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Abstract

Accurate direct numerical simulations are performed to determine the drag,
lift and torque coefficients of non-spherical particles. The numerical simula-
tions are performed using the lattice Boltzmann method with multi-relaxation
time. The motivation for this work is the need for accurate drag, lift and
torque correlations for high Re regimes, which are encountered in Euler-
Lagrangian simulations of fluidization and pneumatic conveying of larger
non-spherical particles. The simulations are performed in the Reynolds num-
ber range 0.1 ≤ Re ≤ 2000 for different incident angles φ. Different tests
are performed to analyse the influence of grid resolution and confinement ef-
fects for different Re. The measured drag, lift and torque coefficients are uti-
lized to derive accurate correlations for specific non-spherical particle shapes,
which can be used in unresolved simulations. The functional forms for the
correlations are chosen to agree with the expected physics at Stokes flow
as well as the observed leveling off of the drag coefficient at high Re flows.
Therefore the fits can be extended to regimes outside the Re regimes simu-
lated. We observe sine-squared scaling of the drag coefficient for the particles
tested even at Re = 2000 with CD,φ = CD,φ=0◦ + (CD,φ=90◦ − CD,φ=0◦) sin2 φ.
Furthermore, we also observe that the lift coefficient approximately scales
as CL,φ = (CD,φ=90◦ − CD,φ=0◦) sin φ cos φ for the elongated particles. The
current work would greatly improve the accuracy of Euler-Lagrangian simu-
lations of larger non-spherical particles considering the existing literature is
mainly limited to steady flow regimes and lower Re.
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1. Introduction

Particulate suspensions are involved in different natural and man-made
processes. Examples are red blood cells in plasma, fluidization of pulverized
coal and milled biomass, and fibrous pulps in the paper manufacturing indus-
try, etc. Traditionally, particulate suspension studies simplify the particles
as spheres (Ladd, 1994a,b; Ladd and Verberg, 2001; Beetstra et al., 2007),
thereby eliminating orientation and shape effects. In general, simplifying
non-spherical particles with an equivalent sphere can provide an approximate
drag prediction, but the effects of lift and torque and also their dependence
with orientation are often ignored. The spherical particle approximation for
applications like fluidized beds with non-spherical particles could significantly
influence the minimum fluidization velocity, power consumption and also af-
fect the overall bed dynamics (Hilton et al., 2010). Therefore, quantification
of the effects of particle orientation on drag, lift and torque is important.

In the Stokes limit, theoretical investigations are available for different
non-spherical particles. Oberbeck (1876) derived the drag for translation of
a spheroid parallel to its principal axis. Jeffery (1922) studied the motion of
an ellipsoid in shear flow. He suggested that the ellipsoidal particle translates
in a way corresponding to least dissipation of energy, and that the final state
depends on the initial state of the particle. Several empirical drag correla-
tions have been proposed in the past for isolated non-spherical particles as a
function of the Reynolds number Re. Leith (1987) extended Stokes’ law for
a sphere to arbitrary non-spherical objects by decomposing the pressure and
viscous components and accordingly using the object’s projected area and
surface area, respectively, to represent the total drag.

Haider and Levenspiel (1989) proposed a drag correlation for arbitrary
particles as a function of sphericity, but not considering the orientation.
Ganser (1993) compiled experimental data of several non-spherical shapes
and proposed a drag correlation as a function of two shape factors, namely
Stokes’ and Newton’s shape factors. Recently, Hölzer and Sommerfeld (2008)
proposed a drag correlation based on a large set of numerical and experi-
mental data, involving two different projected areas to account for particle
orientation. Hölzer and Sommerfeld (2009) and Zastawny et al. (2012) inves-
tigated different non-spherical particles at different flow incident angles φ and
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Re, albeit limiting mainly to the steady flow regime. Richter and Nikrityuk
(2012, 2013) simulated heat transfer and drag of an ellipsoid and a cube.
Very recently, Ouchene et al. (2016) proposed force and torque correlations
for prolate spheroids, applicable to a range of aspect ratios up to 32. Their
work was limited to steady flows with Re ≤ 240.

Zastawny et al. (2012) provide correlations for drag, lift and torque based
on immersed boundary direct numerical simulations (DNS). Their particle’s
equivalent volume sphere diameters (deq) range between 8 to 12 grid cells
for Re from 0.1 upto 300. However, their work does not provide a detailed
study on the influence of grid resolution as function of Re. Even their highest
resolution of deq = 12 implies that the critical minimum thickness would be
of the order of a few cells for high aspect ratio disk and a fibre of aspect
ratio 5. In our current work, detailed studies on grid resolution and wall
confinement effects are performed for different Re. We also observe that the
Zastawny et al. (2012) results are not accurate at Stokes flow, but improve
at larger Re. Similar deviations in the results of Zastawny et al. (2012) have
also been observed by Ouchene et al. (2015, 2016).

Some authors define the Reynolds number Red based on the minimum
thickness of the particle dmin. For this work, the Reynolds number is defined
as

Re = |u∞|deq/ν, (1)

where u∞ is the uniform inlet velocity, deq is the diameter of the volume-
equivalent sphere, and ν is the kinematic viscosity of the fluid. The drag, lift
and torque coefficients respectively are defined as

CD = |FD|/(
1

2
ρf |u∞|2 π

4
d2

eq), (2)

CL = |FL|/(
1

2
ρf |u∞|2 π

4
d2

eq), and (3)

CT = |T |/(
1

2
ρf |u∞|2 π

8
d3

eq). (4)

Here, FD, FL and T are drag, lift, and pitching torque acting on the particle,
and ρf is the fluid density.

