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Abstract—Automatically inferred invariants have been found to
be successful in detecting regression faults in traditional software,
but their application has not been explored in the context of
spreadsheets. In this paper, we investigate the effectiveness of
automatically inferred invariants in detecting regression faults in
spreadsheets. We conduct an exploratory empirical study on eight
spreadsheets taken from VEnron and EUSES corpora. We apply
automatic invariant inference to them, create tests based on the
inferred invariants, and finally seed the sheets with faults. Results
indicate that the effectiveness of the inferred invariants, in terms
of accuracy of fault detection, largely varies from spreadsheet
to spreadsheet. The effectiveness is found to be affected by the
formulas and data contained in the spreadsheets, and also by the
type of faults to be detected.

Keywords—Spreadsheets, Invariant Analysis, Regression
Faults, Fault Detection, Software Quality, End-user Development

I. INTRODUCTION

Invariant-based Testing is a spreadsheet testing ap-
proach [1], where values of spreadsheet cells are tested
(checked) by means of conditional formulas. Based on adher-
ence or violation of invariant properties of a spreadsheet, the
conditional formulas evaluate to either true or false, indicating
passing or failing of the tests. The approach is practiced in its
manual form, where the invariants are manually specified, and
the conditional test-formulas are manually created. However,
manually specifying invariants, and creating tests based on
them is time-consuming for the users [1]. It is a motivation
for developing automatic approaches in which automatically
inferred invariants would play a central role. Such approaches
could benefit from already existing invariant inference tech-
niques such as Daikon [2].

Since automatic invariant inference techniques analyze the
existing state of a program to infer invariants, tests based
on such invariants are expected to be particularly suitable
for detecting regression faults—faults that cause software
to stop functioning as intended after it has been changed.
Incidentally, automatically inferred invariants have been found
useful for detecting regression faults in conventional software
systems [3]. However, the idea of using them has not been
explored in the context of spreadsheets. Therefore, in this

paper, our goal is to investigate the effectiveness of automati-
cally inferred invariants for the purpose of detecting regression
faults in spreadsheets. Also, in this paper, we use the term
inferred invariant to imply automatically inferred invariant,
unless specified otherwise.

To fulfill our goal, we conduct an exploratory empiri-
cal study with eight spreadsheets from available spreadsheet
corpora VEnron [4] and EUSES [5]. We use the invariant
inference tool Daikon [2] to automatically infer invariants
from the spreadsheets. Next, we augment the spreadsheets
with tests based on the inferred invariants. Finally, to mimic
regression faults, we seed the augmented spreadsheets with
faults according to a fault model based on a set of spread-
sheet mutation operators [6]. To mitigate biasing in the fault
seeding process, instead of seeding manually, we develop a
spreadsheet mutation tool called Sprutagen. We then observe
the effectiveness of the invariant-based tests in detecting those
faults. As such, we measure the accuracy of fault detection,
and investigate the factors that may be affecting the accuracy.
Results show:

• The accuracy of inferred invariants in detection of regres-
sion faults, based on the recall rate of fault detection,
shows extreme variation (0-88%) from spreadsheet to
spreadsheet, with mean recall of 37%.

• The accuracy is affected by the type of formulas and
data prevalent in the spreadsheets; which in turn are re-
sponsible for the inference of specific types of invariants.
The accuracy is also affected by the type of faults to be
detected.

These results imply that inferred invariants are selectively
effective; they could be employed on spreadsheets of particular
varieties, containing specific types of formulas and data, which
allow the inference of more effective type of invariants.
Detailed discussion of the types are presented in subsequent
sections of this paper. As such, our findings allow for an
initial assessment of the potential of inferred invariants. The
contributions of this paper are:

1) Findings of an exploratory study, assessing the effective-
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Fig. 1. A portion of a typical Excel spreadsheet, with the data targeted for
invariant inference highlighted in orange

ness of inferred invariants in detecting regression faults
in spreadsheets.

2) A discussion of the factors affecting the effectiveness of
inferred invariants, based on the outcomes of the above
study.

3) Conception of an approach that would employ inferred
invariants, as part of automatizing the existing manual
practice of invariant-based spreadsheet testing.

