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ABSTRACT 
 
Investments in transport are increasingly motivated by the need to improve its robustness – the 
capacity to absorb disturbances with a minimal impact on system performance. Nonetheless, there is 
lack of knowledge on how to assess and quantify the robustness value of new investments. This study 
investigates the robustness of alternative public transport networks by assessing the consequences of 
link failures on network performance. A full-scan disruption impact analysis is performed and its 
implications on passengers group composition and travel time losses are analyzed for a public 
transport development plan in Stockholm, Sweden. The results suggest that as a result of the 
development plan, the robustness of the case study network will improve in terms of average 
performance deterioration as well as worst case scenario for all performance indicators. Neglecting 
abnormal operations in project appraisal can potentially lead to the underestimation of its benefits. 
Moreover, the critical links in each network are identified and impact disparity is investigated. The 
analysis method presented in this study can support the consideration of development plans impacts 
on network robustness in the strategic planning process.  
 
 
Keywords: Robustness; Public Transport; Network Design; Disruption; Link Failure. 
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1. INTRODUCTION 
 

Investments in transport are increasingly motivated by the need to improve reliability and robustness 
and not merely travel time savings under normal operations (Mackie et al. 2014). Transport systems 
are subject to recurrent disruptions that may have substantial implications for network performance 
and society at large. Even though robustness of critical infrastructures such as mass metropolitan 
public transport networks is high on the planning and policy agenda (Homeland Security 2010), there 
is lack of knowledge on how to assess and quantify the robustness value of new investments. There is 
thus a growing need to develop techniques and indicators to assess the consequences of alternative 
network developments in terms of robustness. 
 
Disruptions in the public transport service could result from various reasons including mechanical 
and technical failures, planned maintenance works or targeted attacks. This study focuses on the 
consequences of individual link failures, i.e. the complete breakdown of link functionality, for 
example in the case of disruptions caused by a signal failure, suicide attempt or physical 
infrastructure degradation. Such disturbances occur regularly in large urban rail networks. The 
impact of disruptions on network performance may vary from one link to the other, depending on the 
interaction between network topology and travel demand. In addition, the consequences in case of a 
disruption on a given link may change as a result of changes in network topology or operations such 
as the addition or removal of links or the increase or decrease of link capacity (Cats and Jenelius 2015). 
The relatively low connectivity of public transport systems makes them particularly vulnerable in 
case of disruptions. In contrast, the removal of random links in urban road networks will only seldom 
induce longer path lengths or the fragmentation of the network into disconnected sub-networks 
(Duan and Lu 2014). Urban rail-bound systems are particularly vulnerable to link failures because of 
their restricted capability to bypass link closures, and the low network density. However, these 
systems often comprise of several separate railway systems which could potentially offer redundancy 
and thus alternative routes in case of disruptions.    
 
A systematic approach for quantifying the consequences of service disruptions is essential for the 
inclusion of network robustness in the network design process. In this study, system robustness is 
defined as the capacity to absorb disturbances with a minimal impact on system performance. The 
latter can be measured using various indicators such as total travel time loss, size of the largest sub-
network that remains intact or the number of travelers affected by the disruption. Although planners 
and stakeholders occasionally argue that new links will increase network redundancy and hence 
reduce its vulnerability, the claims of increased robustness are in general not supported by evidence 
that has been produced using a systematic evaluation procedure. This is for example the case with a 
cross-radial light rail line as well as the overall public transport development plan that is currently 
underway in Stockholm, Sweden )Jenelius and Cats 2015). Whilst rigorous cost-benefit analyses that 
consider the effects on travel times and welfare under normal conditions are often conducted as part 
of transport planning appraisal, the implications of the development plan on network robustness 
remain unknown.  
 
The primary objective of the current study is to propose a method for evaluating the robustness value 
of alternative network designs. The method involves a full-scan of link failure disruption scenarios 
and assess their implications on network integrity, passenger delays and link criticality. The full-scan 
approach implies analyzing the impact of a disruption on each of the network links separately for 
each network alternative. The robustness value of a certain network alternative is then established by 
comparing networks in terms of their expected disruption impact.  
 
The evaluation approach deploys multiple performance indicators and considers both expected 
performance degradation, worst case scenarios and worst affected passengers. Moreover, the 
distribution of delays and travel disturbances over the passenger population is investigated for 
different disruptions scenarios under alternative networks. The analysis framework is used to 
evaluate the robustness implications of a substantial development plan of Stockholm multi-modal 
rapid urban rail network. The results shed light on the implications of using alternative performance 
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indicators for measuring network robustness and recommendations for network planners when 
assessing the robustness value of new investments. 
 
A review of the literature on evaluating transport robustness is provided in the following section. A 
method to model and evaluate the impact of disruptions is first presented (Section 3) followed by its 
application to a public transport expansion plan that is currently underway in Stockholm, Sweden 
(Section 4). The results include an impact analysis of disruption scenarios on travel times, passengers 
ability to reach their destination and link centrality (Section 5). A discussion of the main findings and 
their planning implications (Section 6) is followed by study limitations and recommendations for 
planners and future research directions (Section 7).    
 
2. LITERATURE REVIEW  
 
Previous studies analyzed the relation between network topology and network vulnerability. Ash and 
Newth (2007) studied the optimal network design to withstand link closures for a synthetic grid 
network. They concluded that robust network structures were characterized by the formation of a 
collection of hubs and cliques, i.e. clusters of nodes that are highly inter-connected, resulting with a 
high share of common neighbors and allowing the redistribution of flows in case of disturbances. 
Zhang et al. (2015) analyzed the resilience of 17 generic network structures and concluded that 
redundancy is a key determinant of network capability to withstand disasters. Although some 
insights can be gained from analyzing a taxonomy of networks structures, real-world public transport 
networks comprise a large number of diverse building blocks (e.g. hub-and-spoke, grid, ring, diamond 
etc.) which cannot be represented as direct extrapolation of their fundamental elements.  
 
Most studies on public transport network vulnerability focused on topological indicators and how 
the degradation of physical links in a specific sub-network - the metro network - affects network 
connectivity. Roth et al. (2012) showed that the world’s largest metro networks share a very similar 
topology, with a central core from which branches radiate. Using graph theory measures of link 
importance, previous studies investigated the impact of random and targeted attacks on network 
vulnerability for the world largest metro systems (Angeloudis and Fisk 2006), 32 metro systems 
worldwide (Derrible and Kennedy 2010), Shanghai (Zhang et al. 2011), London and Paris (von Ferber 
et al. 2012), Nanjing (Deng et al. 2013) and Madrid (Rodriguez-Nunez and Garcia-Palomares 2014). 
The results demonstrate that public transport networks vary in their capacity to absorb random and 
targeted attacks. With the exception of Rodriguez-Nunez and Garcia-Palomares (2014), previous 
studies discarded link labels (e.g. travel times), travel demand and passenger distribution over the 
network. Instead, they analyzed network vulnerability in strictly topological terms, implying uniform 
link labels and attributing equal importance to connections between each origin-destination. 
However, the impact of link failure depends not only on the availability of travel connection 
alternatives, but also on their attractiveness and the number of travelers that relied on the disrupted 
link. Indeed, Dupuy (2013) argues that by overlooking key network characteristics as well as the 
urban planning context, studies performed by scientists from other disciplines in the field of network 
geometry and urban railway systems provide very limited recommendations to network planners and 
thus obstruct potential implementations. 
 
