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Divide and Count: Generic Object Counting by
Image Divisions

Tobias Stahl, Silvia L. Pintea and Jan C. van Gemert

Abstract—We propose a general object counting method that
does not use any prior category information. We learn from
local image divisions to predict global image-level counts without
using any form of local annotations. Our method separates the
input image into a sets of image divisions — each fully covering
the image. Each image division is composed of a set of region
proposals or uniform grid cells. Our approach learns in an end-
to-end deep learning architecture to predict global image-level
counts from local image divisions. The method incorporates a
counting layer which predicts object counts in the complete
image, by enforcing consistency in counts when dealing with
overlapping image regions. Our counting layer is based on the
inclusion-exclusion principle from set theory. We analyze the
individual building blocks of our proposed approach on Pascal-
VOC2007 and evaluate our method on the MS-COCO large scale
generic object dataset as well as on three class-specific counting
datasets: UCSD pedestrian dataset, and CARPK and PUCPR+
car datasets.

Index Terms—Generic-class object counting, inclusion-
exclusion principle, regression, fully convolutional networks,
counting with region proposals.

I. INTRODUCTION

Counting objects in images is essential for environmental
fauna monitoring, traffic control, and crowd management.
Such application have inspired successful methods tied to
specific objects such as cells [20], [47], [48], animals [1], [46],
cars [30], [41], and people [24], [31], [32], [49], [50]. Instead
of developing an object specific method, we propose an end-
to-end deep learning method for generic object counting.

Generic object counting is a difficult problem. A recent in-
depth analysis of visual question answering systems [19] con-
cluded that “CNN features contain little information relevant to
counting”. The hardness of the problem perhaps motivates why
state-of-the-art counting methods include extra annotations on
top of the total object count. There are, for example, object
counting methods that intelligently make use of ground-truth
region annotations [6], [44]. Yet, manually annotating regions
on a large dataset is quite time-consuming [11], [26] and
other works aim to reduce the supervision effort to point
annotations only [1], [14], [23], [30]. In this paper we reduce
the supervision effort even further. We keep the supervision
level in accordance with the task: our method only requires
the total number of objects in an image to be annotated.

We argue that grouping is key for object counting. Con-
sider Figure 1, where we show an image with three persons
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Count three persons. CNN activations [51].
Fig. 1. Grouping is key for object counting. Faces are unique and should not
be grouped together. On the other hand, the face, hands, and feet of the person
on the right belong to the same person, and should be grouped together. In
this paper we group locally and integrate the local group counts to a global
image-level count.

and the strongest CNN feature responses [51]. We make the
following observations: a) In Figure 1, a face is unique for a
person and multiple faces should be kept apart. Thus, multiple
objects in the same image can have similar looking parts. To
prevent under-counting they should not be grouped together.
b) Consider the face, the hands, and the feet of the person on
the right; these parts should be grouped to a single person.
Thus, in the extent of a single object there can be multiple
distinctive part. To prevent over-counting these parts should
be grouped together. c) If the persons move, the number of
persons will stay the same. Thus, object counting does not care
for object location and local object counts can be integrated
over the full image. We draw inspiration from the local groups
from object detection to a) keep single objects disjoint from
other objects; b) group single objects together; c) to ignore
the relative object location, we take note of the global image
grouping from image classification.

In CNNs grouping is done by pooling. We borrow local
pooling from object detection, where object proposals are
commonly used [22], [35], [42], [52]. Object proposals strive
towards finding bounding boxes that contain objects. Thus,
they allow us to distinguish between different object instances,
while grouping parts of a single object. From image classifi-
cation we borrow global pooling, where integrating over all
counts of each proposal bounding box sums to the global
image-level count if the counts for overlapping regions are
carefully incorporated. In this paper we learn to predict object
counts by a new deep network layer that correctly pools
overlapping regions, as illustrated in Figure 2.

To summarize the contributions of this work: (i) we pro-
pose a general object counting approach, where we make no
assumption about the object class; (ii) we learn from local
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Fig. 2. Our method counts locally, and pools overlapping regions
globally. This image shows a possible local grouping of the image
using object proposals. Each bounding box has an associated pre-
dicted object count. The final object count for this image division
is obtained by pooling all the counts of the bounding boxes, and
subtracting or adding the counts of the overlapping bounding boxes.
This pooled image-level count is optimized to match the global count
annotation.

object proposals without the need of local image grouping
annotations such as bounding boxes or point clicks; (iii) to this
end, we incorporate a new global counting layer to enforce
consistency between overlapping bounding box counts; (iv)
and we empirically validate our model choices, as well as
evaluate our proposed method on two generic object datasets:
Pascal-VOC2007 and MS-COCO generic, and three class-
specific datasets: UCSD, CARPK and PUCPR+.

