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IMPROVING PREDICTIONS OF PUBLIC TRANSPORT USAGE DURING DISTURBANCES 

BASED ON SMART CARD DATA 

 

 

 

 

ABSTRACT 

The availability of smart card data from public transport travelling the last decades allows analyzing current 

and predicting future public transport usage. Public transport models are commonly applied to predict 

ridership due to structural network changes, using a calibrated parameter set. Predicting the impact of 

planned disturbances, like temporary track closures, on public transport ridership is however an unexplored 

area. In the Netherlands, this area becomes increasingly important, given the many track closures operators 

are confronted with the last and upcoming years. We investigated the passenger impact of four planned 

disturbances on the public transport network of The Hague, the Netherlands, by comparing predicted and 

realized public transport ridership using smart card data. A three-step search procedure is applied to find a 

parameter set resulting in higher prediction accuracy. We found that in-vehicle time in rail-replacing bus 

services is perceived ≈1.1 times more negatively compared to in-vehicle time perception in the initial tram 

line. Waiting time for temporary rail-replacement bus services is found to be perceived ≈1.3 times higher, 

compared to waiting time perception for regular tram and bus services. Besides, passengers do not seem to 

perceive the theoretical benefit of the usually higher frequency of rail-replacement bus services compared 

to the frequency of the replaced tram line. For the different case studies, the new parameter set results in 3% 

up to 13% higher prediction accuracy compared to the default parameter set. It supports public transport 

operators to better predict the required supply of rail-replacement services and to predict the impact on their 

revenues.  

 

Keywords: disturbance, passenger, prediction, public transport, smart card 

 

 

Highlights: 

 Prediction of public transport ridership in case of disturbances 

 Use of observed smart card data from multiple case studies to infer passenger behavior  

 Development of a three-step search method to determine a better fitting model parameter set 

 New parameter set improves prediction accuracy during planned disturbances up to 13% 
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1. INTRODUCTION 
The last decade, in several cities worldwide automated fare collection (AFC) systems are introduced for the 

public transport system by public transport operators and authorities. For these AFC systems, passengers 

need to use a smart card for public transport travelling. Open systems in which passengers only need to 

tap-in, as well as closed systems in which both a tap-in and tap-out are required, are applied in practice. 

Although the main purpose of the introduction of AFC systems was to enable an easier way of revenue 

collection, additionally large amounts of data are generated which can be used to get more insight in 

passengers’ travel behavior. Over the last years, data from AFC systems is used for many purposes by 

scientists and practitioners on a strategic, tactical and operational level (Pelletier et al. 2011). Data from 

AFC systems is for example used for destination inference in case of open systems with tap-in only (e.g. 

Trépanier et al. 2007; Nunes et al. 2016), transfer inference (e.g. Hofmann and O’Mahony 2005; Jang 2010) 

and journey inference to estimate origin-destination (OD) matrices (e.g. Seaborn et al. 2009; Wang et al. 

2011; Munigaza and Palma 2012; Zhao et al. 2012; Gordon et al. 2013). Other studies focus on fusion of 

smart card data of different operators (e.g. Nijënstein and Bussink 2015) or clustering public transport stops 

in order to identify and classify public transport activity centers based on smart card data (Cats et al. 2015).  

Next to the aforementioned studies which use smart card data to describe, analyze, cluster and 

visualize current travel patterns, there are also studies focusing on public transport ridership prediction 

based on smart card inferred travel patterns. Idris et al. (2015) developed several mode choice models based 

on revealed preference, contrary to traditional mode choice models having the tendency to overestimate 

public transport ridership. Wei and Chen (2012) developed a forecasting approach for short-term ridership 

predictions in metros using a combination of empirical mode decomposition and neural networks, whereas 

Li et al. (2017) predict metro ridership under special events using a multiscale radial basis function 

(MSRBF) network. Ding et al. (2016) predict metro ridership using gradient boosting decision trees, 

thereby incorporating temporal features and bus transfer activities. In Van Oort et al. (2015a) a smart card 

based prediction model is developed which allows the prediction of effects of changes in public transport 

supply, like increasing the frequency or rerouting public transport services. This model considers the total 

urban public transport network and uses an elasticity approach, where parameter values are obtained based 

on revealed preference studies. Also effects of crowding can be incorporated in this short-term ridership 

prediction model (e.g. Van Oort et al. 2015b). This type of prediction model is of added value to improve 

prediction accuracy of the impact of structural network changes, which are usually implemented by 

operators on one or on a few fixed dates in the year. However, in practice many public transport operators 

are confronted with temporary closures of infrastructure many more times per year. These temporary 

infrastructure closures are for example caused by maintenance work, track renewal or redesign of public 

space. These closures usually result in longer travel time, more transfers, lower rider ship, lower passenger 

satisfaction, and less revenues. In the Netherlands, a tendency can be observed of more, larger and more 

long-lasting rail infrastructure closures. For example, HTM, the urban public transport operator in Den 

Haag, the Netherlands, was confronted with more than 20 temporary track closures in 2015. It therefore 

becomes more urgent for operators to predict the impact of these (planned) disturbances on their 

passengers, ridership and revenues. This impact of temporary track closures on demand and supply is 

different compared to the impact of structural network changes. Passengers might be willing to postpone a 

single trip, change their mode choice or route choice, or accept the use of rail-replacement bus services for 

temporary situations. Operators on the other hand have to accept the temporary reduction in level of service 

– because of rail-replacement bus services, additional travel time and transfers – and might accept the 

temporary additional operational costs for these bus services and communication. It can be concluded that 

the responses of passengers and operators differ in case of temporary network changes, compared to 

structural network changes. In order to predict passenger impacts of temporary network changes with 

sufficient accuracy, other/additional parameters and/or different parameter values in the public transport 

ridership prediction models are therefore required.  

This study aims to improve the prediction accuracy of the impact of planned, temporary 

disturbances on public transport usage. To this end, in this study a new parameter set is calibrated and 
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validated to predict public transport ridership in case of planned disturbances. This parameter set is based 

on smart card data derived from AFC systems during several planned disturbances which occurred in The 

Hague in 2015. The study results in a new set of parameter values allowing to better predict passenger 

impacts of planned disturbances in urban public transportation. With this result, more insight is gained in 

passenger behavior during disturbances. It also supports operators to predict the impact on their revenues, 

and to better align supply of rail-replacement services on alternative routes to the remaining demand, in 

order to efficiently use their scarce resources. This paper is structured as follows. Chapter 2 describes the 

methodology to calibrate and validate the parameter set of the ridership prediction model. Chapter 3 

describes the case study network to which the methodology is applied. Chapter 4 discusses the results of 

this study. At last, in chapter 5 conclusions and recommendations for further research are formulated. 

 

2. METHODOLOGY 
 

2.1 Origin-destination matrix estimation  

When travelling in trams or busses in the Netherlands by smart card, passengers are required to tap-in and 

tap-out at devices which are located within the vehicle. This means that in the Netherlands the passenger 

fare is based on the exact distance travelled in a specific public transport vehicle. Especially for busses, this 

is different from many other cities in the world where often an open, entry-only system with flat fare 

structure is applied, for example in London (Gordon et al. 2013) and Santiago, Chile (Munigaza and Palma 

2012). This means that for each individual transaction the boarding time and location, and the alighting time 

and location of each trip leg are known. Also, it is known in which public transport line and vehicle each 

passenger boarded and alighted with its unique smart card number. This closed within-vehicle system 

therefore eases the destination and journey inference, compared to open entry-only systems. When merging 

this closed within-vehicle AFC system with Automated Vehicle Location (AVL) data, also vehicle 

occupancies can be inferred directly from the transaction data for each line segment and vehicle.  

For an urban public transportation network with tram and bus lines, journeys can be inferred by 

combining registered trip legs made with the same smart card ID. In this study we used a simple temporal 

criterion to determine whether a passenger alighting is considered as final destination or as transfer. When 

the boarding time to a vehicle follows within a certain time window after the alighting time of the previous 

trip leg made with that same card, two AFC transactions are considered as one journey. This approach is 

also used, for example, by Hofmann & O’Mahony (2005) and Seaborn et al. (2009). We are aware that in 

scientific literature more advanced transfer inference algorithms have been developed (e.g. Zhao et al. 

