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Multi-Train Trajectory Optimization for Energy-Efficient Timetabling

Pengling Wang∗, Rob M.P. Goverde

Department of Transport and Planning, Delft University Technology, Delft, the Netherlands

Abstract

This paper proposes a novel approach for energy-efficient timetabling by adjusting the running time allocation
of given timetables using train trajectory optimization. The approach first converts the arrival and departure
times to time window constraints in order to relax the given timetable. Then a train trajectory optimiza-
tion method is developed to find optimal arrival/departure times and optimal energy-efficient speed profiles
within the relaxed time windows. The proposed train trajectory optimization method includes two types, a
single-train trajectory optimization (STTO), which focuses on optimizing individual train movements within
the relaxed arrival and departure time windows, and a multi-train trajectory optimization (MTTO), which
computes multi-train trajectories simultaneously with a shared objective of minimizing multi-train energy
consumption and an additional target of eliminating conflicts between trains. The STTO and MTTO are
re-formulated as a multiple-phase optimal control problem, which has the advantage of accurately incorporat-
ing varying gradients, curves and speed limits and different train routes. The multiple-phase optimal control
problem is then solved by a pseudospectral method. The proposed approach is applied in case studies to
fine-tune two timetables, for a single-track railway corridor and a double-track corridor of the Dutch railway.
The results suggest that the proposed approach is able to improve the energy efficiency of a timetable.

Keywords: Transportation, Energy efficient timetabling, Train trajectory optimization, Pseudospectral
method

1. Introduction

Improving energy efficiency is an important issue for railways, even though rail is already more energy
efficient than most other transport modes. One promising means is to optimize train operations by using
energy-efficient driving strategies, which does not need extra investment for more infrastructure. Even with
a small amount of energy saved in each train run, the total energy costs saved by the whole railway network
are huge. Energy-efficient driving is highly relevant to the running times given in the timetable. A running
time between two stations contains two parts, the technically minimum running time and the running time
supplement. The running time supplement is the extra running time on top of the technically minimum
running time between two stations which is included in the timetable primarily to manage disturbances in
operations and to recover from small delays (Lusby et al., 2017). However, if a train is punctual then these
supplements can be used for energy-efficient driving (Scheepmaker et al., 2017). Therefore, the timetable has
a direct influence on energy-efficiency of train operations.

The research on energy-efficient timetabling has just drawn attentions recently, whilst the research on
energy-efficient train operations has been studied for decades. There are comprehensive surveys on relevant
areas, which include Wang et al. (2011), Albrecht et al. (2016), Scheepmaker et al. (2017), and Yang et al.
(2016). Wang et al. (2011) reviewed the numerical approaches for solving the train trajectory optimization
problem. Albrecht et al. (2016) focused on the state-of-the-art of using the Pontryagin’s Maximum Principle
(PMP) to find the key principles of optimal train control. Scheepmaker et al. (2017) and Yang et al. (2016)
provided surveys on the energy-efficient train control and energy-efficient train timetable problems, where
Scheepmaker et al. (2017) focused on general railway systems, and Yang et al. (2016) focused on urban rail.
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The literature review presented below focuses on energy-efficient timetabling and energy-efficient operation
of multiple trains, with a focus on recent publications that extend the recent review paper of Scheepmaker
et al. (2017).

1.1. Review of energy-efficient timetabling

The quality of a railway timetable can be measured by several key performance indicators (KPIs): journey
time efficiency, timetable feasibility, robustness, and energy efficiency (Goverde et al., 2016). Among those
KPIs, energy efficiency is a secondary objective, particularly in dense railway networks, and can, therefore, be
considered as a fine-tuning step after the time allowances have been set based on feasibility and robustness.
The scientific literature on railway timetabling mainly considers macroscopic optimization models (Cacchiani
and Toth, 2012; Lusby et al., 2017). The periodic event-scheduling problem model introduced by Serafini and
Ukovich (1989) has been widely applied in cyclic timetabling (Peeters, 2003; Hansen and Pachl, 2014). Graph-
based models (Cacchiani et al., 2008; Yang et al., 2009) and mixed integer linear programming (MILP) models
(Brännlund et al., 1998; Cacchiani and Toth, 2012) were developed for generating non-cyclic timetables.
Those macroscopic optimization models focus on finding optimal train orders, but are not concerned about
how to the get accurate input parameters, such as running times, to set up the macroscopic model, while
energy-efficient timetabling requires a microscopic level of details (Caimi et al., 2011).

One stream of energy-efficient timetabling is to find running time allocations that are beneficial for energy-
efficient driving. Scheepmaker and Goverde (2015) developed an EZR model (energy-efficient operation or
in Dutch ‘EnergieZuinig Rijden’) to find the energy-efficient trajectory of an individual train trip. The EZR
model was adopted to analyze energy efficiency of practical train movements and a real-world timetable. The
results show that using a more uniform allocation of the running time supplements leads to extra energy
savings and an improvement on punctuality compared to the method of tightening the timetable. Su et al.
(2013) developed an optimization model that determines both an energy-efficient driving strategy and an
optimal distribution of the running time supplements in the timetable. The authors first explicitly calculated
the energy efficient train control strategy per trip. Then the model distributes the running time supplements
among consecutive trips in order to minimize the total energy consumption. Goverde et al. (2016) proposed
a three-level timetable design method, which constructs a stable robust conflict-free timetable with optimal
train orders first and then adjusts time supplements between the stops of regional trains in a corridor between
two main stations for energy-efficiency. The time supplements are re-allocated to optimize energy-saving train
operation, taking into account the stochastic dwell times. The problem is formulated as a multi-stage, multi-
criteria decision problem that is solved by dynamic programming. Canca and Zarzo (2017) researched the
energy-efficient timetabling problem in rapid railway transit networks. The timetable design problem was
formulated as a mixed integer non-linear optimization, while the train energy consumption was described as
a function of running times, and solved by a sequential mixed integer linear solving process.

Another stream is to find an optimal timetable which maximizes the utilization of regenerative energy.
Gupta et al. (2016) proposed a two-step optimization model to optimize timetables in metro railway networks.
The first model minimizes the train energy consumption and finds associated optimal trip times. The second
model maximizes the transfer of regenerative braking energy. Huang et al. (2016, 2017) proposed a timetabling
method by optimizing passenger trip time and operational energy consumption (including regenerative en-
ergy). The strategy is to adjust the headway on different operating lines to acquire a service-level-based and
energy-efficient timetable.

1.2. Review of multi-train operation optimization

Energy-efficient train operation research aims at searching for the optimal trajectory (speed-distance
profile) and driving strategies of a train that minimize energy consumption caused by the train movements
(Howlett and Pudney, 1995).

Multi-train trajectory optimization (MTTO) optimizes multiple train movements together with a shared
objective to find optimal control strategies for every involved train. Saving energy consumption is a common-
used optimization objective.