The importance of network redundancy was highlighted in most of the abovementioned studies that 
examined the implications of public transport network design on network vulnerability. Radial 
networks are highly vulnerable due to the possible fragmentation of branches from the remaining 
network. Increasing the number of cyclic paths, i.e. alternative ways to travel in a loop back to the 
origin stop without traversing the same link twice, implies adding redundancy to the network and 
enabling travelers to use alternative routes in case of disruptions. Derrible and Kennedy (2010) 
postulated that network robustness is determined by the number of cyclic paths available in the 
network. Interestingly, their analysis suggests that Stockholm is the third least robust system among 
the 32 metro systems examined.  
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Lines that intersect with many other lines play an important role in providing travel alternatives in 
case of disruptions by increasing the number of cyclic paths. The importance of circular (i.e. ring) and 
cross-radial (i.e. orbital services that intersect with radial lines leading to the dense core of the 
network) lines was therefore emphasized by Rodriguez-Nunez and Garcia-Palomares (2014) and 
Jenelius and Cats (2015). Rodriguez-Nunez and Garcia-Palomares (2014) and De-Los-Santos et al. 
(2012) conducted a full network scan for the existing metro and commuter train networks of Madrid, 
respectively. The former evaluated network vulnerability in terms of network performance under 
successive targeted attacks, whereas the latter focused on the robustness value of offering a 
replacement bus service. Cats and Jenelius (2014) proposed a method for identifying a subset of 
central links for which a detailed dynamic robustness analysis was performed using a dynamic agent-
based transit assignment model. This method was then used as a component in a sequential process 
for identifying where should reserve capacity be allocated to best improve network robustness by 
Cats and Jenelius (2015). However, evaluating the robustness value of alternative investments 
requires analyzing the impacts of all possible link failures rather than assessing network robustness in 
case disruptions occur on the most central links. 
 
Previous studies provide important principles for robust public transport design by comparing 
networks situated in different cities. However, none of the abovementioned studies proposed a 
method for assessing development plans for network evolution in terms of their network robustness. 
The evaluation of link failure impacts on alternative networks need to take into consideration travel 
impedance, travel demand levels and network flows such that the delay associated with rerouting, the 
number of travelers affected and ultimately the societal costs attributed to a certain link failure can be 
estimated. A quantitative approach that encompasses these aspects can facilitate a rigorous 
comparison of the effects of different network developments and patterns of travel demand on 
network robustness. This will allow contrasting for example two alternative investments with the 
same impact on indexes such as network connectivity and redundancy whilst having distinctively 
different implications on passenger delay, unserved passenger demand and the share of affected 
passengers. A comparative method for analyzing and evaluating network robustness is described in 
the following section.  
 
3. METHOD 
A method to analyse the robustness value of alternative public transport links by performing a full-
scan of link failure scenarios is proposed. Network and demand representation, followed by the 
measures of system performance and link criticality and centrality deployed in this study are 
described in the subsequent sub-sections.  
 
3.1 Network and demand representation 
The public transport network is represented by a directed and weighted graph 𝐺(𝑆, 𝐸), where the 
node set 𝑆 represents stops and rail stations (all called stops here for simplicity), and the link set 
𝐸 ⊆ 𝑆 × 𝑆 represents road or rail track segments between stops. The graph is fully specified by:  

(1) an adjacency matrix 𝐴 where cell 𝑎𝑖𝑗  equals one if nodes 𝑖, 𝑗 ∈ 𝑆 are connected and zero if not;  

(2) a vector of weights associated with each link 𝑒 ∈ 𝐸, where each element, 𝑡𝑒 , denotes the travel 
impedance induced when traversing the respective link. Travel impedance is considered 
deterministic at the strategic planning phase.  

This representation is a variant of the L-space graph used in network theory studies. Similarly to the 
representation used by Derrible and Kennedy (2010), only transfer stations (served by more than a 
single line, except for intermediate stations on a common corridor) and terminals are included in the 
node set. Intermediate stations without transfer possibilities are discarded since the exact location of 
the disruption between interchange stations will not influence passenger rerouting alternatives. 
 
Travel demand is assigned using the all-or-nothing approach for a given network and disruption 
scenario, similarly to previous studies (De-Los-Santos et al. 2012, Rodriguez-Nunez and Garcia-
Palomares 2014). Ramli et al. (2014) compared the results obtained by the assignment approach 
applied in this study to ridership data of the rapid transit system in Singapore and concluded that it 
yielded reasonably accurate predictions. It is hence assumed that each passenger follows the fastest 
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path available between the respective origin and destination stations. This approach was adopted in 
this study because of  its computational advantage which allows assessing the large number of 
scenarios required for a full network scan. 
 
Travel demand is given in the form of an OD matrix, 𝐹, where each entry, 𝑓𝑖𝑗  (𝑖, 𝑗 ∈ 𝑆), denotes 

passenger demand between a pair of stops 𝑖  and 𝑗 . For each pair of stops the shortest path is 

calculated and the respective travel demand is assigned. Let 𝛿𝑒
𝑖𝑗

 take the value one if link 𝑒 is on the 
shortest path between nodes 𝑖 and 𝑗 and zero otherwise. The number of travellers traversing each link 
is then obtained by superposing the flows assigned for all OD pairs: 
 

𝑣𝑒 = ∑ ∑ 𝛿𝑒
𝑖𝑗

𝑗∈𝑆 𝑓𝑖𝑗𝑖∈𝑆            (1) 
 
3.2 Disruption impact and robustness value 
The robustness value of a network design alternative, 𝑛 , is assessed by comparing network 
performance under a range of disruption scenarios to the corresponding performance of the base case 
network, 𝑛0. The robustness analysis consists of assessing the impacts of a disruption occurring on 
each of the network elements. A full-scan approach is taken in this study where each scenario 
corresponds to the breakdown and closure of a single link in the network, independently. A scenario 
involving the failure of link 𝑒 in network 𝑛 is denoted by (𝑛, 𝑒).  
 