II. BACKGROUND

A. Spreadsheet Invariants

An invariant is defined as a logical property of a pro-
gram that holds true during the entirety or some part of
its execution [7]. In the context of spreadsheets, invariants
are properties of the cells of a spreadsheet that hold true
throughout the context of the spreadsheet’s usage [8]. The
properties are typically expressed in terms of the labels of the
applicable cells, either individually, or on the basis of rows
or columns. For example, in case of a financial spreadsheet,
“TotalCredit must be equal to TotalDebit” is an invariant
which will be applicable to cells labelled as TotalCredit and
TotalDebit. In this case, the invariant is originating from
a domain-specific rule that is established in the domain of
finance.

As a second example, consider the spreadsheet partly shown
in Figure 1. For this spreadsheet, “Settled Price is always
greater than 1.51” is an invariant. It is evident that this
invariant represents the inherent property of the data that
is present in the spreadsheet. Other examples of invariants
include properties of column data such as Upper Bound,
Lower Bound, Range, set of permitted values referred to
as “One of” and also interrelations between column data.
As such, spreadsheet invariants can originate based on 1)
domain-specific, or context-specific rules, specified by the
users, as well as on 2) the inherent properties of the data
inside spreadsheets.

B. Spreadsheet Mutation Operators

Seeding faults based on a fault model is a commonly
applied strategy for evaluation of testing or fault detection
approaches [3], [9]. Hence in our study, we seed faults based
on a fault model that uses existing spreadsheet mutation
operators developed by Abraham and Erwig [6] as its basis.

In mutation testing [10], faults are seeded into programs
to be tested, generating slightly different programs called
mutants. Test cases need to be created such that the original
programs yield test outcomes that are different from those
yielded by the mutants, which is referred to as killing of
the mutants. Taking into account the competent programmer
hypothesis and coupling effect assumptions [11], the seeded
faults are assumed to represent faults introduced by program-
mers, and hence, a test suite that kills mutants is assessed
to be effective in detecting faults. As such, mutation testing
allows for an evaluation of the effectiveness of testing and
fault detection approaches.

Mutation operators are a set of operators in a programming
language, that are able to mutate a program in that language,
i.e., introduce faults into the program to generate mutants [12],
[13].

Abraham and Erwig [6] developed a set of mutation oper-
ators for spreadsheets. Their mutation operators reflect error
types reported in the spreadsheet literature [14], [15], [16].
They have also been used for evaluating spreadsheet test suites
and spreadsheet debugging tools [6]. Hence, we use them as
a basis of our fault model, to mimic regression faults, in
our study of effectiveness of inferred invariants. A further
description of our fault model is provided in Section IV-C3,
as part of our study design.

III. INVARIANT-BASED SPREADSHEET TESTING WITH
AUTOMATICALLY INFERRED INVARIANTS

A. Automatically Inferring Spreadsheet Invariants

Automatic inference of program invariants is a popular
research topic with several techniques and tools proposed in
the past. For the purpose of our study, in this paper, we use
the Daikon approach [2].

Similar to other approaches employing inferred invariants
for regression testing in conventional software [3], the idea of
employing inferred invariants for detecting regression faults in
spreadsheets is based on the following two assumptions:

1) Relative Correctness: Due to the error-proneness of
spreadsheets, it is not realistic to expect a spreadsheet
to be in a state of absolute correctness. Yet, for the
invariant inference to be successful, it must be assumed
that the spreadsheet under consideration has a sufficient
level of correctness, at least, within the context of its
usage. This can be adjudged by the users concerned. This
allows for the inference of invariants that will potentially
detect relative deviations of the spreadsheet from its
existing state and behavior, such as those represented by
regression faults.
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TABLE I
EXAMPLE OF INFERRED INVARIANTS

Total == Realized
ContractName one of { “Avista”, “Engage” }
Fixed == 2.22
Settled >= 1.51
Fixed >Settled

2) No Functional Change: A set of invariants, once in-
ferred, will be valid as long as there are no changes
of functionality proactively introduced into the spread-
sheets. When there are substantial and deliberate func-
tional changes, like additions or deletions of columns, or
intentional changes of the formulas, the corresponding
invariants are likely not valid anymore and need to be
updated.