Yang et al. (2012) provided a mathematical model for multiple trains on a railway network. The model
aims at minimizing total energy consumption and running times of all trains, while satisfying the constraints
to ensure the feasibility of multi-train operations, which include headway constraints, vehicle speed limit
constraints, passenger riding comfort constraints, and dwell time constraints. The control strategies of every
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involved train are the decision variables of the multi-train model. A genetic algorithm (GA) integrated with
simulation was designed to find the optimal control strategies. Li and Lo (2014a,b) proposed a multi-train
model for metro lines. The model uses the switching time and speeds of control regimes (acceleration, cruising,
coasting, and braking) as the decision variables, aims at minimizing the net energy consumption of multiple
trains, and takes into account constraints of the number of trains, cyclist times, switching times, turnaround
times, vehicle speed limits and dwell times. In Li and Lo (2014a), a GA method was designed to find optimal
switching time and speeds and jointly optimize the timetables and speed profiles. In Li and Lo (2014b), the
model is transformed to a convex optimization problem by using a linear approximation method, and solved
using the Kuhn-Tucker conditions for dynamic train scheduling. Su et al. (2014) formulated an integrated
energy-efficient optimization model to realize the optimal control of multi-trains. The model is for a railway
corridor with one type of cyclic train operation. The model aims at minimizing the energy consumption
caused by traction, and takes into account the cycle time, train dynamic movements, traction and braking
forces, and speed limits constraints. The headway between adjacent cyclic operations is first determined
according to the passenger demands. Then an iteration algorithm is used to find the optimal cycle time
and the optimal number of trains, which minimize the timetable’s energy consumption. The optimal control
strategy for each train is computed by an independent optimal train-control algorithm. Zhou et al. (2017)
incorporated train speed control into the timetable design process. A space-time-speed grid network for joint
train routing, timetabling and trajectory optimization is constructed as a path finding problem, which is
solved by a dynamic programming algorithm.

As shown in the literature, researchers have proven that the MTTO has benefits in solving timetabling
or rescheduling problems because the MTTO approaches optimize multi-train movements simultaneously,
which achieves a global optimization of energy and capacity usage while taking into account the operational
interactions between adjacent trains. The train trajectory and timetable are closely related and both of them
have a direct influence on the energy efficiency of train operations.

1.3. Contributions of this paper

This paper contributes to a novel approach of energy-efficient timetabling that is developed from a train
trajectory optimization view. The presented work belongs to the first stream of energy-efficient timetabling,
by adjusting running time allocations of an existing timetable in order to maximize the possibility of energy-
efficient driving. The method (a) focuses on a timetable for a railway corridor, (b) calculates energy-efficient
speed profiles for every train in the timetable, taking into account the practical situation that trains use
different routes and platforms at stations, constraints of train dynamic movements, vehicle characteristics,
varying speed limits and gradients, and interactions between trains; and (c) is capable of adjusting running
time allocation and producing a new energy-efficient timetable.

The method is based on an existing timetable. It firstly converts the given timetable into flexible arrival
and departure time window constraints, which are described as a timetable constraint set (TCS). Then an
energy-efficient train trajectory optimization (ETTO) method is developed to find the optimal energy-efficient
time-distance paths within those TCSs. The ETTO method include two parts: one is a single-train trajectory
optimization (STTO), which focuses on optimizing an individual train movement within the relaxed arrival
and departure time windows, and the other is a multi-train trajectory optimization (MTTO), which computes
multi-train trajectories simultaneously with a shared objective of minimizing multi-train energy consumption
and an additional target of eliminating conflicts between trains. Compared to the STTO method, the MTTO
method can optimize the energy consumption of multiple trains together with constraints to avoid conflicts
between trains. The STTO and MTTO are re-formulated as a multiple-phase optimal control problem (Rao,
2003; Wang and Goverde, 2016b,c), which has the advantage of accurately incorporating varying gradients,
curves and speed limits and different train routes. It is then solved by a pseudospectral method (Rao et al.,
2010).

The multiple-phase optimal control problem formulation and the pseudospectral method have been used
in Wang and Goverde (2016a,c, 2017) for single-/multiple- train trajectory optimization. The advantage
of this model is an accurate and flexible representation of changing speed limits, gradients and time/speed
constraints at stations (Wang and Goverde, 2016a). This paper extends the methods to optimize trajectories
for multiple trains on a railway corridor composed of single and/or double tracks, and implements the
trajectory optimization method in energy-efficient timetable adjustment.
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The proposed approach integrates the train trajectory optimization and energy-efficient timetabling, which
does not need pre-calculations of the relationships between running times and energy consumptions like the
methods in (Su et al., 2013; Goverde et al., 2016). Compared to the integrated methods on the timetable
design level (Kraay et al., 1991; Yang et al., 2012; Li and Lo, 2014a,b; Yin et al., 2016), the proposed
approach provides a more microscopic description of train movements and more accurate results of energy-
efficient speed profiles. The regenerative braking is not taken into account in this paper, although it is a
significant research direction. Regenerative braking is most efficient for high frequent (metro-like) systems or
when using high-voltage electricity systems. The aim of the studies on regenerative braking is to synchronize
braking and accelerating trains close to mutual stops (Gupta et al., 2016; Huang et al., 2016, 2017). For
mainline railway networks as considered in our paper, the frequency of trains is relatively low and the trains
are already constrained by many network constraints, so adding this kind of synchronization to trains on
opposite directions of a double-track line makes the (NP-complete) timetabling (and traffic management)
even more complicated. Moreover, periodic timetables such as the Dutch railway timetable are usually
symmetric, which means that trains from the same line in opposite directions meet in a station at the same
time (i.e. brake simultaneously and accelerate again simultaneously) rather than having an offset such that
one train accelerates while the other brakes. This holds in particular for single-track lines, since the departing
(accelerating) train has to wait until the opposite arriving (braking) train has already stopped. Something
similar applies to trains from different directions that meet at a station, in which case passengers might want
to transfer between the two trains, and therefore the objective in timetabling for mainline railway networks
is usually the opposite: synchronizing the trains so that they arrive at the same time, rather than having one
train depart when the other arrives. These are the reasons that we did not consider regenerative braking.
There might be situations where regenerative braking is also worthwhile on mainline railway networks, but
this would typically be another fine-tuning step for specific train pairs.

The proposed approach is demonstrated by application to two case studies of opposite-trains running on
a Dutch partially single-track railway corridor and following-trains running on a Dutch double-track railway
corridor. The results suggest that our method is able to produce optimal energy-efficient speed profiles and
improve the energy efficiency of a timetable.

The remainder of the paper is organized as follows: Section 2 provides a description of the energy-efficient
timetabling problem and an introduction to the energy-efficient timetabling strategy. Section 3 presents the
train trajectory optimization method. Section 4 presents the modelling and solution methods for the train
trajectory optimization problem. Section 5 illustrates the approach in case studies. Finally Section 6 ends
the paper with conclusions.

