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SUMMARY 
Train dwell time is one of the most unpredictable components of railway 
operations, mainly due to the varying volumes of alighting and boarding 
passengers. However, for reliable estimations of train running times and 
route conflicts on main lines, it is necessary to obtain accurate estimations 
of dwell times at the intermediate stops on the main line, the so-called short 
stops. This is a great challenge for a more reliable, efficient and robust train 
operation. Previous research has shown that the dwell time is highly 
dependent on the number of boarding and alighting passengers. However, 
these numbers are usually not available in real time. This paper discusses the 
possibility of a dwell time estimation model at short stops without passenger 
demand information by means of a statistical analysis of track occupation 
data from the Netherlands. The analysis showed that the dwell times are best 
estimated for peak and off-peak hours separately. The peak-hour dwell times 
are estimated using a linear regression model of train length, dwell times at 
previous stops and dwell times of the preceding trains. The off-peak-hour 
dwell times are estimated using a non-parametric regression model, in 
particular, the k-nearest neighbor model. There are two major advantages of 
the proposed estimation models. First, the models do not need passenger 
flow data, which is usually impossible to obtain in real time in practice. 
Second, detailed parameters of rolling stock configuration and platform 
layout are not required, which makes the model more generic and eases 
implementation. A case study at Dutch railway stations shows that the 
estimation accuracy is 85.8% - 88.5% during peak hours and 80.1% during 
off-peak hours, which is relatively high. We conclude that the estimation of 
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dwell times at short stop stations without passenger data is possible.  
KEYWORDS:  Prediction; dwell time; estimation; short stops; track 
occupation; regression model 

1. INTRODUCTION 

Model predictive control has recently been widely used in railway traffic 
control research, especially in the field of rescheduling [1-5]. Prediction of 
train dwell times at stations is one of the most important phases in solving 
the problem. It provides the predicted train trajectories and conflicts to the 
train dispatchers and is thus an important input to adjust the timetable to 
resolve the conflicts between train paths. The estimation of dwell times, 
especially at short stops on main lines, may have a great influence on the 
result of conflict detection. Short stops are stops on the open track where 
sidings are usually not available and where trains only dwell for alighting 
and boarding, after which they immediately continue their journey. The 
short stop stations have three characteristics. First, they have no siding track, 
so there is no opportunity for fast trains to overtake slower trains at such 
stations; second, there are no passenger connections, so the dwell time does 
not contain passenger connection time; and third, the dwell times are not 
scheduled. The dwell times at short stops are usually less than one minute. 
Because the precision of the timetable is one minute, these dwell times are 
an integrated part of the overall running time over the open tracks between 
stations. A good estimation of these dwell times is thus required to be able 
to predict headway conflicts on the open tracks and arrival times at the main 
stations at the end of the open tracks. 

Thus far, dwell times at short stops have not been well estimated. 
Previous studies [6-9] show that the number of boarding and alighting 
passengers is the main determinant of the dwell times, especially at stations 
that have no passenger connections from one train to another. However, due 
to the difficulty in obtaining passenger demand in real time, most of the 
existing models, which represent dwell time as a function of the number of 
boarding and alighting passengers, cannot be used for real-time rescheduling. 
This is a great challenge for more reliable, efficient and robust train 
operations. Another challenge associated with the dwell time estimation 
approach is the model generality. In the past, most of the dwell time 
estimation models were based on the station layout, rolling stock 
configuration and passenger demand. However, these variables can be 
different in different cases which may limit the model generality. For 
example, different passenger alighting and boarding behaviors in different 
countries can hardly be described in one model. To resolve these challenges, 
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Li et al. [10] analyzed the influence of the available factors on dwell times 
from a new perspective, namely, based on track occupation data of Dutch 
railways, finding that the dwell times at short stop stations are different from 
those at large stations where train overtaking and passenger connection 
times are scheduled within the dwell times. Moreover, the dwell times at 
short stops are influenced by the day of the week, peak hour, and train length 
in addition to the number of alighting and boarding passengers. This 
motivates this research: to examine the possibility of developing a dwell 
time prediction model based on predictors without passenger demand, and 
improving the generality by excluding specific parameters of station and 
rolling stock from the model. 

This paper first assesses the existing train dwell time estimation methods 
by comparing their strengths and weaknesses. Second, it selects independent 
variables, based on the principle of generality and the exclusion of passenger 
demand, that can be used for estimation. Then, it gives a relatively generic 
and practical dwell time estimation model using the selected variables. The 
model neither includes passenger demand which cannot be obtained in real 
time, nor the detailed parameters of rolling stock configuration and station 
layout, which may influence the generality. 

The remainder of the paper is organized as follows. Section 2 contains a 
literature review. Section 3 analyzes the influencing factors of dwell times 
and presents a conceptual model. Section 4 presents the dwell time 
estimation model. Section 5 validates the proposed model and describes a 
case study using track occupation event data at Dutch railway stations. We 
end this paper with conclusions and discussions for further research in 
section 6.  

2. LITERATURE REVIEW 

To obtain a more general and practical model, an extensive review of the 
existing literature is necessary. The existing studies typically concentrate on 
two types of dwell time modelling approach: regression models and 
microscopic models.  

Among regression models, parametric regression models have been 
widely adopted.  In the earlier literature, the dwell time was estimated as the 
sum of a constant (representing door opening and closing times and 
departure preparation time) and the alighting and boarding time (passenger 
service time). Lam et al. [11] developed a linear regression model to estimate 
the dwell time as a function of the number of alighting and boarding 
passengers per train. The assumption of the study is a uniform distribution 
of boarding passengers on the platform, which may be not true for many 
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stations. According to an investigation on Dutch railways, there are clear 
concentrations of waiting and boarding passengers around platform access 
facilities [6]. Wirasinghe and Szplett [12] developed a linear regression 
dwell time estimation model considering a non-uniform distribution of 
boarding passengers, calculating the passenger service time of each door and 
estimating the dwell time as the maximum passenger service time over all 
doors of the train. Lin and Wilson, Parkinson and Fisher, and Puong [13-15] 
took the number of standing passengers in the vehicle and their interactions 
with boarding and alighting passengers into account and developed 
nonlinear estimation models to reflect such interactions. The problem with 
these models is that many background variables are not included, such as the 
composition of the passenger population (e.g., with or without luggage, 
mobility), configuration of the rolling stock, and the type of station, which 
have an irrefutable impact on the dwell time [6,7, 16].  