System performance can be measured by a range of indicators that are considered important by 
decision makers for evaluation purposes. Let 𝑦  denote an indicator characterizing system 
performance, to be described in Section 3.3. The impact of the failure of link 𝑒 given network 𝑛 is 
defined as 
 
∆𝑦(𝑒|𝑛) = 𝑦(𝑛, 𝑒) − 𝑦(𝑛, 0)          (2) 
 
The impact of a link disruption for a given network, ∆𝑦(𝑒|𝑛),  is defined as the difference between the 
performance when link 𝑒 is disrupted, 𝑦(𝑛, 𝑒), and the performance obtained in the undisrupted case, 
𝑦(𝑛, 0). The impact corresponds thus as the deterioration in network performance inflicted by a 
certain disruption as compared with the undisrupted case. When the system performance indicator is 
the change in travel times, it becomes equivalent to the network robustness index proposed by Scott 
et al. (2006) for evaluating the criticality of highway segments and operationalized by Cats and 
Jenelius (2014) for public transport line segments.  
 
A measure of network robustness should enable the comparison of alternative networks in respect to 
their capacity to absorb various disruptions. The robustness value of a certain network alternative, 𝑛, 
given a failure of link 𝑒 is defined as 
 
∆𝑦(𝑛|𝑒) = 𝑦(𝑛, 𝑒) − 𝑦(𝑛0, 𝑒)         (3) 
 
The robustness value of a network for a given link disruption, ∆𝑦(𝑛|𝑒), is defined as the difference 
between the performance obtained in case this disruption occurs in this network, 𝑦(𝑛, 𝑒), and the 
performance obtained when the same disruption occurs in the base case network, 𝑦(𝑛0, 𝑒).  
 
The definitions of impact and robustness value given in Eq. 2-3 take into account a single disruption 
scenario. In order to allow the overall assessment of network robustness, the impacts of the whole 
range of disruption scenarios need to be considered. The robustness of a certain network alternative 
can be measured in terms of the change in its performance in the worst-case scenario 
 
𝑟𝑛

𝑚𝑎𝑥 = max
𝑒∈𝐸

∆𝑦(𝑛|𝑒)          (4)   

 
While this measure indicates whether the network is more robust with respect to the most adverse 
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scenario, it discards potential changes in its robustness value in withstanding all other scenarios. 
Alternatively, overall network robustness value, 𝑟𝑛, can be defined in terms of the expected disruption 
impact 
 
𝑟𝑛 = 𝐸[∆𝑦(𝑛|𝑒)] = ∑ [𝑝𝑒∆𝑦(𝑛|𝑒)]𝑒∈𝐸          (5) 
 
where 𝑝𝑒  is the probability that link  𝑒  will breakdown. Link failure probabilities are typically 
unknown. By assuming equal probability to fail, Eq. 5 can be written as simply the mean value of 
network robustness taken over all links. The consideration of maximum impact versus mean impact 
can be viewed as a distinction between targeted attacks and random failures, respectively, when 
assuming that the perpetrator can identify the weakest link.  
 
3.3 System performance indicators    
System performance is measures in this study using several indicators. The indicators can be classified 
into passenger group composition and travel time losses.  
 
3.3.1 Passenger group composition 
In the event of a disruption, the population can be divided into three classes based on how the 
disruption influences their travel experience:  

 Cut-off – passengers that cannot execute their trip because of network disintegration. These 
disconnected passengers have no path available between their origin and destination. 

 Delayed - passengers that experience delays, i.e. longer travel times than in the undisrupted 
case, due to the disruption. Given the network loading approach used in this study, this 
implies that the disruption occurs along their shortest path and hence requires a detour. 
These passengers use an alternative path which is less attractive than the previously used 
shortest path.  

 Unaffected – passengers that are not affected by the disruption, i.e. travel times remain the 
same as in the undisrupted case, because their shortest path remains intact. 

The three passenger groups are denoted by 𝐹𝑐 , 𝐹𝑑 and 𝐹𝑢, respectively, where these three classes are 
mutually exclusive and collectively exhaustive, 𝐹𝑐 ∪ 𝐹𝑑 ∪ 𝐹𝑢 = 𝐹.  
 
The system performance indicators considered in this study are the shares of the abovementioned 
passenger classes as well as the extent of the impact on delayed passengers. The latter is analysed in 
terms of the change in total passenger travel times compared with the baseline undisrupted scenario 
and the distribution of delays for passengers in 𝐹𝑑. 
 
Certain disruptions may result in unsatisfied demand due to the partitioning of the network. The 
share of cut-off demand that results from scenario 𝜎 is  
 

𝑐(𝜎) =
|𝐹𝑐|

|𝐹|
=

∑ ∑ 𝑓𝑖𝑗∙𝜔𝑖𝑗(𝜎)𝑗∈𝑆𝑖∈𝑆

∑ ∑ 𝑓𝑖𝑗𝑗∈𝑆𝑖∈𝑆
          (6) 

Where 𝜔𝑖𝑗(𝜎) indicates whether there is no path between 𝑖 and 𝑗 in scenario 𝜎. Formally, 𝜔𝑖𝑗(𝜎) 

equals one if ∑ 𝛿𝑒
𝑖𝑗

(𝜎)𝑒∈𝐸 = 0  and is zero otherwise. Alternatively, network availability can be 
positively defined as the share of satisfied demand, 1 − 𝑐(𝜎). 
 
In order to calculate the share of delayed passengers, passengers travel times need first to be obtained. 
The travel impedance of travellers travelling between stops 𝑖 and 𝑗 under scenario 𝜎 is  
 

𝑡𝑖𝑗(𝜎) = ∑ (𝛿𝑒
𝑖𝑗

(𝜎) ∙ 𝑡𝑒)𝑒           (7) 
 
The magnitude of the impact of a disruption could thus be measured also in terms of the share of 
passengers that experience delays, as follows 
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𝑑(𝜎) =
|𝐹𝑑|

|𝐹|
=

∑ ∑ 𝑓𝑖𝑗∙𝜑𝑖𝑗
𝑗∈𝑆𝑖∈𝑆

∑ ∑ 𝑓𝑖𝑗𝑗∈𝑆𝑖∈𝑆
                                                 (8) 

 

Where 𝜑𝑖𝑗  indicates whether passengers travelling between 𝑖 and 𝑗 in scenario 𝜎 experience delay. 

Formally, 𝜑𝑖𝑗  equals one if 𝑡𝑖𝑗(𝑛, 𝑒) − 𝑡𝑖𝑗(𝑛, 0) > 𝜀 and is zero otherwise, and 𝜀 is the delay threshold. 
 
The share of passengers that are negatively affected by the disruption is then the sum of equations  6 
and 8, whereas the share of unaffected travellers in scenario 𝜎 is  1 − 𝑐(𝜎) − 𝑑(𝜎). 
 
