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A semi-analytical thermal modelling approach for selective laser melting

Y.Yang?, M.F. Knol?, F. van Keulen?, C. Ayas®*

“Structural Optimization and Mechanics Group, Department of Precision and Microsystems Engineering,
Faculty of Mechanical, Maritime and Material Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands

Abstract

Selective laser melting (SLM) wherein a metal part is built in a layer-by-layer manner in a powder bed is a promising and ver-
satile way for manufacturing components with complex geometry. However, components built by SLM suffer from substantial
deformation of the part and residual stresses. Residual stresses arise due to temperature gradients inherent to the process and the
accompanying deformation. It is well known that the SLM process parameters and the laser scanning strategy have a substantial
effect on the temperature transients of the part and henceforth on the degree of deformations and residual stresses. In order to
provide a tool to investigate this relation, a semi-analytical thermal model of the SLM process is presented which determines the
temperature evolution in a 3D part by way of representing the moving laser spot with a finite number of point heat sources. The
solution of the thermal problem is constructed from the superposition of analytical solutions for point sources which are known
in semi-infinite space and complimentary numerical/analytical fields to impose the boundary conditions. The unique property of
the formulation is that numerical discretisation of the problem domain is decoupled from the steep gradients in the temperature
field associated with localised laser heat input. This enables accurate and numerically tractable simulation of the process. The
predictions of this semi-analytical model are validated by experiments and the exact solution known for a simple thermal problem.
Simulations for building a complete layer using two different scanning patterns and subsequently building of multiple layers with
constant and rotating scanning patterns in successive layers are performed. The computational efficiency of the semi-analytical tool
is assessed which demonstrates its potential to gain physical insight in the full SLM process with acceptable computational costs.

Keywords: Additive manufacturing, SLM, cost efficient thermal modelling, scanning strategy, semi-analytical model,

Superposition principle

1. Introduction

Additive manufacturing (AM) also known as ‘3D printing’ is
the generic name for building three dimensional objects by way
of laying down successive thin slices of the object in a layer-by-
layer manner [1]. This is contrary to conventional manufactur-
ing techniques involving multiple steps where the final shape
of the component is achieved, for instance, by casting, form-
ing, and material removal. AM processes are rapidly advancing
and thus enable fabrication of complex components with high
topological freedom within a single manufacturing step. The
unique advantage of AM is that, as the geometrical complexity
of the object increases, no additional process time or cost get
introduced [1].

Selective laser melting (SLM) is a Powder Bed Fusion (PBF)
process as per ISO/ASTM 52900 and is the most common AM
technique suitable for producing metal parts. In SLM, the build
process of the product starts on a metal base plate placed in-
side an inert atmosphere as illustrated in Fig. 1. A thin layer
of powder, typically having a thickness of 20 — 100 um [2, 3],
is spread with a recoater blade across the build area. Next, a
focussed laser beam, having an energy sufficient to locally melt
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the metal powder, is directed onto the powder bed with a scan-
ning mirror. The laser beam is scanned over the powder bed in
such a way that it selectively melts and fuses powder particles to
form the cross-sectional slice of the product upon solidification.
The surrounding powder which has not been irradiated with the
laser beam remains loose and serves as a support for the subse-
quent powder layers. Next, the build platform is lowered for a
distance equal to the powder layer thickness and a new layer of
powder is laid and levelled with the recoater blade. The laser
beam scans the subsequent slice. While the laser scanning is ap-
plied, in addition to the powder layer, the previous solid layer is
also partially locally melted so that during subsequent solidifi-
cation, a seamless connection across the layers is achieved [4].
The process is repeated until the complete three dimensional
object is built, typically consisting of hundreds of layers. If
any of the layers is unable to sufficiently support the next one,
support structures may be required to eliminate overhanging.
Support structures also prevent overheating and restrict defor-
mations. However, they increase the build time and material
cost. Finally, the object is cut from the base plate and support
structures are removed, loose powder is cleaned off and option-
ally a final finishing process is performed [3].

SLM can produce parts with densities up to 99.9% of the
theoretical density [5] (i.e., with virtually no porosity) and me-
chanical properties similar to those produced by conventional
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Figure 1: Schematic illustration of the building of a part submerged into a pow-
der bed and fixed on the build platform. The laser source is directed by the
scanning mirror in order to melt the uppermost layer of powder. Once the laser
scanning of the current layer is finished, the recoater lays the next layer of pow-
der from the feed container. Excess powder is stored in the overflow container.

manufacturing techniques [5, 6]. Although SLM parts exhibit a
surface waviness, critical for cyclic loading, high surface qual-
ity can often be achieved with a finishing process [7, 8]. More-
over, since SLM provides an unprecedented form freedom, de-
sign tools such as topology optimisation can be fully exploited
[9]. However, a major issue in the SLM process is the distortion
of the part due to deformations induced during manufacturing
and residual stresses associated with the deformations that are
constrained. Deformations and residual stresses induced dur-
ing SLM originate from thermal expansion/contraction cycles,
shrinkage due to solidification and other volume changes due
to solid state phase transformations. Severe deformations may
disqualify the product for use and can cause jamming of the
recoater, while residual stresses may cause failure, if a critical
level is exceeded during the build [10, 11]. Residual stresses
can also shorten the service life and give rise to degradation of
the mechanical performance. However, generally a stress re-
lief heat treatment is applied subsequent to the build in order to
eliminate residual stresses in the final product.

SLM process parameters such as laser power, laser scan-
ning velocity and pattern have been shown to influence both
the amount of porosity and the deformations and the associ-
ated residual stresses [12, 13]. Therefore it is of paramount
importance to determine the optimal set of process parameters
for which the deformations, residual stresses and porosity are
minimal for a given part geometry. Currently, the process pa-
rameters are being tuned empirically by way of trial-and-error,
i.e., a test part is printed using different process parameters and
those leading to the best quality are adopted [14, 15]. This is
a time consuming and costly process requiring many printing
jobs. Numerous iterations are usually needed before a satisfac-
tory performance is obtained for mechanically demanding or
high precision components. Moreover, the procedure needs to
be repeated for different materials and part geometries.

Alternatively, SLM process models, capturing the essential
physics of the process can be used to predict the resulting poros-
ity, deformation and residual stress for a given set of process
parameters. Therefore SLM process models can be instrumen-
tal to determine the optimal process parameters. Ideally, the
process model needs to be both accurate and computationally

tractable in order to fully replace the empirical approach out-
lined above. However, the SLM process involves the cou-
pling of a number of physical phenomena such as heat trans-
fer, fluid dynamics, phase transformations and solid mechan-
ics [16]. Therefore, it is a complicated multi-physics problem
to analyse which also requires a due account for the geome-
try of the part to be built. Moreover, the transient nature of
the heat transfer phenomena and the presence of steep temper-
ature gradients in the vicinity of the laser spot further compli-
cate the problem from a numerical point of view. Recall that
thermal expansion/contraction cycles are key for the part dis-
tortion and residual stress field [17, 18] and, thus, it is critical
to determine the temperature transients as accurately as possi-
ble. The steep temperature gradients are present due to the lo-
cal nature of heating in SLM. The laser beam has a spot radius
typically on the order of tens of micrometers [19], while parts
produced have dimensions typically on the order of tens of mil-
limetres. This mismatch of characteristic length scales becomes
prohibitive when a numerical scheme such as finite elements is
used to solve the governing heat equation. This would require
fine spatial and temporal discretisation to resolve the steep tem-
perature gradients which in turn requires an excessive number
of elements and time steps, resulting in very high computational
costs.