Daikon is capable of processing spreadsheet data saved
in .csv format, but there are practical limitations due to
which spreadsheets occurring in real life [17], with structural
organization as found in Figure 1, cannot be directly fed into
Daikon. For the approach to work, the blocks of data we are
interested in, have to be re-structured in an acceptable format.
That implies converting data blocks into a single, contiguous,
and uninterrupted tabular structure with acceptable column
headers. Automatizing this conversion process is dependent
upon ongoing research [17], [18], [19], [20], and is not within
the scope of this paper.

Daikon infers a large number of invariants. Therefore,
it offers filters that are used to suppress its output from
reporting of invariants that “are true, but not considered
interesting usually because the invariants are considered
obvious or redundant in a given context.”1 Accordingly, we
tune a number of these filter settings to obtain sets of relevant
and meaningful invariants for spreadsheets. Once customized,
the same settings are used throughout the entire course of the
study, and is available for reproducibility.

Eventually, for a spreadsheet like the example partly shown
in Figure 1, we obtain the list of invariants shown in Table I
after Daikon has been fed with re-structured data.

B. Invariant-based Testing of Spreadsheets

1) Invariant-based Test Creation: As discussed in a recent
study on spreadsheet testing methods in practice [1], invariant-
based testing involves conditional formulas intended to vali-
date data, or the outputs of other functionality-related formulas
inside spreadsheets. The conditions for positive evaluation
in such test formulas are the invariant properties of the
spreadsheets. Spreadsheet users though do not use the term
“invariant” while speaking about such tests; more commonly
used terms are “sanity checks”, “cross checks”, “validation
rules”, etc.

In practice, the invariants are manually specified by the
users, and they are typically based on domain-specific rules

1http://plse.cs.washington.edu/daikon/download/doc/daikon.html#Invariant-
filters

Fig. 2. Example of a test sheet with invariant-based tests copied down along
columns

(see Section II-A). Yet, manually specifying invariants is time-
consuming and an overhead for the users, often discouraging
them from testing at all [1]. Our focus therefore, is on
invariants that are automatically inferred by a tool such as
Daikon.

As illustration, consider the case partly shown in Fig-
ure 1. Here, there are no easily identifiable domain-specific
invariants. Running Daikon on shaded portion of the data
(not entirely shown in figure) we obtain a list of inferred
invariants as shown in Table I. For example, let us consider the
invariant “Settled >= 1.51” where “Settled” is representing
column G with the header “Settled Price El Paso SJ”. The
corresponding test for the first applicable cell in that column
would be =IF(G10>=1.51, "OK", "ERROR"). This test
is replicated and copied down for all the rest of the applicable
cells in that column. Such tests are often created in a different
worksheet than the one which is being tested as partly shown
in Figure 2. Inspection of this “test-sheet” then helps the users
to understand the results of the tests.

2) Invariant-based Test Coverage: The idea of coverage
in case of invariant-based tests is related to the concept of
formula precedence in spreadsheets. Cells, that are referred to
in a particular formula, are termed as direct precedents of that
formula; direct precedents of precedents, in turn, are termed
as indirect precedents of the original formula. An invariant-
based test formula, in effect, tests the outputs of its direct and
indirect precedents. The coverage of an invariant-based test
therefore depends upon its direct and indirect precedents [21].

In this paper we are interested in the effectiveness of the
invariants, and not a comparative evaluation of the techniques
of invariant inference. Therefore, test coverage of a whole
spreadsheet, which is dependent on the number of tests, and
therefore, on the number of invariants inferred, is not within
the scope of this paper. As such, in our study, we only consider
faults that are potentially detectable by the tests based on
Daikon inferred invariants, i.e. faults occurring only in the
areas which are under coverage of the tests.