II. RELATED WORK

A. Counting Specific Objects

People counting. A popular application is counting people.
Person-specific clues are helpful and avidly used for example
with a person detector [7], [28], human head and shoulders
detection [24], camera information [28], [37] or foreground/
background segmentation [21], [24]. Other approaches use the
video motion information to aid with person segmentation
[2], [4], [5], [32]. In [18] a dataset for people in extremely
crowded scenarios is proposed. Yet other works integrate the
most recent convolutional neural network architectures to-
wards counting people [38], [45], [50]. Unlike these methods,
we aim for a category-independent counting approach and
we, therefore, do not make use of person-specific clues and
evaluate our proposed approach on generic object datasets.

Cell counting. The task of counting cells has also received
due attention because of its utility in biology. Given the large
cardinality of cells, most approaches rely on dot annotations
in solving this task [14], [45], [47], [48]. Dissimilar to these
works, we do not focus only on object categories with large
cardinality, such as cells, but rather on a range of commonly
encountered objects.

Other categories. Other object categories have also been
considered in the context of counting, due to their social or
economical impact, such as vehicle counting [15], [27], [30],
[41] or animal counting [1], [43], [46]. In this work, we do
not focus on any individual object category, but rather, aim at
proposing a category independent counting approach.

B. Counting Generic Category Objects

Few classes. Methods focusing on generic object counting, are
less common than the ones focusing on a specific interesting
category. Successful recent counting methods such [23], [30],
[44] argue for the generality of the proposed models, however
the evaluation is performed on two to three category-specific
datasets such as pedestrians datasets, cells or vehicles datasets.
Unlike these methods, we also aim to count generic objects,
and we evaluate our proposed model on significantly more
categories: 20 classes for the Pascal-VOC2007 dataset and 80
for the MS-COCO dataset.

Many classes. A few prior works have considered the task
of generic object counting and evaluated it across a variety of
object categories. In [34] a deep neural network approach with
recurrent attention is proposed, using segmentation annotations
and evaluates the method on a leaf datasets, a car dataset, as
well as two categories in MS-COCO: person and zebra. Unlike
this method, we use no local supervision and evaluate on a
considerably larger variety of object categories. Similar to us,
in [6], [39] generic object datasets are used towards evaluating
the counting performance. Both methods, however, rely on on
bounding box annotation. Dissimilar to them, in this work
we propose to learn generic object counts only from image
supervision and without any additional local supervision.

C. Annotation Effort

Bounding box annotations. In terms of annotations needed,
a rather involved level of supervision is based on bounding-
box annotations. Methods such as [2], [4]–[7], [39] have
considered the use of object bounding boxes for improving
the counting performance. In [44] the authors propose using
annotated image region counts, rather than global image-
level counts for a better performance. This validates that
indeed, local information is useful. The downside of such
approaches is that obtaining bounding box annotations for
highly overlapping objects is difficult. Dissimilar to these
works, here we choose to not employ any local supervision.

Dot annotations. Dot annotations involve marking a click
location for each object present in an image. This annotation
level is preferred in state-of-the-art counting methods as it
allows for naturally emerged models based on density esti-
mation [1], [30], [45]. Such an annotation level is suitable
for object categories involving numerous instances that may
occlude each other, as is the case for cells [14], [23], [45],
[47], [48] or vehicles [15], [27], [30] or people [8], [14], [23],
[30], [31], [49]. Unlike these methods, we wish to avoid the
extra annotation effort involved in obtaining dot annotations,
therefore, we propose a method based only on global image-
level counts.

Image count annotations. The least expensive annotation
level is global image-level counts. Methods replying on global
image-level counts tend to be focused on categories involving
a large number of objects, such as people counting [21], [28],
[32], [37], [38], cell counting [20], [44] or animal counting
[43], [46] and rely either on prior object detections [28],
[43], [46] or on full image features [20], [38]. Unlike these
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methods, in our proposed approach we focus on counting
generic objects. Moreover, rather than using global image
features, we use local image regions to predict global image-
level counts. Thus, we use only global image-level counts and
still rely on local information.