The motivation for this work is the need for highly accurate CD, CL,
and CT correlations for high Re regimes, which are encountered in Euler-
Lagrangian simulations of fluidization and pneumatic conveying of larger
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Figure 1: Time-averaged distribution of particle Re from Euler-Lagrangian fluidization
simulations of spherocylindrical particles of aspect ratio 4 (inset).

non-spherical particles. We performed such simulations of spherocylindrical
(biomass-like, type Geldart D) particles of aspect ratio 4, using the Hölzer
and Sommerfeld (2008) drag correlation with Di Felice (1994) voidage cor-
rection. The resulting distribution of particle Re encountered during the
simulation is plotted in figure 1. It can be observed that the median of the
distribution is around Re ≈ 1200 and the maximum is around Re ≈ 2000.
For this Re range, we perform fully resolved simulations of the fluid flow
around the particles using the lattice Boltzmann method (LBM) and suitably
parametrize the simulation data to obtain the CD, CL, and CT correlations.

The work of Rubinstein et al. (2017) (in their figure 2) shows that fixed
particle simulations are sufficient to compute forces in moving particulate sys-
tems, provided the Stokes number (St) is sufficiently high, around St ≥ 10.
The Stokes number is the measure of timescales of the particle against the
fluid. The relation between St and Re is given by St = (ρp/(18ρf))Re, where
ρp is the particle density. The above relationship is of order St = 50Re for
gas-solid systems (assuming a typical value of ρp/ρf of 103) and therefore
generally results in very large Stokes numbers. Therefore, in gas-solid flu-
idization and other typical engineering applications such as pneumatic con-
veying, riser flows, etc., a quasi-steady particle orientation assumption can
be applied for Euler-Lagrangian simulations.

The simulated non-spherical particles are shown in figure 2. LBM sim-
ulations for high Re flows have been performed in the past. Eitel-Amor
et al. (2013) performed detailed simulations of flow past a sphere in the
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(a) (b) (c)

Ellipsoid 1 Ellipsoid 2 Fibre

Figure 2: Different non-spherical particles simulated in this work: (a) Ellipsoid 1 - a
prolate spheroid of aspect ratio 5/2, (b) Ellipsoid 2 - an oblate spheroid of aspect ratio
5/2, and (c) Fibre - a spherocylinder of aspect ratio 4.

laminar regime of 100 ≤ Re ≤ 300 and sub-critical turbulent flow regime
3700 ≤ Re ≤ 10000 using a single-relaxation scheme (SRT) with hierarchical
grid refinement. In this work, we use a multi-relaxation time (MRT) LBM
scheme, which adds stability required for the high Re simulations. Kruggel-
Emden et al. (2016) provide a good overview of coupled fluid flow and heat
transfer simulations for particulate flows using LBM.

For Stokes flow (Happel and Brenner, 1983), CD and CL at different
incident angle φ are given by

CD,φ = CD,φ=0◦ + (CD,φ=90◦ − CD,φ=0◦) sin2 φ, (5)

CL,φ = (CD,φ=90◦ − CD,φ=0◦) sin φ cos φ. (6)

Interestingly, for all the investigated particles, CD scales as a sine-squared

function as in equation 5, even for Reynolds numbers as high as 2000. Fur-
ther, CL also scales as sin φ cos φ as in equation 6, for the elongated particles
even at Re = 2000. Equations 5 and 6 arise from the linearity of the Navier-
Stokes equations in the Stokes regime. We have investigated these scaling
phenomena in detail for high Re (Sanjeevi and Padding, 2017). However, we
found that the real cause is due to the dependency of pressure on the local
surface normal’s orientation with the incoming flow and not due to the flow
linearity as in Stokes flow.

To the best of our knowledge, the present work is the only work that in
detail investigates different non-spherical particles upto high Reynolds num-
bers of Re = 2000 for different incident angles 0◦ ≤ φ ≤ 90◦. There have
been similar works providing CD, CL, and CT correlations as a function of Re
and φ (Zastawny et al., 2012; Richter and Nikrityuk, 2013; Ouchene et al.,
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Figure 3: D3Q19 lattice configuration with directions α.

2016), but our work considers approximately an order of magnitude larger
Re than these studies. By extending the measurements to larger flow veloci-
ties, our correlations take into account the leveling off of the drag coefficient
observed at higher Re. Note that our work does not aim to give a generic
correlation for all particle shapes and/or aspect ratios. Rather, by defining
separate correlation functions for each specific particle shape and aspect ra-
tio, we are able to derive more accurate correlation functions for the chosen
particle shapes.

This work will be helpful for the community dealing with Euler-Lagrangian
simulations of non-spherical particles, for practical industrial applications
such as biomass fluidization, pneumatic conveying and riser flows of non-
spherical particles.

2. Numerical method

2.1. Lattice Boltzmann method

The flow is simulated using the D3Q19 multi-relaxation time (MRT) lat-
tice Boltzmann method (d’Humières et al., 2002). The MRT-LBM scheme
solves the evolution of particle distribution function |f〉

|f(r + eα∆t, t + ∆t)〉 = |f(r, t)〉 − M
−1

Ŝ(|m(r, t)〉 − |m(eq)(r, t)〉), (7)
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at position r with discrete velocities eα in directions α = 1, 2..., 19 as shown
in figure 3. M is a 19 × 19 transformation matrix (see Appendix A) used to
transform |f〉 from velocity space to moment space |m〉 with |m〉 = M · |f〉.
Here, the ket vector |·〉 implies a column vector. The relaxation matrix

Ŝ = M · S · M
−1 is a 19 × 19 diagonal matrix. The LBM simulations are

performed in lattice units and the lattice speed is c = ∆x/∆t with ∆x = 1
and ∆t = 1. The lattice speed of sound is cs = c/

√
3. For the D3Q19 model,

the 19 moments are

|m〉 = (ρ, e, ǫ, jx, qx, jy, qy, jz, qz, 3pxx, 3πxx, pww, πww, pxy, pyz, pzx, mx, my, mz)T ,
(8)

where density ρ =
∑

α

fα and momentum j = (jx, jy, jz) = ρu =
∑

α

fαeα

are the conserved moments. The non-conserved moments are as follows: e
is the part of kinetic energy independent of density, ǫ is the part of kinetic
energy squared independent of both the density and kinetic energy (ǫ = e2),
and qi is the energy flux independent of mass flux (d’Humières et al., 2002).
Here, subscript i denotes x, y, or z-coordinates. pxx, pxy, pyz, pxz and pww

are the symmetric traceless viscous stress tensor with pww = pyy − pzz and
pxx + pyy + pzz = 0. mx, my and mz are the third order moments. πxx and
πww are fourth order moments. The equilibria of non-conserved moments are
given as functions of ρ and j (d’Humières et al., 2002) as

e(eq) = −11ρ +
19

ρ0
j · j = −11ρ +

19

ρ0
(j2

x + j2
y + j2

z ), (9)