2. Problem description

In this paper, energy-efficient timetabling is taken as a fine-tuning step after the time allowances have
been set based on feasibility and robustness. As the three-level railway timetabling framework presented by
Goverde et al. (2016), the timetable design can be done in three successive levels: microscopic, macroscopic,
and a corridor fine-tuning level. Feasibility and stability are optimized at the microscopic level; efficiency
and robustness are optimized at the macroscopic network level; and energy efficiency and robustness are
optimized at the corridor fine-tuning level. The corridor fine-tuning level optimizes the speed profiles of all
trains on each corridor while maintaining the scheduled event times at the corridor ends provided by the
micro-macro model. The arrival and departure times at the intermediate stops are optimized for energy
saving. The optimization must not influence the feasibility, stability, efficiency and robustness of the network
which was optimized in the previous level.

A timetable example for a railway corridor is shown in Fig. 1 (a). The timetable lists the times when
a service is scheduled to arrive at and depart from specified locations. The railway corridor may consist of
single-track and/or double-track lines. Trains involved in this timetable are in the same and/or different
directions. The stations in the downstream direction are named with successive numbers 1, 2, . . . , Z. Denote
by Z = {1, 2, ..., Z} the set of stations where Z is the number of stations on this corridor. Denote by Iall the
set of trains operating on this corridor, Id the set of trains in the downstream direction from station 1 to Z
and Iu the set of trains in the upstream direction from station Z to 1, and Zi the stations on train i ∈ Iall’s
journey. Define the train sets Io = {(i, j)| i and j are from opposite directions, i, j ∈ Iall} and Is = {(i, j)| i
and j are in the same direction, i, j ∈ Iall}.
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Figure 1: Examples of timetable, time targets and time windows.

To optimize the arrival and departure times at the intermediate stops for energy saving, an energy-efficient
timetabling strategy is proposed. The strategy includes two steps:

Step 1: Relax the timetable by converting the time targets to time window constraints;

Step 2: Find optimal arrival/departure/passing-through (A/D/P) times and optimal energy-efficient speed
profiles within those time windows.

The first step is to relax the given timetable. The time targets of all the trains in intermediate stations are
converted into time window constraints, so that Step 2 can adjust the allocation of running time supplements.
Trains’ arrival and departure times at corridor ends maintain their original values. The lower bounds of the
time windows represent the earliest possible A/D/P times assuming the train leaves the first station on the
scheduled time. The upper bounds represent the latest possible A/D/P times in order to arrive at the last
station on time. The lower bounds are computed with technical minimum running (dwell) times in the
train’s travel direction, while the upper bounds are computed with technical minimum running (dwell) times
backwards. An example of time windows of a single train is shown in Fig. 1 (b).

The time windows and corresponding speed windows are formulated with a timetable constraint set
(TCS), which is a sequence of time and speed constraints at timetable points (stations). We classify a train’s
event at a station into three types: arrival, departure and pass-through. Denote by e an event, e ∈ {a, d, p}
where a refers to arrival, d refers to departure, and p refers to pass-through. For train i ∈ Iall, the TCS is
written as

TCSi =
{(
ki,z,e, [t

min
i,z,e, t

max
i,z,e], [v

min
i,z,e, v

max
i,z,e]

)}
z∈Zi

, (1)

where ki,z,e is the location for train i at station z of event e, and tmin
i,z,e, t

max
i,z,e, v

min
i,z,e and vmax

i,z,e are respectively
the lower and upper bounds of time and speed for e at ki,z,e. Define KTCSi

as the set of timetable points
of train i. If ki,z,e is a stop station, the speed window [vmin

i,z,e, v
max
i,z,e] = [0, 0], and ki,z,a = ki,z,d. If ki,z,e is a

pass-through station, vmin
i,z,e and vmax

i,z,e are respectively the lower and upper passing-through speeds. Albrecht
et al. (2013) proposed a train path envelope (TPE) to describe the time and speed constraints at timetable
points, signals, and conflict points. The TPE is allocated to one train only and the TPEs do not overlap each
other, so that as long as a train stays in its TPE there will be no conflicts. In this paper we allow overlapping
TCSs while the conflicts are resolved with the multi-train trajectory optimization algorithm (Section 3).

Step 2 is to find optimal energy-efficient A/D/P times and speed profiles within those time windows (An
example of the optimal A/D/P times is presented with the red dashed lines in Fig. 1 (b)). The reason of
keeping A/D/P times within the time windows produced by Step 1 is to avoid changing train sequences.
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Consequently, the journey times and capacity usage are not influenced. A train trajectory optimization
method (Section 3) is developed to find optimal energy-efficient A/D/P times and speed profiles.

3. Train trajectory optimization method

A single-train trajectory optimization (STTO) is developed firstly to find every single train’s optimal
energy-efficient A/D/P times and speed profiles within the train’s TCS. In order to re-allocate the running
times, the STTO no longer focuses on the train movements between two adjacent stops like the classical
ETTO problem does (Khmelnitsky, 2000; Howlett, 2000; Liu and Golovitcher, 2003), but it concerns the
whole corridor between the first and last station, which may contain a few intermediate stops and passing-
through stations. Note that the TCSs, as well as the trajectories computed by the STTO, can not promise
conflict-free train paths. Therefore it is necessary to detect conflicts.

The conflict detection is based on the blocking time theory (Hansen and Pachl, 2014). The time duration
over which a block section is allocated exclusively to a specific train is called blocking time. The blocking
time of a track section begins with issuing a train its movement authority for this section and ends after
the train has completely left the section and all signalling appliances have been reset so that a movement
authority can be issued to another train to enter the same section. The blocking time of a track is thus longer
than the train occupies the section. During this blocking time the track is thus blocked for other trains. The
conflict detection process first computes the successive blocking times for each train over a railway line. The
visualization of these blocking times in a time-distance graph is called a blocking time diagram. Then conflicts
are represented by overlapping blocking times in the time-distance domain (Goverde et al., 2013, 2016). If
there are any overlaps in the blocking diagram, a multi-train trajectory optimization (MTTO) is applied to
jointly compute the conflicting trains’ trajectories. The MTTO eliminates conflicts between trains.

In summary, the train trajectory optimization method follows the three steps to find optimal A/D/P
times and speed profiles:

Step 1: Compute the speed profiles and time-distance paths for every single train separately with the
STTO;

Step 2: Conflict detection. If there is no conflict between the time-distance paths computed in Step 1, then
take the time-distance paths from Step 1 as the output, otherwise go to Step 3;

Step 3: Compute the speed profiles and time-distance paths for the conflicting trains simultaneously with
the MTTO, and output the computed time-distance paths.

The train trajectory optimization model is extended based on the the optimal control model presented
in (Wang and Goverde, 2016a). Denote by I the set of trains which require speed profiles. If I only contains
one train, the following model is the STTO model. If I contains more than one train, it becomes a MTTO
model.