III. GENERIC COUNTING BY IMAGE DIVISION

In Figure 3 we show our proposed approach. Given an
input image, we separate the image into a set of possible
image divisions. We group these divisions in a hierarchy of
image divisions, D, with depth L where the granularity of the
image regions increases with the hierarchy depth. Each such
division, Dl, fully covers the image. Each region, ri, in each
image division is input to a fully convolutional architecture
where the feature maps are pooled over the current region to
obtain region features, xi. The region features are fed into
a per-image division fully connected layer, called IEP which
combines the region features per image division. The output
of the IEP is averaged over all mage divisions. An L1 loss is
computed with respect to full image-level counts for all object
classes, C.

A. Underlying Architecture

We use as underlying architecture the region-based fully
convolutional network described in [25]. We cut the network
after the region pooling layer and here we add our IEP
layer followed by the L1 loss. We additionally change the
architecture to be able to input a hierarchy of image divisions
rather than a flat structure.

B. Locality from Image Divisions

We consider two possible approaches for adding locality
information: (a) using a uniform grid over the image, and (b)
using a hierarchy of image divisions from unsupervised object
proposal regions.

(a) Uniform grid over the image. We define the image
regions by separating the image into a grid of k × k equally-
sized non-overlapping regions. These regions are pooled inde-
pendently in the region pooling layer, following the approach
described in [25]. For this case no hierarchy of image divisions
is input, but rather the image is pooled separately per grid
cell. In this case we only have 1 image division, therefore
L = 1. We additionally also consider the case in which we
have a hierarchical grid, where the number of cells in the grid
increases with the hierarchy depth.

(b) Hierarchy of image divisions. The second approach
towards adding locality, builds a hierarchy of image divisions,
D, as depicted in Figure 3. In this case our image regions
represent object proposals. These proposals have different
granularity levels therefore we utilize this by building a
hierarchy of image divisions with increasing granularity levels,
L. We start from the unsupervised object proposal method of
[42] as it has an innate hierarchical structure, however, other
object proposal methods can be used.

Our hierarchy of image divisions is built in a straight-
forward fashion based on 2 constraints: (i) each image division

should fully cover the image, and (ii) the regions in one image
division, Dl, can overlap without being fully included in other
regions. The first constraint allows us to use only global count
annotations, while the second constraint allows us to separate
the image divisions with respect to the level of granularity of
the regions. We start the hierarchy construction by adding the
full image as our depth-1 image division. We subsequently
order all the object proposal regions in descending order
of their size. We keep adding regions to the current image
division, Dl, until there is no region that can be added such
that it is not fully included in another region of the current
image division. We stop building the hierarchy when the
available regions do not fully cover the image anymore. Each
hierarchical division of an image can have variable depth, L,
and variable number of regions per image division, Dl.

Added value of locality. Using image divisions allows us
to add local image information into the counting optimization
while still relying on global image-level counts as annotations.
The set of regions in each image division is disjoint from the
other image divisions. Each image division can be optimized
independently, as the object counts in an image division match
the global object counts.

C. Inclusion-Exclusion Layer

Inclusion-Exclusion Principle. We propose a generic count-
ing method that is not dependent on the region proposal
method. In our architecture, we add a per-image division fully
connected layer which combines the region features in one im-
age division, Dl. We consider multiple such image divisions.
This layer is based on the inclusion-exclusion principle [40] —
used when estimating counts over possibly overlapping sets.
In our case we may have overlapping image regions in a given
image division, as described in Section III-B.(b), and depicted
in Figure 3. The underlying idea is that we can estimate the
overall object counts in a given image division by adding the
counts of all regions in that division, and then subtracting or
adding the counts of the overlapping subregions.