To estimate the effect of the configuration of the train on the dwell time, 
Weston [17] introduced door width factors for the train into a nonlinear 
regression model. Weston’s model is the most comprehensive model of 
these regression models. It considers the number of alighting and boarding 
passengers, the interactions between alighting passengers, boarding 
passengers and standees, and the width of the doors. According to Weston’s 
model, the dwell time will be the same given the same door width of the 
train and the same number of passengers. However, this may not be true 
because these models neglect essential factors such as the interior layout of 
the train and horizontal and vertical gaps between the train and platform, 
which are obviously different from train to train and also depend on the 
platform where the train stops. Harris [18] tested Weston’s model and found 
that the interior layout of the train should be considered to improve the 
model accuracy. Jone [19] estimated the alighting and boarding times at a 
specific station as a function of the numbers of alighting and boarding 
passengers and different train services that imply the influence of rolling 
stock. However, the occupancy of the train and the interaction between 
passengers are not considered. Buchmueller et al. [8] proposed a dwell time 
calculation model for regional trains of the Swiss Federal Railways (SBB). 
The dwell time is estimated as an aggregation of different sub-process times. 
The distribution of the sub-process times depends on the vehicle type and 
the number of boarding and alighting passengers, which is analyzed based 
on sensor data in the trains. The dwell time is calculated as the aggregation 
of these sub-process times. This model is the most generic one, but it has a 
disadvantage that the occupancy of the train is not considered. It is also not 
clearly stated how the distribution times of the sub-processes are aggregated. 
Furthermore, it is very expensive to install detectors at each door of each 
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running train. 
These studies have demonstrated that the dwell time of a train could be 

modelled by passengers, rolling stock, and station and operation factors. 
However, none of the existing models fully take all of the influencing factors 
into account. Hence, these models are not generic, as they cannot be used 
widely for other trains and stations.  

Towards a more generic estimation model, researchers tried to use more 
general variables in their regression process. Hansen et al. [1] and Kecman 
and Goverde [5] found that there is a strong relationship between the train 
dwell time and train arrival delay (or earliness). They estimate the dwell time 
of a train as a function of its arrival delay, which is derived from track 
occupancy data of the Dutch Railway. This means that the dwell time of a 
train is determined mainly by whether it is delayed, no matter how many 
passengers board and alight or what rolling stock type is used. This makes 
the model applicable for real-time use. However, later research shows that 
the error of the model for dwell time estimation is even larger than the 
corresponding scheduled dwell times. This may be because the linear 
dependency between the dwell time and delay may be true for early arrival 
trains at large stations, where the train should wait until the scheduled 
departure time. However, there is no evidence that it is appropriate for short 
stop stations, where the dwell time is not scheduled explicitly, and the train 
driver locks the doors and departs as soon as the alighting and boarding 
process is finished. When the accuracy of the proposed model is carefully 
checked, it shows that although all of these models fit more than 80% of the 
data, most of the mean absolute percentage errors are not reported. 
According to Puong’s model [15], the standard error is 4.04 s, and the mean 
value of the dependent variable is 27.76 s, which implies an error of 14.55%, 
while the error of Kecman’s model [5] for short stop stations is 
approximately 15%. That means that there is still space to improve the 
accuracy of the dwell time estimation regression model. 

Microscopic simulation is another approach in research on dwell time 
estimation. Microscopic simulation models are used to explain some 
uncertainties of passenger behaviors. These models focus on passenger 
alighting and boarding behavior and estimate the dwell time of the train by 
repeated simulations of the passenger alighting and boarding process, 
recording the dwell time as the average passenger alighting and boarding 
time of each run. Zhang [21] proposed a microscopic simulation model to 
estimate the dwell time as a function of the alighting and boarding 
passengers and the width of the door. Yamamura [9] developed a multi-
agent simulation model that also considers the effect of the layout of the 
rolling stock. These models can describe the train layout and the behavior of 



6 
 

passengers in a very flexible and detailed way. However, these models need 
to be improved because factors such as the horizontal and vertical gaps 
between the train and the platform are not considered. The applicability of 
these models in real time use is also doubtful due to their time-consuming 
calculations and lack of detailed input. 

A comparison of existing models is shown in table 1. In table1, only the 
models that are publicly available are refereed. These models are listed 
according to whether and how the influencing factors of train dwell time are 
included. For a more detailed description of these influencing factors, we 
refer to section 3.2. In summary, all of these models cannot easily be used 
for real-time estimation and prediction because of the lack of passenger data, 
low accuracy or time-consuming nature. Therefore, in the next few sections, 
we will develop a model that can overcome these problems. 

3. CONCEPTUAL MODEL 

3.1 Dwell time formation 

The dwell time is defined as the difference between the train departure 
and arrival times,  

                        -d aDT t t=                                                          (1) 
where  DT , at and dt indicate the dwell time, arrival time and departure 
time of the train, respectively. The arrival time is defined as the time when 
the train changes its state from moving to standing still, and vice versa for 
the departure time. 
      Between the arrival time and the departure time, there are at least five 
processes [8], which are shown in figure 1: door unlocking, door opening, 
alighting and boarding, door closing, and train dispatching process (signal 
aspect changing, switch changing and route preparing, and driver operating 
time). Apart from the train dispatching process, the other processes depend 
on different doors of a train. Because there is usually more than one door per 
train, the dwell time is determined by the control door with the maximum 
time consumption.  This is also the main idea of most existing models. 
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Figure 1: Composition of train dwell time  

  
   For some large stations, the actual dwell time is more complicated. It 
cannot be neglected that other trains also affect the dwell time of a train, for 
example, train overtaking and meeting, coupling and decoupling, changing 
running direction, waiting for passenger connections, and the operation 
margin time for delay recovery, all of which may cause additional time 
consumption. 

3.2 Dwell time conceptual model 

The dwell time could be represented as a function of different 
influencing factors. These influencing factors can be classified into five 
categories: passenger, rolling stock, station, operation and external factors. 
Passenger factors include both the number of passengers (number of 
boarding passengers, number of alighting passengers and number of 
passengers in vehicle) and the passenger characteristics (gender, luggage, 
handicap, etc.). These factors influence the alighting and boarding time. The 
influences from the rolling stock are threefold. First, different types of 
rolling stock have different door control systems, which influences the door 
unlocking time, door opening time and door closing time. Second, the 
number and width of doors, as well as the horizontal and vertical gap 
between the train and platform, determine the capacity of the doors and 
influence the passenger boarding and alighting time. Third, the interior 
layout of the train (seat arrangement, aisle width, and space near the door) 
may limit the speed of alighting and boarding, thus influencing the alighting 
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and boarding time. Station factors include the position of access facilities on 
the platform and the layout of the yard. The former has an impact on the 
alighting and boarding time of a door by influencing the distribution of 
passengers on the platform, while the latter influences headways between 
consecutive trains, and thereby the train dwell time. The railway operation 
factors, such as train delays, train overtaking and meeting, train coupling and 
decoupling, passenger connections, and operation margins can also 
introduce extra time to a train’s dwell process. External factors include the 
weather and traffic conditions at level crossings near the platform, which 
would also have an influence on the train dwell times. Based on this analysis, 
a conceptual model of the train dwell time is shown in figure2. 