2007; Munigaza & Palma 2012; Gordon et al. 2013; Yap et al. 2017). In Dutch practice however, operators 

apply only a time window threshold between the previous alighting and next boarding as transfer inference 

criterion. In order to compare the prediction accuracy of the new proposed parameter set with the earlier 

operator predictions with the default parameter set, we decided not to adjust the transfer inference algorithm 

in this study.  In this way, we can evaluate purely the effects of our new parameter set on the prediction 

accuracy, while not also changing the transfer inference algorithm simultaneously. In the Netherlands, a 

maximum threshold transfer time of 35 minutes is applied to classify trip legs made by the same smart card 

ID as one journey. By aggregating all journeys, a stop-to-stop smart card based OD matrix can be inferred. 

In the ridership prediction model, zones are located at the stop locations. Only stop codes which belong to 

the same stop from a passenger perspective, are aggregated to one zone. This means that stop codes of 

platforms of the same stop in opposite directions, or stops located at the same intersection, are represented 

by one zone. This is done to prevent passenger travel patterns to be relying too strong on the exact current 

stop codes of boarding and alighting in the undisturbed scenario. Under assumption that the distribution of 

destinations 𝑗 from each origin 𝑖 for non-card users is similar to the distribution of smart card users, which 

is in line with the assumption applied by Munigaza and Palma (2012) to correct for missing tap-outs, the 

zone-based OD matrix can be scaled based on the small percentage of non-card users in the Netherlands. 

Determination of the share of non-card users is based on passenger counts. 

When travelling by train or metro in the Netherlands, there is also a closed system where 

transactions are required during boarding and alighting. For train and metro, devices are however located at 

the station gates. This means that train-train or metro-metro transfers, as well as exact chosen routes cannot 
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be determined directly from the data, and that trip and transfer inference algorithms are necessary to obtain 

these insights.  

2.2 Public transport ridership prediction model 
For the prediction of public transport usage in case of planned disturbances, in this study the public 

transport ridership prediction model as described in Van Oort et al. (2015a) is used as basis. For an urban 

public transportation network, let the set of public transport stops and lines be denoted by 𝑆  and 𝐿 

respectively. Each line 𝑙 ∈ 𝐿 is defined by an ordered sequence of stops 𝑙 = (𝑠𝑙,1, 𝑠𝑙,2…, 𝑠𝑙,|𝑙|). 𝐿𝑡 ∈ 𝐿 and 

𝐿𝑏 ∈ 𝐿  represent the subset of tram lines and bus lines of the considered network, respectively. |𝐿| 
expresses the number of public transport lines in the total set 𝐿. Trip schedules are imported in the model, 

based on which the frequency and stop-to-stop travel times are inferred for each line 𝑙 ∈ 𝐿  in each 

distinguished time period 𝑡. Public transport demand is connected to this network by an OD matrix between 

all stops 𝑠 ∈ 𝑆 for each distinguished time period 𝑡. The OD matrix of the undisturbed base scenario 𝛿0 is 

based on smart card data and estimated as explained in chapter 2.1, using a conversion table between the 

stop ID of the boarding and alighting location in the smart card transaction data and the modelled zones in 

the prediction model, in order to connect travel demand to the modelled urban public transportation 

network.  

 For public transport ridership predictions, this model is based on a demand elasticity. For each OD 

pair 𝑖, 𝑗 the generalized travel costs – being the sum of costs for in-vehicle time, transfer walking time, 

waiting time, transfers and travel fares with their corresponding weights – are calculated for the base 

scenario 𝛿0 and for each scenario 𝛿. Equation 1 shows the calculation of the generalized costs, expressed in 

monetary terms. Applying a demand elasticity parameter to the relative change in generalized travel costs 

between 𝛿0 and 𝛿 for each OD pair allows the calculation and assignment of a new public transport OD 

matrix for each scenario 𝛿. Equation 2 shows the calculation of new public transport demand.  

The default parameter values for 𝑎1, 𝑎2, 𝑎3, 𝑎4 , 𝑎5 used in this prediction model for structural 

network changes are obtained based on a combination of model calibration and literature review (Balcombe 

et al. 2014). In this calibration process, model assignment results (number of passengers and 

passenger-distance on the network, per line 𝑙 ∈ 𝐿 and per link) for the undisturbed base scenario 𝛿0  were 

compared with the raw smart card transaction data. The parameter set resulting in the highest fit between 

assignment results and raw smart card data, with parameter values within bounds found in literature, is 

applied to this model. The weight of in-vehicle time 𝑎1 equals 1.0, whereas one minute walking time 𝑎2 or 

waiting time 𝑎3 are valued 1.5 times more negatively compared to one minute in-vehicle time. This is also 

in line with values found in literature (e.g. Balcombe et al. 2004; Arentze and Molin 2013). Given the focus 

on an urban public transport network with usually relatively short trips, a relatively small transfer penalty of 

3 minutes is applied for 𝑎4. In this prediction model we only consider the marginal travel costs per travelled 

kilometer, without incorporating the base fare of €0.88 which applies for all passengers and all trips in 

urban public transport in the Netherlands. This is justified since this fixed cost component, which is the 

same for each public transport route, does not add explanatory power to passenger route choice in the 

model. The marginal travel costs per travelled kilometer in the model are reflected by 𝑎5  and equal 

€0.05/km. Compared to the marginal travel costs of €0.15/km currently in the Netherlands (MRDH 2016), 

this value shows a limited price sensitivity. This can be explained due to the fact that also passengers which 

are price-inelastic are incorporated in the data. These passengers do not have to pay for their tickets 

themselves (e.g. business trips paid by the company, or student trips paid by the Dutch government), have 

monthly or yearly travel passes (where the marginal travel costs are usually lower), or travel with discount 

(e.g. elderly, children). The Value-of-Time for the Dutch situation is determined based on Significance et al. 

(2013).  

In the model used in this study no segmentation in parameter values is used for passengers with 

different trip purposes or for different time periods. Differences in sensitivity to generalized cost 

components can for example be related to trip purpose or socio-economic status of passengers. In the model 

used for this study, no explicit distinction is made between the home-end and activity-end of a journey. 

Therefore, it is not possible to determine the home-end of each journey explicitly, and to relate this for 

example to the socio-economic status of a specific area of the city. Also regarding trip purpose an explicit 
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segmentation cannot directly be inferred from the AFC data. For example, in The Hague there are 58 

different product types available for travelling by smart card (e.g. business card, student cards, monthly 

cards). For some card types it is relatively easy to match card type (e.g. student card) and trip purpose (e.g. 

education). However, for many other card types this match is less trivial. Besides, for this study no 

information was available regarding the product type used for each AFC transaction. Also, our AFC dataset 

did not contain the ID of the smart card used for travelling. Therefore, it was not possible to infer trip 

purpose from long-term travel patterns. Different sensitivities during different periods of the day are mostly 

related to different mixtures of passenger segments (e.g. a high percentage commuters during peak periods, 

or a high percentage leisure / shopping passengers during off-peak periods), as for example already shown 

by Nazem et al. (2011). Instead of aiming to infer these different travel segments from available travel 

patterns, we decided to come up with a robust parameter set which is – on average – able to improve 

prediction accuracy over these different passenger segments. For further research, there is definitely 

potential to further improve the parameter set specific for different passenger segments and areas of the city.  

