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Abstract

In many cases seismic measurements are coarsely sampled in at least one dimension. This leads to aliasing artefacts
and, therefore, to problems in the subsequent processing steps. To avoid this, seismic data reconstruction can be
applied in advance. The success and reliability of reconstruction methods is dependent on the assumptions they make
on the data. In many cases wavefields are assumed to (locally) have a linear space-time behaviour. However, field data
are usually complex, with strongly curved events. Therefore, in this paper we propose the double focal transformation
as an efficient way for complex data reconstruction. Hereby, wavefield propagation is formulated as a transformation,
where one-way propagation operators are used as its basis functions. These wavefield operators can be based on a
macro velocity model, which allows our method to use prior information in order to make the data decomposition more
effective. The basic principle of the double focal transformation is to focus seismic energy along source and receiver
coordinates simultaneously. The seismic data is represented by a number of localized events in the focal domain,
whereas aliasing noise spreads out. By imposing a sparse solution in the focal domain, aliasing noise is suppressed and
data reconstruction beyond aliasing is achieved. To facilitate the process, only a few effective depth levels need to be
included, preferably along the major boundaries in the data, from which the propagation operators can be calculated.
Results on 2D and 3D synthetic data illustrate the method’s virtues. Furthermore, seismic data reconstruction on a
2D field data set with gaps and aliased source spacing demonstrates the strength of the double focal transformation,

especially for near-offset reflections with strong curvature and for diffractions.

Keywords: seismics, coarse sampling, reconstruction, inverse problem, sparse inversion, noise attenuation,
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1 Introduction

In 3D seismic surveys the wavefields are sampled in four spatial dimensions, providing two lateral degrees of freedom (x
and y) for both sources and receivers. The sampling is rarely dense in all four spatial dimensions. As a result, practical
sampling geometries contain gaps and are coarse in one or more spatial dimensions. The reason for large data gaps can
be faulty equipment, inaccessibility of certain areas or strong noise sources at certain locations such that the measured
data become unusable. Also the near-offset range usually cannot be detected, because the sensitive detectors would be
damaged if placed closely to a seismic source. The most common reason for coarse sampling, however, is the trade-off
between geophysical and economical constraints. As coarse and incomplete sampling generates aliasing artefacts, for

many applications the measured wavefield needs to be reconstructed to a dense and regular grid beforehand.

We suggest the double focal transformation for a seismic data reconstruction method that combines two features.
First, it is transformation-based. Hence, the missing data in the data domain maps to aliasing noise in the model
domain, where it can be suppressed (’de-noising’). Well-known other transformations that are used for seismic data
reconstruction are the least-squares constrained Fourier transformation (Duijndam et al., 1999; Schonewille et al.,
2009), the sparseness-constrained Fourier transformation (Xu et al., 2005; Zwartjes and Gisolf, 2006; Zwartjes and
Sacchi, 2007; Zwartjes and Gisolf, 2007; Trad, 2009; Naghizadeh, 2012), the linear, parabolic and hyperbolic Radon
transformation (Kabir and Verschuur, 1995; Herrmann et al., 2000; Trad, 2002; Trad et al., 2003; Wang et al., 2010;
Verschuur et al., 2012) and the curvelet transformation (Hennenfent and Herrmann, 2008; Hennenfent et al., 2010;
Naghizadeh and Sacchi, 2010). Often these methods are better suited to describe the data in the mid- and far-offset
range. The near-offset range, on the other hand, is often very challenging due to the strong curvature of reflection
events. Therefore, it cannot be described efficiently using these methods. This is especially true, if data-windowing

cannot be applied successfully due to large data gaps.

Secondly, the double focal transformation is based on wavefield operators, which allow the utilisation of prior infor-
mation of the subsurface for the reconstruction process. The main idea is that by utilizing subsurface information
in combination with wavefield propagation a more redundant representation of the seismic data can be obtained.
Examples of such approaches are wavefield continuation methods such as offset continuation (Bagaini and Spagnolini,
1996), shot continuation (Spagnolini and Opreni, 1996), DMO (Deregowski, 1986) and AMO (Biondi et al., 1998). All
these methods have in common that they utilise the wavefield characteristics in a localised manner, where the involved
operators are local convolution operators. Global solutions have been explored via least-squares migration, e.g. by
Nemeth et al. (1999) and Kuehl (2002), where aliasing effects in the image could be suppressed, although the main
objective there was not to reconstruct reliably new data. Trad (2003) extended the LS migration concept to data
reconstruction, where he used the multi-offset image domain, under a sparseness constraint, to recreate seismic data.

However, this process was not fully reversible yielding imperfections in the reconstruction.
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The proposed double focal transformation describes the propagation in the subsurface with global wavefield operators.
And it can do so in a reversible transformation manner, where forward (going from data space to model space) and
inverse (going from model space to data space) double focal transformation represent inverse and forward propagation
of the seismic data in both source and receiver coordinates. Please note that the focal reconstruction is - up to a

certain extend - robust against inaccurate prior information, as we will demonstrate in this paper.

A predecessor of the proposed double focal transformation was presented by Berkhout and Verschuur (2006), which
was called focal transformation, but it involved subsurface operators that described two-way seismic reflection events.
The success of this reconstruction method was highly dependent in describing both propagation AND reflection in the
subsurface. This puts a severe limitation to that method, as for complex subsurface models generating such operators

(which basically resembled the major reflection events in the data) is a non-trivial task.