 
Figure 2: Influencing factors of train dwell time  

For short stops, train overtaking and meeting and passenger 
connections do not play a role. The external factors such as weather 
conditions are unpredictable, so the operation factors and external factors 
can also be neglected. The main factors for estimating the dwell times at 
short stops would be the passengers, rolling stock and station. Because the 
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passenger demand is not available, the best predictors could be from the 
rolling stock and station factors. This is the basis of the predictor selection. 

4. METHODOLOGY  

    The train dwell time estimation for rescheduling can be described as 
estimating the dwell time of a train (target train) at a station (target station) 
given real-time information related to that train and historical data. In most 
cases, the number of alighting and boarding passengers, which is the most 
important independent variable, is unknown in real time. Therefore, existing 
dwell time estimation models, which heavily rely on the actual passenger 
demand, cannot be effectively used. The main idea of this paper is to find 
substitute variables that can reflect the passenger demand and to predict the 
dwell times by using these substitute variables. Most importantly, these 
variables should be available in real time. 

The modelling approaches to similar estimation problems include 
parametric regression models and non-parametric regression models. The 
former could provide a clear way to show the effect of each predictor on the 
dependent variable. However, it is difficult to use parametric regression 
when there are complicated non-linear relationships between different 
variables. To some extent, non-parametric regression models can solve this 
problem. This paper first selects predictors based on the influencing factor 
analysis and data availability and then it tries to find the relationship between 
the dwell time and the predictors by applying a parametric model. In case 
the parametric model cannot fit the data effectively, a non-parametric model 
is proposed. The estimation accuracy of the model is assessed by 
performance indicators. 

4.1 Predictor selection 

As analyzed in section 3, the best predictors of dwell time are the passenger, 
station and rolling stock factors. Based on this assumption, possible 
predictors are selected. Given the dependent variable ˆ s

kDT , which indicates 
the dwell time of target train k at target station s, this paper initially selects 
11 independent variables as possible predictors that can reflect the three 
influencing factors to some extent, and more importantly, these predictors 
can be directly available in real time. The main variables and their meanings 
are shown in table 2. 

In table 2, variables 1 and 2 reflect the time variation of the dwell time. 
Both predictors can reflect passenger demand without the exact number of 
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alighting and boarding passengers. The peak period is determined based on 
the passenger demand of the railway in the Dutch railway network as 

[6 : 30,9 : 00) [16 : 00,18 : 30)kAT ∈   on weekdays [22]. Statistics [10] show 
that dwell times in the peak hours are significantly different from during the 
off-peak hours (p-value = 0). Pk can be considered as a vector that contains 
one dummy variable, which indicate the peak and off-peak, respectively. 
Variables 3-10 are possible predictors that could be derived from track 
occupation data and timetable data. Variable 3 is set because different train 
lengths require different stop positions, which have a great impact on the 
dwell time. Variable 4 is selected due to the assumption that train delays 
may increase the number of passengers on the platform. For frequent service 
where the passenger arrival time is uniform over time, the higher the delay, 
the more passengers on the platform, and the dwell time would be influenced 
correspondingly. Variables 5 and 6 are based on the assumption that there 
are some relationships between dwell times of consecutive stations. In other 
words, if the dwell time at one short stop is longer than normal, this may 
also hold for other trains at other short stops. These variables can also reflect 
influences from the rolling stock because for a target train, the rolling stock 
has not been changed from the previous station to the target station. 
Variables 7 and 8 are based on the assumption that there are some 
relationships between the dwell times of consecutive trains. These two 
variables can reflect influences factors from the station because the station 
remains the same for consecutive trains. Because the length of the previous 
train may be different from that of the target train, variable 9 is also chosen. 
Variable 10 is a historical variable. Due to the limited number of cases, we 
use the dwell times on the same day of the last week as a historical variable, 
instead of the historical average. We also tested other variables such as 
headways, including the headway between the target train and the preceding 
train, the headway between the target train and the following train, and more 
complicated time series variables including the historical average dwell 
times of the target train, historical average dwell times of the target train at 
the previous station and the second previous station, and historical average 
dwell times of the preceding trains at the target station. However, these 
variables appear to have very weak relationships with the dwell times of the 
target train at the target station. 

4.2 Estimation models 

    Based on the selected variables, both a parametric regression model and 
a non-parametric model are applied. 
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4.2.1 Parametric regression model 
    A parametric regression method is introduced to find the quantitative 
relationships between the selected independent variables and the dependent 
variable (Table3). The independent variables are fitted by using a step-wise 
estimation approach. First, we started fitting the regression model from a 
simple linear model with the minimum number of variables (Model 1). By 
looking at the influence of each variable separately, more variables are 
gradually chosen (Model 2 - Model 6) to see whether a better result can be 
obtained. The decision about the order in which a variable is entered into the 
model depends on the significance of the relationship between the new 
variable and the dependent variable as well as the improvement of the 
estimation accuracy upon adding the new variable. Some non-linear items 
are also added to examine whether they can improve the accuracy of the 
model. The non-linear items include both quadratic items and interactive 
items (Model 7, Model 8 and Model 9). Due to the earlier finding that the 
dwell times fit the log-normal distribution [10], there is an additional model 
(Model 10), which is evolved from Model 9. The dependent variable in 
model 10 is based on the natural logarithm of the dwell time of the target 
train at the target station instead of the dwell time. The resulting estimation 
is transformed back to the raw scale by exponentiation. By applying a 
logarithmic transformation, a normally distributed set of data can be 
obtained. Another previous study has also shown that such a transformation 
is statistically warranted [14]. 

Because the significance of an independent variable is different from the 
synthesis effect of multiple variables, the significance of each parameter is 
estimated by using the t-test after a model is selected. Any variable with a 
large p-value, which indicates that the parameter is not significantly 
different from zero, is removed from the model. Other combinations are 
also tested. However, the performances of the other combinations are not 
better than those of these ten models. 