So far, only a few studies have attempted to model the com-
plete parts typically built with SLM. In these so called global
models the total computational costs are reduced to allow for
complete part modelling. For example, Papadakis et al. [20]
and Zaeh and Branner [11] proposed a simplified representa-
tion of the heat input during the process. Instead of modelling
a moving heat source, a heat input acting simultaneously on
the whole object and homogeneous across the layer that is be-
ing built is assumed. Consequently, information concerning the
scanning pattern is inherently lost. In contrast, the majority
of the studies in literature investigate only a small fraction of
the build-process, which will be subsequently referred to as lo-
cal models. The local models are detailed, and may include
description of the different phase transformations and small-
scale phenomena such as convective heat flow inside the melt-
pool. Moreover, due account for temperature dependent mate-
rial properties can be made. However, a complete build analy-
sis of a component or an extensive parametric study with local
models is currently computationally intractable. Therefore, al-
though the local models can provide deep insight of the SLM
process, their use is restricted to very small spatial domains and
they are not suitable for design purposes. For instance, Zeng
et al. [21] reported a total computation time of 3763 hours
for the addition of a single layer on a base plate of dimensions
42 mm X7 mm X 3 mm. Although global models remain to be
the pragmatic alternative, experiments in literature show that a
strong correlation exists between the scanning pattern and the
resulting residual stresses [22, 23, 24]. For example, Kruth et
al. [22] measured the curling angle of a structure built with var-
ious scanning patterns and reported the bending can be reduced
by a maximum of 59% with changing the scanning pattern only.
This implies that any modelling effort in pursue of optimum
SLM process parameters should explicitly take into account the



scanning pattern and be able to capture the effect of a given
scanning pattern on the temperature evolution. Mohanty and
Hattel [25, 26, 27, 28] developed a fast low fidelity model and
studied the temperature evolution of a single layer with vari-
ous scanning strategies. Upon comparing their predictions with
a FE analysis having a mesh size sufficiently small to capture
characteristic gradients of the temperature field, the low-fidelity
model was able to reproduce average and maximum tempera-
tures of the domain. However, the temperature field predictions
of the low fidelity model was found to be different than that of
the high fidelity FE model in the vicinity of the laser beam [26].

In this paper, we aim to develop a thermal process model
of SLM also utilising the superposition principle suitable for a
complete build analysis. Our formulation also accounts for the
moving laser beam and hence captures the effects of different
scanning patterns alongside other process parameters. Here, we
exclusively focus on the thermal history of the part during the
SLM process, since an accurate representation of the tempera-
ture distribution is a key intermediate step for an accurate pre-
diction of deformations and residual stresses arising due to ther-
mal strains encountered. For that purpose, we propose a semi-
analytical modelling approach where the moving laser beam is
represented with a set of point heat sources. The closed form
analytical solution known for a point heat source is utilised to
capture the steep temperature gradients in the vicinity of the
laser beam in a transient manner. However, the analytical solu-
tion for a point heat source is only known for a few simple cases
such as in a semi-infinite medium. Therefore boundary condi-
tions of the problem at hand are enforced with image sources
and a complementary correction field, solved numerically. The
key advantage of our method is the ability to capture high tem-
perature gradients in the vicinity of the laser spot, independent
from the spatial discretisation applied for the complementary
correction field. Consequently, a complete build analysis with
high accuracy becomes computationally tractable with a rela-
tively coarse spatial discretisation. We will demonstrate that
the computational cost are sufficiently small which is promis-
ing to incorporate this model within topology optimisation for
the design of SLM products. Generalised finite element (FE)
schemes with suitable enrichment on a coarse mesh have been
shown to capture steady state solutions for thermal problems
exhibiting localised sharp thermal gradients [29]. However, for
the transient heat problems of interest, required temporal reso-
lution can still be computationally prohibitive for a fully numer-
ical approach and thus we propose the semi-analytical approach
where the analytical solution of point heat sources plays a cru-
cial role. It is worth noting that utilising analytical solutions
for Gaussian heat sources [26], Goldak sources [30] and mov-
ing point sources [30] have been investigated in the context of
AM process modelling. However, in our approach the use of
the superposition principle enables us to represent not only heat
input due to laser scanning vectors but also to impose correct
boundary conditions. The latter has not yet been reported in
literature to the best of our knowledge and cannot be addressed
with the use of analytical solutions only. It is the superposition
of analytical and numerical correction fields that bridges the
characteristic length scales of the laser spot and the part being

built for the inherently multi-scale problem at hand.

The outline of the paper is as follows. Section 2 details the
proposed semi-analytical model for temperature evolution dur-
ing the SLM process. In Section 3, the accuracy of the semi-
analytical model is validated by comparing its predictions with
corresponding experimental and exact solutions available in lit-
erature. In Section 4, the semi-analytical model is used to simu-
late the SLM process of building a single layer and multiple lay-
ers, respectively. Different scanning patterns are considered to
investigate their influence on the thermal history of the printed
part and melt pool dimensions. The article concludes with a
reiteration of the most salient points of the study.

2. Model description

Consider the SLM process of a three-dimensional body with
an arbitrary shape. At time ¢ = 0 the body V with a surface 9V
has already been built as sketched in Fig. 2a. The surface 0V
comprises of the top surface 9V, the lateral surface 9V, and
the bottom surface Vi, 1.€., OV = Vpor U Vg U 0Viop. At
time ¢ = 0, the body V is submerged into the powder bed as
shown in Fig. 2b, where a thin layer of powder is also laid on
top of the body. The top surface 6Vi,, and the lateral surface
0V are hence covered with powder, while dVy,, is bonded to
the base plate, see Fig 1. The origin of the coordinate system
is located such that dVy corresponds to the x;-x; plane and a
right handed orthonormal basis is selected as shown in Fig. 2b.
At time ¢ = 0O the scanning of the laser starts over the upper-
most powder layer with a predefined scanning pattern and the
temperature of the body will increase as dictated by the heat
equation

T
pc,,‘z—t =V-(VT)+Q, in V, (1a)

where T is the temperature, Q is the rate of volumetric heat
generation, i.e. the source term, p, ¢, and k are the density, the
constant-pressure specific heat and the thermal conductivity, re-
spectively. In order to determine the temperature development
within the body V, we proceed to describe a boundary value
problem (BVP) with relevant boundary conditions on dV and an
initial condition T'(x;,0) at t = 0. We first observe that the mean
conductivity! of the powder covering 0V, and 0Viep is approx-
imately 1/100 of that of the solid [19], hence it is justified to
assume that powder has negligible conductivity and therefore
the heat transfer between the solid and the powder is assumed
to be negligible in our model. Next, we note that powder at
0Viqp is locally melted by the laser, enabling possible radiation
and convection of heat. However, the amount of heat lost due
to radiation and convection is also negligible in comparison to
the amount of heat transferred by conduction within the solid
body [32, 33] and, thus, radiation and convection effects are
not included in our formulation. Consequently, a zero heat flux

1Upon treating the powder as a continuous media, a mean conductivity can
be defined [31]



boundary condition is prescribed at 0V, and Vo, as

oT
—n; =0 on Vi, (1b)
axi
oT
6_ximi = O on thOP’ (1C)

where n; and m; are the components of outward facing normal
to 0Vi and dV.p, respectively and the repeated index implies
summation over i. During the SLM process the base plate is
typically pre-heated, and stays at this constant temperature [34,
35]. We take this into account by prescribing a temperature
boundary condition on the bottom surface dV,, that is bonded
to the base plate as

T=T, on  OVpor, (1d)
where T, is the known base plate temperature.