The newly defined double focal transformation only requires the description of rough propagation operators towards
strategic depth levels, whereas the actual - difficult to obtain - reflection properties are estimated automatically by

the method.

In this paper we demonstrate how the formulation of the double focal transformation can be obtained starting from the
Rayleigh II integral. Similar to Kutscha and Verschuur (2012) we derive focal reconstruction as an inversion problem
that is constrained by the sparseness promoting /; norm, which is utilised for aliasing noise suppression. Hereby, the
velocity sensitivity of the chosen focal operators on the reconstruction result is analysed. In addition, we present
a promising 2D marine field data (Gulf of Mexico) reconstruction result as well as the reconstruction of simple 3D
synthetic data. Another novelty of this paper is the comparison of the 2D field data results with reconstruction results
based on the sparse linear Radon transformation. Hereby, the benefits of these two methods for different parts of the
data are demonstrated. Finally, we investigate how to improve the sparseness of the data representation by augmenting

the double focal transformation with an additional linear Radon transformation.

2 Theory and implementation

2.1 The Rayleigh Il integral in terms of convolution

The double focal transformation can be derived from the basic principles of wavefield extrapolation. To be more
specific, it is based on the Rayleigh II integral, which allows the computation of a wavefield in a point from the
measured wavefield along a flat plane (see Figure 1a). To compute the wavefield in point (z4,ya,2’) the Rayleigh II

integral for the three-dimensional space can be formulated in the frequency domain as:
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o0
P(an YA, Z/a w) = // dl‘dyWJr(iL', TAY,YA, AZ,(U)P(LL‘, Y, 20, w)’ (1)
—0o0
with the wavefield propagation operator for a homogeneous medium between zg and 2’

1+ ikAr

W COS(¢)€7ikAT. (2)

W (2, 24,9, ya, Az,w) =

Hereby, w denotes the angular frequency and k = w/c the wavenumber with ¢ being the propagation velocity. Angle ¢
and distance Ar are explained in Figure la. Equation 1 describes wavefield propagation in terms of convolution with
a wavefield operator along the x and y axes. This convolution integral extrapolates the wavefield from a plane in x,y
direction at depth level zg to point A at depth z’. Please note that W denotes downwards propagation (the plus for

positive z direction).

In a similar way the 2D Rayleigh integral can be formulated as a convolution along the x-axis (see Figure 1b):

P(xa, 2 \w) = /dacW+(ac,xA,Az,w)P(z,zo,w), (3)

— 00

with the 2D wavefield propagation operator for the homogeneous case:

W (2,20, A2,0) = % cos(@)H{? (kp). (1)

Hereby, H 1(2) is the first order Hankel function of the second kind (see Abramowitz and Stegun, 1970). For an explana-
tion of angle ¢ and distance p see Figure 1b. For more detailed information on the Rayleigh integral and its derivation

from the Kirchhoff integral see e.g. Berkhout (1987) and Gisolf and Verschuur (2010).

Please note that in this paper only the explicit expression for W in a homogeneous medium is described (equations
2 and 4). For the case of inhomogeneous velocity distributions the Rayleigh II integral can still be formulated as a
convolution of a propagation operator with the data. In that case in equations 1 and 3 another propagation operator is
used, where W contains the impulse responses for the inhomogeneous layer between zy and z’. For more information

see e.g. Berkhout (1982) and Gisolf and Verschuur (2010).

2.2 The WRW model

The data description used in the double focal transformation is based on the expression of wave-propagation by con-
volution integrals in the frequency domain (equations 1 and 3). Since this concept originates from the WRW model

(Berkhout, 1982), we will give a short review of it here. For notation simplicity, we first consider the 2D case.
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The discrete version of equation 3 is given as:

K
P(ag, 2 wy) = Z AxW (2 1, Az, win) P, 20, Wn).- (5)
k=1

This summation describes wavefield propagation from several discrete surface locations to one location in the subsur-
face. It can also be denoted as the multiplication of a row vector with a column vector. If we want to propagate
to different lateral locations xj/ in the subsurface z’ we get a system of equations that also can be denoted as a
matrix-vector multiplication. In our area of interest P(xy,z,w,) is used as a source wavefield e.g. at the surface
zg. Therefore, we change the notation from P to S. Furthermore, in seismic data acquisition usually many source
experiments are acquired. Therefore, we have many column vectors, which are combined in the source matrix S(zo).
Hence, matrix equation P(z") = WT(2/, 29)S(2¢) describes the downward propagation of many source experiments to
many subsurface points along depth level z’. Reflection events of a complete seismic acquisition in 2D can be described

in this matrix notation by the following equation:

M
P(z0) = D(z0) Z [W*(zo,zm)R(zm)WJr(zm,zo)] S(zp). (6)

m=1

Note that by conventionally multiplying these matrices from the right to the left causality of wavefield propagation
is obeyed intrinsically: The source matrix S(zg) represents all downgoing source wavefields at the surface, with every
column containing the wavefield for one seismic experiment. This is then downward-continued by propagation matrices
W (2m, 20) to M levels with the corresponding depths z,, = m Az. Hereby, the step-size in z direction (Az) needs to
be small enough (e.g. 5 meter) for a detailed representation of physical reflection responses. Every element of such a
propagation matrix W (2,,, zo) describes the propagation of a wavefield in point (zx, 20) to a point in the subsurface
(g, 2m). If the downward propagated wavefield reaches a reflecting boundary at depth z,,, two mechanism enter
the propagation model: reflection and transmission. The reflectivity matrix R(z,,) turns the downward propagating
wavefield P (z,) = W (2, 20)S(20) into an upward propagating wavefield P~ (2,,) = R(zm)PV(21). Every row
vector of R(z,,) contains a convolution operator that applies the angle-dependent reflection to the incident wavefield
related to one spatial location. For more information about the reflectivity matrix see Berkhout (1987), de Bruin et al.
(1990), Doulgeris et al. (2009) and Kutscha (2014). The reflected wavefield is then upward propagated to the receivers
at the surface. The propagation from any depth level z,, to zo is described by W™ (zg, z,,,) in equation 6, where the ’-’
superscript denotes negative z direction. The process of data creation with the WRW model (equation 6) is visualised

in Figure 2a.
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2.3 Extension to three dimensions

Wavefield extrapolation in 3D can be discretised similarly to the 2D case. For a better understanding let’s denote the

discrete version of the 3D integral (equation 1):

L K
P(Ik'v Yu, Zl7wn) = Z Z W+(xk’,k7 Y i, szwn)P(Ika Y, Z7wn)A$Ay (7)
=1 k=1

It describes the propagation of the wavefield at all discrete points along the 2D plane at zg to the grid-point at
(zgr, Y17, 2') for one temporal frequency. This double summation can be formulated also as a vector-vector multiplica-
tion. Hereby, very long vectors are formed that are concatenations of vectors with constant y coordinate (see Kinneging
et al., 1989). Like in 2D the propagation of the wavefield at the surface to many points in the subsurface and the usage
of several sources at the surface will turn this vector multiplication into matrix multiplication P(z’) = W (2/, 20)S(29)-
As a result, the description of reflection events in 3D can be denoted in the same way as in 2D with equation 6. Note
that 3D leads to a block-structure of all matrices in equation 6 as they consist of sub-matrices with constant y. For

more information see Berkhout (2006).

In both 2D and 3D different rows of the data matrix P(zp) correspond to different receiver gathers, while differ-
ent columns represent different shot records (source gathers). Any diagonal of the data matrix corresponds to a
monochromatic common-offset gather. Due to reciprocity the data matrix is symmetric along the zero-offset (main-)

diagonal.

2.4 From the WRW model to the concept of double focal transformation

In contrast to the WRW model, the double focal transformation estimates the reflectivity only for a limited number
of N depth levels. Note that for the sake of simplicity we assume a fixed spread acquisition design, where a source
is fired at each receiver location for consecutive source experiments. Data creation with the model of double focal

transformation is formulated as:

P(z) = ]5 (20) (20, 2n) (zn)WJr(zn,zO)]g(zo), (8)

uMz

which is visualised in Figure 2b. Compared to equation 6, the hatted symbols now indicate that only approximate
operators are used, i.e. based on an approximated velocity model. Furthermore, instead of using M depth levels with
a distance of Az, only a subset of N depth levels is used, usually distributed over the whole depth range. The N depth
levels can be chosen strategically in order to coincide with prominent reflectors in the data (N << M). Please note,
since for each depth level two focal operators are used, one propagating energy from the source locations at the surface
to the subsurface and one propagating energy from the subsurface to the detector locations at the surface, there will

be essentially two focusing steps later on. This explains the name double focal transformation.
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The consequence of using fewer depth levels and approximate propagation operators W+ (zn, 20) is that seismic energy
will not necessarily be focused at offset and time zero in the reflectivity matrices R(z,,), which was assumed to be the
case in the WRW model. Therefore, the reflectivity matrices have been replaced by focal domains X(z,,), representing

frequency slices of a fully sampled, inverse or backward propagated data set.

Please note, that in practice we don’t know the source properties (source wavelet, source directivity, source to source

variation) precisely. The same is true for the receivers properties. For our experiments, therefore, D and S are

redundant and can be omitted in equation 8. This leads to:

P(z) = Z[W_(zo,zn)X(Zn)W+(Zn,zo)]. (9)

In this equation source and receiver properties are absorbed by the focal domain X. In general the focal domain
absorbs everything that is not fully explained by the data model, for instance transmission effects. Note that for other
experiments, which e.g. include source and receiver arrays or blended acquisitions, it is still essential to formulate the

source matrix and receiver matrix explicitly.

As shown in Figure 2b we only use the strongest contrasts in the subsurface to determine the depth of the levels
from which we generate the focal operators. Because, reconstruction is a pre-processing step, at that stage a very
good velocity model might not be available. Therefore, we demonstrate the effect of an accurate and an inaccurate
focal operator on a simple dataset containing only three reflection events. In many cases we know the velocity of the
uppermost layer. In a marine situation this would just be the water velocity. Therefore, the first focal operator is
generated based on an accurate velocity model. However, for the generation of the second focal operator we choose a
depth level, which is between the depth levels of the actual second and third reflector. Also, the second focal operator
is based on an approximate velocity being a representative NMO velocity. The matrices of equation 9 corresponding

to this case are denoted in Figure 3.