4.2.2 Non-parametric regression model 
    A non-parametric regression model is also used to estimate the dwell 
times, especially on the part of the dataset where the parametric model has 
low accuracy. The reasons are twofold: First, the relationship between the 
dwell time and the independent variables might not be linear. Taking the 
delay factor as an example, if the delay is small, the effect of the delay on 
the dwell time is not significant. However, large delays have a great impact 
on dwell times due to the accumulation of the boarding passengers. Second, 
the dwell times at short stops do not fit a normal distribution, which is a 
compulsory condition of linear regression models. In this case, a linear 
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regression would be likely to fail. An alternative is to use a non-parametric 
regression. The basic approach of non-parametric regression is influenced 
by its roots in pattern recognition [23]. 

The non-parametric regression has been widely used in urban traffic 
estimation and prediction [24,25], where particularly the method of k-nearest 
neighbors (k-NN) was applied. This approach will be used in this paper for 
its fast calculation and relatively good accuracy. In the k-NN method, it is 
assumed that the dwell time DTi depends on a series of variables

, 1,2,3, ,ix i n=  .  Given the measurement of xi at the moment of prediction, 
one can find similar cases (called nearest neighbors) from historical data 
based on the distance between the historical data points xhist,i and the current 
observation xi. The smaller the distance, the more likely DTi equals DThist,i. 
More generally, the forecast of DTi can be computed as the mean of the dwell 
times of the k-th nearest neighbors. 

1

1 ( )
k

i hist i
hist i

DT DT x
k −

− =

= ∑                                           (2) 

The core problem is to define the distance function and the choice of k. 
The simplest way to define this distance is to use the absolute sum of the 
differences of independent variables | |i histd x x= −∑ . Other functions 

include the non-weighed Euclidean distance  2( )i histd x x= −∑  and the 

weighted Euclidean distance 2( )i i histd w x x= −∑ to show the importance 
of each variable. Different values of k will be tested to obtain the minimum 
estimation error. 

4.3 Performance measure 

The estimation accuracy is evaluated in terms of the performances of two 
indicators, the mean absolute percentage error (MAPE) and the root mean 
square error (RMSE). The MAPE is used to measure the estimation accuracy. 
The RMSE is also selected to show the actual error when the result is used 
as an input of the real-time rescheduling model, where the total error is 
calculated based on the combination of the running time and dwell time.  

ˆ -1MAPE 100%
s s

k k
s

k

DT DT
N DT

= ×∑                                              (3) 

21 ˆRMSE ( )
s s

kk
DT DT

N p
= −

− ∑                                            (4) 
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where ˆ s
kDT  and s

kDT indicate the predicted and observed dwell times of 
train k at stop s, respectively. N is the total number of trains observed, and p 
indicates the number of degrees of freedom. 

5. CASE STUDY 

    The purpose of the case study is to calibrate and validate the proposed 
parametric and non-parametric models based on field data. First, a dataset is 
created based on Dutch railway stations; second, the proposed models are 
calibrated and validated using the dataset; third, the accuracies of the 
proposed models are compared with those of other existing studies.  

5.1 Case study setup 

5.1.1 Data collection and processing 
The Dutch railway line in the Utrecht – Eindhoven area is selected for this 
case study (see Figure 3). Utrecht and Eindhoven are the fourth and fifth 
largest cities in the Netherlands. The railway connecting the two cities has a 
length of 45 kilometers and contains 13 stations. Utrecht, Eindhoven and 
Tilburg are the main stations: most trains depart and terminate in these 
stations. Geldermalsen and Boxtel are basic stations that allow trains to 
merge, diverge and cross. The remaining stations are shortstop stations. 
There are two types of train lines in this area: intercity trains and sprinters. 
Intercity trains only stop at main stations and basic stations, while sprinters 
stop at all stations. A cyclic timetable is widely used, which means that the 
same number of trains stop each hour. Taking Utrecht – Geldermalsen as an 
example, there are 6 trains per hour, including two intercity trains between 
Utrecht and Eindhoven, two sprinters between Utrecht and Tilburg, and two 
sprinters between Utrecht and Tiel. In the Dutch railway ticket system, the 
smart card is used. Passengers need to check in and check out via a machine 
that is placed on the platform. However, there is no passenger flow control 
gate. Passengers wait for the train on the platform after they check in. For 
all trains, the train doors will open only if it is activated manually. That 
means that when boarding or alighting, passengers need to press the button 
near the door of the train to open the door either inside or outside; otherwise, 
the door would remain close even if the train has stopped at the station. 

Stations in the corridor are distinguished based on four principles:  
 Only short stop stations are selected;  
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 Consecutive short stop stations are selected, so that the relationship 
of the dwell times between two successive short stops can be 
examined;  

 Stations at which at least 4 trains stop per hour are selected to ensure 
as many data as possible for a station; 

 If a station has recently been reconstructed (e.g., Utrecht Lunetten), 
which can cause incorrect occupation data, the station is not 
selected. 

Based on these principles, the stations of Houten, Houten Castellum 
and Culemborg are selected. The train moving direction from Houten to 
Culemborg is selected. To obtain the influence from dwell times at the 
previous station and second previous station, Culemborg station is selected 
as the target estimation station. Houten and Houten Castellum station are 
selected as the feeders of predictors. The platform configurations of these 
three stations are shown in figure 4.  

Tilburg Eindhoven

Utrecht

Utrecht Lunetten
Houten

Houten Castellum
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Geldermalsen Tiel Passewaaij
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Figure 3: Selected Dutch railway corridor for dwell time estimation 
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Figure 4: Platform configurations of the selected short stop stations 

Two train lines, S6000 and S16000, stop at these selected stations. Both 
train lines have a train interval of 30 minutes. Thus, there is a train that stops 
at these stations every 15 minutes. 
     The dwell times at the selected stops and trains are estimated based on 
the track occupation data. In the Netherlands, track occupation data are 
collected using a train describer system (TROTS), which provides the exact 
time of occupation and clearance of track sections [20]. By using a dwell 
time estimation algorithm [10], a total of 17306 trains running from 1st 
September 2012 to 30 November 2012 are processed and analyzed. 
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5.1.2 Correlation Analysis 
A simple correlation analysis was undertaken to understand the 

dependent variables and all possible predictors in section 4.1Table 4 shows 
that all predictors are significantly different from zero ( 0.001α = ). The peak 
hour, length of the train, dwell times at the previous and second previous 
stations, and dwell time of the preceding train have weak linear relationships 
with the dwell time of the target train. The best predictor of the dwell time 
may be the dwell time of the previous station, with a correlation coefficient 
of 0.456. Other relatively high correlation coefficients include the dwell time 
of the second previous station (0.381), peak time (0.376), dwell time of the 
preceding train (0.376) and train length (0.308).  The relationships between 
these four variables and the dependent variable are shown in figure 5. For 
relationship plots between the dwell time and other variables, we refer to 
[10]. 
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(b) Dwell times at different periods of a day 