It should be noted that during the SLM process, melting,
solidification and solid state phase transformations take place
within the body V. The solution of the BVP will be compli-
cated by these phase transformations. In reality, the existence
of latent heat will result in no temperature change during melt-
ing and only after complete melting is accomplished, the tem-
perature will be rising. However, as the laser moves away from
the material point of interest, the temperature will drop and so-
lidification will occur. Now the same amount of latent heat will
be emitted and thus temperature would be again constant for a
brief period of time. Since melting and concurrent solidifica-
tion phenomena occurring in body V are local and rapid so that
it can be argued that the latent heat initially absorbed during
melting is subsequently released during solidification within a
short duration. Consequently, the net effect of these phase trans-
formations on the total energy balance is zero and the influence
of neglecting the latent heat in melting/solidification cycles is
expected to be small. This assumption is also used for example
in [36]. The energy for solid phase transformations is only a
second-order effect when compared to the latent heat of melt-
ing/solidification [37] and henceforth is also neglected.

Next, consider the laser beam with a power P and a spot ra-
dius r scanning over the powder bed with a fixed speed of v. At
time ¢ = 0, the laser beam is irradiating at a known initial po-
sition on the powder bed. A small fraction of the incident laser
beam is reflected while the rest is absorbed by the powder. The
fraction of the energy absorbed is denoted by A and its value is
approximated using the model proposed by Gusarov et al. [19].

The absorbed energy melts the powder locally, creating a
melt-pool in the vicinity of the laser spot. Now recall that the
conductivity of the powder surrounding a melt-pool is much
less than that of the solid body and the heat loss from the
free surface due to convection and radiation is also negligible
[32, 33]. Therefore, the energy present in the melt-pool is by
enlarge transmitted to the body V. This implies that the ab-
sorbed laser energy is essentially subjected directly to the body
V via the surface 6Viq, which is immediately beneath the up-
permost layer of powder. Consequently, in our model we dis-
card the uppermost layer of powder and instead consider heat

WViop

d Vlat
™ 0 Vbot
(@)

Uppermost layer

Point source
\

()

Figure 2: Schematic illustration of (a) the body V with its surface dV decom-
posed into 8Viop, Via and dVior and (b) body V submerged into the powder
bed where it is bonded to the base plate at 0Vyor and laser scanning is applied
on the uppermost layer of powder.

sources at 0V, to represent the scanning of the laser. Although
this assumption is reminiscent of the laser welding process, the
thermal equations can be solved without updating the geome-
try. Hence, the computational efficiency can be enhanced sig-
nificantly. The results in Section 3 will show that good accuracy
can still be achieved.

2.1. A superposition method for the thermal problem

Even with above described simplifications, the solution of
this BVP is numerically intractable due to the mismatch of
length scales present in the problem. The laser spot radius r
is typically 10-50 pum, while the characteristic length scale of
the body is on the order of 10-100 mm. FE analysis of the
BVP would require a local mesh size on the order of tens of mi-
crons to track the moving laser source. We therefore introduce
another approximation to solve this problem.

First, we neglect the temperature dependence of the thermal
parameters p, ¢, and k in Eq. (1a), resulting in

oT
— =aV’T + < in V, 2
ot oCp

which is the linear heat equation and @ = k/pc, is the thermal
diffusivity. It has been reported by Childs et al. [36] that, upon
choosing suitable thermal parameters, the linear heat equation
Eq. (2) is able to well approximate Eq. (1a).

Next, the laser scanning vector is discretised by a finite num-
ber of point heat sources, as shown in Fig. 2b. Point source 1,
where I = 1,... N, is created at time t(()l), while the next source

I + 1 is created at time t(()”l) = tg) + At and At is the tempo-
ral step size for time integration. The location of each point



source is determined by the scanning pattern and neighbouring
point sources are separated by vAr. It remains to solve the BVP
described by Eq. (1a) to determine the temperature distribution
within the body V as a function of time while accounting for
the point heat sources.

The solution of the linearised heat equation (2), is still com-
plicated by the presence of the source term Q. However since
Eq. (2) is linear, we can make use of the superposition prin-
ciple in a manner similar to the method proposed by Ayas et
al. [38]. The detailed formulation given below will show that
the proposed solution strategy for Eq. (2) relies on an analyti-
cal solution which captures the high spatial gradients, comple-
mented with a numerical solution which ensures compliance
with boundary conditions. We therefore refer to this formula-
tion in short as semi-analytical model.

Consider the body sketched in Fig. 3 where N point heat
sources are created at 9V, to model a given laser scanning
vector. The temperature field 7T is then decomposed as

T=T+T, (3)

where T is the temperature field due to N point heat sources,
each of which is created at a different time instant in accordance
with the scanning history. The temperature field T is expressed
as

M
T(x,-,t):ZT(I)(xi,t) for 1> and M<N, 4
=1

where

0”4 ~(ro)

T(I)(xi, H = exp .
4pc, (ra (1 — 10™))*"? da (1 —1o)

&)

Granted ¢ > tf)l), Eq. (5) is the analytical solution of the linear
heat equation Eq. (2) for an instantaneous point source / in a
semi-infinite medium which is bounded by the top surface of
body dViep [391. If ¢t < £, TP(x;,1) = 0. In Eq. (5), Q7
represents the energy associated with source I. When the time
step At is sufficiently small, QP = PAt. Source I is created

at time th> and RY is the distance between the material point

of interest x; and the source position xl(.l). We note in passing,
Eq. (5) becomes singular exactly when the source is created,
i.e., fort = £,"). In reality the laser spot has a finite radius r and
in order to mimic this effect we introduce in Eq. (5) a time shift

2
7" =1 - o ©)
o’
and replace 7, in Eq. (5) with 7¢(”. This time shift implies
a diffusion distance of r for the point source I and thus also
eliminates the singularity in Eq. (5).
The influence of the finite dimensions of the powder bed and
the associated boundary conditions are accounted for by the
complimentary temperature field 7 which is governed by

A

E:avzf in V, (7a)

with boundary conditions

T=T,-T on Wy, (7b)
or oT
—n; = ——~n; on aVIa[ and, (7C)
(9)(,' Bx,-
ar T
a—xim,- = _O_ximi =0 on Vi, (7d)

where n; and m; are the outward facing normal to 9V, and
0Viop, respectively. Eq. (7d) is a direct consequence of the no
flux condition on dV,, implicit in the solution of 7". The initial
condition at t = 0 reads

T(x;,0) = T(x;,0) = T(x;, 0), (Te)

where T'(x;,0) is obtained by Eq. (4) and in the present paper,
the initial temperature 7(x;,0) is assumed to be equal to the
chamber temperature 7.