Our IEP layer is based on the inclusion-exclusion principle
from set theory [40]. Figure 4 depicts an example of a
fixed image division, D = {r1, r2, r3} composed of three
overlapping image regions: r1, r2 and r3. For this example we
can formalize the inclusion-exclusion principle for counting
objects as:

IEP(Count(·),D = {r1, r2, r3}) =

(Count(r1) + Count(r2) + Count(r3))−
(Count(r1 ∩ r2) + Count(r1 ∩ r3) + Count(r2 ∩ r3)) +

Count(r1 ∩ r2 ∩ r3). (1)

The function Count(·) denotes the object count over an im-
age region demarcated by either a single bounding box or
an intersection of bounding boxes. For an image division
Dl = {ri}i∈{1,..Nl} composed of Nl region proposals ri, the
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Fig. 3. Our approach: we start with an fully convolutional network (FCN) architecture to which we input the image together with the hierarchy
of image division, D. Region features, x, are extracted in the region pooling layer from each region in each image division Dl. The IEP
layer combines the region features per image division per object category, outputing C × L scores — where L is the total numer of image
divisions and C is the total number of object categories. The average over image divisions is optimized in an L1 loss with respect to the
image-level object count per object category.

inclusion-exclusion principle applied to object counts is given
by equation (2).

IEP(Count(·),Dl = {ri}i∈{1,..Nl}) =

Nl∑
k=1

(−1)k+1
∑

Sk∈(Dl
k )

Count(
⋂

ri∈Sk

ri)

 , (2)

where
(Dl

k

)
are all possible subsets Sk containing k image

regions, ri, from the image division Dl.
Function Count(·) returns real numbers, representing com-

plete objects, parts of objects, or multiple objects. As an
illustration, consider the hypothetical case where we would
have ground truth object pixel masks, denoted by Mask(o) for
object o in an image. Then we could formally define the count
for an image region, ri, as:

Count(ri) =
∑
o∈GT

Mask(o) ∩ ri
Mask(o)

, (3)

where GT represents the set of ground truth objects. Thus,
function Count(·) is precisely what we aim to learn, however
we do so using only the total object counts for the whole
image as supervision.

Count learning with IEP layer. During count regression
we enforce that the sum of all object counts over regions in
an image division, Dl, has to be equal to the total image-
level object counts. To avoid over-counting, especially when
dealing with highly overlapping image regions, we explicitly
incorporate the object counts of overlapping regions located at
the intersection of bounding boxes by employing the inclusion-
exclusion principle [40].

After having pooled the feature maps over the input regions,
ri, to obtain region features, xi, we estimate the counts
in each image division, Dl by learning a weight w shared

Fig. 4. Venn diagram depicting the inclusion-exclusion principle. The
object count of division D = {r1, r2, r3} depends on the counts of
the intersection areas. The overall object count is estimated by adding
the individual region counts of r1, r2, r3, and subsequently subtract-
ing the double counted regions ({r1 ∩ r2}, {r2 ∩ r3}, {r1 ∩ r3}) and
adding back the double subtracted {r1 ∩ r2 ∩ r3} region.

among image divisions, but learned per object category. Our
Count(·) function learns jointly to predict counts for all object
categories, due to the features xi being shared among object
categories. The IEP(Countw(ri)ri∈Dl

,Dl) layer aggregates
image regions ri in image division Dl using equation (2),
where the count of a region ri with features xi = Φ(ri) is
defined as:

Countw(ri)ri∈Dl
= wT Φ(ri) = wTxi, (4)

where the region feature xi is shared among object categories,
while the weights w are learned per object category. The
object counts predicted by the IEP layer per image division are
input to the L1 loss ( eq. (6) ) and optimized such that each
predicted image-division count is close to the global object
count. At prediction time the overall image-level object counts
are obtained as the average over the predictions of the IEP
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layer per image division:

y =
1

L

∑
Dl

max(0, bIEP(Countw(ri)ri∈Dl
,Dl)c) (5)

L(y∗, y) =
1

L

∑
Dl

| max(0, bIEP(Countw(ri)ri∈Dl
,Dl)c)

− y∗ | +α‖w‖2, (6)

where the b·c converts the predicted counts to integers, as
the total object counts in any image are integers. The term
α controls the importance of the regularization, where‖w‖2
is the norm of w. By not punishing the negative predictions
in the loss function we allow more flexibility by focusing the
model on correctly predicting the positive counts.