  
(c) Dwell times between consecutive trains    
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(d)  Dwell times for different train lengths 

Figure 5: Relationship between dwell time and the most significant 
variables 

From figure 5, it can be seen that the dwell times are rather scattered, 
although the dwell time between two consecutive trains ranks the highest. 
The dwell times of off-peak hours are significantly shorter than during the 
morning peak and afternoon peak. There is a weak linear relationship 
between the dwell times of the preceding train and the following train. The 
dwell times of different train lengths are significant. Longer trains lead to 
longer dwell times. This is because for longer trains, conductors need more 
time to confirm that there are no passengers boarding before departure. It is 
also found that the dwell times of train lengths of four and six have a larger 
standard deviation than those of longer trains. This can be explained because 
shorter trains have a higher probability of deviating from their stop position 
and may deviate more from their stop positions than longer trains.  
    By analyzing the relationships (Table 5) between the ten selected 
independent variables, the relationships between the dwell times at the 
previous station and the second previous station, peak hour, train length, last 
week dwell time, and dwell time of the preceding train seem to be stronger 
than the others. To avoid overfitting, these variables are tested separately to 
obtain the best fitting result. 
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5.2 Parametric Regression results 

    This subsection presents the parametric regression result by applying the 
method in 4.2 to the dataset. First, regression models 1 to 10 are applied to 
the peak hour data and off-peak hour data independently; then, the final 
model is developed by a certain routine based on the previous step; finally, 
the final model is calibrated and validated.  

5.2.1 Initial regression 
The models in section 4.2.1 have been estimated using linear regression 

for different weekdays, peak or off-peak hours, and different lengths of 
trains, as well as mixed lengths of trains. The results are compared by using 
the indicators of adjusted R2 and RMSE, which are shown in Table 6-9. The 
following summary can be made: 

(1) The estimation results for peak hours are better than for off-peak hours. 
It is also found that the adjusted R2 during peak hours is larger than for the 
same model during off-peak hours. This is because during off-peak hours, 
the dwell time variation is larger than during peak hours. 

(2) During off-peak hours, the R2 of longer trains’ dwell times are much 
higher than those of shorter trains, which means that the correlation between 
the dwell time of longer trains and those of the preceding trains and previous 
stations are higher than for shorter trains. This can be explained by the fact 
that longer trains have more “rigid” stop positions, so that the spatial 
distribution of alighting and boarding passengers would not change from 
train to train; more importantly, travelers may know the positions of the 
doors for longer trains.  

(3) The delay during peak hours may increase the number of passengers 
on the platform and cause an increase in the dwell time. This effect can be 
much stronger for shorter trains than for longer trains. This is consistent with 
the result in table 4. For shorter trains with 4 cars, the adjusted R2 increased 
significantly, from 0.245 to 0.722, when a delay is introduced.  

(4) Non-linear items do not improve the result significantly, except for 
the dwell times of eight-car and ten-car trains during the afternoon peak 
hours and ten-car trains during the weekend. 

5.2.2 Final model 
      Next, the peak hour data are analyzed independently by using parametric 
regression to obtain the final model. Of the above models, the most powerful 
model is model 5, which is consistent with the previous analysis in table 4. 
In model 5, the main variables are the dwell times of the previous station, 
preceding train, second previous station, and second preceding train, as well 
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as the dwell time last week. The final model is obtained by taking the 
following steps: First, based on this model, low significance variables such 
as the dwell time of the last week and the dwell time of the second preceding 
train are removed by using the t-test. Second, if the dwell time of the 
preceding train remains as an input of the model, the length of the preceding 
train should be added because the length of the preceding train may be 
different from that of the target train, which would influence the dwell time 
significantly. Third, the dwell times at the previous station and second 
previous station are combined by using their product. This nonlinear item is 
rooted to keep the same unit for all of the independent variables and the 
dependent variable. The final model for the dwell time estimation during 
peak hours is shown in equation 5: 

1 2
1 2 1 3 1 4 *s s s s s s

k k k k k kDT c L L DT DT DTβ β β β − −
− −= + + + +             (5) 

5.2.3 Model calibration and validation 
To validate the model, the dwell time data are split into two parts based 

on the train running date with equal sample sizes. The first part is used for 
model parameter estimation, and the remaining part is used to validate the 
model. For all trains during peak hours, the regression model is implemented. 
The estimated parameters and performance under each train length are 
shown in table 10. The comparison between the estimation results and the 
observations is shown in figure 6. In the case of perfect estimations, the 
observations would be on the line y = x (shown in green). Data points far 
away from this line represent situations with poor estimation quality. 
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(a) Lk=4                                      

 
 (b) Lk=6 

 
(c) Lk=10                                       
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(d) Lk=12 

Figure 6: Estimation results of dwell time during peak hours  
   From table 10, it can be seen that the dwell time of the target train can be 
estimated by the length of the target train, the dwell time of the preceding 
train (as well as the length of the preceding train) and the dwell time of the 
previous stations. The p-values for all parameters are smaller than 0.05, 
which means that the values of the parameters are significantly different 
from zero. Despite the overfitting for the train length of eight due to the 
sample size, the MAPE is from 11.55%-13.55%. The adjusted R2 is 0.574, 
showing that the model could explain most of the samples in the dataset. The 
contributions of the input variables are different. First, the contribution of 
the target train length to the dwell time is positive ( 1β =0.6). In other words, 
train dwell times tend to be larger for longer trains. This is because for longer 
trains, conductors need more time to confirm that the passengers have 
finished the alighting and boarding process. Second, the dwell time of the 
target train is longer when the dwell time of the preceding train is longer ( 3β
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possibility a high passenger occupation on this train is large. However, for 
train lengths equal to 4, 8 and 10, the value of  3β  is zero, so this effect is 
not significant. This is because the lengths of the preceding train and the 
target train may be different, which may have a positive or negative effect 
on the dwell time. Third, the dwell time of the target train at the target station 
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is longer if the dwell time of the target train at the previous station is longer. 
4β =1.09 hints that the dwell times of consecutive stations tend to be the 

same. If the dwell times of the previous station and the second previous 
station are large, it is likely that the dwell time of the target train at the target 
station is also large, and vice versa. 