ǫ(eq) = wǫρ +
wǫj

ρ0

j · j, (10)

q(eq)
x = −2

3
jx, q(eq)

y = −2

3
jy, q(eq)

z = −2

3
jz, (11)

p(eq)
xx =

1

3ρ0
(2j2

x − (j2
y + j2

z )), p(eq)
ww =

1

ρ0
(j2

y − j2
z ), (12)

p(eq)
xy =

1

ρ0
jxjy, p(eq)

yz =
1

ρ0
jyjz, p(eq)

xz =
1

ρ0
jxjz , (13)

π(eq)
xx = wxxp(eq)

xx , π(eq)
ww = wxxp(eq)

ww , (14)

m(eq)
x = m(eq)

y = m(eq)
z = 0, (15)

where ρ0 is the average density in the system. In our simulations, ρ0 = 1,
wǫ = 3, wǫj = −11/2, and wxx = −1/2. The factor 1/ρ0 used in the above
equilibrium expressions is to reduce compressibility effects (He and Luo, 1997;
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Figure 4: The linearly interpolated bounce-back scheme simplified in one-dimension.

d’Humières et al., 2002). The diagonal collision matrix Ŝ (d’Humières et al.,
2002; Huang et al., 2012) is

Ŝ = diag(0, s1, s2, 0, s4, 0, s4, 0, s4, s9, s10, s9, s10, s13, s13, s13, s16, s16, s16), (16)

with s1 = 1.19, s2 = s10 = 1.4, s4 = 1.2, s9 = s13 = 1/τ and s16 = 1.98.
The kinematic viscosity of the fluid is related to the relaxation time τ by
ν = c2

s(τ − 1/2)∆t, and pressure p is related to density by p = ρc2
s.

2.2. Interpolated bounceback scheme

The conventional no-slip boundary in LBM is based on the simple bounce-
back scheme, which approximates the geometry in stair-case form. The ef-
fects of such an approximation are more pronounced at high Reynolds num-
ber, where the boundary layers are thinner, resulting in poor accuracy. In
our simulations, we use a linearly interpolated bounce back scheme (Bouzidi
et al., 2001) to accurately consider the curved geometry of the particle. A
simplified one-dimensional interpolated bounce-back scheme is shown in fig-
ure 4. The parameter qα is the fractional distance along the direction α of
the fluid node to the actual wall and is given by qα = |rw − ri|/|rb − ri|.
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Depending on whether qα < 1/2 or qα ≥ 1/2, two different cases are to be
considered:

fᾱ(ri, t) = 2qαf̂α(ri, t) + (1 − 2qα)f̂α(rj, t), qα < 1/2, (17)

fᾱ(ri, t) =
1

2qα

f̂α(ri, t) +
(2qα − 1)

2qα

f̂ᾱ(ri, t), qα ≥ 1/2. (18)

Here the subscript ᾱ denotes the opposite direction of α. The notations
f̂α and fα denote the post-collision distribution functions before and after
advection. From an implementation point of view, storing the distribution
before and after advection (f̂α and fα) results in additional memory burden.
Therefore, Lallemand and Luo (2003) suggested to make use of the fact that
advection is simply a spatial shifting of distributions, and that therefore the
indices can be accordingly modified as

fᾱ(ri, t) = 2qαfα(ri + eα∆t, t) + (1 − 2qα)fα(ri, t), qα < 1/2,

(19)

fᾱ(ri, t) =
1

2qα

fα(ri + eα∆t, t) +
(2qα − 1)

2qα

fᾱ(ri − eα∆t, t), qα ≥ 1/2.

(20)

The linear interpolation scheme was chosen for the no-slip boundary, as the
parallel code requires only one layer of ghost cells as opposed to two layers
in case of a quadratic scheme, resulting in additional communication over-
head. Further, the improvement in solution accuracy is negligible between
linear and quadratic interpolation schemes, provided sufficient resolution is
used (Kruggel-Emden et al. (2016); Pan et al. (2006)). For the shapes con-
sidered - prolate & oblate ellipsoids and spherocylinder - the distance from
fluid node to the wall boundary along the velocity directions are computed
using ray-geometry intersection algorithms (Akenine-Möller et al., 2008). As
ellipsoids can be described by a single equation, the ray-ellipsoid intersec-
tion is solved as a single problem. The ray-spherocylinder intersection is
decomposed into three ray-intersection problems - (i) ray-cylinder and (ii)
two ray-sphere intersection problems for the top and bottom hemispheres.

2.3. Boundary conditions and force evaluation

The schematic geometry of the domain is described in figure 5. A uniform
velocity is prescribed at the inlet based on Hecht and Harting (2010), which

9



Freeslip boundary

Outflow

boundary

Freeslip boundary

Figure 5: Simulation domain, the forces and torque acting on the particle and the boundary
conditions.

extends the Zou and He boundary condition (Zou and He, 1997) to a D3Q19
lattice. The side walls are prescribed as free-slip boundary rather than as
periodic boundary condition, which could cause the flow to deflect either
up or down based on inclination of the non-spherical particle (Hölzer and
Sommerfeld, 2009). The downstream (outlet) is specified by an axial-stress-
free boundary condition with ∂uz/∂z = 0 (Aidun et al., 1998). All the
simulations are initialized with uniform inlet velocity in the domain. The
momentum contribution along a single fluid-solid link exerted on the particle
by the fluid is computed using the momentum exchange method (Bouzidi
et al., 2001; Mei et al., 2002; Lallemand and Luo, 2003) as

pα(rb, t) = eα(fα(rb, t) + fα(ri, t)). (21)

Correspondingly, the force and torque are computed as

F =
∑

all rb

∑

α6=19

pα(rb, t) (22)

T =
∑

all rb

∑

α6=19

(rw − rc) × pα(rb, t). (23)

Here rc is the center of gravity of the particle.