In Figure 3 it is shown that the data representation in the focal domain is very sparse. For any frequency the data
matrix P(z) is almost completely filled with energy, while the energy of the first reflector is represented by just a
line in the first monochromatic focal domain X(z1), and energy of the second and third reflector is located around the

main diagonal in the second monochromatic focal domain X(z2).

Inverse Fourier transforming equation 9 changes the matrix multiplications in the frequency domain to multi-shift
convolutions (an operation closely related to a 2D convolution) in the time domain. The time representation of Figure

3 is shown in Figure 4. As we can see, here, the data compression of the first reflection event is even more efficient.
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The complete 3D data cube p(zp) containing the first hyperbolic reflection event is represented by a band-limited line
(marked in red). This line forms a diagonal around time zero in the first focal domain x(z1). This additional compres-
sion is the reason why the time-implementation of the double focal transformation is chosen for data reconstruction.
The second and third reflection event are not completely focussed and have residual spatial phase. The assumed depth
of the second focal operator is in between the depths of the actual second and third reflector. Therefore, the second
reflection event is over-corrected (curved upwards and above zero time) and the third reflection event is under-corrected
(curved downwards and below zero time) in the second focal domain x(z2). Still these events are compressed compared
to the input data. For a better understanding the middle shot record and the middle sections of the first and second

focal domain are shown in Figure 5.

2.5 Comparison to Born modelling

It is important to notice that the data model of the double focal transformation is fundamentally different form other
methods like Born modelling. Instead of using every possible depth level (e.g. every 5 m) we use a few representative
levels, which can differ hundreds of meter in depth. Also, instead of using (complex-valued) scalars to describe re-
flection coefficients in the frequency domain at certain subsurface points, we use whole data volumes (focal domains),
which describe an extended reflectivity in the time domain. These focal domains have a spatial dimension to describe

angle dependency and they have a temporal dimension large enough to cover all reflections within a certain depth area.

3 The double focal transformation as an inverse problem

As mentioned in the introduction we present a method that formulates the physical process of wave propagation as a
transformation such that state-of-the-art aliasing noise suppression methods can be applied in the transform domain.

This can be achieved by bringing equation 9 to the form of:

7= Li. (10)

Hereby, p'is the data in the time domain denoted as a long vector (all columns of the 3D cube concatenated) and Z
consists of vectorized focal domains all connected to a long vector. The operator L can be formulated in principle as an
explicit matrix. However, since it would represent a huge convolution matrix, this is not done in practice. Therefore,

L is formulated as a function that contains the following steps:

1. Resort the focal domains from a long vector Z to 3D tensors x(z1...n).

2. Transform these tensors from the time domain to the frequency domain.
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3. Multiply every frequency slice of each focal domain with the frequency slices of the corresponding focal operator,

to derive the data matrix (Equation 9). This is displayed by Figure 3.
4. Transform the derived data from the frequency domain to the time domain to obtain the 3D data tensor p.

5. Finally, vectorising data tensor p yields p.

Many transformation-based reconstruction methods invert such an equation in a stabilised way to obtain an aliasing-
free model space from coarse input data. Examples are the Fourier transformation (Zwartjes and Sacchi, 2007), the

Radon transformation (Kabir and Verschuur, 1995) or the curvelet transformation (Hennenfent et al., 2010).

3.1 Forward double focal transformation

Until now we have just demonstrated that data creation with the model of double focal transformation can be formu-
lated as a matrix vector equation. In the form of equation 10 this is called the inverse double focal transformation,
because it transforms from the model space to the data space. This is in most cases a well-posed problem and easy
to compute. However, our aim is to derive the focal domain from the, eventually coarse, input data. This process is
called forward double focal transformation. It has to be realised that the transformation matrix L is not orthogonal
by nature and, thus, can not be inverted. Still, there are several possibilities to estimate Z. For instance equation 10
could be multiplied with L which is the conjugate-transpose of L. This would lead to a rough estimate of #. Another
possibility is to solve for & by least-squares inversion or by sparse inversion, which is also investigated in Kutscha and
Verschuur (2012) and Kutscha (2014). This paper will focus solely on the case of sparse inversion as this shows the

best reconstruction results for coarse input data.

The forward double focal transformation by sparse inversion can be formulated as the so-called ” Basis Pursuit De-noise”

problem (van den Berg and Friedlander, 2008):

minimise ||Z]|; subject to |[p— L]z < o. (11)
x

In equation 11 the I3 norm of the focal domain is minimised while keeping the I norm of the data misfit smaller than
the scalar o, which is most commonly the noise level of the input data. Hence, a focal domain with the minimum
absolute value is searched that still provides an acceptably small data misfit at the known traces. All results in this
article using the l; constraint are computed with the spgll solver (van den Berg and Friedlander, 2008), where spgll

stands for Spectral Projected Gradient - [;.