5.3 Non-parametric regression results 

    The above parametric regression achieves high-accuracy results during 
peak hours, but during off-peak hours, the accuracy is relatively low (Table 
8 - 9). A non-parametric regression model is introduced to predict dwell 
times during off-peak hours. Two types of variables are selected. Weekday, 
peak hour and train length are three variables to obtain the selection of the 
historical data. When predicting DTi, the historical dataset is chosen based 
on the same weekday, peak hour properties and train length. 1s

kD − , 1s
kDT − ,

2s
kDT − , 1

s
kDT −  are selected to calculate the distance between the historical 

data and the observations. 
A total of 1560 records are identified without outliers. The dataset is then 

split into two parts. The first part, containing 900 records, is used as the 
learning sample, and the second part, containing 660 records, is used for 
prediction. The distance function is the sum of the differences and the non-
weighed Euclidean distance. Because of the limited size of the learning 
samples, the value of k could only be selected from one to nine. The 
predicted result is shown in figure 7. 
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Figure 7: Relationship between k and RMSE in k-nearest neighbors 

method 
 

From figure 7, it can be seen that although different distance functions are 
used, the trend of the estimation errors for different values of k is similar. 
For the sum of differences function, RMSE reaches its minimum value of 
10.24 when k equals seven. For the non-weighed Euclidean distance, the 
RMSE has its minimum value of 10.26 when k equals six.  Both are higher 
than for the parametric regression model. The MAPE is 19.95% (the 
estimation accuracy is 80.05%), which is within the acceptable estimation 
error and better than that using a simple 20% percentile value 
(RMSE=16.6084), as was used in a previous work [1]. 

5.4 Discussion 

5.4.1 Accuracy comparison with existing models 
The accuracy of the proposed parametric model (PM) and the non-
parametric model (NPM) are compared with those of existing models 
reported in the literature (see table 11). Because the dataset of the literature 
is different from that in this paper, the comparison could have some bias.  
Still, this comparison could reflect the effectiveness and potential of the 
proposed model. 
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    From table 6, it can be seen that the model in [15] performs best under the 
RMSE indicator.  When considering the percent error, the parametric model 
in this paper performs best. Considering that the proposed model does not 
contain any passenger data and that, the trains are currently scheduled in 
minutes, this result is promising.  The non-parametric model does not 
perform well. This means that the accuracy of the NPM for off-peak hours 
still needs to be improved. However, compared to similar cases in [1], the 
absolute error of the NPM is reduced significantly.  

5.4.2 Generality of the model 
As is analyzed in section 3, the dwell time of a train is determined 

mainly by the station, rolling stock and passenger demand. In the past, most 
of the existing dwell time estimation models were based on these variables. 
However, the station layout, rolling stock configuration and passenger 
behavior are difficult to model, which limits the model generality. 

The proposed model can also show the effect of the station, rolling 
stock and passenger demand indirectly. The predictors of the proposed 
model are mainly the dwell time of the preceding train 1

s
kDT −  and the dwell 

time at the previous station 1s
kDT − . The common characteristic of the 

preceding train and the target train is that they stopped at the same station, 
so parameter 2β can reflect the effect of the station. The common 
characteristic of the dwell time at the previous station and the dwell time at 
the target station is that they are for the same train, so 3β  can reflect the 
effect of the rolling stock. The passenger demand appears by simply 
separating the peak and off-peak hour models.  

As opposed to existing models, the proposed model does not need to 
consider the station layout, rolling stock configuration and passenger 
behavior problems. This is because these factors are included in independent 
variables in the proposed model, where they could act on the dependent 
variable directly. Thus, it is more general. However, such generality 
theoretically holds only if the model is tested in more cases with different 
datasets. 

6. CONCLUSIONS 

The main contribution of this paper is its development of a more generalized 
and more practical estimation model based on train detection data. Although 
many dwell time estimation models exist based on the number of passengers, 
they cannot easily be used in real-time rescheduling practice because of the 
lack of real-time passenger demand. This paper proposed both a parametric 
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regression model and a non-parametric regression model to estimate the 
dwell times at short stops for real-time scheduling. The main advantage of 
the proposed model is that it does not rely on passenger data, so it is more 
practical in real-time rescheduling when the number of passengers cannot 
easily be obtained. The proposed model also shows the potential for the 
development of a more general estimation model, despite the different types 
of rolling stock and station. We conclude that this would be very important 
for broad applications. 

We conclude that the estimation of dwell times at short stop stations is 
possible without passenger data, but only during peak hours can a relatively 
high accuracy be obtained. The estimation error of the dwell time during 
peak hours is 6.2 -8.8 seconds, and the corresponding accuracy is from 85.8% 
- 88.5%. Because trains are scheduled in minutes, and this model could be 
used in real-time cases without passenger demand, this accuracy is 
promising. For short trains during off-peak hours, the accuracy of the 
proposed estimation model still needs to be improved.  

 Future work could be performed from three directions. First, to validate 
to what extent the model is generic. This work will be performed by applying 
more datasets from different stations of the Dutch railway network and even 
more datasets from different countries. Second, to improve the model 
accuracy by trying more variables, such as dwell times at other stations that 
are related to the target station, not limited only to consecutive stations. 
Other factors should also be considered, for example, the height between the 
floor levels of the LRT and station platforms are one important factor to be 
considered with a parameter when the data sets in other LRT stations in the 
world are considered. Third, to improve the accuracy by adding passenger 
demand input. Very recently, passenger check-in and check-out data has 
become available in the Dutch network, as the smart card has become 
compulsory for boarding a train. By processing these data, the number of 
alighting and boarding passengers could be obtained. We believe that 
including these values in the model could enable a complete input of the 
influence factors from station, rolling stock, and passenger demand, which 
can improve the accuracy of the estimation significantly. This work will be 
performed in further research.  
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Table 1: Main features of existing dwell time estimation models 
Source Model Type  Input variables  