IV. STUDY DESIGN

A. Research Questions

The objective in this paper is to investigate the effectiveness
of inferred invariants in detecting regression faults in
spreadsheets. As such, we seek answers to the following
research questions:
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TABLE II
DETAILS OF SHEETS USED

Source File group or name Sheet name SheetID
VEnron 335 6 fixed Avista 1 SH01
VEnron 335 6 fixed Avista 2 SH02
VEnron 148 3 ces Devon Noms SH03
VEnron 319 9 pasadena Invoice SH04

EUSES filby/DNA Calculations SH05
EUSES filby/CHOFAS Calculations SH06
EUSES filby/CHARGED Calculations SH07
EUSES filby/HENON HenonMap SH08

RQ1: How accurate are inferred invariants in detecting
regression faults in spreadsheets?

RQ2: What factors affect the accuracy of inferred invariants
in detecting regression faults in spreadsheets?

B. Experimental Setup
Our setup consists of eight worksheets obtained from

spreadsheet workbooks of the two publicly available spread-
sheet corpora VEnron [4] and EUSES [5], as shown in Table II.

The spreadsheets in the VEnron corpus have been analyzed
and grouped into evolution groups. Items in each group are
considered as successive versions of one single spreadsheet.
Additionally, the authors of the VEnron corpus provide data
on error trends. They identified evolution groups where Excel
specific spreadsheet errors were observed to have increased
across versions.

Recall that for the inference of invariants, we need to
assume a sufficient level of initial correctness for the original
spreadsheet (Section III-A). Hence the error-prone evolution
groups in the VEnron corpus with zero errors in the initial
version provide us with 1) sufficient level of initial correctness,
and 2) potentially error-prone spreadsheets.

While the VEnron spreadsheets offer us a type of potentially
error-prone spreadsheets, we wanted to also include in our
study, spreadsheets from the other end of the spectrum i.e.
ones which are expected to be less error prone. Towards this
end we selected spreadsheets from the “filby” folder of the
EUSES [5] corpus of spreadsheets. The EUSES corpus has
been widely used in spreadsheet research and the “filby” folder
contains examples of spreadsheet modeling from a book [22].
Thus, we expect the spreadsheets to be more idealistic than
the industrial ones from VEnron.

Note that Excel based spreadsheet workbooks contain mul-
tiple “worksheets”. Since the inference of invariants is related
to one worksheet at a time, we conduct our study on single
worksheets. Also, henceforth in this paper, by the term sheet
we imply worksheet, unless specified otherwise.

Our sheet selection is governed further by the feasibility of
re-structuring the sheets for processing by Daikon as explained
in Section III-A. Eventually we obtain eight sheets for our
study as shown in Table II.

C. Experiment
Our experimental procedure consists of three steps that

are repeated for each sheet, as described in the following

TABLE III
FAULT SEEDING BASED ON SPREADSHEET MUTATION OPERATORS

Fault Type SH
01

SH
02

SH
03

SH
04

SH
05

SH
06

SH
07

SH
08

To
ta

l

AOR 2 2 2 2 2 0 0 2 12
CRP 2 2 0 1 2 2 2 2 13
CRR 2 2 2 2 2 0 2 2 14
LCR 0 0 0 0 2 2 0 0 4
ROR 0 0 0 0 2 2 2 0 6
RCR 2 2 0 1 2 2 2 2 13
FDL 2 2 2 2 2 2 2 2 16
FRC 2 2 2 2 2 2 2 2 16
RFR 2 2 2 2 2 2 2 2 16
UOI 2 2 2 2 2 2 2 2 16
CRS 0 0 0 0 2 2 2 0 6
NRS 0 0 0 0 0 0 0 0 0
CRE 0 0 0 0 2 2 2 0 6
NRE 0 0 0 0 0 0 0 0 0
RRR 0 0 0 0 0 0 0 0 0
FFR 2 2 2 0 2 2 2 0 12
DIP 2 2 2 2 2 2 2 2 16
Total 20 20 16 16 28 24 24 18 166

subsections.
1) Invariant Inference: In this step we use Daikon to

automatically infer invariants from the sheets. For each sheet
we follow the approach described in Section III-A. Daikon
provides a list of invariants, similar to Table I.