3.3.2 Travel time losses 
In addition to the composition of passenger groups, the impact of disruptions can also be quantified 
by considering the extent of the consequences for those trips that can still be performed. Similarly to 
the discussion in Section 3.2 above concerning mean versus maximum impact over a set of disruptions,  
passenger delay can be measured in average terms or by considering the worst affected passengers. 
 
The impact of a disruption on total passenger travel time depends on the number of travellers delayed 
by the incident and the detours invoked by the disruption. The total travel impedance experienced by 
travellers in scenario 𝜎 is 
 

𝑡𝑡(𝜎) = ∑ ∑ 𝑓𝑖𝑗 ∙ [∑ (𝛿𝑒
𝑖𝑗

(𝜎) ∙ 𝑡𝑒)𝑒 ]𝑗∈𝑆𝑖∈𝑆        (9) 
 
Note that different disruptions may result in similar total travel time effect while differing in terms of 
the number of travellers delayed and the distribution of their impact over passenger population. For 
example, a disruption may have large negative consequences for few travellers or induce relatively 
minor detours to a large number of passengers.  
 
An inherent drawback of the total travel impedance defined in Eq. 9 is that it does not allow direct 
comparison of scenarios that result with different network disintegration. Incomplete trips could be 
reflected by assigning as infinite or big M travel time value. However, this will make the comparison 
of 𝑡𝑡(𝜎) for such scenarios meaningless. Instead, an additional indicator that accounts only for travel 
times of completed trips by excluding the cut-off demand is introduced. The average travel impedance per 
passenger, 𝑡̅, is then calculated only for the satisfied demand   
  

𝑡̅(𝜎) =
𝑡𝑡(𝜎)

(1−𝑧(𝜎))∙∑ ∑ 𝑓𝑖𝑗𝑗∈𝑆𝑖∈𝑆
                                                        (10) 

 
A non-compensatory approach is adopted in this study. This implies contrasting a series of 
performance indicators, where each of the abovementioned indictors can be assigned in Eq. 3-5 for 
measuring disruption impact and network robustness value. Furthermore, these system performance 
indicators enable the assessment of the criticality of each link for maintaining network functionality 
and integrity. 
 
3.4 Link criticality and centrality  
As discussed in the literature review section, it has long been recognized that the ability of transport 
networks to withstand degradations depends on network topology. In particular, central links, in the 
sense that many paths between pairs of nodes must traverse those links, are often also critical in case 
of disruptions (Freeman et al. 1991).  
 
Changes in network performance in the event of a disruption on link 𝑒 , ∆𝑦(𝑒|𝑛), determine link 
criticality. Note that the criticality of a certain link is defined in the context of a specific network and 
travel demand since it may change when flow distribution is altered. Links that cause the greatest 
deterioration in network performance when disrupted are considered critical to maintaining network 
functionality.  
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At the same time, disruption scenarios may also alter network topology and hence link centrality. The 
impact of various scenarios on link centrality is examined in this study through the betweenness 
centrality measure. The latter is a network science indicator that corresponds to the share of shortest 
paths that traverse through a certain link. Let 𝑔𝑖,𝑗(𝑒) denotes the fraction of shortest paths between 

stop 𝑖 and stop 𝑗 that contain link 𝑒. The relative betweenness centrality of link 𝑒 in the public transport 
network is then defined as 
 

𝑏𝑒 =
1

|𝑆|(|𝑆|−1)
∑ ∑ 𝑔𝑖,𝑗(𝑒)𝑗∈𝑆\𝑠1𝑖∈𝑆          (11) 

 
This is a standardized indicator that corresponds to the share of shortest paths that traverse through 
a certain link when normalized by the number of all origin-destination pairs. This simple network 
measure has a number of limitations which may reduce its relevance for identifying central links in 
real-world public transport networks. In particular, it assumes that all node pairs are equally 
important when assessing the centrality of a link. Instead, a weighted relative link betweenness centrality is 
used in this study 
 

𝑏�̂� =
1

∑ ∑ 𝑓𝑖𝑗𝑗∈𝑆𝑖∈𝑆
∑ ∑ 𝑔𝑖,𝑗(𝑒)𝑗∈𝑆\𝑠1𝑖∈𝑆 𝑓𝑖𝑗         (12) 

 
Although the betweenness measures are relative, they do not necessarily sum up to one because paths 
consist of multiple links.  
 
4. APPLICATION 
This section describes the case study public transport network and development plan for which the 
abovementioned method was applied, followed by details on method implementation.  
 
4.1 Network description 
The analysis method was applied to the rapid rail-bound transport system of Stockholm, Sweden, 
which consists of metro, commuter and light rail trains (Figure 1). The network includes 176 stations 
served by 12 lines and constitutes the backbone of the public transport system in Stockholm with 
more than 1.5 million passenger trips per day.  
 
Stockholm is famous for its long-term monocentric planning with a dominant central core and the 
planning of relatively dense satellite rail-bound towns. The inseparable urban and transport planning 
in Stockholm is a prime example of a radial public transport system which is primarily oriented 
towards suburb to center commuting (Cats et al. 2015a). The metro network is designed to provide 
regional accessibility rather than local coverage (Derrible and Kennedy 2010, Börjesson et al. 2013). 
The commuter train further extends to neighboring communities in Stockholm County and beyond. 
Since the turn of the century there has been a noticeable shift towards developing sub-centers 
intended to promote a more balanced distribution of activities. As part of this planning policy, an 
orbital light rail line (solid yellow line in Figure 1) was constructed to allow passengers to travel 
between the southern and western parts of Stockholm without going through the oversaturated 
corridors and transfer hubs within the city center (Jenelius and Cats 2014).  
 
4.2 Development plan 
While radial commuting patterns still dominate passenger flows, a more polycentric structure is 
promoted and supported by the development of a corresponding transport infrastructure (Cats et al. 
2015a). These developments include further extensions of the cross-radial light rail train, several 
expansions of the metro system and increasing the capacity of the commuter train system which are 
designed to support a stronger network of strategic nodes in Greater Stockholm (Stockholm City 
2011).  
 
A decision to extend this system substantially with 23 new stations and 35km of new tracks by 2025 
was recently undertaken. The investment plan includes the following components (Figure 1, 
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visualized in Gephi): 
I. A new north-south commuter train tunnel (known as ‘Citybanan’) six kilometres long 

underneath Stockholm inner-city (dashed blue line). The project will double the capacity 
compared with the current conditions. The construction also involves two new commuter 
train stations: Odenplan and Stockholm City. 