 

𝐶𝑖𝑗 = (𝛼1𝐼𝑉𝑇𝑖𝑗 + 𝛼2𝑊𝐾𝑇𝑖𝑗 + 𝛼3𝑊𝑇𝑇𝑖𝑗 + 𝛼4𝑁𝑇𝑖𝑗) ∗ 𝑉𝑜𝑇 + 𝛼5𝑑𝑖𝑗   (1) 

 

With: 

𝐶𝑖𝑗  Generalized costs on OD pair i,j 

𝛼1,𝛼2,𝛼3,𝛼4, 𝑎5 Weight coefficients in generalized costs calculation 

𝐼𝑉𝑇𝑖𝑗  In-vehicle travel time on OD pair i,j 

𝑊𝐾𝑇𝑖𝑗  Walking time on OD pair i,j 

𝑊𝑇𝑇𝑖𝑗  Waiting time on OD pair i,j 

𝑁𝑇𝑖𝑗  Number of transfers on OD pair i,j 

VoT  Value-of-Time (€/hour) 

𝑑𝑖𝑗  Distance travelled in public transport on OD pair i,j 

 

𝐷𝑖𝑗
𝛿 = (𝐸 (

𝐶𝑖𝑗
𝛿

𝐶
𝑖𝑗
𝛿0

− 1) + 1) ∗ 𝐷𝑖𝑗
𝛿0       (2) 

 

With: 

𝐷𝑖𝑗
𝛿  Demand on OD pair 𝑖, 𝑗 in scenario 𝛿 

𝐸 Elasticity 

𝐶𝑖𝑗
𝛿  Generalized costs in scenario 𝛿 

𝐶𝑖𝑗
𝛿0 Generalized costs in base scenario 𝛿0 

𝐷𝑖𝑗
𝛿0 Demand on OD pair 𝑖, 𝑗 in base scenario 𝛿0 

 

We can thus conclude that there is already a calibrated parameter set which is used to predict 

public transport ridership for undisturbed situations. In this study, we specifically investigate to what extent 

this parameter set needs to be adjusted to perform accurate passenger predictions in case of planned 

disturbances. 

 

2.3 Evaluation framework 

An evaluation framework is developed to evaluate the accuracy of different parameter sets for ridership 

predictions in case of (planned) disturbances. First, the subset 𝐿𝑎 ∈ 𝐿 is determined, where 𝐿𝑎 contains all 

public transport lines which are directly or indirectly affected by a certain disturbance 𝛿. Public transport 

lines of which the route, mode and/or frequency is adjusted due to a disturbance, are considered directly 

affected lines. Public transport lines parallel to the directly affected lines, which can function as alternative 

for passengers to reach their destination, are considered indirectly affected lines. Although route and 

frequency of these lines are not changed, the number of passengers and passenger-kilometers travelled over 
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these lines can be affected due to the directly disturbed public transport lines. For all lines 𝑙 ∈ 𝐿𝑎 we 

consider the impact of a disturbance for the different distinguished time periods 𝑡. Since we do not estimate 

different parameter sets for different time periods, it is important to explicitly evaluate and compare the 

prediction accuracy of different parameter sets over the different time periods in order to develop a robust 

parameter set.  

 We used two indicators to express the impact of a disturbance: the relative impact of a disturbance 

on the number of passengers 𝑃 and on the number of passenger-kilometers 𝑃𝐾. This means we consider the 

relative increase or decrease in 𝑃 and 𝑃𝐾 for all affected public transport lines in all distinguished time 

periods during a specific disturbance 𝛿 , compared to the undisturbed base scenario  𝛿0 . For each 

disturbance, this leads to a total number of |𝐿𝑎| ∗ |𝑇| ∗ 2 elements for which the empirical and predicted 

relative effect of a disturbance are compared. Equations (3) and (4) formalize the calculation of the relative 

impact of a disturbance on the number of passengers 𝑃 and passenger-kilometers 𝑃𝐾, respectively.  

 

∆𝑃 = (
𝑃𝛿,𝑙𝑡−𝑃𝛿0,𝑙𝑡)

𝑃𝛿0,𝑙𝑡
) ∗ 100            ∀ 𝑙 ∈ 𝐿𝑎   ∀ 𝑡      (3) 

 

∆𝑃𝐾 = (
𝑃𝐾𝛿,𝑙𝑡−𝑃𝐾𝛿0,𝑙𝑡)

𝑃𝐾𝛿0,𝑙𝑡
) ∗ 100     ∀ 𝑙 ∈ 𝐿𝑎   ∀ 𝑡      (4) 

 

With: 

𝑃𝛿,𝑙𝑡  Number of passengers in disturbed scenario 𝛿 

𝑃𝛿0,𝑙𝑡  Number of passengers in undisturbed base scenario 𝛿0 

𝑃𝐾𝛿,𝑙𝑡  Number of passenger-kilometers in disturbed scenario 𝛿  

𝑃𝐾𝛿0,𝑙𝑡  Number of passenger-kilometers in undisturbed base scenario 𝛿0 

 

In this study we use the well-known 𝑅2 measure to quantify the prediction accuracy of different 

parameter sets for all |𝐿𝑎| ∗ |𝑇| ∗ 2 elements, which compares empirically derived values ∆𝑃𝑙𝑡
̃  and ∆𝑃𝐾𝑙𝑡

̃  

with predicted values ∆𝑃𝑙𝑡
̆  and ∆𝑃𝐾𝑙𝑡

̆ . The used prediction model consists of an undisturbed base 

scenario 𝛿0, of which the number of passengers and passenger-kilometers are calibrated based on imported 

smart card data corresponding to this undisturbed base network (chapter 2.2). The passenger impact of 

disturbed scenarios 𝛿 ∈ ∆ is predicted using the described elasticity approach after modelling the network 

corresponding to each scenario 𝛿. Based on the model output for 𝑃(𝐾)𝛿0
 and 𝑃(𝐾)𝛿, predicted values ∆𝑃𝑙𝑡

̆  

and ∆𝑃𝐾𝑙𝑡
̆  are calculated. The values ∆𝑃𝑙𝑡

̃  and ∆𝑃𝐾𝑙𝑡
̃  can be inferred from the AFC data. For both the 

undisturbed base scenario  𝛿0 and each disturbed scenario 𝛿 ∈ ∆, the raw smart card data is scaled for 

non-card users, thereby applying the same scaling factor as applied in the prediction model. Since the 

period of the year which is used to infer 𝑃𝛿0
 and 𝑃𝐾𝛿0

differs from the period which is used to infer 𝑃𝛿  and 

𝑃𝐾𝛿, a correction for possible ridership variation which cannot be attributed to the adjusted public transport 

network needs to be applied. There can by systematic differences in travel patterns between the days used 

for 𝛿0 and 𝛿, for example due to holiday periods. Also seasonal differences can occur (e.g. different public 

transport ridership in January compared to June), as well as daily differences due to weather (rain or sunny 

weather), day of the week and random fluctuations. To prevent a biased comparison between ∆𝑃(𝐾)𝑙𝑡
̆  and 

∆𝑃(𝐾)𝑙𝑡
̃ , we made sure that the generic travel patterns are similar for 𝛿0 and 𝛿. This means that if 𝛿 occurs 

within the summer holiday, we also inferred data from the (undisturbed part of this) summer holiday for 𝛿0. 

Similarly, in case 𝛿 occurs during regular working periods,  𝛿0 is also based on days during a working 

period. We also made sure that the share of the different days of the week was similar for  𝛿0 and 𝛿 – by 

using AFC data from an equal number of Mondays, Tuesdays etc. for  𝛿0 and 𝛿 – to prevent bias due to 

differences in ridership over the different days of the week. This however does not exclude seasonal and 

daily random variation from the comparison yet. This is especially relevant, given the large number of 

disturbances occurring on the urban tram network of operators in the Netherlands. As illustration: for the 

tram network of The Hague, only 6 months out of the 36 months between July 2014 and July 2017 were 
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totally free from planned disturbances. For example, if 𝛿 lasted during the whole month of November, there 

is no other option than using AFC data from one of these undisturbed months (e.g. March) for 𝛿0. In order 

to correct for possible seasonal and random variation between these periods, we applied a correction to the 

inferred values 𝑃𝛿0
 and 𝑃𝐾𝛿0

 based on the ridership differences found on all public transport lines 𝑙 ∉ 𝐿𝑎 

between 𝛿0 and 𝛿. We calculated the average difference for 𝑃𝑡 and 𝑃𝐾𝑡 over all public transport lines which 

are not directly, nor indirectly, affected by a disturbance 𝛿, for each distinguished time period. Under the 

assumption that the seasonal and random effect for all lines 𝑙 ∈ 𝐿𝑎 is similar to the average effect found for 

all lines 𝑙 ∉ 𝐿𝑎, we corrected the originally directly inferred values 𝑃𝑙𝑡, 𝛿0
′̃  and 𝑃𝐾𝑙𝑡, 𝛿0

′̃  using equation (5). 