For a more realistic scenario random noise has been added to the input data that was used in Figures 3 to 5. Hereby, in

Figure 6a and b least-squares inversion was used and in Figure 6¢ and d sparse inversion was used. The least-squares
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constraint tries to smear the model parameters as much as possible by rather using many weak parameters than using
a few strong ones. Therefore, in Figure 6a and b the three reflectors are mapped to the first focal domain as well
as to the second focal domain ("model space leakage”) explaining every event twice. Also, the first reflector is not
mapped to a band-limited spike in the first focal domain, as we would expect, but to a so-called correlation cross, which
explains first reflector in the input data as good as a band-limited spike would do. Furthermore, correlation artefacts
are visible in this result. The sparseness constraint, on the other hand (the term ||Z||; in equation 11) aims to use as
few model parameters as possible, hence, preferring a few strong parameters over many weak ones. In Figure 6¢ and d
the sparseness constraint forced the solution space to have as few non-zero elements as possible, which automatically
suppresses the correlation artefacts and the model space leakage. Obviously, the forward double focal transformation
is a non-unique process and solutions depend on the chosen model constraint. Both, the least-squares and the sparse
solution have a very similar data-misfit, so just from this observation neither one is preferred. However, as we will see
in the next section, the aliasing noise that is generated by coarse input data is smeared out over a certain area in the

focal domain. It can be, hence, better suppressed by a sparseness constraint than by a least-squares constraint.

3.2 Coarse input data

In the previous examples it was assumed that the input data is dense. In the case of missing traces p'becomes shorter.
It is important to notice that the model vector (focal domain) is always defined on the dense grid and so it keeps the

same size. As a result, equation 10 becomes more under-determined.

To show the effect of missing traces in our example, three out of four traces have been removed from the dense input
data. Again, the focal domain has been estimated by least-squares inversion for the purpose of demonstration. In
Figure 6e and f it can be observed that the least-squares constraint by itself does not suppress aliasing noise, but leaves
it in the model space. The missing traces in the data lead to a stripe-pattern (edged by red shapes). The aliasing

noise is clearly separated from the data content.

In Kutscha (2014) it is shown how de-aliasing filters can be generated for simple data that are coarsely sampled in a
regular fashion. These filters can be used to mute the noise area in the focal domain, for instance by setting to zero
the energy in the red shapes in Figures 6e and f. A similar approach was already proposed by Berkhout et al. (2004).
Another option is to use a weighting function for the model space, which allows a more flexible suppression of aliasing
noise (see Kutscha, 2014). However, a more robust way is to estimate the focal domain from the coarse input data by
sparse inversion. This allows also to handle complex data and irregular undersampling without assumptions on the
local distribution of the aliasing noise. The reason why a sparseness constraint to the focal domain can successfully
suppress aliasing noise is because the data content is focused in the focal domain (sparse data representation) while

aliasing noise spreads out (is not sparsely represented).
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For the case of coarse input data, equation 11 can be used again except that we only compare the data misfit at the

measured traces:

minimise ||Z||; subject to |[p'— S{LZ}||2 < o, (12)
x

where p now is coarsely sampled and the sampling operator S only picks the traces corresponding to the available
measurements from the estimated data. Hence, in equation 12 less traces are available for the computation of the data
misfit which makes the inversion problem more ill-conditioned. Therefore, the objective function becomes even more
dependent on the sparseness constraint, which now not only enables a sparse data representation but also enables the

suppression of aliasing noise in the focal domain.

As a result each focal domain in Figures 6g and h shows the data content but not the aliasing noise and, hence,
represents a focal domain that corresponds to the dense input data (compare to Figures 6¢ and d). Note that the
process of obtaining Z resembles the difficult reconstruction step. Transforming this focal domain back to the data

space for any desired output sampling (equation 10) is then again a trivial process.

In Figures 6e and f we showed that aliasing noise is relatively well separated in the focal domain. This is not the case
when investigating the coarse input data in the FK domain as is shown in Figure 7a. Within the red circles, signal
content and aliasing noise overlap and would be difficult to separate in this domain. On the other hand in Figure 7b
you can clearly see that using focal reconstruction not only removed the aliasing noise, but also preserved all the signal

content.

3.3 The influence of imprecise focal operators

In Figure 6¢-d we see that we can focus the first reflection event to a band-limited spike, because the corresponding
focal operator is based on an accurate velocity distribution. However, reflection events two and three were not repre-
sented so sparsely, because the second focal operator was based on an imprecise velocity distribution which leads to

an incomplete focussing.

In general, the double focal transformation is almost not influenced by structural and velocity errors of the macro
model on which the focal operators are based, if these errors are within a certain range. Since the same focal operators
(eventually imprecise) are used to derive the focal domain (e.g. by equation 11) and to transform back to the data
space (equation 10) the data is always matched at the original traces. However, the sparseness of the data represen-

tation in the focal domain influences the reconstruction quality.

In Figure 8 a quantitative evaluation of the previous statement is depicted. Here a plot of the reconstruction error
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for dense and coarse data as a function of velocity error in the focal operator is displayed for a dataset with one
reflection event. In the case of dense input data (Figure 8a) the following can be observed: If the focal operator is
based on a velocity model with too low velocities, the reconstruction is almost not influenced, even by velocity errors
up to -500m/s. The focal domain then contains residual phase, which is corrected for by applying the erroneous focal
operator also for the inverse double focal transformation. If the focal operator is based on too high velocities, on the
other hand, the data mismatch increases more prominently. Also in this case the events are not completely focused
in the focal domain, which, like mentioned before, should be corrected for by the inverse double focal transformation.
However, a focal operator with a too high velocity acts as a velocity filter on the data. The larger the velocity error,
the more the data is harmed. The focal operator automatically filters all energy outside its spatial bandwidth meaning
that high angles are lost. It is, hence, suggested to always prefer focal operators based on slightly too low velocities

rather than focal operators based on slightly too high velocities.