II. The metro network will be extended in three locations (dashed green lines). First, Line 11 will 
be extended in the northward direction with two additional stations and will terminate at 
Barkarby station. Second, Lines 10 and 11 will be extended from their current end station at 
Kungsträdgården across the Baltic sea to serve the south-eastern area of Sofia, Sickla and further 
to Nacka Forum, its new end station. This extension also includes a connection to other metro 
lines by connecting the new station at Sofia to the existing Gullmarsplan transfer station. Third, 
a new metro line will be constructed from Odenplan north of the inner-city with two 
additional stations, terminating at a new station in Arenastaden. All of these extensions will 
serve areas that are undergoing significant transformation with the development of new 
housing and offices. 

III. The light rail line, Line 22, is undergoing several developments (dashed yellow lines) 
including an extension towards the northern suburbs which provides connections to the 
commuter train and additional metro lines. The expansion plan includes the extension of the 
line to Solna station as well as the construction of a new branch towards Helenelund. Finally, the 
southwest end of the line is extended to Sickla, to enable interchanging with the planned 
metro station. 
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Figure 1. Planned extensions of the Stockholm rapid rail-bound network (A) and zooming-in on the metro extensions (B) 
 
The development plan entails thus both the expansion and densification of the case study network. 
The development was primarily designed to increase the capacity of the most heavily saturated 
corridors (i.e. central parts of the north-south metro and commuter train lines) as well as extend the 
mass public transport network into areas where large-scale housing and office developments are 
ongoing or planned (i.e. Sickla and Nacka in the south-east,  Barkarby in the north-west, and directly 
north of the inner-city along the new line to Arenastaden, see Figure 1). While planners and politicians 
referred to the potential value of the proposed extension plan in reducing the impact of service 
disruptions, these potential effects were neither systematically assessed nor quantified.  
 
The planned extension plan will increase the number of interchange stations and end terminals from 
the current number of 49 to 62. Moreover, the number of network links, i.e. direct connections 
between interchange stations, is set to increase from 92 to 126. The extension will result in additional 
cross-radial connections, increase network connectivity and the number of cyclic paths. The Extended 
network yields an increase in network connectivity as measured by the gamma index – the share of 
links out of the maximum possible number of links in a complete graph - from 0.440 to 0.467. 
Furthermore, network meshedness measured using the alpha index - share of cyclic paths out of the 
maximum possible in a complete graph - will increase by almost 30%, from 0.151 to 0.196 in 
comparison to the DoNothing case. This indicates a considerable potential increase in the number of 
transfer opportunities and route alternatives in general, and in the case of service disruptions in 
particular.  
 
4.3 Network analysis model implementation 
Network vulnerability is evaluated in this study in terms of the capability of the Extended network to 
withstand link failures as compared with the base case DoNothing where the network maintains its 
form as of summer 2014. A directional graph of rail tracks and walking links in transfer facilities was 
used for representing the network and enabling the analysis of link failure disruptions. Link travel 
times were extracted from current timetables and detailed plans for future line extensions. 
 
An origin-destination demand matrix for 2025 was generated based on the regional travel demand 
model. It is expected that more than 320,000 passenger trips will be generated and distributed over 

(B)
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the case study network during the morning peak period (6:00-9:00) on an average weekday. The 
travel demand matrix projected for 2025 was assigned to both DoNothing and Extended networks. In 
order to allow comparing networks and disruption scenarios, the overall public transport demand is 
considered fixed and is assigned to the closest equivalent node. For example, the demand for the 
metro line that is extended to Nacka (Figure 1) in the Extended network is distributed over transfer 
hubs that serve as access station to the metro system in the DoNothing scenario (primarily Slussen and 
to a lesser extent Gullmarsplan) based on VISUM model assignment results for the DoNothing network 
that were available for this study. By doing so, the network and disruption impacts considered in this 
study are limited to topological effects on flow redistribution, discarding morphological effects on the 
overall distribution of travel demand (i.e. induced demand or trip distribution).  
 
As described in Section 3, passenger demand is assigned based on an all-or-nothing assignment to the 
shortest path. Travel impedance was calculated based on the sum of link labels that are along each 
path. The assignment and the calculation of performance metrics were performed in a specially 
tailored MATLAB code. Gephi, a network exploration tool, was used for calculating topological 
indicators and visualization purposes. Model outputs include network loading results - passenger 
flow per link and travel time per origin-destination pair. Based on the latter, passengers can be 
classified into the three impact classes: cut-off (i.e. infinite travel time due to the inexistence of a 
connecting path), delayed (i.e. longer travel time than in the undisrupted scenario) and unaffected (i.e. 
identical travel time as in the undisrupted scenario). 
 
The performance of the network planned for 2025 upon completion of the planned expansion was 
compared with the base case network. The full-scan approach was implemented by removing in turn 
each of the links for each network. Hence, a failure on each of the network links was simulated along 
with the undisrupted case for both the DoNothing and Extended networks. This full-scan procedure 
amounts to a total of 93 scenarios for the DoNothing network and 127 scenarios for the Extended 
network. The running time of the full-scan for the Extended network is 12 seconds on a standard PC. 
 
5. RESULTS 
A comparison between the existing and the planned network performance in case of link failures is 
first analysed in terms of its implications on passengers, followed by the consequences of network 
extension on link criticality.  
 
5.1 Disruption Impact  
For each scenario, the total passenger travel time and the share of travel demand that cannot reach its 
destination due to network disintegration were calculated. In addition, the share of travel demand 
that experiences delays (longer travel times than under the undisrupted scenario) out of those trips 
that could be completed was calculated. These results are presented in Table 1 for the undisrupted 
networks and the average, standard deviation and maximum values calculated over the respective link 
failure scenarios.  
 
Table 1. Summary of performance metrics 
Performance metric DoNothing Extended 

Undisrupted Disrupted 
 

Undisrupted Disrupted 

Share of cut-off demand [%], 𝑐(𝜎) 
Average 
Standard deviation 
Maximum 

 
0 

 
1.33  

0.025 
14.86  

 
0 

 
0.79  

0.020 
14.77 

Share of delayed passengers [%], 𝑑(𝜎) 
Average 
Standard deviation 
Maximum 

 
0 

 
3.18 

0.046 
22.43 

 
0 

 
1.49 

0.023 
15.83 

Total travel time [min], 𝑡𝑡 (𝜎)     
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Average 
Standard deviation 
Maximum 

9 993 785 9,891,921 
345,050 

10,529,403 

9 403 674 9,346,689 
266,764 

9,931,260 
Average travel time [min], 𝑡̅(𝜎) 

Average 
Standard deviation 

      Maximum 

 
31.01 

 

 
33.05 
0.67 

34.88 

 
29.17 

 
29.98 
0.47 
31.54 

 
The performance of the Extended network was first investigated under normal operations, i.e. 
undisrupted case. The Extended network will reduce total passenger travel time by more than 9,800 
passenger hours on a single peak morning period compared with the DoNothing network. This time 
savings amount to shortening travel times by 6% or 1 minute and 50 seconds shorter per passenger 
trip in the undisrupted case. While this may time savings may seem small, the estimated welfare 
benefits based on this outcome will amount to approximately €68,000 for a single peak period, using 
the value-of-time recommended by the Swedish Transport Administration. 
 