In our experiments we also test a version of our approach
in which the final prediction is evaluated on the full image,
while the training is still performed over all the levels in
the hierarchy of region proposals, as described above. This
version tests the added value of optimizing our model by
backpropagating a loss per hierarchy level as in eq. (6) during
training.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup

We evaluate our specific model choices on the Pascal-
VOC2007 dataset [12]. We additionally, evaluate our method
on MS-COCO [26] large scale generic object dataset, and three
class-specific counting datasets: pedestrian counting in the
UCSD dataset [3], and two vehicle counting datasets: CARPK
and PUCPR+ [10]. We use the standard SGD (Stochastic
Gradient Descent) with the learning rate decay γ = 0.5, a
momentum β = 0.1 and a starting learning rate of 0.005. For
generating image divisions we use the selective search method
[42] where for efficiency we extract object region proposals
only over the HSV color space, giving rise to ≈ 500 regions
per image. Our IEP layer outputs C × L predictions, where
C is the number of object categories in the dataset and L is
the depth of the hierarchy of image divisions for the current
image. Unless indicated otherwise, we initialize our model
with Resnet-50 features [16] pretrained on ImageNet [36]. The
final prediction is C × 1, as we have one model that jointly
learns counts for all object categories. For all experiments we
report MAE (Mean Absolute Error) or MSE (Mean Squared
Error).

B. Experiment 1: Model Choices

We analyse on Pascal-VOC2007 the contributions of the
individual building blocks in our method: (1) the effect of the
hierarchy depth; (2) the importance of the preciseness of the
localization given by the image regions; (3) the added value
of the IEP-based counting; (4) the IEP layer generalization
on a different backbone architecture. We evaluate our model
choices on the Pascal-VOC2007 [12] dataset by training on
the training set and evaluating on the test set.

TABLE I
EXPERIMENT 1.(1): MAE ON PASCAL-VOC2007 WHEN USING

A HIERARCHY OF IMAGE DIVISIONS RATHER THAN A FLAT
STRUCTURE. USING A HIERARCHY IMPROVES THE PERFORMANCE

AS THE OPTIMIZATION IS PERFORMED INDEPENDENTLY OVER
EACH DEPTH — IMAGE DIVISION. WE UNDERLINE THE

APPROACHES EXCEEDING THE BASELINES, AND HIGHLIGHT IN
BOLD THE BEST RESULT.

MAE

Grid 3× 3 0.139
Grid 5× 5 0.146
Grid 7× 7 0.168
Hierarchical Grid 0.136
Full Image 0.143

IEP Counting 0.134
IEP Counting∗ 0.129

Experiment 1.(1): What is the effect of hierarchy depth?
We evaluate the predictions of our model at each depth in
our hierarchy of proposals. The hierarchy is trained jointly,
yet we evaluate individual hierarchy depths to see if there
is a discrepancy in the errors that the network makes at
different hierarchy depths — region granularity levels. Each
depth is optimized to predict the same global object counts
and therefore the errors remain stable with the increase in
depth. From depth 7 onwards the error increases slightly which
indicates that the image region counts become more noisy. The
results are plotted in Figure 5.(a).

Table I analyzes the gain of using a hierarchy of proposal
rather than a flat structure. For the Hierarchical Grid we use a
grid with depth 5 composed of: full image, 1×2, 2×2, 3×3
and 4 × 4 cells. The IEP Counting is based on the hierarchy
obtained over selective search region proposals as described in
Section III-B.(b). The more fine-grained the region proposal
are, the more difficult the learning problem becomes. However,
learning over a hierarchy rather than a flat structure helps,
as each hierarchy level is independently optimized in the L1

loss. Our IEP Counting∗ approach uses at test-time the same
model as IEP Counting for predicting. However, rather than
predicting on all boxes in the hierarchy, it predicts only on
the full image. Therefore, in this case the hierarchy of region
proposals is used only at train-time. This validates the added
value of performing the optimization per hierarchy level.

Experiment 1.(2): What is the importance of the preciseness
of the localization? We test the importance of the preciseness
of the localization for the counting problem. Table II shows
the MAE with respect to a decreasing level of preciseness
in the region locality. The Ground Truth Boxes contains the
true object regions in each image and represents our upper
bound. In our method we use only global image-level counts
as supervision, therefore no bounding box or point annotations.
The IEP Counting uses a hierarchy of region proposals that are
self-contained within certain criteria, while the Hierarchical
Grid uniformly segments the image which may result in object
parts being separated in different grid cells. This explains why
IEP Counting approach outperforms the Hierarchical Grid.