For real, coarsely sampled input data there is no possibility to evaluate the reconstruction in the data gaps objectively.
Therefore, only the measured traces are taken into account for the computation of the data-misfit. In that case the
data-misfit dependency of the velocity-error of the focal operator is very similar to the case of dense input data (Figure
8a). For synthetic data, on the other hand, the dense input data is actually available for comparison. In Figure 8b the
reconstructed data is compared at all traces, even though the utilised input data was coarse. The same is of course
possible if densely sampled field data is available, which can be undersampled afterwards to test the reconstruction
algorithm. It can be observed that the data mismatch increases almost equally for both, focal operators based on too
high velocities and based on too low velocities. Since in both cases the data isn’t properly focused, the assumption
that the data is sparsely represented in the focal domain is not fully correct any more. That decreases the capability
to distinguish the weak dispersed aliasing noise from strong focused signal energy in the focal domain, and, therefore,
decreases the reconstruction quality. For the current example a velocity error of roughly —200m/s to +200m/s is

tolerable for decent reconstruction results. This range is, of course, data-dependent.

Note that the robustness of this method against inaccuracies in the focal operators is not only utilised for seismic data
reconstruction (Kutscha et al., 2010), but also for primary estimation (Lopez and Verschuur, 2013) and deblending

(Doulgeris et al., 2012; Kontakis and Verschuur, 2014).

4 Results

4.1 2D Field data

In the following the double focal transformation is utilised for the reconstruction of a 2D marine data set from the
Gulf of Mexico (Mississippi Canyon, see Dragoset, 1999) that was provided by WesternGeco. The double focal trans-

formation is principally defined for all geometries and sampling scenarios. However, currently it is implemented for
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fixed-spread geometries based on a regular sub-grid only. Therefore, the marine moving-spread acquisition geometry is
translated to a fixed-spread acquisition geometry using reciprocity (Fokkema and van den Berg, 1993), which changes

the (moving-spread) near-offset extrapolation problem to a (fixed-spread) gap reconstruction problem.

The fixed-spread acquisition that is derived in that way for this example consists of 101 source gathers with each
101 receivers. It is sampled in the time domain with At = 6ms and the original source and receiver sampling is
AZyey = AZgre = 26.67m. The maximum frequency is 60H z. To further challenge our proposed reconstruction algo-
rithm, a sampling operator is applied to the input data, deleting two out of three measured sources. Thus, the new

source spacing Axg.. is roughly 80m and the near offset gap is 213.4m.

In Figure 9a a typical receiver gather of the full, coarse data set is displayed, where empty traces were put at the
missing locations. Note that the amplitude in the data plots has been clipped to 20 percent of the maximum of the

input data for a better visibility of the weak events.

As you can clearly see in Figure 10a, real data usually contain a large number of reflections. Choosing a focal operator
for each reflector would be very computationally expensive and, hence, inefficient and infeasible. Usually, a strategic
choice is made in order to accomplish the best trade-off between sparse data representation and computational cost. In
our case four depth levels are used (IV = 4). From each level a focal operator is generated based on the corresponding
NMO velocity. As done in Berkhout and Verschuur (2006), the choice of these levels depends on the strongest reflection
events in the data. However, the depth levels only have to be roughly in the range of strong reflectors and don’t need

to follow the varying depths exactly (see Kutscha and Verschuur, 2012; Kutscha, 2014).

However, with these four focal operators the coarsely sampled data is transformed into four sparse, densely sampled
focal domains by 200 spgll iterations solving equation 12. The middle sections of these four focal domains are displayed
in Figure 10. In our example the chosen focal operators focus one or more reflections of a certain depth area of the
data around zero time in its corresponding focal domain, which can be observed in Figures 10(a-c). We also can see
some leakage of energy in between the different focal domains. Especially, the fourth focal domain (Figure 10d) in its
upper part contains energy from shallower reflections that are also partly mapped in the other focal domains. By itself
this is not a problem as all focal domains together explain the input data. The fact that the fourth focal domain is
not that sparse can be explained by the trade-off between data misfit and sparseness in the focal domain. For a high
number of spgll iterations more and more weak details in the estimated data are used to decrease the data misfit.
These details can often not be represented in a sparse way. However, the data representation is still sparse enough to

enable the aliasing noise suppression efficiently.

Next, the focal domains are simply transformed to the dense data grid (Az,c, = Az = 26.67m) with the inverse
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double focal transformation (equation 10). Figure 9b shows a very good reconstruction result, where the regularly
undersampled data is reconstructed properly (worst case scenario for Fourier-based methods) as well as the near-offset

gap. Note that strong events are reconstructed as well as weak events and diffractions are handled properly, too.