This allowed us to compute ∆𝑃𝑙𝑡
̃  and ∆𝑃𝐾𝑙𝑡

̃  without bias using equation (3) and equation (4), based on 

which the 𝑅2 measure could be computed using equation (6).  

 

𝑃(𝐾)𝑙𝑡, 𝛿0
= ̃ 𝑃(𝐾)𝑙𝑡, 𝛿0

̃ ′
∗ (

1

|𝐿|∉𝐿𝑎) ∑
𝑃(𝐾)𝑙𝑡∉𝐿𝑎,𝛿

̃

𝑃(𝐾)𝑙𝑡∉𝐿𝑎, 𝛿0
̃

𝐿∉𝐿𝑎

1       ∀ 𝑙 ∈ 𝐿𝑎  ∀ 𝑡   (5) 

 

𝑅2 = 1 −
∑ ∑ (∆𝑃(𝐾)𝑙𝑡−̃ ∆𝑃(𝐾)𝑙𝑡

̆ )
2𝐿∈𝐿𝑎

𝑙
𝑇
𝑡

∑ ∑ (∆𝑃(𝐾)𝑙𝑡−̃𝐿∈𝐿𝑎
𝑙

𝑇
𝑡 ∆𝑃(𝐾)̅̅ ̅̅ ̅̅ ̅̅ ̅̃ )2

      ∀ 𝑙 ∈ 𝐿𝑎   ∀ 𝑡     (6) 

 

2.4 Experimental design 

In this study four planned disturbances which occurred on the HTM network in 2015 are considered, 

denoted by the total set  ∆. Subsets ∆𝐴∈ ∆ {𝛿1, 𝛿2} and ∆𝐵∈ ∆ {𝛿3, 𝛿4}  are defined, which both contain 50% 

of the investigated disturbances for calibration and validation purposes, respectively. For the calibration 

phase, a rule-based three-step procedure is used to determine an improved parameter set which leads to a 

better fit between empirical AFC data and predicted public transport ridership during planned temporary 

disturbances.  

 

1. Selection of parameters with potentially different values during disturbances 

In order to predict public transport usage in case of planned disturbances, it is important to determine which 

parameter values could be different, compared to the values used to predict regular passenger route choice 

and ridership for undisturbed scenarios as described in chapter 2.2. In theory, values can be different for all 

6 parameters of equation (1) - 𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5, 𝑉𝑜𝑇 – and the elasticity parameter 𝐸 of equation (2). In a 

first step narrowing down the solution space, we determine which parameters can have potentially different 

values during disturbances based on theory. It is confirmed using a sensitivity analysis that parameters 

excluded from the solution space based on theory, indeed do not or hardly affect prediction accuracy.  

 First, the value of the elasticity parameter 𝐸𝛿  in case of disturbances is of relevance. As 

mentioned in chapter 1, passengers react differently to temporary network changes compared to structural 

network changes. On the one hand, passengers might accept a longer travel time for a certain amount of 

time (indicating a less negative value of 𝐸𝛿). On the other hand, passengers might decide to change their 

mode choice or destination choice, or to postpone their trip in case of temporary track closures, until regular 

operations are restored (indicating a more negative value of 𝐸𝛿). Second, the modelling of rail-replacement 

services is of relevance. Let 𝐿𝑅 ∈ 𝐿 be the subset of rail-replacing bus services. In many cases, operators 

will supply rail-replacing bus services in case of track closures. These rail-replacing services differ from 

regular bus lines in several ways. For example, the existence, route and stop locations of such services are 

often less well known by passengers. Given the temporary existence of these lines, passengers are less 

familiar with aspects as departure time, travel time and reliability. When these busses replace rail services, 

these services have to use temporary stop locations nearby the closed rail stop, which often have less 

visibility and equipment like dynamic arrival information or shelters. It is therefore possible that passengers 

experience waiting time for a rail-replacement services more negatively compared to waiting time for 

regular tram or bus services (indicating a higher value of parameter 𝑎3, related to waiting time 𝑊𝑇𝑇𝑅 

specific for rail-replacement services). Besides, these services transport passengers who are familiar with 

rail-bound services. From literature it is known that when a bus service is transformed into a tram line, 

travel time is perceived less negatively compared to bus travelling (Bunschoten et al. 2013). Therefore, it 
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can be hypothesized that the replacement of a tram line by busses will be perceived more negatively by 

passengers familiar with rail-bound travelling. Therefore, the value of parameter 𝑎1 related to in-vehicle 

time perception in rail-replacement busses 𝐼𝑉𝑇𝑅 might be more negative compared to regular trams or 

busses. Rail-replacement busses usually operate with higher frequencies than the original tram line, to 

compensate for the lower capacity of a bus compared to a tram. However, it is unclear to what extent 

passengers really perceive and incorporate this theoretical benefit in their route and mode choice. It is 

therefore questionable whether modelling the realized frequencies of the rail-replacement services 𝑓𝑅, or 

the original frequencies of the tram line which is being replaced 𝑓𝑇, leads to more accurate predictions.  

 The remaining parameters from Equation (1) - 𝑎2 (multiplier for walking time perception), 𝑎4 

(fixed transfer penalty), 𝑎5 (marginal travel costs) and 𝑉𝑜𝑇 (value of time) - were expected to have no or a 

limited effect on the prediction accuracy. There is no rationale to assume that the marginal travel costs or 

Value of Time differ during disturbances, since the fare system applied during disturbances for 

rail-replacement bus services is exactly equal to the fare system used for regular tram and bus lines. 

Although it could be hypothesized that the walking time or a transfer to rail-replacement bus services can be 

perceived more negatively compared to regular tram or bus lines, a first sensitivity analysis showed only a 

very limited impact on the prediction accuracy using equation (6) when varying parameter values for 𝑎2 

and 𝑎4 : increasing / decreasing parameter values of 𝑎2  and 𝑎4  with 33% for ∆𝐴∈ ∆ {𝛿1, 𝛿2}, did not 

increase/decrease the prediction accuracy with more than 3% (Figure 1). Table 1 shows the remaining 

parameter values which are included in the search procedure, together with the expected direction of the 

parameter values compared to the default parameter value used for predictions for undisturbed network 

changes.  

 

 

FIGURE 1 Results sensitivity analysis to walking time perception (left) and transfer penalty (right) 

to rail-replacement bus services 

 

TABLE 1 Parameter Selection For Systematic Grid-Search  

Parameters Values default parameter set Search direction parameter values 
Elasticity 𝐸𝛿  -1.1 More or less negative 

Waiting time 𝑊𝑇𝑇𝑅 1.5 Higher 

In-vehicle time 𝐼𝑉𝑇𝑅 1.0 Higher 

Frequency {𝑓𝑅, 𝑓𝑇) 𝑓𝑅 𝑓𝑇 

 

2. Systematic grid-search 

In the second step, a systematic grid-search is performed to scan for the best fitting parameter set(s) from 

predefined scenarios, using the four model parameters of Table 1. For all four parameters, plausible values 

are a priori determined. The calibrated parameter values used for passenger assignment for the undisturbed 

base scenario 𝛿0 are used as starting point (𝐸𝛿= -1.1, 𝑊𝑇𝑇𝑅=1.5, 𝐼𝑉𝑇𝑅=1.0, 𝑓𝑅=𝑓𝑅). These values are 

considered as reasonable starting point, since these values are calibrated and within bounds found in 
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literature (e.g. Balcombe et al. 2004). The direction in which each parameter value can change when 

predicting ridership during disturbances, compared to regular ridership predictions, is explained in the first 

part of this chapter 2.4 and shown in Table 1. The upper and lower bound values for 𝐸𝛿 , 𝑊𝑇𝑇𝑅 and 𝐼𝑉𝑇𝑅 

are selected in such way, that they remain within literature bounds on one hand, but show sufficient 

variation to explore the solution space on the other hand. The modelling of the frequency of 

rail-replacement bus services is a binary variable, which can be equal to 𝑓𝑅 or 𝑓𝑇. The second row of Table 

2 shows the resulting parameter values. All combinations between these predefined parameter values are 

systematically evaluated using the 𝑅2  measure for prediction accuracy from equation (6). Using the 

Cartesian product of the chosen plausible values, this results in 24 scenario combinations of parameter 

values (Table 2). The first row of Table 2 summarizes the four parameters which are hypothesized to have 

different values when modelling passenger behavior during disturbances specifically.  