2) Creation of Invariant-based Tests: In this step we filter
out invariants that we assess as obviously irrelevant or coinci-
dental, and convert the relevant invariants into tests, following
the approach described in Section III-B1. These tests are
added in separate worksheets, referred to as “test sheets”, and
attached to the original sheets, to produce augmented versions.
The test sheets resemble Figure 2, and the coverage areas of
the tests are noted to be used in the fault seeding step explained
in the following subsection. As explained in Section III-B2,
we are interested only in the area of spreadsheets covered by
the tests.

3) Fault Seeding: In this step we inject faults into the
versions of sheets augmented with tests, using a fault model.
As discussed previously in Section II-B, the basis of our fault
model is a set of spreadsheet mutation operators designed
by Abraham and Erwig [6]. The operators when applied to
spreadsheet formulas, generate mutant variants of the formulas
representing seeded faults.

We exclude the operator ABS or Absolute Value Insertion,
as we believe it is not sufficiently representative of a regression
fault that can be introduced by a spreadsheet user. We add a
new fault type, the Data I/P error or DIP, to reflect errors
caused by entry of wrong input data. As a result, our fault
model consists of 17 fault types; they are shown in Table III
along with names of the mutation operators.

To avoid chances of bias in a manual seeding process,
we have implemented the mutation operators into a tool
called Sprutagen (Spreadsheet Mutagen) which is capable
of performing the fault seeding automatically. The seeding
process is based on the applicability of the mutation operators.
Not all operators are applicable to every type of spreadsheet
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TABLE IV
PRECISION AND RECALL OF FAULT DETECTION BY TESTS BASED ON

INFERRED INVARIANTS

SheetID #FN #FP #TP Precision (%) Recall (%)
SH01 11 0 9 100 45
SH02 11 0 9 100 45
SH03 11 0 5 100 31
SH04 2 0 14 100 88
SH05 27 0 1 100 4
SH06 21 0 3 100 13
SH07 24 0 0 100 0
SH08 5 0 13 100 72
Total 112 0 54 (mean) 100 (mean) 37

formulas, e.g. CRE or Contiguous Range Expansion is only
applicable to formulas that have reference to a contiguous
range of cells.

Sprutagen seeds two faults for each fault type of our fault
model, unless prevented due to lack of applicability. Table III
shows the details of the number of faults seeded for each
sheet, and each type of fault. If a seeded fault is detected,
it is indicated by the corresponding invariant-based test in the
respective “test-sheet”.

V. ACCURACY OF INFERRED INVARIANTS IN DETECTING
REGRESSION FAULTS

To observe the accuracy of inferred invariants in detecting
regression faults (RQ1), we record Precision and Recall,
defined as follows:

Precision is the fraction of detected faults that are indeed
seeded faults:

TP

TP + FP

Recall is the fraction of seeded faults that is actually
detected by the inferred invariants:

TP

TP + FN

Table IV, shows the number of false negatives, false posi-
tives, true positives, as well as the percentages for precision
and recall related to fault detection for each sheet.

The precision is 100%, in each case, meaning that all the
detected faults, are indeed seeded faults. This follows from
the fact that in the context of our study, where the only
change we introduced in the sheets are the faults, there is
no possibility of a false positive. In a real-world context,
however, where users are expected to also introduce legitimate
changes into the spreadsheets, a high precision value can be
ensured by the customization of Daikon output (Section III-A),
and the subsequent manual filtering we do as part of our
experiment step (Section IV-C2). This eliminates invariants
that are irrelevant in context of the usage of a particular
spreadsheet. A similar finding is also discussed by Mirshokraie
and Mesbah [3] in their study of using invariants for regression
testing in Javascript. Therefore, precision is not the practically
significant indicator of the accuracy, and in the rest of the

paper, we use recall as the indicative measure of accuracy of
inferred invariants.

From Table IV we observe that the mean recall is 37%,
and the individual recall for each sheet varies between 0-88%,
which deserves attention. In some cases, such as sheet SH04,
the inferred invariants detect almost all the faults, whereas in
other cases, like sheet SH07, they fail to detect any of the
seeded faults. We examine this observation in further detail in
the following section where we explore factors affecting the
accuracy of inferred invariants.