In order to evaluate the capabilities of the double focal transformation for data reconstruction, it is compared to a
state-of-the-art, sparse, linear Radon reconstruction method, as described by Trad et al. (2003) and Verschuur et al.
(2012). To make use of the redundancy of the data five receiver gathers were reconstructed simultaneously with the
3D sparse linear Radon transformation (receiver, source, time). In Figure 9d and 9f the reconstruction results of this
method for the near and mid/far offset range are compared to the result of the double focal transformation in Figure 9¢
and 9e. As is clearly visible in Figure 9d the near-offset gap is not reconstructed satisfactorily because strongly curved
events are not efficiently represented in the linear Radon domain. This leads to a poorer reconstruction of the curved,
strong reflector at around 2.4 seconds in the linear Radon result in Figure 9d compared to the focal reconstruction
result in Figure 9c. Also diffractions are hardly visible in the Radon result whereas they are properly reconstructed
when using the double focal transformation. However, for the mid/far offset range of this dataset, where events are
mostly (locally) linear and they can be represented efficiently in the linear Radon domain. Actually, the reconstruction
result of the linear Radon transformation looks sharper and more consistent in the mid/far offset range in Figure 9f

than the focal reconstruction result in Figure 9e, in which at least the first reflector is still slightly aliased.

It has to be mentioned that there are alternative ways to make use of the linear Radon domain for seismic data
reconstruction. For instance it can be applied to NMO corrected CMP gathers (as was also done in Verschuur
et al., 2012) or to COVTs (Common Offset Vector Tiles, see Cary, 1999), where the seismic events are generally
represented more linearly than in receiver gathers (except again for diffractions). However, to fully exploit such
domains the earth is assumed to be laterally smooth, whereas the focal domain is aiming at reconstructing data
from more heterogeneous structures. For a comparison of our method with seismic data reconstruction based on the

parabolic Radon transformation, see Kutscha (2014).

4.2 3D synthetic data

When reconstructing in three dimensional space (z,y,z), the resulting data have five coordinates (receiver-x; receiver-y;
source-x; source-y; and time). Thus, reconstruction for such a data volume is usually referred to as ‘5D reconstruction’
(Trad, 2009). Conveniently, the formulation of the forward and inverse double focal transformation stays exactly
the same (equation 11 and 10). However, data vector p’ and model vector Z now contain 3D instead of 2D data,
hence, the whole 3D dataset (within the considered aperture) is reconstructed at once. For more information on the

3D implementation, see Kutscha (2014). The formulation of the implicit function L in 3D is equivalent to the one in 2D.

Note that the data compression in 3D is by one order more efficient than in 2D (see Kutscha, 2014) which allows a
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sparser data representation and, thus, a better data reconstruction. Furthermore, the 3D implementation can make

use of the redundancy in the data in both lateral directions, which increases the reconstruction capability.

Initial results for the 3D focal reconstruction are obtained for simple, synthetic data from a small one-reflector medium
in order to prove the concept (Figure 11). Note that the dense input data was decimated in a way that only 7% of
the traces remained (Figure 11a). After 3D-double-focal transformation all traces are reconstructed (Figure 11b).
Reconstruction tests for real data or larger, complex synthetic data are not yet possible because of the large memory

requirements of the current implementation.

5 Sparser data representation via cascaded linear Radon transform

As demonstrated, the double focal transformation is a very efficient sparse data representation for reflection data.
However, in some reconstruction cases even sparser solutions are desired e.g. to suppress the aliasing noise stronger
or avoid leakage of energy between the focal domains using the multi-level implementation. One solution is to change
the {1 norm to a sparser norm (e.g. Iy or Cauchy). However, doing this we would loose the desired stability of the

l1 solution. Therefore, our favoured approach is to keep the [; norm and just make the data representation itself sparser.

To further increase the sparseness of the data representation, an additional linear Radon transform in both spatial
directions of the focal domain can be applied. Hereby, the similarity of the data along the diagonal in the focal domain
is utilised for additional data compression. Note that this will be the case if the earth is (locally) laterally smooth in
one spatial direction. In order to use this concept for data reconstruction a problem like equation 12 is solved. The
difference is that L represents the inverse double focal transformation and the inverse Radon transformation combined

to one transformation.

The process of data reconstruction using this combined transformation is illustrated on a 2D synthetic dataset, which
consists of a fixed spread acquisition corresponding to a model with one plane and one dipping reflector. In Figure 12a
the corresponding focal domain is displayed for the case that the perfect focal operator for the first reflector is used.
This display is done in a 3D fashion by making all data samples with values below a certain threshold invisible. As
expected, the first reflector is focused to a diagonal event through the focal domain similar to the first focal domain in
Figure 4. The second reflector is not completely focused and has residual spatial phase. Applying a linear Radon trans-
formation in both lateral directions of the focal domain the double-radon-focal domain 6(z’) is generated as displayed
in Figure 12b. As can be observed, no compression for the first event in the focal domain was accomplished, because
it was transformed from a linear event into another linear event. But the energy corresponding to the second reflector,
which consisted of a set of hyperbolic events in the focal domain, could be transformed around a single band-limited

elliptic locus.
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Note that utilising the linear Radon transformation also has the capability to compress the ’crosses’ in the focal do-
main that are generated by the AVP differences between the data and the focal operators (see Berkhout, 1997; van
Wijngaarden, 1998).

