, designers and
sewer managers have a tool to quantify health effects of design and/or maintenance activities on the
actual protection level offered by a sewer system and take these into account in their decision making.

5. Conclusions

Exposure to urban pluvial flooding can cause health risks for humans because floodwater may
contain a variety of contaminants. The contaminations depend on the origin of the floodwater.
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These include human enteric pathogens from urban wastewater and Campylobacter, Giardia,
and Cryptosporidium from both animal faeces and human wastewater.

In-sewer defects affect the hydraulic performance of a sewer system and may cause increased
pluvial flooding. This paper shows that the occurrence of flooding, and therefore the infection
probability, are significantly enlarged due to sediment deposits, thus providing input for risk-informed
sewer asset management actions such as proactive maintenance strategies to preserve hydraulic
performance. The average catchment-wide infection probability is calculated using Quantitative
Microbial Risk Assessment (QMRA) and flooding frequencies from Monte Carlo simulations with
a hydrodynamic model.

The impact of sediment deposits on the infection probabilities is significant and depends on sewer
systems characteristics. The overall picture for the flat and looped ‘Tuindorp’ catchment is that the
catchment-wide average infection probability increases due to sedimentation, both for adults and
children. In comparison with a sewer system without sediment deposits, the median of the probability
distribution of the system with sediment deposits is approximately 1.5 times larger. This shift is
statistically significant. The average infection probability for children is almost 10 times larger than
for adults. For the partly branched and mildly sloping ‘Loenen’ catchment, it can be concluded that
the median of the average infection probability distribution is approximately four times larger due to
sedimentation compared to the reference. The shift in Loenen is also significant.

The results in this paper demonstrate that flood duration may vary considerably over the
catchment, possibly affecting infection probabilities. However, flood duration is not incorporated in
QMRA approaches for urban flooding presented in literature. In order to account for flood duration in
catchment-wide infection probabilities, further research is needed.

Municipalities should inform inhabitants that floodwater is contaminated with pathogens and that
exposure to this floodwater has to be avoided. Furthermore, special attention is needed for avoiding
contamination of precipitation with pathogens in rehabilitation projects, reconstruction works, and the
design and construction of new drainage systems [43].
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