 

TABLE 2 Experimental Design  

Parameters Elasticity 𝑬𝜹 Waiting time 𝑾𝑻𝑻𝑹 In-vehicle time 𝑰𝑽𝑻𝑹 Frequency 

Parameter values {-0.7, -1.1, -1.5} {1.5, 2.0} {1.0, 1.25} {𝒇𝑹, 𝒇𝑻) 
Scenario 1 (default) -1.1 1.5 1.0 f R 

Scenario 2 -1.1 1.5 1.0 MIN(f R; f T) 

… … … … … 

 

 Based on the results of this second step the solution space can be narrowed down further, so that a 

further in-depth search can be performed in the third step of the search procedure. In this second step we did 

not only look at the exact 𝑅2 value resulting from the 24 different scenarios, but we also investigated which 

patterns and scenarios were robust over the two evaluated disturbances ∆𝐴∈ ∆ {𝛿1, 𝛿2}. Since we aim to 

come up with one improved parameter set to predict impacts of different (types of) disturbances, it is 

important to have a robust, good performing parameter set rather than optimizing too much on these 

specific two disturbances. We determine the most promising parameter sets out of these pre-defined 

scenarios as result of this second step of the procedure.  

 

3. Specific in-depth search 

In the third step of the calibration the parameter set is further improved based on the boundaries set in the 

second step of the procedure, using a specific in-depth search procedure. In this step, parameter values are 

not bound to the predefined values and scenarios anymore. Within the boundaries set in step 2, we evaluated 

all combinations of parameter values (with a certain minimum step size applied between the candidate 

parameter values). Since all these candidate parameter sets are within bounds of the promising, robust 

parameter sets found in step 2, we investigated which parameter set resulted in the highest prediction 

accuracy measured by the 𝑅2 measure and selected this parameter set as new, preferred set. Once this 

parameter set is determined, this set is validated by applying it to the investigated disturbances 𝛿 ∈ ∆𝐵. For 

this subset ∆𝐵 it is tested whether the prediction accuracy improved compared to the default parameter set. 

Note that we did not apply a full optimization in this process of improving the parameter set. We used a 

rule-based approach to narrow down the solution space in a three-step procedure, meaning that not all 

possible combinations of parameter values are evaluated. Optimality can thus not be proved in this method.  

 

3. CASE STUDY 

The methodology as described in chapter 2 is applied in a case study. The urban public transport network of 

The Hague, the Netherlands, is used in this study. Public transport services on this network are operated by 

HTM. The network consists of 12 tram lines and 8 bus lines. No metro services are operated in the city of 

The Hague. Two of the tram lines function as light rail connection between The Hague and the nearby 

suburb of Zoetermeer. On an average working day, more than 250,000 trips are made on the HTM network. 

93% of the passengers use a smart card for travelling (HTM 2015). The remaining 7% buys a ticket from the 

driver or at the vending machine, or uses a special ticket. When modelling the HTM network, 4 different 
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time periods are distinguished in the frequency-based assignment and prediction model: morning peak 

(7am-9am), evening peak (4pm-6pm), off-peak (9am-4pm) and the evening and early morning (6pm-7am).  

   

   

   

FIGURE 2 Public transport network during planned disturbances 𝜹𝟏 ‘Koninginnegracht’ (upper 

left), 𝜹𝟐 ‘Loosduinseweg’ (upper right), 𝜹𝟑 ‘Westvest’ (lower left), 𝜹𝟒 ‘Parallelweg +Ternoot’ (lower 

right) (star: work location / orange: line rerouted / red: line shortened / blue: rail-replacement bus) 

 

In 2015 there were several track closures on the public transport network operated by HTM. Given the 

closed AFC system, in combination with relatively many case studies available, the HTM network is an 

interesting case study area to investigate the impact of planned disturbances on public transport ridership. 

As explained, in total 4 different disturbances 𝛿  which occurred in 2015 on the HTM network are 

investigated, which are divided into two subsets ∆𝐴∈ ∆ {𝛿1, 𝛿2} and ∆𝐵∈ ∆ {𝛿3, 𝛿4} used for calibration and 

validation purposes, respectively. Table 3 describes the impact of each disturbance on the public transport 

network, as well as the period of the year the AFC data is coming from for 𝛿0 and 𝛿. Figure 2 shows the 

adjusted public transport network for all four disturbances. Closure 𝛿1  ‘Koninginnegracht’ resulted in 

𝜹𝟏 𝜹𝟐 

𝜹𝟑 𝜹𝟒 
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detours for several tram lines in the city center. Besides, one of the two important connections between 

Central Station and Scheveningen (tram line 9) was replaced by bus services of line 69 (whole day) and 79 

(only peak hours). Closure 𝛿2 ‘Loosduinseweg’ resulted in the shortening of two busy tram lines 2 and 4. 

The shortened part of the route of tram line 2 was replaced by busses (line 52). Most stops of the shortened 

tram line 4 were covered by tram line 6, which route was temporarily extended over the unaffected part of 

the shortened route of tram line 4. During closure 𝛿3 ‘Westvest’, the route of tram line 1 – connecting the 

city of Den Haag with the city of Delft – was shortened. A rail-replacement bus line 71 was provided, 

although it could not stop near all original tram stops due to infrastructure constraints. Closure 𝛿4 

‘Parallelweg+Ternoot’ reflects two different disturbances which occurred simultaneously on the network. 

The Parallelweg closure affected the route of tram lines 9, 11 and 12 through an area with a relatively high 

public transport dependency. Lines 11 and 12 – which share the route through this area – were shortened, 

whereas tram line 9 was rerouted. The closed track of line 9 was replaced by temporary bus line 58, whereas 

bus line 82 replaced the closed part of the route of tram lines 11 and 12. The closure Ternoot resulted in the 

cutting of both light rail services 3 and 4 in two separate parts. Passengers could walk between the 

short-turning terminals of both parts of these lines. 

It can be concluded that the set of disturbances ∆ can roughly be divided in closures in which tram 

lines are rerouted (𝛿1 , 𝛿4), closures in which tram lines are shortened and replaced by bus services 

(𝛿1, 𝛿2, 𝛿3, 𝛿4), and closures in which tram lines are divided in two separate parts (𝛿4). To investigate and 

test that the selected parameter set is robust to perform accurate predictions for different types of closures, 

we aimed to have a mixture of different types of closures in both the subset used for calibration ∆𝐴∈
∆ {𝛿1, 𝛿2}, as well as in the subset used for validation ∆𝐵∈ ∆ {𝛿3, 𝛿4}. 

For the reference network 𝛿0 used for closures 𝛿1 and 𝛿3, as well as for disturbed network 𝛿1, 20 

working days of smart card data is used in this study. Given the ≈250.000 journeys (≈300.000 AFC 

transactions)  at the HTM network per average working day, this roughly means that about 6 million smart 

card transactions are used as basis for these analyses. For the shorter lasting disturbances 𝛿2, 𝛿3, 𝛿4 and the 

reference network 𝛿0 used for closures 𝛿2 and 𝛿4, within the summer holiday, about 1.5 million smart card 

transactions (5 working days) are used (Table 3). All raw transactions are anonymized by removing 

personal information and by aggregating the data, to guarantee confidentiality and to obey Dutch privacy 

regulations. 