Passenger Rolling stock Station Operation External 

Number of 
A&B 

Interaction of 
A&B 

Number of S  Passengers 
on the 
platform  

Number of 
doors 

Door 
width 
 

Interior  
layout 

Horizontal
& vertical 
gap 

Heterogeneous  
stations 

Peak& off 
peak time 

Service 
type 

 Delay  

Lam,1988 Linear 
Regression 

√ × × × × × × × × NA NA NA × 

Weston, 1989 Non-linear 
Regression 

√ √ √ × √ √ × × × NA NA NA × 

Lin, 1992 Non-linear 
Regression 

√ √ √ × NA × × × × NA NA NA × 

Parkinson,1996 Non-linear 
Regression 

√ × √ × √ × × × × NA NA NA × 

Puong, 2000 Non-linear 
Regression 

√ √ √ × NA × × × × NA NA NA × 

Buchmueller, 2008 Distribution √ × × × √ √ √ × × NA NA NA × 

Hansen, 2010 Linear 
Regression 

× × × × × × × × × × √ √ × 

Kecman & Goverde 
2013 

Linear 
Regression 

× × × × × × × × × √ √ √ × 

Jone 2011 Linear 
Regression 

√ × × × NA NA NA √ × NA √ NA × 

Zhang, 2008 Microscopic 
simulation 

√ √ × × × √ × × × NA NA NA × 

Yamamura,2013 Microscopic 
simulation 

√ √ √ × √ √ √ × × NA NA NA × 

Note:  A- Alighting passenger; B-Boarding passenger; S- Standee in the train/vehicle;    “√”- included; “×” – excluded; “NA”-not applicable 
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Table 2: Possible predictors 
NO Variables Meaning NO Variables Meaning 
1 

kW  
Weekday or weekend 

 
6 2s

kDT −
 

Dwell time at second 
previous station 

2 
kP  

Peak or off-peak 7 
1

s
kDT −  

Dwell time of preceding train 

3 s
kL  

Train length 8 
2

s
kDT −  

Dwell time of previous train 
on same train line 

4 1s
kD −

 
Departure delay at previous 

station 
9 

1
s
kL −  

Length of preceding train 

5 1s
kDT −

 
Dwell time at previous station 10 

-hist
s

kDT  
Dwell time of the same train 

during the last week 
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 Table 3 Parametric regression models 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note:  the variables related to the target dwell time in model 10 are transferred to logarithm form.  

 Linear items Nonlinear items 

Week
day 
or 

week
end 

 

Peak or 
off-peak 

Train 
length 

Departure 
delay at 
previous 
station 

Dwell 
time at 
previous 
station 

Dwell time at 
second 
previous 
station 

Dwell time 
of 
preceding 
train 

Dwell time of 
previous train on 
same train line 

Length of 
preceding 
train 

Dwell time 
of the same 
train during 
the last week 

quadratic items  interactive 
items 1 

Interactive 
items 2 

kW  kP  s
kL  1s

kD −  1s
kDT −  2s

kDT −  1
s

kDT −  2
s

kDT −  1
s
kL −  -hist

s
kDT  ( ) ( )2 21 2,s s

k kDT DT− −  
1 2*s s

k kDT DT− −  1 2*s s
k kDT DT− −  

1 × ×   ×         
2 × ×   × ×        
3 × ×   × × ×       
4 × × ×  × × ×  × ×    
5 × × ×  × × × × × ×    
6 × × × × × × × × × ×    
7 × × × × × × × × × × ×   
8 × × × × × × × × × × × ×  
9 × × × × × × × × × × × × × 
10 × × × × × × × × × × × × × 

Predictors 

Models 
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Table 4: Correlation coefficients of possible predictors and dependent 
variables  

NO Variables Correlation NO Variables Correlation 
1 

kW  
0.178 6 2s

kDT −
 

0.381 

2 
kP  

0.376 7 
1

s
kDT −  

0.376 

3 s
kL  

0.308 8 
2

s
kDT −  

0.305 

4 1s
kD −

 
0.224 9 

1
s
kL −  

0.101 

5 1s
kDT −

 
0.456 10 

-hist
s

kDT  
0.317 

 *p-value=0.000   
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Table 5: Covariance of independent variables 

 
 

kW  kP  kL  
1s

kD −
 1

s
kD −  

1s
kDT −

 
2s

kDT −
 1

s
kDT −  1

s
kL −  2

s
kDT −  

s
k histDT −  

kW  
1 0.225 0.175 0.042 0.012 0.065 0.160 0.239 0.268 0.113 0.157 

kP  
0.225 1 0.390 0.236 -0.001 0.259 0.264 0.409 0.244 0.211 0.309 

kL  
0.175 0.390 1 0.190 -0.016 0.277 0.195 0.228 -0.015 0.176 0.209 

1s
kD −

 
0.042 0.236 0.190 1 0.006 0.239 0.058 0.178 .0528 0.121 0.123 

1
s
kD −  

0.012 -0.001 -0.016 0.006 1 0.001 0.000 -0.04 -0.066 0.035 0.035 

1s
kDT −

 
0.065 0.259 0.277 0.239 0.001 1 0.355 0.242 0.055 0.126 0.160 

2s
kDT −

 
0.160 0.264 0.195 0.058 0.000 0.355 1 0.228 0.0364 0.111 0.207 

1
s

kDT −  
0.239 0.409 0.228 0.178 -0.04 0.241 0.228 1 0.217 0.251 0.269 

1
s
kL −  

0.244 -0.015 0.053 -0.066 -0.066 0.055 0.0364 0.217 1 0.142 0.090 

2
s

kDT −  
0.113 0.211 0.176 0.121 -0.035 0.126 0.111 0.251 0.142 1 0.126 

s
k histDT −  

0.1570 0.309 0.209 0.123 0.045 0.160 0.207 0.269 0.090 0.126 1 
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Table 6:  Model test during morning peak periods 
Model Train Length 

4 6 10 12 Mix 
Cases 20 27 16 27  91  

 Adj-R2 RMSE Adj-R2 RMSE Adj-R2 RMSE Adj-R2 RMSE Adj-R2 RMSE 
1 0.193 9.212 0.232 10.953 - 12.083 - 11.122 0.080 11.235 
2 0.519 7.112 0.452 9.257 - 12.365 - 11.165 0.164 10.708 
3 0.619 6.333 0.439 9.359 - 12.755 0.015 10.824 0.231 10.267 
4 0.604 6.454 0.452 9.250 - 13.096 0.010 10.855 0.225 10.310 
5 0.643 6.124 0.434 9.407 - 13.275 - 11.067 0.220 10.344 
6 0.624 6.288 0.426 9.473 - 13.989 0.162 9.988 0.216 10.369 
7 0.557 6.826 0.367 9.947 0.0860 11.460 0.253 9.4292 0.246 10.167 
8 0.539 6.964 0.367 9.948 - 12.237 0.259 9.390 0.246 10.176 
9 - 0.656 - 0.871 - 6.865 - 0.908 - 0.299 
10 0.510 7.176 0.413 9.579 0.3595 9.593 0.258 9.393 0.250 10.140 