For each performance indicator, disruption impacts can be derived from Table 1 by comparing each 
scenario with the corresponding undisrupted case. Network robustness values are calculated by 
comparing the performance under a given disruption for the two networks. The overall robustness is 
calculated based on Eq. 4 and 5, using the maximum or average values, respectively. The results are 
first discussed in terms of passengers group composition and thereafter travel time losses are 
investigated.  
 
5.1.1 Passenger group composition 
On average, a link failure in the DoNothing scenario cuts off 1.33% of the travel demand which 
corresponds to 4,762 travellers. These travellers have no travel alternative to paths that contain the 
disrupted link and therefore their origins and destinations belong to disconnected sub-networks. In 
contrast, only 0.79% (2,829) of the travellers are stranded on average when a disruption occurs in the 
Extended network. This reflects a reduction of more than 40% compared with the current level. The 
overall variation among disruption scenarios is low for both networks because of the high share of 
link closures that do not lead to any network disintegration. Notwithstanding, much higher shares of 
the travellers are not able to reach their destinations under certain disruptions. Every seventh 
traveller or more than 52,000 travellers, are unable to perform their trip in the worst case scenario, 
with network availability,  1 − 𝑐(𝜎), diminishing to 85%. This share remains almost unchanged in the 
Extended network. 
 
In addition to those travellers that cannot execute their trip, another segment of the travel demand is 
subject to delays because the disruption occurred on their shortest path but rerouting is still possible, 
albeit with a longer travel time. The average share of passengers experiencing some delay (𝜀 = 0) is 
more than halved in the Extended network compared with the DoNothing network, 1.49% compared to 
3.18%, respectively. Moreover, the worst case scenario in the DoNothing network inflicts longer travel 
time to 22.43% of the passengers that can carry out their trip which corresponds to more than 83,000 
passengers in the analysis period. The network extensions included in the Extended scenario also 
mitigate delays in the worst case scenarios, reducing the share of passengers subject to delay to less 
than 15.83%  or 56,679 passengers. 
 
The abovementioned differences in the shares of unsatisfied demand, 𝑐(𝜎), and delayed passengers, 
𝑑(𝜎) , between the DoNothing and Extended networks are further investigated by plotting their 
cumulative distribution function in Figure 2. More than 40% of all link failure scenarios result in cut-
off demand in the DoNothing network, whereas less than 30% result in network disintegration in the 
Extended network (dashed lines). Furthermore, those disruptions that lead to cut-off demand in the 
Extended network involve fewer stranded passengers than is the case of DoNothing. The pattern 
emerging for the share of delayed passengers is considerably different (solid lines). When passenger 
delay is considered, the share of disruptions that does not induce any delay is higher for DoNothing 
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than it is in the case of Extended. This result may seem counterintuitive at first but this is explained by 
those disruptions that result in cut-off demand rather than travel time increase. Thereafter, the 
Extended network shows better robustness with 90% of link failures causing delays to less than 15,000 
passengers compared with the corresponding value of 37,500 passengers for the DoNothing network.   
 

 
Figure 2. Cumulative density function of link failure scenarios that result in a certain number of delayed passengers and 

unsatisfied demand for DoNothing and Extended networks 
 
5.1.2 Travel time losses 
Total passenger travel time is lower on the average disrupted scenario than in the undisrupted case 
due to those trips that cannot be completed (Table 1). This is an inherent deficiency in assessing 
network vulnerability. In order to overcome this shortcoming, the average travel time, 𝑡̅ , was 
calculated as described in Section 3.3 for each disruption scenario, and is also shown in Table 1. The 
average time loss per passenger resulting from a disruption amounts to 6.6% of the travel time under 
normal conditions in the existing network, whereas it only increases by 2.8% in the case of the 
Extended network. The corresponding value for the Madrid metro network is 1.7% as reported by 
Rodriguez-Nunez and Garcia-Palomares (2014), reinforcing the relative vulnerability of the 
Stockholm network. Moreover, the impact of the most severe disruption decreases from an increase of 
12.5% in average time loss per passenger to 8.1% for the DoNothing and Extended networks, respectively.  
 
Figure 3 presents the histogram of this performance metric, 𝑡̅, over all link failure scenarios for each 
network. It is evident that the average travel time is significantly shorter in the case of the Extended 
network. In fact, only two of the Extended network scenarios obtain an average travel time that is 
higher than any DoNothing scenarios. In other words, there is almost no overlap in the range of values 
obtained by the two networks where the worst performers of the Extended network are similar to the 
best performers of the DoNothing network. There is a small number of disruption scenarios that result 
in the case of the Extended network with shorter average travel time per passenger than the 
undisrupted case because those that are disconnected from the network tend to be located in the 
network fringes and therefore induce longer travel times.  
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Figure 3: Distribution of average travel time over link failure scenarios 

 
The delay caused by a service disruption may be distributed unevenly among travellers depending on 
the availability and characteristics of rerouting alternatives. While some disruptions impose a small 
delay for many travellers, others lead to long delays for few travellers. Hence, the impact of two 
disruptions with similar societal costs may be manifested very differently across the population, even 
among the minority of travellers that experience some delay due to link failure. 
 
The distribution of delays over travellers population was further investigated by examining the 
difference in the share of travellers that experienced different magnitudes of increases in travel times. 
The differences between the DoNothing and Extended networks are presented in Figure 4. Each curve in 
this figure corresponds to a single link failure scenario and the graph show the change in the share of 
travellers experiencing a delay of one minute, two minutes and so forth in the DoNothing network 
when compared with the Extended network. In some rare cases, detours due to link failures prolong 
travel times by more than 30 minutes, showing significant disparities in the impact of disruptions. 
Scenarios that have positive (negative) values over the entire range of delay values indicate a higher 
share of delayed passengers in the current (future) network than in the future (current) network and 
are displayed in blue (red). As Figure 4 illustrates , most disruptions scenarios result with a higher 
share of delayed passengers in the DoNothing scenario. Notwithstanding, a large number of disruption 
scenarios result with a lower share of delayed passengers in the existing network compared with the 
planned network. However, most of these cases are associated with short delays. Overall, the results 
suggest that the robustness value associated with the Extended network is mostly yielded by reducing 
the number of passengers that experience relatively short delays while long delays remain largely 
unchanged.  
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Figure 4: Difference in the share of travellers experiencing a certain increase in travel time under link failure scenarios in 
the DoNothing compared with the Extended network  
 