Experiment 1.(3): What is the added value of the IEP-
based counting? The motivation of the IEP layer is twofold:
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Fig. 5. Experiment 1: (a) MAE with respect to the considered depth of the hierarchy of image divisions evaluated on Pascal-VOC2007. The
error tends to remain stable with the increase in the depth of the hierarchy, while slightly increasing from depth 7 onwards, which indicates
the image region counts become more noisy. (b) MAE with respect to the average number of object per image. The error increases slightly
with the number of objects for all methods, while our approach is less prone to over-counting for lower number of objects in the image.
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(a) MAE wrt hierarchy depth. (b) MAE wrt average number of objects.

TABLE II
EXPERIMENT 1.(2): MAE ON PASCAL-VOC2007 WITH

DECREASING DEGREE OF PRECISENESS OF LOCALIZATION. The
Ground Truth Boxes IS OUR UPPER BOUND AS WE USE GLOBAL
IMAGE-LEVEL COUNTS AND NO LOCAL SUPERVISION IN OUR
TRAINING. THE IEP Counting USES A HIERARCHY OF REGION

PROPOSAL BASED ON IMAGE CUES AND, THUS PERFORMS BETTER
THAN THE Hierarchical Grid. WE HIGHLIGHT IN BOLD THE BEST

RESULT.

MAE

Ground Truth Boxes 0.133
Hierarchical Grid 0.146
IEP Counting 0.134

TABLE III
EXPERIMENT 1.(3): TESTING THE IMPORTANCE OF THE

IEP-BASED COUNTING ON PASCAL-VOC2007. THE Region
Average OPTIMIZES THE AVERAGE COUNTS OVER ALL IMAGE
REGIONS WITHOUT THE HIERARCHY. THE Per-division Region
Average OPTIMIZES FOR EACH IMAGE DIVISION THE AVERAGE

OVER THE PREDICTED OBJECT COUNTS. THE IEP Counting
OUTPERFORMS THE OTHER TWO METHODS AS IT USES THE IEP

OPTIMIZATION TO AVOID OVER-COUNTING. WE UNDERLINE THE
APPROACHES EXCEEDING THE BASELINES, AND HIGHLIGHT IN

BOLD THE BEST RESULT.

MAE

Region Average 0.339
Per-division Region Average 0.158

IEP Counting 0.134
IEP Counting∗ 0.129

(i) performing the counting optimization independently per
image division, where each image division has a specific
level of granularity of image regions; and (ii) avoiding over-
counting for highly overlapping image regions. Here we test
the importance of the IEP-based counting within both of
these aspects. Table III shows the MAE when using the

TABLE IV
EXPERIMENT 1.(4): MAE ON PASCAL-VOC2007 WHEN USING

AS A BACKBONE ARCHITECTURE THE RESNET-50 AND
RESNET-101 [16]. WHEN THE UNDERLYING ARCHITECTURE IS

MORE DESCRIPTIVE AND FLEXIBLE, IT AIDS THE COUNTING TASK
AS THERE IS A VISIBLE GAIN IN PERFORMANCE. WE HIGHLIGHT

IN BOLD THE BEST RESULT.

Backbone architecture

Resnet-50 Resnet-101

IEP Counting 0.134 0.111
IEP Counting∗ 0.129 0.101

average over all proposal regions — Region Average, and when
optimizing the average over the counts of all proposal regions
in each image division — Per-division Region Average, and
when optimizing the IEP counts in each image division —
IEP Counting. Note that our chosen backbone architecture is
the fully convolutional R-FCN architecture [25]. The region
features input to the IEP layer are obtained from the region-
pooling layer of the R-FCN architecture [25]. Our IEP layer
can be seen as a variant of a fully connected layer, while
the Region Average and Per-division Region Average retain
the fully convolutional nature of the network as they are two
different approached of pooling the region features. The IEP
Counting considerably outperforms the two approaches as it
avoid over-counting highly overlapping image regions. This is
also conveyed in Figure 5.(b) where both the Region Average
and Per-division Region Average tend to over-count the objects
especially for images where fewer object are present.