To summarize, as answers to RQ1, we conclude:

The practically significant indicator of the accuracy of
inferred invariants is the recall rate of fault detection.
It shows large variation from spreadsheet to spreadsheet,
ranging between 0-88%, with an average of 37%.

VI. FACTORS AFFECTING THE ACCURACY OF INFERRED
INVARIANTS IN DETECTING REGRESSION FAULTS

For our second research question (RQ2), we investigate
which factors affect the accuracy of inferred invariants. Based
on the answers to our first research question (RQ1), as
explained in Section V, we use the recall rate of fault detection
as the practically significant indicator of accuracy of inferred
invariants.

We investigate the factors from two perspectives. First,
those related to characteristics of the spreadsheets, and second,
those related to the characteristics of the faults. Finally, we
summarize our conclusions for RQ2.

A. Spreadsheet Characteristics

The characteristics of the spreadsheets, in particular the
types of formulas and data present in them, lead to the
inference of different types of invariants. In our study, we
were able to observe the following types of invariants:

• Fixed Value - e.g. cells in column Price should always
be 2.45

• Upper Bound - e.g. cells in column Price should always
be greater than 2.45

• Lower Bound - e.g. cells in column Price should always
be less than 2.45

• Range - e.g. cells in column Price should always lie
between 2.45 and 5.55

• Column Interrelation - e.g. cells in column Price should
always be greater than cells in column Cost of Production

• One of - e.g. cells in column Allowed States should
always be one of {0,1,2,3}

Table V shows the sheets sorted and grouped into three
groups based on their recall rate of fault detection. It shows
the source, the domain, and the dominating type of invariant
for each sheet. As seen from Table V, the dominating type of
invariant found in the sheets appears to be a factor affecting
the accuracy of fault detection. We explore this further by
investigating the groups that we call A and C, with the highest
and lowest recall rates respectively.
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TABLE V
THE SHEETS SORTED AND GROUPED ACCORDING TO DECREASING RECALL (%) OF FAULT DETECTION

Recall Based Group SheetID Recall (%) Source Domain Dominating Type of Invariants

A (70-90%) SH04 88 VEnron Business Fixed Value (5/5)

SH08 72 EUSES Physics Range with very precise boundaries (2/4)
Upper Bound with very precise boundary (2/4)

B (30-50%)

SH01 45 VEnron Business Column interrelations (2/4)

SH02 45 VEnron Business
Fixed Value (1/3)
Column interrelations (1/3)
Lower Bound (1/3)

SH03 31 VEnron Business Lower Bound (4/5)

SH06 13 EUSES Biotechnology Range (4/11)

C (0-20%) SH05 4 EUSES Genetics One of (3/5)
SH07 0 EUSES Genetics One of (6/6)

1) Group A (70-90%): : Examining SH04 we find that the
columns are replete with duplication formulas. For example,
the cells of column M—M3, M4, and M5—contain formulas
=M2, =M3, and =M4 respectively, and this pattern is contin-
ued for the whole column. These formulas are sequentially
copying the values of their previous cells in the same column.
Effectively, this has resulted in all the cells in a column to
have the same values. Consequently, the invariants inferred
from this sheet are not Upper Bound, Lower Bound, or
Range type invariants, but invariants of Fixed Value like
“Fixed Price == 1500.0”. Due to this, even the smallest
of deviations from the fixed values cause invariant violations,
and the faults are detected, resulting in a high recall rate of
88%.

Likewise in SH08, the formulas are used for highly precise
mathematical calculations. The resulting invariants are there-
fore of the type

0.381545407380169 >= y2 >= −0.384254894160137

or,
x2 <= 1.27181802460056

As evident, the ranges bounded by values with such high
precision after the decimal point, leave extremely small mar-
gins for deviations.

From the overall observation of group A, we see:

Fixed Value type of invariants, and Range or Upper Bound
type of invariants with highly precise boundaries (≈ 10
decimal places), are most effective in terms of recall rate
of fault detection, with rates ranging between 72-88%.

2) Group C (0-20%): : In this group, SH06 contains 4
Ranges with standard boundaries (≈ 2-3 decimal places), out
of a total of 11 invariants, and the ranges are not with highly
precise boundaries like seen in Group A.