Provided T and its gradient are finite on 9V}, U 3V, Eq. (7)
is a smooth problem that can be solved by a standard numerical
method such as finite differences and the wavelengths associ-
ated with the T field scales with the dimensions of the body.
However, for a point source created at a location sufficiently
close to the boundary 9V, U dVio, Eq. (5) implies that the
wavelengths associated with the solution of 7" become compa-
rable with that of 7. This in turn requires a discretisation on the
order of the laser spot radius  for 7" and thus makes the solu-
tion of Eq. (7) computationally intractable. Therefore a special
treatment is required for point sources within a critical distance
from the boundary 0Vj, U 0Vy. For this reason T field is in-
troduced and the image point sources explained in the next sec-
tion are utilised to analytically enforce boundary conditions for
those sources located within a critical distance from the bound-
ary 0V, U OV The decomposition of total temperature given
in Eq. (3) is modified as

T=T+T+T, (8)
in the presence of the T field.

2.2. Image fields for heat sources

The basic principle of the image source method for three sim-
ple 2D geometries is illustrated in Fig. 4. By mirroring the
original source I with respect to boundary BV /0B®, image
source J = 1/J = 2 is created. If the energy associated with im-
age source J = 1 is taken identical to the energy of the regular
source I, Q, the heat flux at BV due to the source I and the
image source J = 1 is zero, while if the energy of the image
source J = 1 is —Q") (negative energy implies a heat sink), the
temperature at B") due to the source / and the image source
J = 1lis zero. The same relation also holds for the image source
J = 2 and the boundary dB®. At a first glance this suggests the
boundary conditions given in Egs. (1b)-(1d) can thus be satis-
fied by adding image sources only. However, the existence of
the image source J = 2 infringes with the boundary condition
at BV, and hence a second order reflection, i.e., a second or-
der image source for the image source J = 1 is required. In
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Figure 4: Schematic illustration of image source method in 2D examples. The
regular source is indicated with a red point while the images sources are indi-
cated with blue points. In (a) boundaries dB" and B® are parallel to each
other, J/ = 1 and J = 2 are first order image sources for the regular source / with
respect to BV and 9B, respectively. The second order image source J = 3
is the image of J = 2 reflected with respect to B, while J = 4 is the image
of J = 1 reflected with respect to dB@. Since there is no bound on the order of
reflection in this geometry, an infinite number of image sources is needed. In
(b) boundaries AB) and dB® are orthogonal to each other, and a single second
order image source, J = 3 suffice. In (c) the angle between the boundaries dB"
and B®@ is less than 90°, and two second order image sources with J = 3 and
J =4 and a single third order image source with J = 5 are required. (For inter-
pretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 4b the image source with index J = 3 is an example of a
second order image source which is the mirror image of image
source J = 2 with respect to BV, Similarly, for the boundary
0B®, a second order image source which is the mirror image of
image source J = 1 with respect to dB® is required. It can be
observed from Fig. 4b, orthogonality of 3B and B®, yields
a single second order image source J = 3 to be sufficient. In
Fig. 4c, two second order image sources, i.e., J =3 and J = 4
and a single third order image source with an index J = 5 is re-
quired. Finally for the two parallel boundaries shown in Fig. 4a,
an infinite number and order of image sources is necessary.

Generally, for a 3D BVP with N regular sources, either in-
finitely many or a large number of image sources are required
to satisfy the boundary conditions given in Egs. (1b)-(1d). Even
if the geometry dictates a finite number of image sources such
as the 2D examples depicted in Fig. 4b and c, the computational
costs increase as the number of image sources increases [40].
Howeyver, it can also be observed that as the order of reflection
increases, the distance between the boundary and image source
also increases (see Fig. 4). Consequently, the temperature field
due to higher order image sources will be sufficiently smooth
at the boundary and thus can be accounted in the numerical so-
lution of 7. In this way a limited number of image sources is
introduced only when the distance between the regular or im-
age source being mirrored and the boundary of interest is less
than a critical distance H.. Otherwise the boundary correction
is enforced by the 7 field only.

The temperature field 7 due to all image sources is repre-
sented by

T =

Z T(J)’ 9)

N N
=1 J=1

where N, is the total number of image sources associated with
regular source 7, and T is the temperature field due to a point

image source J where J = 1,...N;. When t > t(()l), similar to
7O, TY is expressed as

, 04 ~(r0)

TD(x;, 1) = exp (10)

4pc, (ma (1 — T0?))*? da (1 —10")

where R is the distance between the material point of interest
x; and the image source position xﬁj). For the image sources



reflected by dVi,, the energy of the image source Q) is equal
to Q), whereas for the image sources reflected by 0Vio, Q"
is equal —Q"), i.e., these act as point heat sinks. It is worth em-
phasising the use of image fields is suitable only if the body V is
a convex polyhedron (where any two points within the polyhe-
dron can be connected by a line) which we exclusively consider
in the remainder of the paper.

The complimentary temperature field 7 is still governed by
Eq. (7a). However, according to Eq. (8), the boundary condi-
tions are now modified as

T=T.-T-T on 0Viy and, (11a)

ar T aT

a—Xil’l,' = —6—Xil’l,' - 6_xl~ni on HVm. (llb)
with the initial condition

T(x;,0) = T(x;,0) — T(x;,0) — T(x;, 0), (12)

where T'(x;,0) = T..

Recall that the gradients in the 7 and T fields diminish
rapidly away from the source in the spatial domain. Conse-
quently, we limit the number of image sources by not only
the critical distance H, consideration described above, but also
with a temporal consideration. The gradients in the 7 and T
fields also diminishes with time, i.e., temperature field spreads
away, c.f. Eq. (10). Thus, after a critical time ¢, is elapsed
after source / is created, we anticipate the 7> and 7 fields
for J = 1,...,N; to be sufficiently smooth and hence can be
well represented within the 7' field. Consequently, when ¢ > 7.,
source I and all the image sources associated with source I:
J =1,..., N are deleted and their contribution to the total tem-
perature is transferred to 7' as

Ny
Te=T+T0+ Y TV (13)
J=1

The critical spreading time is taken to be #, = t(()l) + (pl,g)2 /4a
where [, is the finite difference cell size used in solving 7" and
p is a numerical parameter to be determined. The efficiency of
the proposed model is further improved by eliminating regular
and image sources that have spread out.

We note in passing, although the laser is discretised as point
heat sources, it is possible to consider Gaussian surface sources
or even volumetric sources. Yang and Ayas [41] compared the
temperature fields obtained by treating laser scanning vectors
as a set of point, surface and volumetric sources. For process
parameters identical to the present study, it is found that when
the laser spot radius is 35 um, the resultant temperature fields
dictated by these three different type of sources are virtually
identical even at the close vicinity of the source location at all
times [41]. Consequently, in this paper scanning vectors are
described by a set of point sources to enhance the computational
efficiency of the simulation.