The cost function is to minimize the total energy costs of the trains in I, that is

minimize J =
∑
i∈I

Ji, Ji =

∫ Kf
i

K0
i

fi(si) dsi, (2)

subject to the operational constraints to every single train i ∈ I


dvi(si)

dsi
=
θ1(si)fi(si)− (1− θ1(si))bi(si)−Rtrain,i(vi)−Rline,i(si)

ρi ·mi · vi(si)
,

dti(si)

dsi
=

1

vi(si)
,

(3)
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0 ≤ fi(si) ≤ Fmax
i ,

0 ≤ bi(si) ≤ Bmax
i ,

0 ≤ fi(si) · vi(si) ≤ Pmax
i ,

0 ≤ vi(si) ≤ V max
i (si),

Amin
i ≤ dvi(si)

dti(si)
≤ Amax

i ,

(4)

{
vmin
i,z,e ≤ vi(ki,z,e) ≤ vmax

i,z,e,

tmin
i,z,e ≤ ti(ki,z,e) ≤ tmax

i,z,e, ∀ z ∈ Zi, ki,z,e ∈ KTCSi
,

(5)

Dmin
i,z ≤ ti(ki,z,d)− ti(ki,z,a) ≤ Dmax

i,z , ∀ z ∈ Zi, ki,z,a, ki,z,d ∈ KTCSi . (6)

ti(ki,z,d)

6
−
⌊
ti(ki,z,d)

6

⌋
= 0, ∀ z ∈ Zi. (7)

(ti(q)− tj(q))2 ≥ h2i,j,q, ∀(i, j) ∈ Is, q ∈ Signali,j ,

(ti(q)− tj(q))2 ≥ h2o, ∀(i, j) ∈ Io, q ∈ StationSignali,j ,

(ti(l0)− tj(l0)) (ti(lf )− tj(lf )) ≥ σ, ∀(i, j) ∈ Io, [l0, lf ] ∈ SingleTracki,j .

(8)

The STTO model minimizes the cost function (2), subject to constraints (3)-(7), when I includes only
one train. The MTTO model minimizes the cost function (2), subject to constraints (3)-(8) (or (9)), when I
includes more than one train.

The cost function (2) reflects the objective of minimizing energy consumption, where K0
i and Kf

i are
respectively the start and end positions of train i’s journey, si is the traversed distance [m], and fi(si) is
the traction force [kN]. In this work only the traction energy consumption is considered. For trains that use

regenerative braking an additional term can be added to the integral, Ji =
∫Kf

i

K0
i

(fi(si) + ηbi(si)) dsi, where

η ∈ [0, 1] is the recuperation coefficient which determines the efficiency of the regenerative braking system.
Equations (3) are the differential equations of train movements. Distance is adopted as the independent

variable because gradients and speed limits occur as functions of distance rather than of time. In equations
(3), vi(si) is the velocity of train i [m/s], ρi is the rotating mass factor, mi is the mass of train i [t], bi(si)
is the braking force of train i [kN], Rtrain,i(vi) = αi + βi · vi + γi · v2i is the train resistance force [kN]
with coefficients αi, βi and γi, Rline,i(si) is the line resistance force [kN], which is a function of position and
consists of grade resistance and curve resistance, ti(si) is the traversed time of train i [s], and θ1(si) ∈ {0, 1} is
a binary parameter. θ1(si) is adopted to prevent traction and braking controls to be applied simultaneously.

Equations (4) are the path constraints of train i’s vehicle performance parameters, speed limit and riding-
comfort. Fmax

i , Bmax
i and Pmax

i are the upper bound of traction force, maximum braking force and maximum
traction power of train i. The maximum traction force equals min{Fmax

i , Pmax
i /vi(si)}. V max

i (si) is the speed
limit at position si, including static and temporary speed restrictions. Amin

i and Amax
i are the lower and

upper bound of acceptable acceleration.
Equations (5) are the event constraints which represent that the A/D/P times and speeds should respect

the time and speed constraints of every timetable point in KTCSi
. Equation (6) represents the dwell time

constraints. The dwell times are restricted by the minimal and maximal dwell times, where the minimal dwell
times should provide sufficient time for boarding and alighting. In (6), Dmin

i,z and Dmax
i,z are the minimal and

maximal dwell times of train i at station z. The minimal dwell time constraints are adopted to ensure enough
alighting and boarding times for passengers. The maximal dwell time constraints are adopted to ensure
efficient utilization of station platforms and avoid long waiting time. Equation (7) defines the departure times
as integral multiples of 6 seconds (in some countries 30 seconds or 60 seconds) for more precise information
to drivers and dispatchers. In Equation (7), the unit of ti(ki,z,d) is in seconds. b·c refers to rounding down
to the nearest whole unit.

If I contains more than one train, Equations (8) are used by the MTTO model to avoid conflicts between
trains. Equations (8) are based on practical operational constraints:

1. a time interval between every two adjacent trains in the same direction is required for safe train
separation (Fig. 2 1©),
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2. for opposite trains, there are two important types of headway requirements: (i) “depart-arrive” headway,
the headway between the departure of a train and the arrival of an opposing train from the same line
(Fig. 2 2©); and (ii) “arrive-depart” headway, the headway between the arrival of a train and the
departure of an opposing train towards the same line (Fig. 2 3©), and

3. opposite trains must not travel on a single-track section between two adjacent stations at the same
time, otherwise a head-on conflict occurs (Fig 2. 4©).

Time

Distance

station

station

③

① ③

② ④

following headway

avoid head-on conflicts

arrive-departure headway

departure-arrive headway

④

②

③

①

①

①

Figure 2: Necessary headways between trains.

In Equations (8), the first inequality represents the safe following headway constraint for trains in the
same directions. Denote by Signali,j the set of signal locations on both train i and j’s journeys for i, j ∈ Is,
ti(q) and tj(q) refer to the time of train i and j passing through q ∈ Signali,j , and hi,j,q is the minimum
headway time between train i and j at location q. The left hand sides of the first two equations are squared to
include the influence of train sequences. The second inequality is for safe “depart-arrive” or “arrive-depart”
headway constraints. StationSignali,j is the set of signals at station boundaries on both train i and j’s
journeys for i, j ∈ Io. ho is the minimum “depart-arrive” or “arrive-depart” headway time. Here “station
signal” refers to a signal at station boundaries, either the inbound side or the outbound side. The point
where the headway time applies is usually the station but we put the headway times at station signals. The
reason is that trains may use different platforms which correspond to different phases in the multiple phase
optimal control problem formulation, that is introduced later. We want to keep the headway constraints at
one location where both i and j are passing through to simplify the formulation.