2.4. Grid resolution and domain independence study

Before proceeding to the simulations of non-spherical particles, the in-
fluence of grid resolution and domain size at different Re are assessed. The
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influence of grid resolution is tested with flow around an isolated sphere. The
normalized CD for different Re is plotted in figure 6. The normalization is
done using the highest resolution CD and not against any popularly avail-
able CD correlations for a sphere. This is because at high Re, the CD value
becomes smaller and the available correlations themselves have minor devi-
ations compared to the true CD. This would be amplified strongly for small
CD values and therefore are not the best choice. Three different regimes are
tested: (i) Stokes flow, (ii) intermediate Reynolds number at Re = 100 with a
steady wake, and (iii) high Reynolds number Re = 1000 exhibiting complex,
unsteady wake behind the sphere (in which case the mean CD is reported).
The influence of grid resolution is stronger with increasing Re, as seen in fig-
ure 6. For Re = 1000, we observe CD = 0.456 at resolution deq = 40, which
is in good agreement with the literature result, CD = 0.464 from Vakarelski
et al. (2016). The absolute CD values for flow around sphere at different Re
from our simulations are given in figure 7 along with the Clift correlation.
It can be observed that there is good match from our results compared with
the Clift correlation and also the experimental results at different Re.

The influence of the presence of side walls (confinement effect) is tested
as a function of hc/deq, where hc is the clearance between the particle and the
side walls (see figure 5), which is kept the same for the four lateral walls for a
particular Re. Tests are performed for a sphere, ellipsoid 1 and ellipsoid 2 for
Re = 0.1 and Re = 100. It can be observed from figure 8 that all the different
geometries have consistent confinement effects for different Re, provided the
clearance hc is used to characterize confinement rather than particle center

12



dmin

Re Ellipsoid 1 Ellipsoid 2 Fibre hc/deq lu/deq ld/deq

0.1 ≤ Re < 10 16 16 16 10 10 10
10 ≤ Re ≤ 100 20 20 20 7 7.5 7.5

300 30 20 20 5 5 10
1000, 2000 40 30 30 4.5 5 10

Table 1: Details of the particle resolution in lattice cells and domain sizes at different Re.
dmin is the minimum thickness of the particle.

to wall distance. As observed, between Re = 0.1 and Re = 100, the wall
effects tend to become weaker for increasing Re and therefore confinement
tests for Re > 100 are not presented here. For simulations with Re > 100,
random confinement tests are performed and also literature data (Zastawny
et al., 2012) are used for selecting appropriate hc. It has been observed that
hc ≥ 4.5 is sufficient to produce confinement independent results, as the
viscous effects get weaker for increasing Re. Therefore, we maintained at
least hc = 4.5 for Re > 100.

Different simulations have different particle resolutions, upstream length
lu, downstream length ld, and clearance hc, depending on the Re. An ex-
tensive study regarding the upstream and downstream lengths is avoided to
simplify the parameter space. Again, we have examined different literature
containing flows around particles regarding the domain lengths (Zastawny
et al., 2012; Hölzer and Sommerfeld, 2009). With this information, we have
selected the upstream and downstream lengths. From our experience, only
the downstream length is found to be significantly influencing results, specifi-
cally at high Re. Therefore, we have kept downstream length sufficiently long
with ld/deq = 10 for Re ≥ 300 to avoid any influence of outflow boundary on
the particle wake.

The influence of particle resolution (see figure 6) and the effects of domain
size (see figure 8) at different Re are considered carefully on choosing the
particle sizes. The chosen particle resolutions and the simulation domain
sizes are listed in table 1. It has to be noted that the listed resolutions are
the least thickness (dmin) of the particle. The other dimensions are always
larger than dmin and therefore a good particle resolution is ensured. Since
the grid independence study is performed prior to the actual simulations, the

13
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Figure 9: Velocity contours for flow around different particles at Re = 300 and φ = 30◦:
(a) ellipsoid 1, (b) ellipsoid 2, and (c) fibre.

particle resolution is chosen such that the deviations are less than 3% of the
true value.

3. Flow around various non-spherical particles

Detailed LBM simulations of the flow around 3 different non-spherical
particles are performed. The simulated range of Reynolds number is 0.1 ≤
Re ≤ 2000 at incident angles 0◦ ≤ φ ≤ 90◦. As an example, the flow
around different particles at Re = 300 and φ = 30◦ is shown in figure 9.
Apart from producing accurate results through the simulations, fitting the
observed data to a custom function, which has the least relative deviation is
itself a challenge. As we will discuss, the functional form of the correlation
should have relevant physical backing to produce the best fit and also to be
applicable to extended Re ranges. We considered the physics carefully while
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proposing the functional forms. The magnitude of the relative deviation
between the correlation and simulation data is globally minimized using a
Python optimization function. We used Powell’s method (Powell, 1964),
which was found to be best among the available optimization methods for
our data.

3.1. Drag

We simulated different non-spherical particles at different incident angles
φ and Re. The resulting CD at different φ for various Re are plotted in
figure 10. It can be noted that the exponent of the sin(φ) term in the fits
of CD in Zastawny et al. (2012) are very close to 2 (see table 2 in Zastawny
et al. (2012)). The same has been observed by Ouchene et al. (2016) for
different prolate spheroids of aspect ratios upto 32. It might be tempting
to relate this finding to a similar correlation expected in the Stokes flow for
non-spherical particles. We have investigated this sine-squared behaviour for
different non-spherical particles, both in the Stokes limit and at Re as high
as 2000 (Sanjeevi and Padding, 2017). Surprisingly, the tested non-spherical
particles exhibited sine-squared dependence of the mean CD, even for com-
plex unsteady flows at Re = 2000. We found that the linearity assumption,
the reason for the sine-squared behaviour in the Stokes regime, does not
hold at high Re, as may have been expected due to the flow non-linearities
occurring at high Re. Rather, we find that the pressure distribution along
the particle surface for different φ scales in a particular pattern. The pat-
tern is dependent on the angle between the particle’s surface-normal and the
direction of the incident flow. This leads to the observed near sine-squared

phenomenon. The phenomenon is found to be primarily holding for different
elongated particles such as prolate spheroids, spherocylinders as well as low
aspect ratio oblate spheroids. Flatter, high aspect ratio oblate spheroids do
not exhibit the sine-squared dependence for reasons discussed in Sanjeevi
and Padding (2017).