In conclusion, the assumption of an semi-infinite space con-
sidered for T field does not influence the accuracy of the total
solution, i.e., the combination of the analytical solution T plus

the corresponding corrections 7 and T indeed satisfies the cor-
rect boundary conditions which, of course, reflect the geometric
complexity and the finite dimensions of the product at hand.

3. Validation

In this section, we analyse the temperature-time evolution
due to a single laser scan vector applied on a semi-infinite solid
and compare our predictions with relevant experimental find-
ings reported in [42]. Since in our formulation, a laser scan
vector is represented with a number of point sources which is
controlled by the time step At we shall determine:

(i) the appropriate time step At for the discretisation of laser
scanning and,

(ii) the appropriate values of material properties that are
deemed temperature independent in the current linear
framework.

Finally, a thermal problem with known analytical solution is
studied aiming to determine the fidelity of the T and T fields
for imposing boundary conditions.

3.1. Laser scanning on a semi-infinite plate

Wits et al. [42] built single lines of Ti-6Al-4V alloy with
SLM on a large base plate of the same alloy. The dimensions
of the base plate were length L; =30 mm, width L,, =30 mm
and depth L; =5 mm, while laser scan vectors of 6.5 mm with
laser spot radius of 35 um were applied on a powder layer with
a thickness of 50 um. Neighbouring lines were built sufficiently
apart in order to ensure the temperature field associated with a
previously built line had no effect on the current line. The pro-
duced samples were cut across and inspected with a microscope
and the measured melt-pool dimensions along the line were re-
ported for a range of SLM process parameters.

We consider the large base plate of Ti-6Al-4V alloy schemat-
ically shown in Fig. 5 and a single laser scan vector applied to
build a 6.5 mm long line. Since the above quoted dimensions
of the base plate are much larger than the corresponding dimen-
sions of the line built, we treat the base plate as a semi-infinite
solid. The time evolution of the temperature field is then di-
rectly predicted as

M
T(xi,0) = Y T,
I=1
_(R<1>)2 (14)
RV )

4pc) (7ra))3/2 = (- Tg))3/2

while 7' and T fields have zero contribution. > Here 7 is the
temperature field associated with the point source I given by
Eq. (5) with Q¥ explicitly given as PAt.

ZPreviously we have explained that it is customary to impose a temperature
boundary condition at interface between the body and the base plate. However,
for the first few layers of the built the temperature of base the plate indeed
increases because of the close proximity of scanning vectors. That is why the
temperature boundary condition 7" = T is not imposed in Section 3.1



Figure 5: A schematic illustration of a single scanning vector indicated with
a red arrow applied on a large base plate and the resulting material built. At
a certain moment, the laser reaches Point G. The point labelled with G1 is
located on the scanning vector and has a distance of 100 um to Point G. The
temperature of Point G1 is used to investigate the convergence of the proposed
model. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

We consider the time when the the laser arrives at Point G
which marks the end of the single scan vector applied (see
Fig. 5). The non-dimensional parameter Ta,/7Ta;/2, which rep-
resents the temperature field T, calculated with a time step At
divided by the temperature field T calculated with a time
step At/2 is studied to evaluate the temporal convergence be-
haviour of 7. From Eq. (14), it can be inferred that Ta,/T a2
depends on (i) the distance between the point of interest and
the source positions RY) * and (ii) the thermal diffusivity a. In
Fig. 6, Ta:/Ta2 1s given as a function of Atz at point G1 on the
scanning vector located 100 um away from the Point G (see
Fig. 5). Since the thermal diffusivity o for Ti-6Al-4V ranges
between 2.95x107-8.02x107% m?/s as a function of tempera-
ture [43], results are plotted for the selected values of @. The
convergence is attained for At = 0.5 x 10~*s irrespective of the
chosen « value. Therefore, this time step will be used in the re-
mainder of the paper. Convergence has been analysed also for
various material points other than G1 and all exhibited conver-
gence for At = 0.5 x 107%s.

It remains to calculate the melt pool width w, i.e., the width of
material points around the scan vector heated above the melt-
ing point (7, = 1928 K) at the top surface of the base plate.
However, note that Eq. (14) is based on the linear heat equa-
tion and requires the material parameters p, ¢, and k to be tem-
perature independent whereas, in reality, heat capacity ¢, and
the conductivity k have a significant temperature dependence.
Therefore the thermal material properties in our model are de-
termined upon comparing model predictions with the experi-
mental measurements and FE predictions of Wits et al. [42].
In Fig. 7, melt-pool width w is plotted against energy density
P/v for selected values of P. It is found that the melt pool
width, predicted with the material properties listed in Table. 1
yields the best agreement with the experimental measurements
of Wits et al. [42]. The thermal material properties tabulated
in Table 1 correspond to a temperature value of 2500 K [44]
which is above the melting point. This is consistent with the

3Note that / = 1,..., N while the number of sources N is now a function of
time step At
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Figure 6: Temporal convergence behaviour of temperature for Point G1. Ty, is
the temperature at Point G1 when the laser reaches Point G with the time step
At, while T, is the temperature calculated with the time step At/2.

fact that material points determining the width of the melt-
pool being indeed around or above the melting point; see also
[19] for a similar consideration. It is important to note that for
@ = 9.60 x 10~°m?/s corresponding to the temperature 2500 K,
convergence is still achieved with the reference time step value
At = 5 x 1073s. It is important to note that for different energy
densities and laser power values, good agreement between the
model and the experimental data is observed in Fig. 7. How-
ever, for the laser power of 400 W, the highest value consid-
ered, model predictions overestimate the size of the melt-pool,
when the energy density exceeds 600 J/m. This is most prob-
ably due to more pronounced convection and radiation at high
power and high energy density conditions. As mentioned, these
effects have been neglected in our model. Moreover, phase tran-
sitions — especially evaporation — are also expected to play a
more important role at high power and energy densities [42]

Table 1: Determined material properties for the semi-analytical model.

Conductivity Heat capacity = Density ~ Absorptivity fraction
k (W/mK) cp UkgK)  p (kg/m’) A()
42 990 4420 0.818

3.2. Scanning on a finite domain

Next, we consider the simplified problem of applying 20
unidirectional laser scanning vectors on a thermally insulated,
cuboid body with the dimensions of [, = [, = [, = 2 mm, as
sketched in Fig. 8a, where the unidirectional scanning pattern
is illustrated in Fig. 8b. A total of 20 scanning vectors each
having a length of / = 1.8 mm are spaced apart with & = 80 um.
Each scanning vector is discretised by an appropriate number of
point sources. For a point source in an insulated cuboid, the ex-

act solution of temperature field Téi)m is known [39] and given



Table 2: Process parameters

Laser power Laser velocity Laser spot radius Chamber Scan vector length Hatch spacing Solid layer thickness
temperature
P W) v (m/s) 7 (um) T. (K) [ (mm) h (um) dy (um)
35 0.3 35 1.8 80 100

in Appendix A. The infinite sums in Eq. (A.1) are approximated
by taking k = m = n = 100. Consequently, the exact solution
of the laser scanning problem at a material point of interest x;
can be attained by superposition,

M

Texacr(5) = ) Ti0y (1), (15)

I=1

Finally, by means of comparing the exact solution with the pre-
dictions of the proposed semi-analytical scheme, the accuracy
of the 7' and T fields can be analysed.