If the timetable is a periodic timetable, conflict-avoiding constraints shall take into account that the trains
run every Tperiod (cycle time in seconds) (Hansen and Pachl, 2014). So that the first two equations in (8)
become {

h2i,j,q ≤ (ti(q)− tj(q))2 ≤ (Tperiod − hi,j,q)2,∀(i, j) ∈ Is, q ∈ Signali,j

h2o ≤ (ti(q)− tj(q))2 ≤ (Tperiod − ho)2,∀(i, j) ∈ Io, q ∈ StationSignali,j .
(9)

The third inequality in (8) is used to avoid any crossover of two trains’ time-distance paths on single-track
segments in order to avoid head-on conflicts between two opposite trains. Define any section between l0 and
lf , which opposite trains are allowed to use, as a single-track. SingleTracki,j is the set of single-tracks on
both train i and j’s journeys for i, j ∈ Io. [l0, lf ] refers to a piece of single track (l0 and lf are the distances of
the start and end locations along the route). ti(l0), ti(lf ), tj(l0) and tj(lf ) refer to the time of train i and j
passing through l0 and lf , and σ is a positive value close to 0 representing a safe margin for train separation.

4. Modelling and solution methods

This section presents the modelling and solution methods for the MTTO.
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4.1. Modelling

For the STTO modelling and solution methods see Wang and Goverde (2016a). The advantage of the
MTTO presented in Section 3 is that it enables optimizing the energy consumption of multi-trains together
with constraints to avoid conflicts between trains. However, it gives rise to three key questions.

First, Equations (3) are the differential equations of the train movements. Every train’s traversed distance
is taken as the independent variable of its own differential equations. However, the trains’ traversed distances
are not always the same since they are in different directions or follow different routes, as the example of red
and blue routes show in Fig. 3. It is necessary to unify the independent variable in order to formulate train
movements together.

station section of red route line section of red route

station section of blue route line section of blue route

Figure 3: Example of two trains following different routes.

Second, trains are assigned different routes. Let “station sections” be sequences of connected blocks
within a single station starting and ending at so-called station boundaries, and “line sections” be sequences
of connected blocks within a single-track or double-track line (examples of station sections and line sections
are shown in Fig. 3). Each train route is composed of a sequence of station sections and line sections,
guiding the train through each station and each line. An accurate route model is the fundamental base of
computing the train trajectories. However, trains are assigned different routes, while the lengths of different
station sections within a station might be different, and the lengths of different line sections within a double-
track line might also be different. The length differences make the multi-train trajectory optimization more
complicated.

Last but not least, different trains have different speed limits and gradients since they travel on different
routes, and the speed limits and gradients change along train routes. Besides, the MTTO model contains a
lot of time and speed constraints at timetable points (in Equations (5)-(7)) and signals (in Equations (8)-(9)).
How to deal with the varying speed limits and gradients and time and speed constraints at specific points is
a difficult question.

This section provides solutions to these three questions. The independent variable is firstly unified, the
section lengths are normalized, and the MTTO model is re-formulated as a multiple-phase optimal control
problem to capture the varying speed limits and gradients and time and speed constraints.

Unification of the independent variable:
Take distance s as the independent variable, which increases in the downstream direction. Let

dsi = ds, dsj = −ds, ∀ i ∈ Id, j ∈ Iu.

dsj = −ds because train j is in the upstream direction.

Normalization of section lengths:
Our model takes into account the actual situation that trains use different routes and different tracks at

stations, whilst the route lengths might be different. A normalization vector λi (i ∈ I) is adopted for every
station section or line section of train i ∈ I to normalize section lengths. With the introduction of λi, we
scale all routes with respect to a fixed reference ‘main route’, so that all routes have unified and continuous
kilometer points. λi is used in the formulation of cost function and dynamic constraints to scale the section
lengths. The section lengths will be re-scaled again in the final solution for each train, so that the computed
trajectories respect the actual route lengths.

The normalization follows 3 steps:
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Step 1: Define station boundaries to divide the railway corridor into station regions and line regions.

Step 2: Define a main route in the downstream direction. The main route covers the whole corridor, and
the kilometer points of the main route are continuous.

Step 3: Get the information of the lengths of every station section and line section of all the train routes
and the main route, and compute λi for each section.

For a station section in train i ∈ I’s route at station z ∈ Zi,

λStationseczi =
LStationseczi

LStationseczmain

, ∀ i ∈ I, z ∈ Zi, (10)

where Stationseczi refers to the station section, which train i uses at station z, Stationseczmain refers to the
station section on the main route at station j, LStationseczi

and LStationseczmain
are respectively the lengths of

Stationseczi and Stationseczmain.
For a line section on train i ∈ I’s route between adjacent stations z and z + 1 (z, z + 1 ∈ Zi),

λLinesecz,z+1
i

=
LLinesecz,z+1

i

LLinesecz,z+1
main

, ∀ i ∈ I, z, z + 1 ∈ Zi, (11)

where Linesecz,z+1
i refers to the line section on train i’s route between station z and z + 1, Linesecz,z+1

main

refers to the line section within the main route between station z and z+ 1, LLinesecz,z+1
i

and LLinesecz,z+1
main

are

respectively the lengths of Linesecz,z+1
i and Linesecz,z+1

main .

Multiple-phase optimal control problem formulation:
The multiple-phase optimal control problem divides the railway corridor into multiple segments. Each

segment is a phase, where any particular phase has its own cost function (minimizing energy costs), dynamic
model (train dynamic movement model), path constraints (vehicle characteristics, speed limits, and riding
comfort), boundary conditions (time and speed constraints at timetable points), and event constraints (to
avoid conflicts). The complete trajectory is then obtained by properly linking adjacent phases via linkage
conditions (continuous speeds and times). The total cost function is the sum of the cost functions within
each phase. The optimal trajectory is then found by minimizing the total cost functional subject to the
constraints within each phase and the linkage constraints connecting adjacent phases. The advantages of this
modelling method are multiple: it gives an accurate description of varying speed limits and gradients and
the time and speed restrictions at timetable points.

Assume that the infrastructure data combine track information such as speed, gradient, the signalling
system (location of signals) and operational information like routes and timetable points. The first step is to
divide the railway corridor into several segments. The division-points are one of three types:

1. Critical points of speed limits and gradients. The points of changing speed limits or gradients are used
to partition the whole corridor, so that each interval has a unique speed limit and gradient value.

2. Timetable points that have time or speed limitations indicated by every train’s TCS.

3. Signal positions in both directions. The signaling system consists of a series of railway signals that
divide a railway line into a series of sections, or “blocks”, which are important elements in managing
train movements. For example, each block can only be occupied by one train at a time.

Fig. 4 gives an example, where the corridor is divided into 16 segments. Each segment between two
adjacent division-points is a phase for the multiple-phase optimal control problem. Within each phase, the
gradient and speed limit are constant, but their values may be different from the ones in other phases. The
boundary points of a phase also might be a timetable point or a signal, where time and/or speed restrictions
apply on the train operations.