 

TABLE 3 Overview Of Network Changes During Planned Disturbances In 2015 

Disturbance 𝜹 Period 𝜹 
(# days) 

Period 𝛿0 
(# days) 

Directly affected lines 𝒍 ∈ 𝑳𝒂 Rail-replacement 

line (replaced tram) 

𝛿1 Closure 

‘Koninginnegracht’ 

November 

(20) 

March 

(20) 

Tram 1/15/16/17: rerouted 

Tram 9: shortened + bus-replacement 

 

Bus lines 69+79  (9) 

𝛿2 Closure 

‘Loosduinseweg’ 

August 

(5) 

August 

(5) 

Tram 2: shortened + bus-replacement 

Tram 4: shortened 

Tram 6: extended (to replace tram 4) 

Bus line 52 (2) 

𝛿3 Closure 

‘Westvest’ 

October 

(5) 

March 

(20) 

Tram 1: shortened + bus-replacement Bus line 71 (1) 

 

𝛿4 Closure 

‘Parallelweg+Ternoot’ 

July 

(5) 

August 

(5) 

Tram 3/4: cut into two separate parts 

Tram 9: rerouted + bus-replacement 

Tram 11/12: shortened + bus-replacement 

 

Bus line 58 (9) 

Bus line 82 (11+12) 

 

4. RESULTS 

 

4.1 Results rule-based search procedure 

After the first selection of parameters with potentially different values during disturbances (step 1 of the 

three-step search procedure as described in chapter 2.4), this chapter presents results of the second step 

(systematic grid-search) and the third step (specific in-depth search) of the method. Table 4 and Figure 3 

show the resulting prediction accuracy for the two disturbances 𝛿1 and 𝛿2 used for calibration for all 24 
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predefined scenarios (as explained in chapter 2.4 and Table 2). In this step we specifically search for 

patterns and robust parameter values. Based on Table 4 and Figure 3, we conclude the  following: 

 Regardless the value of 𝐸𝛿  and the modelled frequency 𝑓, scenarios with 𝑊𝑇𝑇𝑅 = 1.5 and 𝐼𝑉𝑇𝑅 = 

1.0 are outperformed by the other scenarios. From the resulting prediction accuracy for 𝛿1 we see 

that scenario 1+2, 9+10 and 17+18 clearly have a lower 𝑅2 than scenarios 3-8, 11-16 and 19-24 

respectively with the same value for 𝐸𝛿 . This indicates that this combination of values for waiting 

time and in-vehicle time does not put sufficient perceived disutility on usage of rail-replacement 

busses. This means that scenarios 1, 2, 9, 10, 17 and 18 are removed from the candidate list. 

 Scenarios with 𝐸𝛿  = -1.5 are outperformed by scenarios using 𝐸𝛿  = -1.1 or 𝐸𝛿  = -0.7. From the 

resulting prediction accuracy for 𝛿1 we can see that for each given combination of 𝑊𝑇𝑇𝑅, 𝐼𝑉𝑇𝑅 

and 𝑓, scenarios 19-24 have a lower 𝑅2 than their corresponding scenarios 3-8 and 11-16 with a 

different value for 𝐸𝛿 . This indicates that ridership loss due to temporal planned disturbances in 

general is not larger compared to the assumed ridership loss for structural network changes. This 

means that scenarios 19, 20, 21, 22, 23 and 24 are removed from the candidate list.  

 Scenarios in which the realized frequency of rail-replacement busses 𝑓𝑅  is modelled are 

outperformed by scenarios in which the frequency of the original tram lines which is being replaced 

𝑓𝑇 is modelled. From the resulting prediction accuracy for 𝛿2 we can see that for each given 

combination of 𝐸𝛿 , 𝑊𝑇𝑇𝑅 and 𝐼𝑉𝑇𝑅 the scenarios 4, 6, 8, 12, 14, 16 using 𝑓𝑇 clearly outperform 

their corresponding scenario 3, 5, 7, 11, 13, 15 respectively using 𝑓𝑅. This indicates that using the 

frequency of the original tram line is a better ridership predictor than using the realized frequency 

of rail-replacement busses, and that scenarios 3, 5, 7, 11, 13 and 15 are removed from the candidate 

list.  

 For the remaining scenarios 4, 6, 8, 12, 14 and 16, the prediction accuracy is ranked separately for 

the prediction performance for 𝛿1 and 𝛿2. Scenarios 4 and 6 perform very well for 𝛿2, but perform 

mediocre for 𝛿1. Scenario 8 performs medium-high for both 𝛿1 and 𝛿2. Scenarios 12, 14 and 16 

perform medium-high to high for 𝛿2, and perform medium-high to very high for 𝛿1. Since our aim 

is to use a robust parameter set, scenarios 12, 14 and 16 are used as result from this second step of 

the search procedure, to apply the specific in-depth search to in the third step of the method. 
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FIGURE 3 Results prediction accuracy systematic grid-search procedure 

 

 

TABLE 4 Overview Of Prediction Accuracy For All 24 Scenarios 

Parameters Elasticity  

𝑬𝜹 

Waiting time 

 𝑾𝑻𝑻𝑹 

In-vehicle time 

 𝑰𝑽𝑻𝑹 

Frequency 𝑹𝟐 

𝜹𝟏 

𝑹𝟐 

𝜹𝟐 

𝑹𝟐 

average 

Parameter values {-0.7, -1.1, -1.5} {1.5, 2.0} {1.0, 1.25} {𝒇𝑹, 𝒇𝑻)    
Scenario 1.1 (default) -1.1 1.5 1.0 f R 0.73 0.83 0.78 

Scenario 1.2 -1.1 1.5 1.0 MIN(f R; f T) 0.74 0.89 0.81 

Scenario 1.3 -1.1 1.5 1.25 f R 0.77 0.86 0.81 

Scenario 1.4 -1.1 1.5 1.25 MIN(f R; f T) 0.76 0.88 0.82 

Scenario 1.5 -1.1 2.0 1.0 f R 0.76 0.85 0.80 

Scenario 1.6 -1.1 2.0 1.0 MIN(f R; f T) 0.76 0.88 0.82 

Scenario 1.7 -1.1 2.0 1.25 f R 0.78 0.86 0.82 

Scenario 1.8 -1.1 2.0 1.25 MIN(f R; f T) 0.77 0.87 0.82 

Scenario 1.9 -0.7 1.5 1.0 f R 0.73 0.80 0.77 

Scenario 1.10 -0.7 1.5 1.0 MIN(f R; f T) 0.74 0.86 0.80 

Scenario 1.11 -0.7 1.5 1.25 f R 0.78 0.84 0.81 

Scenario 1.12 -0.7 1.5 1.25 MIN(f R; f T) 0.77 0.88 0.82 

Scenario 1.13 -0.7 2.0 1.0 f R 0.76 0.82 0.79 

Scenario 1.14 -0.7 2.0 1.0 MIN(f R; f T) 0.76 0.87 0.82 

Scenario 1.15 -0.7 2.0 1.25 f R 0.79 0.85 0.82 

Scenario 1.16 -0.7 2.0 1.25 MIN(f R; f T) 0.78 0.88 0.83 

Scenario 1.17 -1.5 1.5 1.0 f R 0.72 0.84 0.78 

Scenario 1.18 -1.5 1.5 1.0 MIN(f R; f T) 0.72 0.88 0.80 

Scenario 1.19 -1.5 1.5 1.25 f R 0.74 0.85 0.79 

Scenario 1.20 -1.5 1.5 1.25 MIN(f R; f T) 0.73 0.85 0.79 

Scenario 1.21 -1.5 2.0 1.0 f R 0.74 0.85 0.79 

Scenario 1.22 -1.5 2.0 1.0 MIN(f R; f T) 0.73 0.86 0.79 

Scenario 1.23 -1.5 2.0 1.25 f R 0.75 0.84 0.79 

Scenario 1.24 -1.5 2.0 1.25 MIN(f R; f T) 0.74 0.82 0.78 

 