SH07 with the lowest recall in this group, contains formulas
of the form IF(A13="K", 0,1), and consequently, the
invariants inferred are also of the form

Histidine is one of 0.0, 1.0

Fig. 3. Variation of Recall (%) of fault detection by inferred invariants,
depending on fault types based on spreadsheet mutation operators

As such, most of the faults seeded, effectively switch the
values of the cells between 1 and 0. Neither causes a violation
of the invariants, and thus the faults remain undetected.

In the case of SH05 also, 3 out of 5 invariants are of the
type “One of”. Invariants of the “One of” type providing a set
of permitted values for a column, show least recall, as faults
often switch the value of a cell from one permitted value to
another permitted value.

From overall observation of group C, we note:

“One of” type invariants, specifying a set of permitted
values, are least effective in terms of recall rate of fault
detection, with rates as low as 0-13%.

Thus, we can observe that the accuracy depends on the type
of the invariants, which in turn depend upon the formulas and
data in the spreadsheets.

B. Fault Characteristics

In contrast to Table IV, where we present the precision
and recall in terms of each sheet, in Figure 3, we show the
percentage recall based on each fault type. We discuss the
observations as follows.

S.Roy et al. – On the Effectiveness of Automatically Inferred Invariants in Detecting Regression Faults in Spreadsheets

6 TUD-SERG-2018-002



1) Most Frequently Detected (40-60%): CRP or Constant
RePlacement shows the maximum recall rate of detection,
possibly because it easily and frequently violates all domi-
nating type of invariants shown in Table V, namely Fixed
Value, Range, Upper and Lower Bound, and even Column
interrelations and “One of” type. The value of a constant 10
replaced with 100, or 2.22 replaced by 22.2, can largely affect
the resulting computation causing invariant violations.

AOR or Arithmetic Operator Replacement, shows a decent
recall, as replacing an arithmetic operator with a different one
can often change the computed result drastically. Similar to
CRP, this tends to cause violations of the dominating type of
invariants shown in Table V.

FDL (Formula DeLetion), RFR (ReFerence Replacement),
and RCR (Reference for Constant Replacement), all show
decent recall rates of detection as they have larger chances of
drastically changing the value of a cell, and tend to violate the
more frequently inferred type of invariants like Fixed Value.

2) Least Fequently Detected (0-25%): FFR or Formula
Function Replacement is a specific case. The scope of applying
this mutation is narrow as it can only operate on formulas
with functions that can be realistically replaced with another
function. In their design of this mutation operator, Abraham
and Erwig [6] discuss using AVERAGE in place of SUM. We be-
lieve this is also relevant in case of similarly named functions
such as SUM and SUMSQ (sum of square of the arguments).
In our study we could only use these above two replacements.
As evident from the results, these faults are not frequently
detected. One possible reason is the fact that columns having
formulas with SUM function do not get covered by invariants
such as Fixed Value. They get covered mostly by Lower
Bound invariants. As discussed in Section VI-A, Lower Bound
invariants, especially those of form >= 0.0 are not highly
effective in terms of accuracy. Also, evidently they cannot
detect the deviations caused by replacing SUM with SUMSQ,
or replacing SUM with AVERAGE, and vice versa.

FRC or Formula Replacement with Constant deals with
replacing a formula with its computed value: essentially what
is termed in programming parlance as hard coding. From the
perspective of value, it does not produce any change. Hence
it fails to violate the dominating invariants which mostly are
value-based.

LCR (Logical Connector Replacement), ROR (Relational
Operator Replacement), CRS (Contiguous Range Shrinking),
and CRE (Contiguous Range Expansion), all show drops in
recall rates. LCR and ROR tend to be mostly covered by the
less effective “One of” type invariants, while CRS and CRE
suffer from limited applicability to columns mostly covered
by Lower Bound invariants.

3) Applicability of Operators: Apart from the individual
characteristics of the faults as discussed above, the applicabil-
ity of the mutation operators deserves attention. The fault types
showing higher recall rates, CRP, AOR, FDL, RFR, and RCR,
are all based on operators that are more universally applicable
to different types of spreadsheet formulas. This is reflected
in Table III. The respective total number of faults injected of

these types are 13, 12, 16, 16, and 13. The larger applicability
increases the probability of lying in columns that are covered
by a larger spectrum of different invariant types, and leads to
increased likelihood of detection.