Initially, we considered the use of correlations similar to the popularly
available Zastawny et al. (2012) form, since their form is quite flexible to
capture the dependencies of CD on Re and φ. Since the Re range is much
larger in our case, with 0.1 ≤ Re ≤ 2000 compared to 0.1 ≤ Re ≤ 300
studied by Zastawny et al. (2012), our proposed correlations require further
modifications. For reasons mentioned already, our proposed form takes an
exponent 2 for the sine-term. We correlate the measured CD at different Re
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Figure 10: CD vs φ at different Re for ellipsoid 1 (���), ellipsoid 2 (◦), and fibre (▽▽▽). The
corresponding solid lines in respective colors indicate the fit. At Re = 0.1 for ellipsoid
1, the dashed line corresponds to theory (Happel and Brenner, 1983), dashed-dot line for
Zastawny et al. (2012) and dotted lines for Ouchene et al. (2016).

16



Re

C
D

(a)

0 500 1000 1500 2000
10−1

100

101

102

103

Re

C
D

(b)

0.1 1 10 100 1000 5000
10−1

100

101

102

103

Figure 11: CD against Re for different non-spherical particles with Re in (a) linear scale
and (b) log-scale. The corresponding CD correlations fit at φ = 0◦ (solid lines) and φ = 90◦

(dotted lines) are also shown.

Ellipsoid 1 Ellipsoid 2 Fibre
φ = 0◦ φ = 90◦ φ = 0◦ φ = 90◦ φ = 0◦ φ = 90◦

a1 23.10 27.93 24.66 30.18 24.48 31.89
a2 3.397 4.286 4.059 4.396 3.965 5.519
a3 0.364 0.234 0.349 0.156 0.41 0.229
a4 0.0008 0.0018 0.0007 0.0073 0.0005 0.0032
a5 0.169 0.815 0.278 1.469 0.15 1.089

Table 2: Coefficients for the CD correlation.

and φ for the different tested non-spherical particles in the following form:

CD,φ = CD,φ=0◦ + (CD,φ=90◦ − CD,φ=0◦) sin2 φ (24)

with

CD,φ=0◦,90◦ =
(

a1

Re
+

a2

Rea3

)

e−a4Re + a5(1 − e−a4Re) (25)

The coefficients for the CD correlation at 0◦ and 90◦ incident angle are
listed in table 2. The table values close to 0 should not be ignored as they
have a strong influence at high Re. Physically, the CD should exhibit 1/Re
scaling at Stokes flow, irrespective of the particle shape. In our form, the
term a1/Re replicates this behaviour. For intermediate Re, the term a2/Rea3

is dominant. Additionally, it is known that for a sphere, the CD decays to
a near constant value at large Re > 103 (see figure 7). Similar behaviour
is observed for the different tested non-spherical particles and the term a5
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Ellipsoid 1 Ellipsoid 2 Fibre

Mean(%) 1.48 1.66 2.18
Max.(%) 5.23 4.52 13.38

Table 3: Relative deviation between CD results and the correlation.

captures the near constant CD at high Re (see figure 11). Appropriately,
the factors e−a4Re and 1 − e−a4Re act as a smooth switch between these
moderate and high Re regimes. Figure 11 shows the CD values at φ = 0◦

and φ = 90◦ for different Re. With the proposed functional form for the
correlation, the decay rate of CD with respect to Re is captured well and
therefore, we suggest that the CD correlation can be extended to much lower
Re in the Stokes regime and also to a few thousand Re magnitude greater
than our simulations. To demonstrate this, figure 11(b) is shown with the fit
from equation 25 upto Re = 5000 and it can observed that the trends are
captured well for Re greater than the simulated limit of Re = 2000. Further,
we show that the proposed CD correlations are very accurate with respect to
the measured coefficients and the same can be observed from figure 10. The
mean and the maximum of the deviations between the CD correlations and
the actual results are listed in table 3. It can be observed that the mean of
the absolute deviations are around 2% or less.

For creeping flows, it is known that the viscous forces dominate and the
viscous forces themselves are dependent on the surface area of the parti-
cle. Conversely, for high Re, the pressure forces dominate and the pressure
forces themselves are predominantly dependent on the projected surface area
against the oncoming flow. This can also be observed in our simulations on
comparison of CD at Re = 0.1 and Re = 2000 in figure 10. For Re = 0.1,
it is seen that the CD of the fibre at different φ is at least equal or greater
than that of disc-like ellipsoid 2. However at Re = 2000, we observe that the
disc-like ellipsoid 2 has CD values larger than that of the fibre.

3.1.1. Steady and unsteady regimes

The triggering of unsteady behaviour from a steady flow regime for a
non-spherical particle depends not only on the Re but also on the incident
angle φ. For a 6:1 prolate spheroid, Jiang et al. (2014) investigated the flow
at a specific inclination of φ = 45◦ at approximately Re = 91, 363, and 1817
(Red = 50, 200, and 1000 respectively). They report that even at Re = 1817,
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Figure 12: Time dependent behaviour of CD at different incident angles φ at Re = 300
for (a) ellipsoid 1, (b) ellipsoid 2 and (c) fibre.

the flow exhibits predominantly steady and symmetric behaviour with the
measured force coefficients exhibiting steady behaviour, with a mention that
the flow field is on the verge of exhibiting vortex shedding behaviour for
higher Re. These results are contrasting with the work of El Khoury et al.
(2012) where the same prolate spheroid of ratio 6:1 is investigated at 91 ≤
Re ≤ 545 (50 ≤ Red ≤ 300 respectively), but at cross-flow with φ = 90◦.
They observe that unsteady behaviour is triggered at Reynolds numbers as
low as Re ≈ 182 (Red = 100). Therefore, we can say that the incident angle
φ plays a major role in triggering unsteadiness. The simulations are run for a
sufficiently large time t∗ = |u∞|t/deq, specifically for Re expected to exhibit
unsteady regimes.