In Figure 13 coarse input data is reconstructed using in one case the double focal transformation and in the other case
double-focal-double-radon transformation. For both cases 10 spgll iterations were used. It is clearly visible that in the
first case the first reflector is properly reconstructed but the second one, for which no focal operator was available, is
less well reconstructed. Since the first reflector can be represented much sparser in the focal domain than the second
one, it is picked up much earlier by the spgll solver. More spgll iterations would be needed to add enough param-
eters to the model space in order to fully explain the second reflector. On the other hand, in the second case with
the double-radon-double-focal transformation both reflectors are reconstructed equally well. The extra linear Radon
transformation improves sparseness of the data representation, which allows a sufficient reconstruction with less model
parameters. The improved reconstruction for reflection events which are not completely focused by the focal operator
provides the opportunity to use less depth levels in the multi-level implementation of the double focal transformation

(smaller N in equation 9) in combination with a double-radon transformation.

However, some artefacts were introduced as well in Figure 13c. This is the result of an undersampling in the linear

Radon domain, which means that the step-size Ap needs to be decreased in order to satisfy the sampling criterion.

6 Discussion and outlook

We demonstrated that having an adequate focal operator is important for the complete focusing of a reflection event
into a band-limited spike. Assuming then that in a real data case for every true reflector the perfect focal operator
would be available, the data could be represented by band-limited spikes in their corresponding focal domains, which
allows data reconstruction for very large data gaps. As mentioned before, with the current implementation memory
usage and computational cost are increased drastically when the number of focal operators is increased. This would
make such an attempt infeasible. However, if the double focal transformation would be implemented in a way that
only a few parameters in the centre of each focal domain are considered, this problem might be avoided. Actually, if
only the central parameters of the focal domains are considered, assuming a perfect velocity model, the double focal

transformation actually represents a sparse, least-squares migration algorithm.

By comparing the strengths and weaknesses of the double focal transformation with the linear Radon transformation

(Figure 9) for different parts of the data it becomes obvious that a combination of both methods into a hybrid one
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might be a very interesting field of study. A first implementation for the purpose of deblending has been reported by
Kontakis and Verschuur (2015).

As mentioned before, one critical aspect of the double focal transformation are the computational costs. Applying the
forward double focal transformation basically means to invert for L in equation 10. This is done by applying L and
LY many times in order to minimise an objective function like equation 11 by e.g. the spgll solver. Therefore, we
investigate the cost of applying operator L to the focal domain . The five basic steps of this operator application
were described before, whereby only the matrix multiplications (step 3) are computationally expensive and, hence,
determine the computational speed of the focal reconstruction. Each matrix has the size of number of sources by
number of receivers. By up-scaling the problem-size the cost of performing these matrix multiplications increases
super-linearly. When for instance considering realistic 3D acquisition geometries these matrices can quickly become
very large.In order to provide some numbers: The marine field data example was reconstructed using 200 spgll itera-
tions on a typical desktop computer (Intel® Xeon®Processor E3 — 1240 v2) in less than an hour. The memory load

per data cube (data, focal domain, focal operator) is ca. 20MB.

In order to decrease the memory requirements and computational costs in future implementations only a couple of
elements in the focal domains around their focal points could be considered. This would of course require that the
seismic events are sufficiently focussed around the focal points in order to avoid the loss of signal content. Furthermore,
in the current implementation the focal operators (in the frequency domain) are pre-computed and loaded into memory
and then simply are applied like in equation 9. Another option would be to generate the focal operators ”on the fly”.

This would reduce the memory requirements but instead increase the computational costs instead.

7 Conclusions

It has been demonstrated that the double focal transformation allows a physical and very efficient parametrisation
of seismic reflection and diffraction data. The sparseness of the data-representation in the focal domain and its ro-
bustness against the usage of inaccurate focal operators allows a very satisfying reconstruction of complex data that
are regularly undersampled and contain large gaps. The method was demonstrated for 2D and 3D synthetic data
and 2D field data. Furthermore, the proposed method was evaluated based on the 2D field data set by comparing its
performance with the linear Radon reconstruction, where the focal reconstruction was clearly better for the chosen

data at small to medium offsets.

To further compress the seismic signals, the double focal transformation was augmented with the linear Radon trans-

formation. The potential benefits of combining these two transformations could clearly be demonstrated.
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Fig. 1: In (a) the schematic illustration of the downward propagation of the wavefield from any point at the surface
(x,y,20) to a certain point in the subsurface (x4,y4,2’) is shown in 3D. Hereby, T is the vector connecting
these two points, ni the downward pointing normal vector of the surface and ¢ the angle in between them with
cos(¢) = Az/Ar. In (b) the 2D case is displayed. Hereby, p represents the distance between any surface point
(z, zp) and subsurface point (x4, 2") and cos(¢) = Az/p.
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Fig. 2: Concept for seismic data description using (a) the WRW model and (b) the double focal transformation. For
the WRW model every depth level (e.g. every 5m) is considered, regardless of the actual subsurface structure.

For the double focal transformation, on the other hand, only depth levels are considered where prominent
reflectors are expected.
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events in the second focal domain, which represent reflectivity as well as residual spatial phase.
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the coarse sampling. The receiver-x and source-y sampling is 75m. The receiver-y and source-x sampling
is 15m. In (b) the receiver-x and source-y sampling is reconstructed to a 15m spacing via 3D-double-focal
transformation.
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Fig. 12: (a) The focal domain as a tensor for a 2D fixed spread dataset from a two-reflector subsurface. In (b) the
focal domain of (a) is transformed with an additional linear Radon transformation in both lateral directions.
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