Next, we employ the semi-analytical model to the problem.
In order to model a thermally insulated domain, a no heat-flux
condition is imposed at 9V, instead of the fixed temperature
boundary condition described previously. Recall that a set of
point sources represents the scanning vectors and in the semi-
analytical model the temperature field is decomposed into the
T, T and T fields as given in Eq. (8). For any material point
x; within the body, T can be readily calculated using Eq. (4)
and (5). We note in passing, the no-flux boundary condition at
0Viop 1s implicit in Eq. (5). However, when the separation be-
tween a source and AV, is smaller than the critical distance *
H. = 0.75 mm, image source(s) are generated to partially im-
pose the no-flux boundary condition. The selected value of H,
is approximately 21 times the spot radius ». The 7" solution is
also calculated analytically at a material point of interest using
Eq. (9) and (10). Finally, the solution of T is obtained with an
explicit finite difference scheme, centred in space and forward
in time. A total number of 64 cubic finite difference cells is used
to discretise the body, resulting in a cell size of [, = 0.5 mm,
which is approximately 14 times of the spot radius r. The small
number of cells used in turn is the key to the computational effi-
ciency of the numerical solution and hence the semi-analytical
scheme.

As explained above, T can be readily calculated for any ma-
terial point x; within the body analytically while in contrast, the
T field is computed and hence known only at the finite differ-
ence grid points, i.e., the nodes of the finite difference cells.
Therefore, the value of 7'(x;) on a material point x; is estimated
by a linear interpolation of known 7" values given by

L
Ti) = ) dOT(x?), (16)

q=1
where ¢ = 1,..., L is the index for the grid point with T(xf.q) )
and L is the total number of grid points of the finite difference

4The value of H, has been determined by analysing the accuracy of T for a
source located close to a boundary

cell which contains x;. For an 8-node hexahedral finite differ-
ence cell (L = 8) used in this study, the interpolation function
@@ for grid point ¢ reads

0 = (1 + 64, an

where ¢; is the normalised position of x; in a right handed local
coordinate system having an origin located at the center of the
cell and {i(") is the normalised position xl(.") given in the same
local coordinate system.

Regular and image sources that spread for a duration of
(ple)2 /4a = 0.0146 s with p = 1.5 are deleted and their contri-
bution to the total temperature is transferred to 7" in accordance
with Eq. (13). For the finite difference cell size [, = 0.5 mm,
the time step Az = 5 x 107> s ensures the numerical stability
of the explicit finite difference scheme (3aAt/2 < 1/2). For
the sake of completeness, the material properties and process
parameters are listed in Table 1 and Table 2, respectively.

The temperature history predicted by the semi-analytical
model, at Point A (shown in Fig. 8b), normalised with melting
temperature 7, is plotted in Fig. 9. The exact solution Tex,ct at
Point A normalised with T}, is also included in Fig. 9. Perfect
agreement between the two solutions is observed, demonstrat-
ing the fidelity of the 7" and T fields to impose boundary condi-
tions with the given numerical parameters. It can be observed
from Fig. 8b that boundary conditions has a pronounced effect
on the temperature at point A. This due to given proximity of
point A to the surface of the body. Comparing the exact and
semi-analytical solution at various different points also yielded
a perfect agreement.

We end this section with another case study reminiscent to
the one discussed in Section 3.1 where a single laser track is
scanned directly on a Ti-6Al-4V base plate with length L; = 4
mm, width L,, = 2 mm and depth L; = 0.5 mm, see Fig.5. Fu
and Guo [45] built a single line along the length direction of the
base-plate using a powder layer thickness of 30 um. A fixed
laser speed of 0.2 m/s was used but the laser power was var-
ied in the range of 20 to 80 W and the corresponding melt-pool
width was measured. In Fig. 10, melt-pool width as reported
by Fu et al. [45] is given along with the predictions of the
semi-analytical model. The error bars of the experimental data
denote the variation in measurement. Since the dimensions of
the base plate are relatively small, in contrast to the case study
described in Section 3.1 where the base plate is considered as a
semi-infinite space, here it is appropriate to consider the base-
plate as the body under consideration V, c.f. Fig. 2a. Con-
sequently, we make use of the image sources and the compli-
mentary numerical correction field to account for the boundary
conditions (7" = 20 °C at the bottom surface and no heat flux at
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Figure 7: The melt-pool width w as a function of the energy density P/v for
a laser power of (a) P = 50 W (b) P = 200 W (c) P = 400 W. The results
predicted by the analytical solution of Eq. (14) are given along with the experi-
mental measurements and FE predictions reported by Wits et al. [42].
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Figure 8: (a) Schematic representation of body V where scanning vectors are
applied to its top surface dViop With (b) a unidirectional scanning pattern and
with (c) a zigzag scanning pattern. The coordinates of the points labelled with
A, B and C, given in terms of mm are (1.9, 1.8, 2), (1, 1, 2), (1.9, 0.2, 2),
respectively. The temperature field and the dimension of the melt-pool will be
studied when the laser scans the 3™, 8™ and 18" track, which are plotted as the
black lines.



1.2 T j
— Exact ]
I Semi-analytical
< 08 1
g ]
S 0.6 1
0.4} va 1

|-J
0.2 : !
0 0.15

0.05 0.1
t(s)

Figure 9: Normalised temperature 7'/T), at Point A given in Fig. 8 is plotted
as function of temperature. The temperature predicted by the semi-analytical
model is in perfect agreement with the exact solution.

the lateral surfaces of the base plate [45]). The cell size [, time
step At and critical distance H, for image sources are the same
as the case study shown in Fig. 8. The absorptivity fraction is
calculated to be 0.77 according to [19] for a powder layer thick-
ness of 30 wm and the thermal properties tabulated in Table. 1
were used in the calculations. Good agreement between the ex-
perimental findings and the model predictions are observed in
Fig. 8 which further validates the fitting described in Section
3.1 for the temperature dependent material parameters.
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Figure 10: The melt-pool width w as a function of the energy density P/v.
The results predicted by the semi-analytical model are given along with the
experimental measurements by Fu and Guo [45].

4. Process modelling of SLM

In Section 3.1, we were able to capture the essential ther-
mal phenomena taking place during SLM by way of discretis-
ing a laser scan vector into point sources. Subsequently in
Section 3.2, the accuracy of the numerical scheme with image
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source considerations of the semi-analytical approach were val-
idated. We now proceed with employing the semi-analytical
approach to problems more closely related to the actual SLM
process and investigate modelling of (i) building a single layer
and (ii) building multiple layers of a body while keeping all
the process parameters fixed to their reference values given in
Table 2.