At Re ≤ 100, all three tested particles show steady flow behaviour for all
φ. However at Re = 300, the particles show unsteady behaviour for certain
angles. Figure 12 shows the time-dependent drag of different non-spherical
particles at Re = 300. It can be observed that the ellipsoid 1 and the fibre,
both slender objects, exhibit steady behaviour for φ ≤ 45◦ and unsteady
behaviour for higher φ. However, the disc-like ellipsoid 2 exhibits steady
behaviour only for low incident angles, i.e. φ ≤ 10◦ and unsteady behaviour
at higher incident angles. At higher Re = 1000, both the ellipsoid 1 and the
fibre exhibit steady behaviour until φ ≤ 10◦ and ellipsoid 2 exhibits unsteady
behaviour for all φ. At Re = 2000, all particles exhibit unsteady behaviour
for all incident angles φ, except for the fibre at φ = 0◦.
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Figure 13: CL vs φ at different Re for ellipsoid 1 (���), ellipsoid 2 (◦), and fibre (▽▽▽). The
corresponding solid lines in respective colors indicate the fit. At Re = 0.1 for ellipsoid
1, the dashed line corresponds to theory (Happel and Brenner, 1983), dashed-dot line for
Zastawny et al. (2012) and dotted lines for Ouchene et al. (2016).
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3.2. Lift

The lift coefficients CL of the different tested particles and the corre-
sponding correlation fits are plotted in figure 13. The proposed CL fit takes
the following form

CL,φ =

(

b1

Re
+

b2

Reb3

+
b4

Reb5

)

sin φ(1+b6Reb7 ) cos φ(1+b8Reb9 ) (26)

with the coefficients listed in table 4. The proposed CL correlation form has
both sine and cosine terms approaching exponent 1 for low Re, because this
is the exact physical limit for Stokes flow (Happel and Brenner, 1983). As
equation 6 is valid for Stokes flow, the corresponding 1/Re term of the CL

fit is dependent on the CD, i.e. b1 ≈ a1(φ = 90◦) − a1(φ = 0◦).
The mean and the maximum of the deviations between the CL results

and the fit are listed in table 5. The proposed correlation fits the observed
results with good agreement with around 3-4% mean deviation. It is difficult
in general to achieve a better fit due to the fact that the order of magnitudes
of CL are smaller than CD and any small deviation is amplified. There is
also a trend reversal in the skewness of the CL vs φ curve for increasing
Re. At Stokes flow, the CL at different φ is symmetric. With increasing
Re, up to the steady limits i.e. around Re = 300, the distribution skews to
a particular direction and upon onset of unsteady behaviour, the skewness
changes direction. This is observed for ellipsoid 1 and ellipsoid 2. Ellipsoid
1 results skew to the right upto Re = 300 and to the left for higher Re and
vice versa for ellipsoid 2.

In general, the maximum CL generated at a given Re is a function of the
particle aspect ratio itself and also of the projected area of the particle at
φ = 45◦. For the same reason, even though both ellipsoids 1 and 2 are of
same aspect ratio, the disc-like ellipsoid 2 always experiences more lift than
the needle-like ellipsoid 1. Interestingly the fibre, which has aspect ratio 4,
experiences the highest lift both in the Stokes regime and at Re = 2000
among the 3 tested particles. However at intermediate Re = 100, the disc-
like ellipsoid 2 experiences maximum lift until the Re corresponding to onset
of the unsteady flow. This is due to the fact that at intermediate Re, the
disc-like ellipsoid 2 experiences stronger wake (compared to an elongated
ellipsoid) at intermediate angles and this increases CL directly. By stronger
wake, we imply that the wake size is large and proportional to the projected
area of the particle against the flow. Another interesting observation is that
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Ellipsoid 1 Ellipsoid 2 Fibre

b1 4.484 5.28 6.83
b2 1.326 8.96 0.071
b3 0.122 0.234 −0.352
b4 0 −8.095 2.592
b5 0 0.325 0.298
b6 0.016 −0.004 0.065
b7 0.286 0.352 0.262
b8 −0.010 −0.002 0.003
b9 0.332 0.273 0.491

Table 4: Coefficients for the CL correlation. The near zero coefficients should not be
ignored as they would influence CL at high Re.

Ellipsoid 1 Ellipsoid 2 Fibre

Mean(%) 3.73 3.50 3.60
Max.(%) 18.54 20.86 15.74

Table 5: Relative deviation between CL results and the correlation. It should be noted
that the maximum relative deviations are observed at incident angles φ with CL close to
zero, i.e. φ near 0◦ and 90◦.

the maximum CL of the fibre monotonously reduces with increasing Re like
other non-spherical particles. However after a critical Re, the trend reverses
and the maximum CL starts to increase again compared to other particles
(see figure 13).

Even though equation 6 is only valid in the Stokes regime, we find that
the same equation can be used as a reasonable approximation at higher Re,
specifically for smooth, elongated particles. Examples of smooth, elongated
particles include prolate spheroids, spherocylindrical capsules, etc. Sufficient
care has to be exercised on applying equation 6 to shapes such as simple
cylinders due to their sharp edges, as sharp edges might affect flow pattern
and evolution of the instabilities significantly. However for high aspect ratio
elongated cylinders, the influence of these sharp edges would be relatively
weak compared to the frontal projected area of the particle for different
φ. Equation 6 has been tested by us for different slender particles such as
the prolate spheroids of different aspect ratios upto Re = 2000 (Sanjeevi
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and Padding, 2017). The mean of deviations between the simulations and
equation 6 is under 15%. In this work, we also show that equation 6 can
also be used for spherocylinders (fibres) as a decent approximation. Figure
14 shows the distribution of normalized CL for the fibre at different Re upto
2000.