Denote by r ∈ R = {1, . . . , R} a phase, R is the number of phases of this railway corridor, s
(r)
0 the initial lo-

cation of phase r, and s
(r)
f the terminal location of phase r, s

(r)
0 < s

(r)
f . Define A =

{
(m,n)|s(m)

f = s
(n)
0 ,m, n ∈ R

}
10
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130 : speed limit, 130 km/h

60 : speed limit, 60 km/h

: timetable point of the train in up direction

: timetable point of the train in down direction

Figure 4: Example of partitioning in phases.

as the set of adjacent phases, and I(r) as the set of trains passing through phase r, I(r) ⊆ I. Let v
(r)
i (s), t

(r)
i (s)

be train i’s speed and time in phase r, f
(r)
i (s), b

(r)
i (s) be train i’s traction and braking forces in phase r,

V
max,(r)
i (s) be the speed limit of train i in phase r, and R

(r)
line,i(s) be the line resistance caused by the constant

gradient within phase r. ξi and λ
(r)
i are introduced for later mathematical formulations. ξi = 0 if i ∈ Id,

otherwise ξi = 1, and λ
(r)
i equals the value of λi in phase r.

The MTTO model is re-formulated as a multiple-phase optimal control problem:

Minimize J =

R∑
r=1

J (r), J (r) =
∑
i∈I(r)

J
(r)
i , (12)

J
(r)
i = λ

(r)
i

∫ s
(r)
f

s
(r)
0

f
(r)
i (s) ds,

subject to the dynamic constraints:
dv

(r)
i (s)

ds
= (−1)ξiλ

(r)
i

θ1(si)f
(r)
i (s)− (1− θ1(si))b

(r)
i (s)−Rtrain,i(v(r)i )−R(r)

line,i(s)

ρi ·mi · v(r)i (s)
,

dt
(r)
i (s)

ds
= (−1)ξiλ

(r)
i

1

v
(r)
i (s)

,

∀ r ∈ R, i ∈ I(r), (13)

the path constraints:

0 ≤ f (r)i (s) ≤ Fmax
i ,

0 ≤ b(r)i (s) ≤ Bmax
i ,

0 ≤ f (r)i (s) · v(r)i (s) ≤ Pmax
i ,

0 ≤ v(r)i (s) ≤ V max,(r)
i ,

Amin
i ≤ dv

(r)
i (s)

dt
(r)
i (s)

≤ Amax
i ,

∀ r ∈ R, i ∈ I(r), (14)
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the boundary conditions (if any):
vmin
i,z,e ≤ v

(r)
i (ki,z,e) ≤ vmax

i,z,e,

tmin
i,z,e ≤ t

(r)
i (ki,z,e) ≤ tmax

i,z,e,

t
(r)
i (ki,z,d)

6 −
⌊
t
(r)
i (ki,z,d)

6

⌋
= 0,

∀ r ∈ R, i ∈ I(r), ki,z,e ∈ KTCSi
∩ {s(r)0 , s

(r)
f }, (15)

the event constraints (if any):

(
t
(r)
i (q)− t(r)j (q)

)2
≥ h2

i,j,q,

∀ r ∈ R, (i, j) ∈ Is : i, j ∈ I(r), q ∈ Signali,j ∩ {s
(r)
0 , s

(r)
f },(

t
(r)
i (q)− t(r)j (q)

)2
≥ h2

o,

∀ r ∈ R, (i, j) ∈ Io : i, j ∈ I(r), q ∈ StationSignali,j ∩ {s
(r)
0 , s

(r)
f },(

t
(r)
i (s

(r)
0 )− t(r)j (s

(r)
0 )
)(

t
(r)
i (s

(r)
f )− t(r)j (s

(r)
f )
)
≥ σ,

∀ r ∈ R, (i, j) ∈ Io : i, j ∈ I(r), [s
(r)
0 , s

(r)
f ] ∈ SingleTracki,j ,

(16)

and the linkage conditions of all adjacent phases: v
(m)
i (s

(m)
f )− v(n)i (s

(n)
0 ) = 0,

Dmin

i,s
(m)
f

≤ t(n)i (s
(n)
0 )− t(m)

i (s
(m)
f ) ≤ Dmax

i,s
(m)
f

,
∀(m,n) ∈ A, i ∈ I(m) ∩ I(n). (17)

The cost function (12) aims at minimizing the cost functions over all phases, J (r) is the sum of the cost

function(s) of the train(s) going through phase r. A single train’s cost function J
(r)
i aims at minimizing

energy consumption within phase r. Each phase r ∈ R adopts the dynamic constraints (13) to represent the

dynamic movements of train(s) going through segment [s
(r)
0 , s

(r)
f ]. The dynamic constraints are stated with

s as the independent variable. (−1)ξi is adopted to eliminate the influence of travelling directions. λ
(r)
i is

adopted for the normalization of section lengths. Path constraints (14) are used to represent the operational
constraints of vehicle characteristics, speed limits and riding comfort. Inequalities (15) work as the boundary
conditions of phase r if ki,z,e ∈ KTCSi is the initial or terminal point of that phase. Timetable points are
adopted as division-points, so phase r’s initial or terminal point might be a timetable point, where time and
speed restrictions on train operations apply. For a phase that has more than one train going through, event
constraints (16) are required to avoid conflicts between trains. They are developed based on (8) or (9).

The linkage conditions (17) are to make sure that the train’s speed-distance and time-distance trajectories

are continuous. If the linkage point of two successive phases is a stop point of a train i, t
(m)
i (s

(m)
f ) and t

(n)
i (s

(n)
0 )

represent the arrival and departure times of train i at s
(m)
f , and Dmin

i,s
(m)
f

, Dmax

i,s
(m)
f

are the lower bound and upper

bound of dwell times of train i at s
(m)
f and s

(n)
0 . Otherwise, Dmin

i,s
(m)
f

= Dmax

i,s
(m)
f

= 0.

4.2. Pseudospectral method

GPOPS (Rao et al., 2010) is adopted to solve the multiple-phase optimal control problem. GPOPS is
a MATLAB software program for solving multiple-phase optimal control problems using the pseudospectral
method. In general, pseudospectral methods transcribe the continuous-time optimal control problem into a
nonlinear programming problem, after which a nonlinear programming solver is adopted to directly solve the
problem. GPOPS uses the Radau pseudospectral method (Garg, 2011), which takes the Legendre-Gauss-
Radau (LGR) points for collocation of the dynamic constraints, and for quadrature approximation of the
integrated Lagrange cost term. The Lagrange polynomial approximation of the state, however, uses the LGR
points plus the final point. In addition, GPOPS offers a function that implements an hp-adaptive mesh
refinement algorithm that iteratively determines a mesh that accurately distributes the collocation points.
GPOPS transcribes the continuous-time multiple-phase optimal control problem into a discrete NLP problem.
The resulting NLP is then solved by SNOPT (Gill et al., 2005). For detailed mathematical descriptions, we
recommend Wang and Goverde (2016a); Rao et al. (2010); Ye and Liu (2016).
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5. Case studies