As described in the previous section, hexahedral finite differ-
ence cells with 8 grid points are used to resolve the 7" field. For
the single layer calculations, cubic finite difference cells with
a length of /[, = 0.5 mm is used. Recall that in Section 3.2, it
was demonstrated this mesh size gives the desired level of accu-
racy. For the multilayer calculations, finite difference cells with
a thickness 0.1 mm are adopted such that each new layer with a
thickness of 0.1 mm is one finite difference cell thick, whereas
the other dimensions of the cells are kept at 0.5 mm.

4.1. Building a single layer

We consider the 2 mm X 2 mm X 2 mm cube described in
Section 3.2 and illustrated in Fig. 8a which is bonded on a base
plate across dVy. Temperature is fixed to the chamber tem-
perature, i.e., T = T, at the bottom surface 9V}, while a no
flux boundary condition is imposed on the remaining surfaces,
i.e., 0Vig U dViop. Building of an additional layer on top of
the existing body is by applying two different scanning pat-
terns: unidirectional scanning and zigzag scanning, as shown
schematically in Fig. 8b and Fig. 8c, respectively. A total of
20 scanning vectors, each having a length of / = 1.8 mm that
are spaced apart 4 = 80 um are applied. Since all the process
parameters are fixed to their reference values, the effect of two
different scanning patterns on the temperature history and melt-
pool dimensions are investigated.

The normalised temperature 7'/T,, distributions on the sur-
face 0V, at selected time instances of the building process are
shown in Fig. 11a—c for the unidirectional scanning pattern and
Fig. 12a—c for the zigzag scanning patterns. The temperature
fields shown in Fig. 11a, b and c are given for time instances
corresponding to completion of scanning tracks drawn in black
in Fig. 8b while the temperature fields shown in Fig. 12a, b
and c are given for time instances corresponding to comple-
tion of scanning tracks drawn in black in Fig. 8c. Similarly,
normalised temperature 7'/T,, distributions at above described
time instances, on the x; — x3 plane at various cross-sections are
shown in Fig. 11d — f for the unidirectional scanning pattern
and in Fig. 12d — f for the zigzag scanning pattern. Local melt-
ing in the vicinity of the laser spot is observed from Fig. 11 and
Fig. 12. The molten material subsequently solidifies rapidly
as the laser spot moves away. When the 3™ scanning vector
is completed, i.e., when r = 0.018 s (see Fig. 11a and d and
Fig. 12a and d) the body is by enlarge at its initial temperature
T,, irrespective of the scanning pattern. When the 18" scan
vector is applied at ¢ = 0.108 s, (see Fig. 11c and f and Fig. 12¢
and f) the average temperature of the body is slightly increased,
whereas the material points in the vicinity of the first few scan
vectors cooled down to the initial temperature.

The normalised temperature 7'/ T, at Point B and Point C, (as
shown in in Fig. 8b and c, respectively) are plotted as a function
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Figure 11: Snapshots of normalised temperature 7'/T}, distribution in the x; — x plane (top row) and in the x; — x3 plane (bottom row) at (a) and (d) t = 0.018 s
corresponds to the end of 3 scan vector (b) and (e) 7 = 0.048 s corresponds to the end of 8t scan vector and (c) and (e) 7 = 0.108 s corresponds to the end of 18t
scan vector. For (a), (b) and (c) x3 = 0 while for (d) x, = 1.6 mm, (e) x, = 1.2 mm and (f) xo = 0.4 mm. All the results are for the unidirectional scanning pattern.
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Figure 12: Snapshots of normalised temperature 7/T}, distribution in the x; — x, plane (top row) and in the x; — x3 plane (bottom row) at (a) and (d) = 0.018 s
corresponds to the end of 3 scan vector (b) and (e) r = 0.048 s corresponds to the end of 8t scan vector and (c) and (e) + = 0.108 s corresponds to the end of 18t
scan vector. For (a), (b) and (c) x3 = 0 while for (d) x, = 1.6 mm, (e) x, = 1.2 mm and (f) xo = 0.4 mm. All the results are for the zigzag scanning pattern.
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Figure 13: Prediction of temperature history of Point B and Point C for unidi-
rectional and zigzag scanning patterns.

of time in Fig. 13. Since Point B is located at the center of 9V,
and in between two adjacent scan vectors, temperature history
of Point B is identical for the two scanning patterns considered.
Two distinct temperature peaks are observed corresponding to
the 10" and the 11" scan vectors that are passing near Point B.
For Point C, the peak temperature is attained at a later stage as
anticipated.

It is important to investigate the melt-pool dimensions since
this is an important quality indicator for the product being built.
For this purpose we determine the melt-pool dimensions around
each scanning vector by way of monitoring the maximum width
w and depth d of the material points that are above T,. In
Fig. 14 the melt-pool width w and depth d are depicted as a
function of the x; coordinate, at selected instances of the pro-
cess, for the two different scanning patterns. For the unidirec-
tional scanning pattern, as shown in Fig. 14a and b, the melt-
pool width and depth are small at the beginning of each scan-
ning vector but quickly reach a higher steady-state value and
subsequently diminish as the scanning vector is close to com-
pletion. The smaller melt-pool dimensions in the beginning and
towards the completion of a scan vector can be rationalised as
follows. Consider a material point x‘f located on the trajectory
of a scan vector where melt-pool dimensions w and d are be-
ing determined. As the laser spot is approaching towards xf ,
the temperature starts to increase and a melt-pool starts to form
when temperature surrounding xf exceeds T,,. Melt-pool di-
mensions w and d keep increasing as the laser spot reaches to
x/ and the melt-pool dimensions reach their maximum slightly
after the laser passes x7. Therefore the temperature of x! is
increasing both when the laser beam is approaching to and dis-
tancing away from xf . Consequently, smaller melt pool dimen-
sions are observed towards the start and end of scan vectors.

Overall melt-pool dimensions increase for unidirectional
consecutive scan vectors as the layer being built approaches
completion. This is caused by the increase in average temper-
ature of the body with more of the laser scan vectors being ap-
plied. A similar trend of an increase (at least in peak values) of
melt-pool dimensions occurs when successive scan vectors are
applied in the zigzag scanning pattern where the amount of in-
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crease in melt-pool dimensions is more pronounced as depicted
in Fig. 14c and d. However, the typical development of w and
d across the x; coordinate shows that the maximum melt-pool
dimensions are attained soon after the beginning of each scan
vector. This is because of the nature of the zigzag scanning pat-
tern. At the beginning of a current scanning vector trajectory,
heating is prominent since the effect of the previous scan vector
is still significant.