At the same time, it is interesting to note that a similar observation does
not hold for disc-like oblate spheroids. Ellipsoid 2 in this work tested for
Re ≤ 2000 does not exhibit this behaviour. Another, flatter oblate spheroid
of aspect ratio 4 has been tested by us at Re = 100 (Sanjeevi and Padding,
2017). The same oblate spheroid also does not exhibit the reasonable approx-
imation of equation 6. The disc-like spheroids in general experience stronger
wake compared to needle-like spheroids at Re beyond the Stokes regime.
The stronger wake translates to larger lift at intermediate incident angles φ
and thereby making the deviation larger for oblate spheroids (Sanjeevi and
Padding, 2017). However in the absence of complete CL data, equation 6
could still be used for oblate spheroids as an approximation.

3.2.1. Torque

Any non-spherical particle inclined with respect to a homogeneous flow
also experiences a pitching torque. The torque coefficient CT from the simu-
lations and the correlation fits are plotted in figure 15. For Stokes flow, the
pitching torque is known to vanish. Therefore, the Stokes regime CT results
are ignored while making the fit. The proposed CT correlation fitted for the
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Figure 15: CT vs φ at different Re for ellipsoid 1 (���), ellipsoid 2 (◦), and fibre (▽▽▽). It has
to be noted that torque vanishes in Stokes flow and therefore ignored for the correlation.
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Ellipsoid 1 Ellipsoid 2 Fibre

c1 2.660 3.643 5.079
c2 0.190 0.178 0.342
c3 0 −1.252 0.197
c4 0 0.319 −0.161
c5 −8.73 × 10−4 −0.018 0
c6 0.798 0.387 0
c7 −3.70 × 10−5 0.004 0
c8 0.963 0.349 0

Table 6: Coefficients for the CT correlation. The near zero coefficients should not be
ignored as they would influence CT at high Re.

Ellipsoid 1 Ellipsoid 2 Fibre

Mean(%) 3.40 3.43 4.12
Max.(%) 27.30 15.13 17.18

Table 7: Relative deviation between CT results and the correlation. The maximum relative
deviations are observed at incident angles φ with CT close to zero, i.e., near 0◦ and 90◦.

range 1 ≤ Re ≤ 2000 takes the following form

CT,φ =
(

c1

Rec2

+
c3

Rec4

)

sin φ(1+c5Rec6) cos φ(1+c7Rec8 ) (27)

with coefficients listed in table 6. Similar to CL, the CT values exhibit near
symmetric behaviour and vanish to zero at the extreme incident angles φ
and therefore, the fitted correlation is very sensitive to minor deviations.
The mean and maximum deviations of the correlation for the different tested
particles are listed in table 7. Even though good agreements are observed in
figure 15, the overall mean relative deviation is around 3.5%. This mainly
stems from larger relative deviations for the near-zero CT values observed
close to φ = 0◦ and φ = 90◦.

4. Comparison with literature correlations

In this section, we compare our simulation results with different correla-
tions available in the literature. Hölzer and Sommerfeld (2008) provide only
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Figure 16: Comparison of CD results with literature correlations.

a CD correlation, but it is applicable to arbitrary non-spherical particles. We
use it at φ = 0◦, 90◦ and interpolate for intermediate incident angles φ using
equation 24 as all tested particles exhibit near sine-squared CD behaviour
for all Re. Zastawny et al. (2012) and Ouchene et al. (2016) provide CD,
CL and CT for specific non-spherical particles limited to steady flows. The
provided correlations have different decay rates for different Re regimes. If
such decay rates are captured accurately, it is possible that their correlations
can be extended to ranges beyond their tested limits. It is shown in figure 1
that the fluidized particles experience flows upto Re = 2000. In this section,
we therefore test the correlations of both Zastawny et al. (2012) and Ouchene
et al. (2016) upto Re = 2000, even though their tested Re regime is roughly
an order of 10 less. Two cases are considered, one at Re = 100 and another at
Re = 2000 and the corresponding drag, lift and torque coefficients are com-
pared. At the moment of writing, we are not able to reproduce the CD and
CL correlation results available in Ouchene et al. (2016) due to typograph-
ical errors in their published correlation. The corresponding typographical
corrections have been communicated to us by Ouchene et al. (2016).

The CD comparisons for the different non-spherical particles are shown
in figure 16. For ellipsoid 1, we observe that our CD results are in good
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Figure 17: Comparison of CL results of ellipsoid 1 with literature correlations.

agreement with Zastawny et al. (2012) for both Re = 100 and Re = 2000,
even though their correlation is valid only up to Re = 300. However, the
results of Zastawny et al. (2012) are not accurate for Stokes flow as can be
observed from figure 10 for Re = 0.1 on comparison with theoretical solutions
and other literature results. This is primarily due to the fact that Zastawny
et al. (2012) use a domain of 20deq × 20deq × 10deq for Re < 1. Their lowest
domain dimension 10deq is not sufficient for Stokes flow, where viscous effects
are dominant and thereby requiring larger domain size.

On the other hand, the more generic correlation of Ouchene et al. (2016)
for different prolate spheroids is comparatively less accurate. While their
CD,φ=0◦ is found to be sufficiently accurate, the CD,φ=90◦ is not accurate,
thereby leading to an inaccurate prediction overall with increasing Re. We
find that the Hölzer and Sommerfeld (2008) correlation works reasonably
well for all the tested non-spherical particles at Re = 100 but not well for
Re = 2000. This is due to the fact that their correlation is intended to be
more generically applicable to all non-spherical particles and for a wide range
of Re. Further, the CD itself reduces with increasing Re, with a rate that
depends on the particle geometry. Therefore at high Re, any deviation is
amplified due to the smaller CD value.