5.2 Link Centrality and Criticality  
The analysis above suggests that the Extended network can withstand link closure disruptions better 
than the DoNothing network does. This improved robustness is attributed to the enriched routing 
possibilities enabled by improved network connectivity and meshedness (Section 4.2). Figure 5 

shows the cumulative distribution of the weighted link betweenness centrality, 𝑏�̂�, for both networks. 
The value of this indicator corresponds to the share of travel demand that traverses through a certain 
link when travelling along its shortest path. In both networks the majority of network links are on the 
shortest path of less than 1% of travel demand. In addition, betweeness centrality, and hence travel 
demand, is more evenly distributed in the Extended network than in the DoNothing scenario. 
Approximately 9% of links in the DoNothing scenario carry 3-4% of the travel demand, which 
corresponds to passenger loads of 10,000-14,000, amounting to 56-78% of link capacity. The more 
balanced distribution of passengers in the Extended network under normal conditions makes the 
network less vulnerable to link failures, whereas the performance of the DoNothing network is more 
dependent on several central links. 
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Figure 5: Distribution of weighted relative link betweenness centrality for the DoNothing and Extended networks under 
normal operations 
 
The alteration of network topology changes the impacts of various link failures on network 
performance. Table 2 lists the five most critical links for each network and performance indicator 
based on respective changes in performance indicators, ∆𝑦(𝑒|𝑛). While some links that are critical in 
the DoNothing network remain so in the Extended network, there are also considerable changes in the 
identification of the most critical links. In terms of share of cut-off demand, the connection between 
T-Centralen – Östermalmstorg remains critical for maintaining network integrity since the metro line 
branches out from Östermalmstorg and there are no rail-bound alternatives in this north-east section 
(Figure 1). Hence, all travel demand between the rest of the network and this section (or vice-versa) 
cannot be performed in case this link (or the opposite direction) becomes dysfunctional. Conversely, 
the high-demand metro branch Solna Centurm – Akalla becomes less critical in the Extended network 
because of the availability of new transfer connections to the commuter and light rail lines.  
 
Table 2. Top 5 most critical links by performance indicator  
Based on DoNothing Extended 
Share of cut-off demand, 
𝑐(𝜎) 
 

T-Centralen - Östermalmstorg 
Östermalmstorg – T-Centralen 
Bålsta - Sundbyberg Station 
Östermalmstorg - Ropsten 
Solna Centurm - Akalla 

T-Centralen - Östermalmstorg 
Östermalmstorg – T-Centralen 
Bålsta – Barkarby Station 
Östermalmstorg - Ropsten 
Hässelby Strand - Alvik 

Share of delayed 
passengers, 𝑑(𝜎) 

Årstaberg - Central Station 
Fridhmesplan – T-Centralen 
T-Centralen - Fridhemsplan 
Karlberg - Central Station 
Slussen – T-Centralen 

Årstaberg - Central Station 
Liljeholmen – Årstaberg 
Central Station – Årstaberg 
Årstaberg – Liljeholmen 
Älvsjö - Årstaberg 

Average travel time, 𝑡̅ Älvsjö – Årstaberg 
Årstaberg – Älvsjö 
Karlberg - Central Station 
Central Station - Karlberg 
Årstaberg - Central Station 

Älvsjö – Årstaberg 
Årstaberg – Älvsjö 
Årstaberg - Central Station 
Central Station - Årstaberg 
Skärmarbrink - Gullmarsplan 

 
The redistribution of travel demand results with significant changes in link criticality in terms of the 
share of delayed passengers. The most critical links in the DoNothing network are also the most heavily 
loaded links in the core of the network, i.e. the metro and commuter links that lead inbound and 
outbound of T-Centralen and Central Station. The new commuter train station in Odenplan creates an 
attractive north-south travel alternative to the existing metro corridors (Figure 1). Consequently, 
disruptions on the links leading to and from Årstaberg induce significant delays in the Extended 
network compared with the undisrupted case. As a result, the most critical links in the Extended 
network are those connected to Årstaberg, south of the inner-city.  
 
The links that cause the most devastating scenarios in terms of average passenger travel time are also 
listed in Table 2. These are also the links that their closure result in the highest increase in total 
passenger travel time while all demand can be satisfied. The worst case scenario corresponds to the 
same link failure (Älvsjö – Årstaberg) for both networks, with an increase of more than 5% in total 
travel costs, approximately 1 million SEK for a disruption during the peak morning period based on 
the Swedish value-of-time. A targeted attack may therefore be expected to induce these costs also 
after the development plan is realized. The robustness effect of the new metro connection between T-
Centralen and Gullmarsplan (Figure 1) is especially remarkable when a disruption on the segment 
connecting Gullmarsplan to Slussen occurs. This disruption scenario results with an average travel time 
of 33.4 minutes in DoNothing network, an increase of 1.22% compared with normal disruptions, 
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whereas the same disruption results with an average travel time of 30.0 min in the Extended network, 
an increase of 0.05% compared with the normal operations of the respective network. The additional 
connection provides redundancy for substituting the most heavily used segment in the case study 
network and thus contributes significantly to mitigating disruption effects. 
 
6. DISCUSSION  
 
The findings clearly indicate that the envisaged development plan is expected to significantly improve 
the capability of the case study network to withstand link breakdowns. The Extended network was 
found more robust than the existing network in terms of the average time loss induced by the average 
disruption. However, in the context of robustness and risk management, one should not merely plan 
or evaluate the typical case or a hypothetical mean value. Planning should take into consideration also 
‘black swans’ which will inflict severe impacts on system performance. Therefore, special attention 
needs to be given to the analysis of the right tail of the full-scan disruption analysis. The detailed 
investigation of impact and disruption distributions reveal that the evaluated development plan is 
also more robust in terms of its capability to withstand a large range of disruptions and reduce the 
long tail of worst case scenarios. In contrast, the findings suggest that the development plan examined 
in this study is not successful in reducing the magnitude of the impact experienced by the worst 
affected passengers.  
 
The robustness value of the development plan can be assessed by comparing the total time losses. This 
requires the estimation of the time loss experienced by those passengers who are cut-off from the 
network due to the disruption. If the disruption is assumed to last one hour and service is resumed 
instantaneously to the original service level, then the additional travel time for disconnected 
passengers can be approximated as equivalent to the disruption time. This conservative assumption is 
practical for calculating the lower bound of the time loss caused by disruption. On average, the 
Extended network reduces passenger travel times by more than 14.5 thousand pass-hours which reflect 
a societal cost of approximately €100,000. This is the expected robustness value,  𝑟𝑛, of the planned 
extension plan. If a worst-case scenario notion of robustness,  𝑟𝑛

𝑚𝑎𝑥, is adopted, then the societal cost 
savings amount to €215,000. The development plan yields thus greater welfare benefits in case of 
disruption than in the case of normal operations (€68,000, see Section 5.1), suggesting that neglecting 
abnormal operations in project appraisal will result in the underestimation of its benefits in this case. 
 