4.2. Building multiple layers

In this section, we model building multiple SLM layers on a
2 mm X 2 mm X 0.6 mm body as sketched in Fig. 15a that is
attached to a base plate at its bottom surface. The total height of
the body will reach 2 mm after building 15 layers with a thick-
ness of 0.1 mm each. Building of the first layer is essentially
laser scanning of the top surface with the semi-analytical model
as discussed in the previous section. However, once scanning
of the layer is completed, the top surface 9V, shifts up such
that the modelled domain is extended, i.e., a new layer of finite
difference cells is introduced. During the SLM process, prior
to the laser scanning of a layer, a new layer of powder is laid
down with a recoater which typically takes around 10 s [46].
Given the high conductivity of a solid metal, during the pow-
der recoating, solid can cool down to its initial temperature. In
Section 4.1 a single layer simulation showed that the tempera-
ture throughout the body of dimensions 2 mm X 2 mm X 2 mm
cools down to its initial temperature 7, in only 0.88 s. There-
fore, it suffices to assume a recoating time of 0.88 s for the
geometry considered. The duration of laser scanning of a 2 mm
X 2 mm layer depicted in Fig.8 is 0.12 s with a scan speed of
v = 300 mm/s.

Two scanning strategies denoted as fixed and alternating are
considered using a unidirectional scanning pattern. In the fixed
scanning strategy, the direction of the scan vectors in consec-
utive layers denoted by i = 1,...,15 are shown in Fig. 15b.
In the alternating scanning strategy odd numbered layers have
the identical scanning pattern of the fixed scanning strategy
whereas scan vectors are rotated by 90° in clockwise direction
for even numbered layers as shown in Fig. 15c.

The temperature history in terms of normalised temperature
T/T,, at Point C” on layer i is given for fixed and alternat-
ing scanning strategies in Fig. 16a and Fig. 16b, respectively.
For the fixed scanning strategy, the evolution of temperature
at Point C on different layers are similar albeit the value of
the peak temperature increases slightly as the number of layers
built increases (see Fig. 15a). The peak value of temperature
at Point C?” for the whole scanning process, Tpeax is plotted
against time in Fig. 16¢c for both scanning strategies consid-
ered. It is observed that for the fixed scanning strategy, Tpeax
increases for the first few layers deposited but then reaches to a
plateau value. We rationalise the increase by observing that if
the distance between the uppermost layer and the base plate is
small, the T = T, boundary condition imposed on 9V, lowers
the peak temperature value attained at the top surface dVip. It
can be seen from Fig. 16(c) that for i > 10 the effect of the
base plate which essentially functions as a heat sink ceases to
affect the Tpeqx value. For the alternating scanning strategy, the
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Table 3: Computation time of the single layer build problem with 20

unidirectional scanning vectors with semi-analytical model.

15

Temperature fields Computation time (s)
T 5.3
T 75
T 3.7
T=T+T+T 16.5

temperature history of Points C” at odd numbered layers are
identical to those of the fixed scanning strategy. For even num-
bered layers, the peak temperature reduces significantly and it
occurs for Point C” (where i is an even number) when the laser
scans the next layer i + 1 (see Fig. 16b and c). This is because
the distance between the last scanning vector of layer i + 1 and
Point C” is smaller than the distance between the last scanning
vector of the layer i and Point .

For the current example, since all material points cool down
to their initial temperature 7, after 0.88 s, the temperature field
due to scanning of a particular layer is independent of the scan-
ning of the previous ones. This implies that subsequent layers
can be simulated in a parallel algorithm. In this way, increasing
the number of layers will only result in a linear increase of the
computational cost.

4.3. Computational cost

The CPU time of the single layer build problem as shown
in Fig. 8b is determined in order to analyse the computational
costs associated with the semi-analytical model. Here 20 uni-
directional scanning vectors are applied on the top surface. Re-
call that dimensions of the model domain are 2 mm X 2 mm X
2 mm, the total vector length scanned is 36 mm and the total du-
ration of the build was 1 s. For a finite cell size of [, = 0.5 mm
and a time step of A = 5 x 107 s, the total CPU time becomes
16.5 s > which can be further decomposed into computational
time for calculating T, T and T, as shown in Table. 3. It can be
observed that the total time spent for the solution of the 7" fields

3Calculations are performed using a single-core Intel i7 - 6600U quad-core
processor with a clock a speed of 2.60 GHz and with 8 GB RAM.



with the finite difference method is only around 22 % of the to-
tal CPU time. The relatively low computational time required
for the numerical solution is due to the coarse finite difference
grid that can be employed in the semi-analytical approach.

5. Conclusions

We have presented a semi-analytical method for modelling
the thermal evolution of a body during SLM in a highly compu-
tationally efficient manner. The method relies on discretisation
of laser scanning vectors using point heat sources. The temper-
ature evolution is then computed by superposition of tempera-
ture fields due to sources (well-known in analytical form) and
complimentary fields to enforce the boundary conditions. The
complimentary fields comprise of image sources again with a
known analytical solution and a smooth correction field that is
solved by finite differences. Since the steep thermal gradients
associated with the laser heating is accounted for analytically,
the numerical solution can be accurately performed on a coarse
finite difference grid. Consequently, the two key advantages of
this new model are:

(i) computational costs of the thermal process simulations
are extremely low, enabling simulations with multiple lay-
ers for macroscopic components with dimensions in the
mm length scale;

the effect of different laser scanning patterns can be inves-
tigated since laser scanning vectors are explicitly mod-
elled with a high level of accuracy.

(i)

Careful examination of the material and numerical parameters
required for the semi-analytical model has been performed, so
that a good match with experimental data from literature and
exact solutions of simple problems are attained. The proposed
model is also expected to be capable of modelling similar metal
additive manufacturing process, such as direct energy deposi-
tion, because of similarity in boundary conditions. We envision
the presented framework can be further utilised to predict the
distortions and residual stresses that arise during the SLM pro-
cesses upon coupling the present thermal model with a temper-
ature dependent elasto-plastic mechanical model.

A limitation of the presented semi-analytical framework is
also identified. Image fields can only be applied to bodies hav-
ing convex surfaces only. Moreover, finding the necessary im-
age sources and their locations easily becomes cumbersome for
complex geometries. For these cases a pragmatic approach is to
perform the boundary correction with the numerical solution of
T fields only. A compromise between the level of accuracy and
the computational efficiency determines the degree of spatial
discretisation in the vicinity of the boundaries. Finite element
implementation instead of the finite difference analysis is then
more suitable which allows for mesh refinement in the vicinity
of the boundaries.

In order to reduce the number of sources and thus required
images, discretisation of the laser scan vectors can be per-
formed using line heat sources instead of point sources. We
anticipate a further increase in computational efficiency upon
using line heat sources. The extension of the semi-analytical
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method using line heat sources is our current research focus
and preliminary results can be found in [47].
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Ap

pendix A. Exact solution of a point source in an insu-
lated cuboid

The analytical solution of the temperature field due to an in-
stantaneous point source within an insulating cuboid is given
by Carslaw and Jaeger [39] as

0
T is )= ———
@) = e
d 2 mrx
[1+2 ; exp(—an(t - TO)%) cos(mzlxl Jeos(— Ly]x
- 2 nx,
[1+2 exp(-an(t - 79) 75) cos() cos(——2)]x
n=1 lh lh lb

J

],
(A.1)

> k2 k knx
[1+2 ; exp(—cm2(t - To)E) COS(%) cos( L

where I,, [, and [, are the cuboid dimensions and x; is the lo-
cation of the point source which is generated at t = 1y. For
sufficiently high values of m, n and &, Eq. (A.1) can be regarded
as the exact solution.
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