5.1. Case descriptions

The proposed approach is applied in case studies on a Dutch single-track corridor and a double-track
corridor. The infrastructure data is provided by the Dutch infrastructure manager Prorail. The infrastructure
characteristics consist of a description of all track sections, points, speed signs and signals over the entire
track layout. Since we dont have gradient data, we assume flat tracks. The single-track rail corridor is
about 20 km long, between Den Helder (Hdr) and Schagen (Sgn) in the north of the Netherlands, see Fig.
5 (a). There are 4 stations along this corridor: Den Helder (Hdr), Den Helder Zuid (Hdrz), Anna Paulowna
(Ana), and Schagen (Sgn). The double-track corridor is between Utrecht-’s-Hertogenbosch, which is one of
the busies rail lines in the Netherlands. This railway corridor is about 50 km long, including two main tracks,
divided into one long corridor for each traffic direction, 8 passenger stations: Utrecht (Ut), Utrecht Lunetten
(Utl), Houten (Htn), Houten Castellum (Htnc), Culemborg (Cl), Geldermalsen (Gdm), Zaltbommel (Zbm)
and ’s-Hertogenbosch (Ht) (Fig. 5 (b)).
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Tb
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Figure 5: The partial single-track and double-track corridors used in the case studies.

Fig. 6 shows the pre-defined timetables for the single-track and the double-track corridor (one direction
from Ht to Ut). The time-distance diagrams are based on the timetables in use in 2016, which are periodic
timetables with train services repeating every half hour. The trains in black solid lines in Fig. 6 are chosen
for the case studies as the traffic within half hour timetables. On the double-track corridor, the trains in
different directions are independent from each other, so only the trains from Ht to Ut are taken into account.
By optimizing the six trains’ time paths, the timetables for the whole day are optimized. To simplify the
illustration, we name the trains as T1 (regional train from Hdr to Sgn), T2 (regional train from Sgn to Hdr),
T3 (regional train from Gdm to Ut), T4 (regional train from Ht to Ut), T5 (intercity train from Ht to Ut)
and T6 (intercity train from Ht to Ut), as shown in Fig. 6. The light blue rectangles in Fig. 6 refer to
multi-track lines, where the trains use different tracks. Trains use the same tracks on the other regions. On
the single-track corridor between Hdr and Sgn, T1 and T2 operate in different directions and the two trains
are scheduled to meet at Ana station. The double track corridor has two intercity trains (T5 and T6) and two
regional trains (T3 and T4) running in the direction from Ht to Ut, and T5 overtakes T4 at Gdm station.

The static parameters of the regional and intercity trains are listed in Table 1. The traction force and
train resistance curves are shown in Fig. 7. Since the braking rates are the only accessible data characterizing
the braking behavior, we let the braking force be equal to the braking rate times train mass.
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Figure 6: Original timetables of single-track and double track corridors.

Table 1: Basic parameters of Regional and Intercity train.

Property
Value

Regional Intercity
Train mass [t] 220 391
Rotating mass factor [-] 1.06 1.06
Maximum traction power [kW] 1918 2157
Maximum traction force [kN] 170 214
Maximum braking deceleration [m/s2] -0.8 -0.66
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Figure 7: Traction force and line resistance of Regional and Intercity train.
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The proposed methods were tested in two scenarios. The first is the scheduled scenario. The STTO
is adopted to compute the speed profiles of the six trains separately, which assumes the trains operate
according to the given timetables. Arrival and departure target points constraints are used to model the
trains’ punctuality. The second scenario is the energy-efficient timetable adjustment case. The A/D/P time
target constraints are converted to time window constraints first, then the STTO is adopted to compute the
speed profiles and time paths of the six train separately. After that, the conflicts are detected by checking the
overlaps on blocking diagrams. If there are conflicts between the train paths, the MTTO method is adopted
to re-compute the speed profiles and time-distance paths of the conflicting trains.

The timetables we study are periodic timetables, so Equations (9) are used by the MTTO model to ensure
enough headways between trains. The parameters in Equations (8) and (9) were set as Tperiod = 1800 s,
hi,j,q = 120 s, ho = 15 s, and σ = 5 s. The value of hi,j,q is set according to the network statement 2017 by
Prorail (ProRail, 2017). We use default headway norms that should be sufficient for the final timetable to
be conflict-free and contain some buffer. This can be checked by computing the blocking time diagram for
the final solution to prove that the timetable is conflict-free, or if not to increase some headway times in the
same manner as presented in Bešinović et al. (2016). The value of ho ensures enough time interval for signal
clearing and setting. σ is a positive value to avoid any crossover of opposite trains’ path. The dwell time
windows at the meeting station, Ana, and the overtaking station, Gdm, are respectively [1 min, 2 min], and
[3 min, 6 min]. The minimal and maximal dwell times at other stations are 0.5 min and 1 min.

The experiments were carried out with GPOPS 4.1 on a laptop equipped with a 3.2 GHz Pentium
R processor. As for the parameter settings of GPOPS, we used ‘complex’ as the string to indicate the
differentiation method, a tolerance of 1e-3, an iteration of 2, and didn’t use autoscaling. The explanation of
the parameters can be found in (Rao et al., 2011).

5.2. Results and analyses

The TCS time windows of train T1, T2, T3 and T4 are presented in Fig. 8. The TCSs of T5 and T6 are
composed by scheduled departure and arrival times. The running times of T5 and T6 between Ht and Ut are
the same as the ones provided by the original timetable. Fig. 9, 11, 13 and Table 2 present the optimized
results for the two trains, T1 and T2, on the single-track corridor. Fig. 10, 12, 14, and Table 3 present the
optimized results for the four trains, T3, T4, T5 and T6, on the double-track corridor.
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Figure 8: TCS time windows of train T1, T2, T3 and T4 (red rectangles refer to departure time windows, the blue rectangles
refer to arrival time windows).

5.2.1. Timetable analysis

Table 2 and 3 present the arrival and departure times of the original timetables and the optimized
timetables. The optimized arrival and departure times are slightly different from the ones indicated by the
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Figure 9: Blocking time diagrams of train T1 and T2 computed by STTO (left) and MTTO (right) (red refers to conflicts).
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Figure 10: Blocking time diagrams of train T3, T4, T5 and T6 computed by STTO (left) and MTTO (right) (red refers to
conflicts).
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Figure 11: Time supplements of the original timetable and optimized timetable for trains on the single-track corridor.
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Figure 12: Time supplements of the original timetable and optimized timetable for trains on the double-track corridor.
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original timetables. The departure times are integral multiples of 6 seconds because of the restriction of
Equation (7). The optimized dwell times of train T1 and T2 at Ana are 1 minute. The optimized dwell times
of T4 at Gdm are respectively 3 minutes by using STTO, and 4 minutes by using MTTO. In addition to that,
the optimized dwell times at the other stations of all trains are 0.5 minutes. The results show that short
dwell times are beneficial for energy-efficiency. The MTTO results 1 minute longer dwell time of tain T4 at
Gdm to satisfy the constraint (8) and to eliminate conflicts between T4 and T5, see Fig. 10.