Scenarios 12, 14 and 16 have the same value for 𝐸𝛿  (-0.7) and for 𝑓 (𝑓𝑇). This means we fix these two 

parameter values. These scenarios differ in the parameter values used for 𝑊𝑇𝑇𝑅 and 𝐼𝑉𝑇𝑅, which range 

between 1.5-2.0 and 1.0-1.25, respectively. This means the waiting time perception for rail-replacement 

busses varies between the same value as for regular tram and bus lines, and a 33% higher value. The 

in-vehicle time perception of 1 minute in a rail-replacement bus varies between 0.8 and 1 minute in the 

original tram line. In this in-depth search we explore all different combinations of these parameter values, 

increasing parameter values with a step size of ≈10%. This leads to values for waiting time perception 
{1.5, 1.67, 1.84, 2.0} and in-vehicle time perception in the original tram line for 1 minute travelling in the 

rail-replacement bus {0.8, 0.9, 1.0}. Inversed this leads to in-vehicle time perception in the rail-replacement 

bus for 1 minute travelling with the original tram line {1.0, 1.11, 1.25}. These 3*4 combinations are 

evaluated, of which is known from step 2 that the combination of using a waiting time perception of 1.5 

with 1.0 minute in-vehicle time perception simultaneously (scenario 2.9) does not provide a good 

prediction accuracy. Table 5 shows these 12 scenarios with the resulting 𝑅2 averaged over 𝛿1 and 𝛿2. 

 From Table 5 we can conclude that the averaged prediction accuracy is highest for scenarios 2, 3, 

4 and 8. To select a final parameter set, we applied these four parameter sets to the subset of disturbances 

used for validation ∆𝐵∈ ∆ {𝛿3, 𝛿4} as well. The aim was to investigate which parameter set resulted in the 

highest prediction accuracy for ∆𝐵, in order to select the most robust parameter set. This resulted in the 

selection of scenario 8, in which 𝑊𝑇𝑇𝑅 = 2.0 and 𝐼𝑉𝑇𝑅=1.11. 

 

TABLE 5 Overview Of Prediction Accuracy For In-Depth Search 
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Parameters Elasticity 𝑬𝜹 Waiting time  𝑾𝑻𝑻𝑹 In-vehicle time  𝑰𝑽𝑻𝑹 Frequency 𝑹𝟐 average 

Parameter values {-0.7} {1.5, 1.67,1.84,2.0} {1.0, 1.11,1.25} { 𝒇𝑻)  
Scenario 2.1 -0.7 1.5 1.25 MIN(f R; f T) 0.82 

Parameters Elasticity 𝑬𝜹 Waiting time  𝑾𝑻𝑻𝑹 In-vehicle time  𝑰𝑽𝑻𝑹 Frequency 𝑹𝟐 average 
Scenario 2.2 -0.7 1.67 1.25 MIN(f R; f T) 0.83 

Scenario 2.3 -0.7 1.84 1.25 MIN(f R; f T) 0.83 

Scenario 2.4 -0.7 2.0 1.25 MIN(f R; f T) 0.83 

Scenario 2.5 -0.7 1.5 1.11 MIN(f R; f T) 0.81 

Scenario 2.6 -0.7 1.67 1.11 MIN(f R; f T) 0.82 

Scenario 2.7 -0.7 1.84 1.11 MIN(f R; f T) 0.82 

Scenario 2.8 -0.7 2.0 1.11 MIN(f R; f T) 0.83 

Scenario 2.9 -0.7 1.5 1.0 MIN(f R; f T) 0.80 

Scenario 2.10 -0.7 1.67 1.0 MIN(f R; f T) 0.81 

Scenario 2.11 -0.7 1.84 1.0 MIN(f R; f T) 0.81 

Scenario 2.12 -0.7 2.0 1.0 MIN(f R; f T) 0.82 

 

4.2 Resulting parameter set  

Table 6 shows the values for the proposed new parameter set, compared to the parameter values of the 

default set. In case of planned disturbances, an elasticity parameter value 𝐸𝛿  of -0.7 resulted in the best fit 

with the raw smart card data. The hypothesis that passengers might perceive waiting time for a 

rail-replacement service more negatively compared to waiting time for regular tram and bus services was 

confirmed, since applying a higher waiting time coefficient did improve the prediction accuracy. Therefore, 

the use of a specific waiting time coefficient of 2.0 for rail-replacement services is proposed. Also, applying 

a more negative in-vehicle time perception in bus services replacing an existing tram line did improve the 

prediction accuracy. In the used prediction model in this study, this is reflected by applying a certain 

multiplication factor for the operational speed of a rail-replacement service. Using a speed factor of 0.9 – 

which equals the inverse in-vehicle time coefficient of 1.11 – resulted in the best fit with the raw smart card 

data. The value for the in-vehicle time coefficient derived from realization data is somewhat lower than the 

speed factor found in Bunschoten et al. (2013) using a stated preference experiment, but points towards the 

same direction. Regarding the frequency of rail-replacement services, study results indicate that modelling 

the frequency of the original tram line 𝑓𝑇 leads to a better fit than using 𝑓𝑅, if 𝑓𝑅 > 𝑓𝑇. This indicates that 

passengers do not incorporate the benefit of the higher frequency of the rail-replacement services compared 

to the original tram line in their route and mode choice. From a theoretical perspective, this can be explained 

because vehicle capacity is not incorporated in the prediction model used in this study. The higher 

frequency 𝑓𝑅 compared to 𝑓𝑇 is often due to the lower capacity of a bus compared to a tram vehicle. Since 

the negative effect of a lower bus capacity is not incorporated in the model, only incorporating the positive 

effect of a higher bus frequency aimed to compensate for this non-incorporated capacity effect would 

overestimate the level of service of the rail-replacement bus service. In case 𝑓𝑅 < 𝑓𝑇 , one could apply 

𝑓𝑅 in the prediction model. In this case it would even underestimate the negative effect of the bus 

replacement service, since only the additional waiting time (and not the lower vehicle capacity) is 

incorporated in the ridership prediction. Therefore it is proposed to use the minimum of 𝑓𝑅 and 𝑓𝑇 as 

frequency of rail-replacement bus services in ridership predictions, when vehicle capacity is not 

incorporated in the used model. 

 

TABLE 6 Comparison Between Default And New Proposed Parameter Set  

Parameter Default parameter values New parameter values 

Elasticity 𝐸𝛿  -1.1 -0.7 

Waiting time coefficient 𝑎3 for 𝑊𝑇𝑇𝑅 1.5 2.0 

In-vehicle time coefficient 𝑎1 for 𝐼𝑉𝑇𝑅 1.0 1.11 

Frequency 𝑓𝑅 𝑓𝑅 MIN(𝑓𝑅; 𝑓𝑇) 
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Figure 4 (left) and Figure 4 (right) show for all four disturbances investigated in this study the effect of the 

default and new proposed parameter set on the predicted ridership reduction and on the average generalized 

travel costs per passenger, respectively. It can be seen that for all disturbances the new parameter set 

predicts a lower reduction in public transport ridership compared to the default parameter set. For 𝛿2 this 

effect is limited. However, for 𝛿1, 𝛿3, 𝛿4 the predicted ridership is 20-25% lower compared to the default 

parameter set. This can mainly be explained by the less negative elasticity value 𝐸𝛿  (-0.7 instead of -1.1). 