Table 7:  Model test during afternoon peak periods 
Model Train Length 

4 6 8 10 12 Mix 
Cases 13 52 11 40 37 153 

 Adj-R2 RMSE Adj-R2 RMSE Adj-R2 RMSE Adj-R2 RMSE Adj-R2 RMSE Adj-R2 RMSE 
1 0.054 8.786 0.207 7.547 0.300 8.598 0.189 8.538 0.071 8.332 0.244 8.782 
2 0.223 7.966 0.309 7.041 0.225 9.050 0.201 8.472 0.317 7.146 0.391 7.878 
3 0.163 8.264 0.295 7.114 0.255 8.875 0.255 8.182 0.395 6.723 0.389 7.896 
4 0.152 8.322 0.339 6.887 0.193 9.235 0.237 8.281 0.377 6.821 0.392 7.875 
5 0.245 7.849 0.325 6.960 0.067 9.928 0.285 8.014 0.358 6.926 0.388 7.900 
6 0.722 4.762 0.380 6.669 - 10.823 0.329 7.764 0.345 6.998 0.386 7.913 
7 0.611 5.638 0.356 6.802 0.831 4.228 0.292 7.977 0.344 7.001 0.386 7.914 
8 0.487 6.470 0.398 6.572 0.663 5.965 0.405 7.310 0.372 6.850 0.392 7.874 
9 - 20.978 - 0.225 - 19.574 - 0.964 - 0.359 0.345 0.153 
10 0.897 2.899 0.407 6.524 - 100.000 0.400 7.346 0.334 7.056 0.385 7.921 
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Table 8:  Model test during off-peak periods on workdays 
Model Train Length 

4 6 8 10 12 Mix 
Cases 182 499 110 68 9 868 

 Adj-R2 RMSE Adj-R2 RMSE Adj-R2 RMSE Adj-R2 RMSE Adj-R2 RMSE Adj-R2 RMSE 

1 0.113 10.323 0.073 9.425 0.181 10.262 0.118 10.682 0.208 6.994 0.149 10.371 

2 0.119 10.289 0.081 9.382 0.186 10.235 0.259 9.793 0.452 5.813 0.172 10.231 

3 0.126 10.246 0.090 9.335 0.254 9.793 0.320 9.377 0.529 5.390 0.211 9.985 

4 0.121 10.274 0.090 9.340 0.293 9.537 0.359 9.103 0.448 5.835 0.221 9.921 

5 0.120 10.284 0.092 9.326 0.300 9.492 0.405 8.775 0.566 5.174 0.234 9.841 

6 0.123 10.261 0.096 9.305 0.294 9.532 0.400 8.812 0.907 2.395 0.246 9.762 
7 0.120 10.282 0.116 9.203 0.293 9.537 0.417 8.687 - - 0.256 9.695 

8 0.115 10.307 0.115 9.211 0.288 9.570 0.415 8.699 - - 0.259 9.677 

9 - 0.345 0.132 0.240 0.134 0.246 0.006 0.234 - - 0.259 9.677 

10 0.11 10.341 0.114 9.211 0.274 9.664 0.398 8.826 - - 0.266 9.632 

Table 9:  Model test on weekends 
Model Train Length 

4 6 10 Mix 
Cases 81 195 23 299 

 Adj-R2 RMSE Adj-R2 RMSE Adj-R2 RMSE Adj-R2 RMSE 
1 0.162 11.438 0.107 9.679 0.313 12.228 0.160 10.922 
2 0.152 11.509 0.133 9.539 0.404 11.387 0.185 10.756 
3 0.203 11.158 0.136 9.521 0.384 11.577 0.197 10.679 
4 0.194 11.220 0.133 9.536 0.364 11.761 0.195 10.695 
5 0.187 11.271 0.134 9.536 0.374 11.666 0.204 10.632 
6 0.176 11.346 0.135 9.526 0.337 12.008 0.205 10.627 
7 0.241 10.885 0.135 9.528 0.502 10.411 0.222 10.511 
8 0.235 10.932 0.145 9.472 0.508 10.347 0.235 10.426 
9 - 0.509 - - - 0.871 0.235 10.426 
10 0.215 11.069 0.167 9.352 0.433 11.107 0.255 10.289 
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Table 10: Estimation of dwell time models during peak hours 

Parameter\
s
kL  

4 6 8 10 12 Mix 

Num of cases 33 79 11 56 64 243 
Constant -27.46 

(0.16) 
-13.07 
(0.01) 

60.47 
(0.01) 

-3.8 
(0.01) 

-15.62 
(0.02) 

-14.50 
(0.00) 

1β  - - - - - 0.60 
(0.00) 

2β  0.47 
(0.00) 

1.60 
(0.00) 

-7.9 
(0.04) 

1.11 
(0.09) 

1.89 
(0.01) 

0.77 
(0.01) 

3β  0.00 0.03 0.00 0.00 0.34 
(0.00) 

0.18 
(0.00) 

4β  1.19 
(0.00) 

1.11 
(0.00) 

0.85 
(0.04) 

1.12 
(0.00) 

0.83 
(0.00) 

1.09 
(0.00) 

Performance       
Adjust R2 0.708 0.577 0.742 0.428 0.653 0.574 
RMSE(s) 6.96 6.22 6.44 8.69 6.78 7.95 
MAPE 12.65% 13.55% 6.53% 12.98% 11.55% 13.9% 

Note: p-values are shown in brackets 
 
 
Table 11: Accuracy comparison with existing models  

Puong, 2000 Hansen,2010 Kecman, 2014 PM NPM 

RMSE 4.04 16.6 - 6.2-8.8 8.49 

MAPE 14.55%  - Approximately 
15% 

11.5%-14.2% 19.9% 

 


	SUMMARY
	1. INTRODUCTION
	2. LITERATURE REVIEW
	3. CONCEPTUAL MODEL
	3.1 Dwell time formation
	3.2 Dwell time conceptual model

	4. METHODOLOGY
	4.1 Predictor selection
	4.2 Estimation models
	4.2.1 Parametric regression model
	4.2.2 Non-parametric regression model

	4.3 Performance measure

	5. CASE STUDY
	5.1 Case study setup
	5.1.1 Data collection and processing
	5.1.2 Correlation Analysis

	5.2 Parametric Regression results
	5.2.1 Initial regression
	5.2.2 Final model
	5.2.3 Model calibration and validation

	5.3 Non-parametric regression results
	5.4 Discussion
	5.4.1 Accuracy comparison with existing models
	5.4.2 Generality of the model


	6. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