5.2.2. Blocking time diagram analysis

Fig. 9 and 10 present the blocking time diagrams to check conflicts between trains. The blocking time
diagrams were computed according to the optimized results using STTO (left) or MTTO (right). Both in
Fig. 9 and 10, the light-blue rectangles represent station areas with multiple tracks. The blocking time
diagrams are only allowed to intersect within the station areas.

In the left plot of Fig. 9, T1 and T2’s blocking times intersect at the single-track line between Sgn and
Ana, which is not feasible. Therefore the MTTO method is adopted to compute new conflict-free time paths.
The right plot in Fig. 9 shows that the blocking time diagrams for T1 and T2 overlap at station Ana, which
has two parallel tracks. T1 uses track 1 while the opposing train uses track 2, so the conflict is eliminated
with the optimized results. This proves that the timetable produced by the MTTO method is conflict-free.

In Fig. 10, the left plot presents an overlap of the blocking times of train T4 and T5 on the section
between Gdm and Cl. Both T4 and T5 leave Gdm at 00:22:00, thus there is no sufficient headway between
the moments that the trains start using the section between Gdm and Cl. The results by using the MTTO
method are shown in the right plot of Fig. 10, where train T4 leaves Gdm at 00:24:00, causing no conflicts
with T5.

5.2.3. Time supplement and energy consumption analysis

Fig. 11 and 12 present the time supplements of the original and optimized timetables for T1, T2, T3 and
T4. The time supplements of T5 and T6 are not discussed herein, because their running times between Ht
and Ut are the same as the ones provided by the original timetable. It can be seen that the time supplements
are quite high. In general, the time supplement is 5%-20% depending on timetable constraints. In practice,
it is possible to have high time supplements, especially on short distances where a minute more is large in
percentage, such as nearly 100% time supplements of T4 between Htnc and Htn in the original timetable.
In practice there will be less time supplement, since in this case study we did not consider the impact of
gradients (because we do not have the data). This is fine for demonstrating the model of this paper but
for practical results the gradient profile needs to be considered as well. (Note that varying gradients can
be included in the method of multiple-phase optimal control model, see Wang and Goverde (2016a).). Most
importantly, it can be observed that the running time supplements are re-allocated. The optimized results
show more reasonable time supplements along the routes.

The re-allocation of time supplements has a direction influence on speed profiles and energy consumptions.
Trains coast more on the sections with more running time supplements. As reported in Table 2 and 3, the
energy consumption of trains T1-T4 are decreased by 7.23%, 24.34%, 17.27% and 13.44% (The energy savings
are calculated by dividing the saved energy of the optimized timetable by the energy consumption of the
original timetable.). In addition, the optimized dwell time of train T4 at Gdm is 4 minutes, so that T4 got 1
minute more running time compared to the original timetable. The extra running time is beneficial to energy
saving. The STTO is able to save more energy consumption than the MTTO model, however, computing
the trajectories separately may cause conflicts. The MTTO saves less energy consumption but eliminates the
conflicts.

5.2.4. Speed profile analysis

Fig. 13 shows the optimized speed profiles of train T1 from left to right, and train T2 from right to left.
Fig. 14 shows the speed profiles of T3, T4, T5 and T6. In Fig. 13 and 14, the red horizontal lines represent the
static speed limits, the black lines refer to the energy-efficient speed profiles based on the original timetables,
the green lines represent the optimized speed profiles within TCS windows computed with the STTO model,
and the blue lines represent the optimized speed profiles computed with the MTTO model.

The trains stop at every planned stop point, which includes not only the first and last stations of the
corridor, but also the intermediate stops, such as Hdrz, Ana (for train T1 and T2), Zbm, Gdm, Cl, Htnc,
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Htn, and Utl (for train T3, T4, T5 and T6). It shows that both STTO and MTTO can handle time and speed
constraints at intermediate stations. The MTTO method is capable of optimizing the trajectories of trains
on different directions and different routes. The optimal speed profiles, computed by both STTO and MTTO
(as shown in Figs. 13 and 14), satisfy the energy-efficient train control theory by the application of PMP
(Howlett and Pudney, 1995): the control regimes between every two stops include using maximum traction
during the outbound processes, maximum braking force for the inbound processes, cruising at maximum
speeds, and coasting before braking for energy saving. Train speeds do not exceed the static varying speed
limits. The trains are capable of accelerating after entering high speed regions and decelerating to low speeds
before getting in low speed areas. Fig. 14 (II) shows an exception: the cruising regimes are approximated by
alternating traction and coasting phases. Cruising is a singular arc in the optimal control structure where
a unique control solution does not exist. GPOPS does not see the difference between cruising at constant
speed and the approximation with traction-coasting pairs, where it favours the latter. The average speed
and energy consumption are however the same.

5.2.5. Computation time analysis

The computation times, as well as the number of phases, variables and constraints are reported in Tables
2 and 3. The STTO is able to compute trajectories for each train within a short time. For instance, it takes
less than 1 minute to compute a trajectory for T3-T6 running on a 50 km long corridor between Ht and
Ut. The MTTO causes longer computation times compared to the STTO. It is because the MTTO model
includes more phases, variables, and constraints than the STTO model since the MTTO model takes into
account more than one train. To apply the MTTO method in even larger problems (more trains, longer
corridors), our method can provide solutions with longer computation times. If this leads to computational
problems some intermediate event times can be fixed, which then decomposes the problem in parts. If no
natural fixing point exists this can be embedded into an iterative scheme.

6. Conclusions

This paper proposed a novel energy-efficient timetabling strategy. This strategy is achieved by adjusting
the arrival and departure times of an existing timetable to improve its energy efficiency using train trajectory
optimization methods. The train trajectory optimization methods proposed by us integrate two types, a
single-train trajectory optimization, and a multi-train trajectory optimization.

The STTO method optimizes every single train’s timetable by re-allocating their time supplements sep-
arately. It improves the energy efficiency of the timetable however it cannot guarantee that the train trajec-
tories will be conflict-free. A MTTO method is applied if the STTO generates conflicts. The MTTO model
optimizes multiple trains’ trajectories simultaneously with constraints to avoid conflicts between trains. The
STTO and MTTO models are re-formulated as a multiple-phase optimal control problem and solved by
a pseudospectral method. Both STTO and MTTO are adopted in finding the optimal speed profiles and
conflict-free time paths, which in turn changes the arrival and departure times of the existing timetable, and
improves the timetable’s energy efficiency. Case studies of two half-hour timetables on a Dutch single-track
corridor and a double-track corridor suggested that our method is able to produce energy-efficient timetables.

Future research aims at integrating the train trajectory optimization in timetable design. Along with the
proposed MTTO model, the following extensions should be addressed: (1) a scheduling model to find optimal
train orders; and (2) dynamic headway constraints to ensure a feasible timetable.
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