In addition to the impact of disruptions on passengers travel time and network integrity, it is 
important for transport planners and operators to identify the most critical links in the network in 
order to prioritize investments and allocate resources to mitigate the impacts of disruptions on these 
links. As networks evolve, the function that various links play changes as well, including their 
criticality. In the case study network, most of the links that are critical in the existing network are 
expected to remain so after the implementation of the development plan, with a few noticeable 
exceptions. Interestingly, link criticality varies greatly when using different performance indicators. 
In fact, there is no overlap between the five links ranked most critical by each of the performance 
indicators - share of cut-off demand, share of delayed passengers and average travel time. This result is 
consistent with previous studies of road networks which found that different links are considered 
most critical depending on the criteria used in the evaluation (Knoop et al. 2012, El-Rashidy and 
Grant-Muller 2014). 
 
Urban and transport planners in cities worldwide need often to balance between visions of expanding 
and densifying land-use and network developments. The case study of Stockholm illustrates that a 
development plan designed primarily to elevate network connectivity can result with substantial 
robustness benefits. Stockholm development plan reflects a shift in its urban planning paradigm from 
expanding the network serving an increasingly large area to densifying the core of the network. 
Translated into network science terms, this strategy implies increasing network connectivity and 
meshedness rather than its diameter. The increase in network redundancy (as measured in terms of 
cyclic paths and average node degree) is key to improving network capacity to withstand link 
breakdown. This concurs with the results reported by Zhang et al. (2015) which investigated the 
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resilience of various generic simple network structures. Using their network structure typology, the 
central part of the metro system (Gullmarsplan-T-Centralen-Fridhemsplan) transformed from a 
central ring to a double central rings. When designing new lines, planners are advised to generate new 
transfer hubs and close circuits that will relief congestion and improve network robustness.  
 
The complexity of real-world public transport networks and their growth is the result of complicated 
multi-actor decision making. Network growth is therefore not determined by the direct pursue of 
network science objectives but is rather a manifestation of policy, planning and political interests. 
Furthermore, network development plans are incremental and amount to evolutionary rather than 
revolutionary changes in network structure. Extension plans build on historical urban and transport 
planning programs and their realisation. It is thus important to acknowledge the importance of path-
dependency in the development of public transport networks and evaluate potential investments 
against the do-nothing scenario and alternative investments rather than compare them to theoretical 
and optimal network indicator values. This is the approach that has been adopted in this study by 
proposing a comparative approach to evaluating the robustness value of development plans.   
 
7. CONCLUSION  
 
The increasing importance of transport network resilience call for the development of methods to 
systematically analyze the robustness value of alternative investments. This study investigated the 
robustness of alternative public transport networks by assessing the impact of link failures on 
network performance. The full-scan of network links was performed and the impacts of each 
disruption were analyzed in terms of the capability of the network to maintain its integrity and 
guarantee that travelers can reach their destinations. In addition, the travel time consequences of each 
disruption were estimated by performing an all-or-nothing assignment which enabled the assessment 
of passengers delay and comparing the share of travelers that are subject to delays. The analysis 
enables examining the impact in terms of expected robustness value as well as comparing network 
performance under worst case scenario and the impact on passengers that are worst affected by a 
given disruption.    
 
The systematic robustness analysis was applied to the rapid rail-bound network in Stockholm. This 
network will undergo significant investments in the coming decade. The robustness of the extended 
network was quantitatively evaluated against the robustness of the existing network when assigning 
the travel demand projected for 2025. The results demonstrate that the extended network is 
considerably more robust in terms of average performance deterioration as well as the worst case 
scenario. Moreover, the critical links in each network were identified and the equity implications 
were analyzed in terms of how delays are distributed over travelers’ population.  
 
In developing a resilience policy, network planners should determine which measures of performance 
are considered (e.g. delay, disconnected) and the dimension of interest (e.g. share, mean, maximum). 
A network could be considered robust if it satisfies a certain design criteria in terms of the decrease in 
its performance under a random failure or a targeted attack. The choice of performance indicators has 
implications on both the robustness value of alternative networks as well as the identification of 
critical links. The latter should be monitored as the network evolves in order to adequately allocate 
resources when preparing and recovering from disruptions.   
 
The analysis performed in this study facilitates the consideration of expansion plans impacts on 
network resilience in the decision making and planning processes. Due to financial constraints, 
planners need to balance between potentially competitive policy objectives such as improving 
network accessibility and connectivity which may entail trading-off network expansion and 
densification, respectively. To this end, the robustness value should be ultimately monetarized and 
incorporated into project appraisal  by using information concerning link failure probabilities. The 
latter allow to weight the expected consequences in the event of a disruption by the respective 
probabilities in order to perform a sound risk analysis. By analysing large disruption database, the 
frequency and duration of various disruption types could be estimated as a function of link 
characteristics as was demonstrated by Cats et al. (2015b). Even in the lack of detailed estimations, 
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alternative networks can be compared and prioritized by reviewing their performance metrics in 
order to support transport planners as demonstrated for the case of Stockholm’s development plan. 
The robustness value of alternative networks could be considers as part of a multi-criteria analysis 
framework.  
 
The approach proposed in this study is simple, scalable and could be applied to a large range of 
domains, including other modal transport networks (e.g. road, air, maritime) as well as to networks 
other than transport (e.g. information, power transmission). Notwithstanding, the method deployed 
in this study has several limitations which stem from the simplifications made in the network 
representation and assignment. Most importantly, the assignment model could be enhanced by 
considering probabilistic assignment principles. In addition, travel impedance could include other 
travel attributes such as waiting time and transfers, albeit this will require a more complex graph 
representation. Unlike the static assignment performed in this study, a dynamic non-equilibrium 
model can represent imperfect travel information, the knock-down effects generated by an unplanned 
disruption and en-route decisions (Cats and Jenelius 2014). The dynamic modelling of network 
performance would facilitate the analysis of system resilience by considering its recovery into normal 
operations. However, the stochasticity and computational complexity of such a model might prohibit 
the full scan approach undertook in this study. Note that the simplifications made in this study are 
likely to result in an underestimation of travel delay as travellers are assumed to have perfect pre-trip 
information and no spill-over effects to neighbouring links are considered. Other avenues for future 
studies include the analyse of different kinds of disruptions such as the impact of partial capacity 
reduction, multiple link failures and node closures.  
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