From Figure 4 (right) it can also be concluded that the average generalized travel costs decrease for 

𝛿1, 𝛿3, 𝛿4  with 5-20% when applying the new parameter set, while these increase with 20% for 𝛿2 

compared to the default parameter set. In the new parameter set, the use of rail-replacement bus services 

results in more perceived disutility compared to the default set, due to the use of a higher value for 𝑊𝑇𝑇𝑅, 

𝐼𝑉𝑇𝑅 and the longer average waiting time due to using MIN(𝑓𝑅; 𝑓𝑇) instead of 𝑓𝑅. This would apply an 

increase in average generalized costs. However, the lower value for 𝐸𝛿  leads to a substantial lower 

predicted ridership reduction for 𝛿1, 𝛿3, 𝛿4, of which the net effect is a decrease in average generalized 

costs. Since the predicted ridership reduction in the new parameter set hardly decreases for 𝛿2, for this 

disturbance this effect does not fully compensate the increased generalized costs, therefore leading to a net 

increase in average generalized costs. 

 Figure 5 shows that the new parameter set results in an increased predicted accuracy for all four 

disturbances considered in this study. This shows that the new proposed parameter set is robust to better 

predict ridership effects of several (types of) planned disturbances. The relative improvement in prediction 

accuracy ranges between 3 and 13%. In the calculation of the 𝑅2, for 𝛿1, 𝛿2, 𝛿4  in total |𝐿𝑎| ∗ |𝑇| ∗ 2 

elements are computed. However, for 𝛿3 only |𝐿𝑎| ∗ 2 elements are used for the 𝑅2 computation. This is 

because 𝛿3 occurred during the full duration of the Autumn holiday. During this holiday, travel patterns 

differ from travel patterns during regular working days or during Summer holiday, especially regarding the 

distribution over the day. Since there is no period of the year for which 𝛿0 occurred with a similar travel 

pattern, the effects per time period cannot be compared between 𝛿0 and 𝛿3. Therefore, we only compared 

these scenarios aggregated over all time periods per working day per line 𝑙 ∈ 𝐿𝑎.  

  

 

FIGURE 4 Effect of new parameter set on predicted ridership reduction (left) and on the average 

generalized travel costs per passenger (right) 
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FIGURE 5 Absolute (left) and relative (right) effect of new parameter set on prediction accuracy 

 

FIGURE 6 Resulting prediction accuracy for all |𝑳𝒂| ∗ |𝑻| ∗ 𝟐 elements clustered per disturbance 

(left) and per time period (right) 

 

Figure 6 shows the differences between the predicted and empirical relative effect of disturbances on public 

transport ridership for all elements, clustered per disturbance (left) and per time period (right). A positive 

value indicates that the predicted relative effect is less negative / more positive compared to the empirical 

data: ridership loss is thus underestimated, whereas ridership increases are overestimated. A negative value 

indicates the opposite, meaning that ridership losses are overestimated and ridership increases are 

underestimated. As can be seen, most predictions deviate in an acceptable range of +/- 10% from the 

empirical data. For  𝛿2, 𝛿4 (disturbances both occurring during Summer holiday) it can be observed that 

predictions tend to overestimate ridership losses, whereas for 𝛿1(a disturbance occurring during working 

period on a line with a high share of commuting and business passengers) predictions tend to underestimate 

ridership losses (Figure 6 left). We can hypothesize that frequent, commuting passengers have a higher 

sensitivity for network changes than average, whereas passenger segments with a relatively high share of 

leisure / shopping trip purposes have a lower sensitivity for network changes than average. When 

considering prediction accuracy for different time periods, we see similar patterns. Most predictions in the 

different time periods do not deviate more than +/- 15% from the empirical data. For the morning peak, a 

slight tendency can be observed that predictions underestimate ridership losses, whereas for the evening 

period an opposite tendency can slightly be observed. Based on this we might hypothesize that passenger 

segments dominant during morning peak (mostly business and commuting passengers) have a relatively 

high sensitivity to network changes compared to passenger segments dominant during the evening period 

(mostly leisure passengers).  

 

4.3 Reflection 

In this study the accuracy of predicting the impact of temporary track closures on the number of passengers 

and passenger-distance is substantially improved by using the new proposed parameter set. Future research 

following this study can focus on four different aspects. First, in this study a rule-based three-step search 

procedure is applied to evaluate the prediction quality of several parameter sets. After first scanning the 
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solution space using a systematic grid-search over different combinations of parameter values, an in-depth 

search around promising parameter values is performed. In order to further optimize the parameter set, it is 

recommended to perform a full optimization evaluating all combinatorial possibilities, and/or to estimate a 

discrete choice model based on the revealed preference smart card data found for several disturbances to 

infer parameter values. This can lead to a set of parameter values which fit the empirical data in an optimal 

way and thus improving the prediction accuracy. Second, another interesting approach for future research is 

the application of machine learning approaches, training the prediction model based on passenger behavior 

during several historical disturbances which occurred on the public transport network. Prediction accuracy 

results from machine learning approaches can then be compared with our developed methodology. Third, it 

is recommended to investigate whether location-specific, and/or purpose-specific parameter values 

increase the prediction accuracy. In this study only generic and mode-specific parameter values are applied. 

Distinguishing between areas where a disturbance occurs based on socio-economic characteristics (e.g. age, 

income, percentage of public transport captives) might lead to better predictions. Also using different 

parameter values for different passenger segments based on their trip purpose, or based on different time 

periods (peak/off-peak, weekday/weekend) might improve the prediction accuracy, since sensitivities for 

different parameters might be different for these segments. Fourth, a path for future research could focus on 

the development of supply-side indicators to identify and categorize disturbances. Our study mainly 

focuses on demand predictions resulting from disturbances, without making a distinction between different 

types of disturbances. However, developing indicators to describe disturbances and categorize the type of 

disturbance can be valuable, since it allows for the development of different demand prediction parameter 

sets for different types of disturbances. This can result in a further improvement of the prediction accuracy.  

 

5. CONCLUSIONS 

The introduction of automated fare collection (AFC) systems in public transport travelling the last decades 

leads to the availability of large quantities of smart card data, which can be used to analyze current travel 

patterns and to predict the effect of structural network changes on future public transport usage. Predicting 

the impact of planned disturbances, like temporary track closures, on public transport ridership is however 

still an unexplored area. In the Netherlands, this area becomes increasingly important, given the many track 

closures public transport operators are being confronted with the last and upcoming years. Better predicting 

the impact of these disturbances gives more insights in passenger behavior during disturbances, and 

supports operators in aligning the supply of rail-replacement bus services with remaining demand and in 

predicting the impact on their revenues.  

 In this study we investigated the passenger impact of planned disturbances by comparing 

predicted and realized public transport ridership using smart card data. Four different disturbances which 

occurred in 2015 on the public transport network operated by HTM in The Hague, the Netherlands, are 

analyzed. A rule-based three-step search procedure is applied to find a parameter set resulting in higher 

prediction accuracy. The parameter set is calibrated using two of the four investigated disturbances, 

whereas the remaining two disturbances are used to validate the model.  

Based on the study results we found a more negative in-vehicle time perception in rail-replacing 

bus services compared to in-vehicle time perception in the initial tram line. One minute tram travelling 

shows to be perceived as about 1.11 minute travelling in a rail-replacement bus service. Besides, when 

modelling rail-replacement services, it is recommended to use the frequency of the initial tram line instead 

of the usually higher frequency of the rail-replacement services. Passengers do not seem to perceive this 

theoretical benefit of higher frequencies of the rail-replacement bus, since this compensates for the lower 

vehicle capacity of a bus compared to a tram. If vehicle capacity is not incorporated in the prediction model, 

only incorporating the positive effect of a higher bus frequency aimed to compensate for this 

non-incorporated capacity effect would overestimate the level of service of the rail-replacement bus 

service. At last, also a 1.3 times higher waiting time perception for temporary rail-replacement services 

could be found, compared to waiting time perception for regular tram and bus lines. The new parameter set 

leads up to 13% higher prediction accuracy compared to the default parameter set, and shows to be a robust 

and valuable tool for public transport operators. The prediction model is used by HTM in practice, in which 
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the parameter set as recommended in this study is applied. Monitoring and further improving the prediction 

accuracy of the model will remain an important focus in the future.  
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