In contrast, the faults showing lowest recall rates, CRS,
CRE, LCR, and ROR, are limited in scope of their application.
In Table III, their respective numbers are 6, 6, 4, and 6.
CRS, and CRE, are only applicable to formulas using ranges,
whereas LCR, and ROR are applicable to mostly conditional
formulas. As such, the columns in which these types of faults
can occur, are less likely to be covered by a large variety of
invariants. For example, the conditional formulas mostly are
covered by “One of” invariants, which mostly evaluate to a
set of permitted values and show least effectiveness in terms
of accuracy. FRC is an exception to this trend as it shows low
recall despite having better applicability. As discussed in the
previous subsection, this is due to the fact that it replaces a
formula with its computed value, and as such cannot violate
the dominating invariant types which are mostly value-based.

To summarize, as answers to RQ2, we observe that the
factors affecting the accuracy of inferred invariants in terms
of recall rate of fault detection, are 1) the type of spreadsheet
formulas and data, that determine the types of invariants in-
ferred, and 2) the type of faults. Fixed Value type of invariants
show most effectiveness in terms of accuracy, while “One of”
type invariants appear to be least effective. Faults based on
widely applicable mutation operators such as CRP and FDL
get more frequently detected. Faults based on operators with
limited scope of application such as CRS, CRE, LCR, and
ROR, are less frequently detected.

VII. RELATED WORK

The topic of testing and fault detection in spreadsheets has
been explored by researchers. Rothermel et al. and Fisher et
al. proposed and improved upon the WYSIWYT approach
for spreadsheet testing [23], [24], [25]. Abraham et al. pro-
posed another approach for automated test case generation
[26] demonstrating improvement compared to [24] using the
same experimental setup. In recent times, an approach for
spreadsheet fault localization based on spreadsheet smells was
proposed by Abreu et al. [27].

The concept of invariant-based testing was touched upon by
Burnett in their work on assertion-based testing for spread-
sheets [8]. Related is also the work by Hermans [21], where
the author demonstrates the use of existing “test formulas” in
spreadsheets of the EUSES corpus, and proposes an approach
for extracting such formulas from spreadsheets to aid users in
testing.

VIII. THREATS TO VALIDITY

A threat to external validity of our results concerns the
representativeness of the sheets selected. We argue that the
corpora from which they were chosen, both VEnron [4] and
the “filby” folder of EUSES [5], are fairly representative of the
two types of spreadsheets we were targeting, namely industrial
and idealistic, as explained in Section IV-B. Our exploratory
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study is a necessary first step towards conducting further
large scale generalization of the results through quantitative
evaluations.

A second threat to external validity concerns the represen-
tativeness of the set of mutation operators used in our fault
model (Section IV-C3). An empirical evaluation about how
well these operators reflect real-world errors committed by
spreadsheet users is not available. However, the operators take
into account spreadsheet error types reported in literature [6],
and as such, provide us the best systematic alternative to
conjuring up faults in an ad hoc basis ourselves.

IX. CONCLUDING REMARKS AND FUTURE WORK

The objective of this work was to investigate the effective-
ness of automatically inferred invariants, in detecting regres-
sion faults in spreadsheets. Results show that the accuracy, in
terms of recall rate of fault detection, shows extreme variation
from case to case. The variation ranges between 0-88%, with
a mean of 37%. The accuracy depends on 1) the type of
spreadsheet formulas and data, that determine the types of
invariants inferred, and 2) the type of faults.

Based on the outcomes of this study, a first direction for
future work is to generalize the results by validating the
observations about factors affecting the accuracy in a con-
trolled setting. Another direction is to explore the correlation
of spreadsheet smells [28] with the accuracy of inferred invari-
ants, as spreadsheet smells characterize spreadsheet quality.
Through these research directions, our ultimate goal is to make
the spreadsheet programming paradigm less fault-prone.
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