The comparison of CL values for ellipsoid 1 are given in figure 17. For
Re = 100, we observe that our simulations results are in very good agreement
with Zastawny et al. (2012). The results of Ouchene et al. (2016) exhibit large
deviations, with a maximum deviation of around 40%. For Re = 2000, the
results of Zastawny et al. (2012) are still reasonably accurate considering
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Figure 18: Comparison of CT results of ellipsoid 1 with literature correlations.

their tested limit is Re = 300. However, the CL correlation of Ouchene
et al. (2016) performs poorly at Re = 2000. As discussed earlier for CD, if
the coefficient decay rates are captured with proper physical bounds, the Re
limits can be extended much further. In a similar sense, the CL correlation
of Ouchene et al. (2016) does not capture the decay rates accurately and

also their skewness term sin1.002Re

φ cos φ makes the CL skewness extreme for
higher Re.

Generally, determining the particle correlations involves a two-step pro-
cess: (i) performing accurate simulations and (ii) fitting the simulation re-
sults in an accurate form. The work of Ouchene et al. (2016) is performed
using Ansys Fluent, which is one of the most reliable commercial solvers and
therefore, simulation accuracy is good. However, the choice of the fitting
form is where most of the precision is lost, since the work of Ouchene et al.
(2016) covers a wide range of aspect ratios, Re and incident angles. Even
for a simple CD correlation for a sphere, the accurate correlation forms (for
example the Clift correlation) split the correlation into multiple Re range.
For the same reason, we observe that CD and CL correlations of Ouchene
et al. (2016) have poor accuracy (see figures 16 and 17) as they are done by
a single fit. However, their CT is found to be more accurate as it is split for
two different aspect ratio ranges (see figure 18). Our work does not have this
issue as the fits are independent for the different particles investigated and
hence simpler.

Regarding CT , the correlations of Zastawny et al. (2012) and Ouchene
et al. (2016) are compared for ellipsoid 1 with our results in figure 18. We
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observe that both the literature results are in good agreement with our sim-
ulation results for Re = 100. At Re = 2000, there is still a reasonable match
on comparing the maximum amplitudes of the CT , but slight variation in
the skewness. Our CT distribution is slightly skewed to the left and the lit-
erature results slightly to the right. This is again due to the fact that the
literature results are only performed for predominantly steady flow regimes
with Re ≤ 300.

5. Conclusion

The flow around different non-spherical particles has been simulated using
the MRT-LBM scheme for different incident angles φ. Interpolated bounce-
back is used to achieve high accuracy compared to the conventional staircase
no-slip boundaries in LBM, especially at high Re. The simulations have
been performed from the Stokes limit to Re = 2000, while previous works
were mainly limited to steady flows up to Re = 300. Different tests have
been performed to assess the influence of grid resolution and also the size
of the domain, thereby ensuring the quality of the results. The influence of
the particle’s geometry and also the incident angle φ has a significant effect
on the onset of unsteady flow behaviour. We observed that the simulated
particles exhibit sine-squared mean drag scaling with φ, starting from the
Stokes limit and even upto Re = 2000. Such an agreement at high Re is
not due to linearity of the flow fields as in Stokes flow, but rather due to
consistent pressure pattern depending on local surface normal of the particle
(Sanjeevi and Padding, 2017).

At the same time, we observed that the lift and torque coefficient display
a symmetric behaviour at Stokes flow and a slightly skewed trend for larger
Re. The onset of unsteady flow behaviour also influences the direction of
the skewness i.e. different skewing directions before and after the transient
Re for unsteady flow behaviour. Correlations for drag, lift and torque co-
efficients have been proposed, taking in consideration of known theoretical
limits at low Re and different decay rates at high Re. This implies that our
correlations can be extended to regimes beyond our tested limits, to lower Re
in the Stokes regime and Re > 2000 to a considerable extent, especially the
correlations of CD and CL. We also propose that in the absence of complete
CL data for intermediate incident angles φ, the CL equation of the Stokes
flow (equation 6) can be used as a reasonable approximation at high Re.
Better agreement is observed for smooth, elongated particles such as prolate

29



(needle-like) spheroids and spherocylindrical fibres compared to oblate (disc-
like) spheroids. The reason why disc-like spheroids show poor agreement is
due to increased lift at intermediate incident angles φ due to stronger wake
(Sanjeevi and Padding, 2017).

Good agreement between the measured data and the fits is observed, with
deviations of around 2% for CD and around 3.5% for CL and CT . The pro-
posed correlations will greatly help Euler-Lagrangian simulations, catering
the practical Re regimes observed in fluidized beds.
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Appendix A.

The transformation matrix M used for transforming from velocity to mo-
ment space based on d’Humières et al. (2002) is

M =





































1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

−11 −11 −11 −11 −11 −11 8 8 8 8 8 8 8 8 8 8 8 8 −30

−4 −4 −4 −4 −4 −4 1 1 1 1 1 1 1 1 1 1 1 1 12

1 −1 0 0 0 0 1 1 1 1 −1 −1 −1 −1 0 0 0 0 0

−4 4 0 0 0 0 1 1 1 1 −1 −1 −1 −1 0 0 0 0 0

0 0 1 −1 0 0 1 −1 0 0 1 −1 0 0 1 1 −1 −1 0

0 0 −4 4 0 0 1 −1 0 0 1 −1 0 0 1 1 −1 −1 0

0 0 0 0 1 −1 0 0 1 −1 0 0 1 −1 1 −1 1 −1 0

0 0 0 0 −4 4 0 0 1 −1 0 0 1 −1 1 −1 1 −1 0

2 2 −1 −1 −1 −1 1 1 1 1 1 1 1 1 −2 −2 −2 −2 0

−4 −4 2 2 2 2 1 1 1 1 1 1 1 1 −2 −2 −2 −2 0

0 0 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 0 0 0 0 0

0 0 −2 −2 2 2 1 1 −1 −1 1 1 −1 −1 0 0 0 0 0

0 0 0 0 0 0 1 −1 0 0 −1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 0

0 0 0 0 0 0 0 0 1 −1 0 0 −1 1 0 0 0 0 0

0 0 0 0 0 0 1 1 −1 −1 −1 −1 1 1 0 0 0 0 0

0 0 0 0 0 0 −1 1 0 0 −1 1 0 0 1 1 −1 −1 0

0 0 0 0 0 0 0 0 1 −1 0 0 1 −1 −1 1 −1 1 0
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