Experiment 1.(4): How does the IEP layer generalize on
another architecture? This experiment tests the behavior of
our proposed IEP layer when used with a different backbone
architecture. We compare the results obtained with Resnet-50
[16] as a starting point, pretrained on ImageNet [36], with
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TABLE V
EXPERIMENT 1.(5): VOC2007 OBJECT COUNTING

PERFORMANCE. WE COMPARE OUR PROPOSED METHOD IEP
Counting∗ , WITH THE RESULTS OF [6] USING A SET OF THEIR

MODELS. THE GLANCE MODELS, glance-noft-2L AND
glance-sos-2L USE FULL-IMAGE SUPERVISION AND PERFORM ON

PAR WITH OUR PROPOSED METHOD, WHILE ens RELIES ON AN
LARGE ENSAMBLE OF DEEP NETWORKS, SOME USING FULL

IMAGE SUPERVISION AND OTHER USING PRECISE BOUNDING-BOX
ANNOTATIONS, WHICH MAKES THE METHOD MORE ACCURATE

BUT ALSO MORE EXPENSIVE BOTH IN TERMS OF RESOURCES AS
WELL AS SUPERVISION. WE PROPOSE A MORE SIMPLE,

THEORETICALLY MORE PRINCIPLED METHOD FOR OBJECT
COUNTING.

Method Supervision mRMSE

ens [6] Full 0.42 (± 0.170)

glance-noft-2L [6] Weak 0.50 (± 0.020)
glance-sos-2L [6] Weak 0.51 (± 0.020)
IEP Counting∗ (ours) Weak 0.51 (± 0.007)

the results obtained when using Resnet-101 [16] pretrained
on ImageNet [36]. In both case we still train from scratch the
additional convolutional layer that makes the transition from
the backbone architecture to the IEP layer and the weights in
the IEP layer. Table IV shows that our proposed IEP layer
is not architecture dependent and it can be used with any
other backbone architecture, with the only restriction that the
network should contain a ROI pooling layer. Moreover, if
the underlying architecture is more descriptive, this aids the
counting performance. For our subsequent experiments we use
the Resnet-50 architecture for time efficiency.

Experiment 1.(5): Comparison with existing generic object
counting. In Table V we compare with the very recent generic
object counting work in [6]. In [6] a set of deep learning based
methods are proposed for solving counting, among which:
glance-noft-2L and glance-sos-2L use full image supervision,
and their counting performance is on par with us. The best
model of [6], ens, performs better than us by using an
aggregation of deep learning counting architectures, where the
supervision level ranges from full image to precise bounding
boxes, and percentages of overlap with ground truth bounding
boxes. We proposed a more simple, method for counting,
which achieves competitive results.

C. Experiment 2: MS-COCO Experimental Evaluation
We evaluate our approach on MS-COCO [26] large-scale

generic object dataset. We train on the training set of MS-
COCO and predict on val. Counting objects on a generic
dataset is more challenging than counting objects for a specific
class, because the method must be able to count equally well
objects that typically appear in large numbers such as sheep
and bottles, as well as objects that are photographed alone,
such as cats and dogs.

In Table VI we show the performance on the MS-COCO
large-scale generic object dataset for our method compared
with a naive baseline as well as the full image baseline. We
report the MAE of our proposed approach, IEP Counting∗,
when compared with Always-1 — always predicting count 1,
and the Full Image baseline — the network prediction using

TABLE VI
EXPERIMENT 2: MS-COCO PERFORMANCE. WE COMPARE OUR

PROPOSED METHOD IEP Counting∗ , WITH Always-1 — ALWAYS
PREDICTING COUNT 1, AND THE Full Image BASELINE — THE

NETWORK COUNT PREDICTION OVER THE FULL IMAGE. WE
HIGHLIGHT IN BOLD THE BEST RESULT.

MAE (MSE)

Always-1 1.018 (1.359)
Full Image 0.111 (0.517)
IEP Counting∗ (ours) 0.092 (0.499)

TABLE VII
EXPERIMENT 3.(1) COMPARATIVE MSE SCORES ON THE UCSD

PEDESTRIAN COUNTING DATASET. OUR METHOD ACHIEVE
COMPARABLE RESULTS, WHILE NOT RELYING ON

PERSON-SPECIFIC MODELS AS [9], [13], OR DETAILED MOTION
SEGMENTATION [5].

MSE

N. Dalal and B. Triggs [9] 39.75
P. Felzenszwalb et. al [13] 24.72
A Chan and N Vasconcelos, [5] 9.95

Full Image 26.89
IEP Counting∗ (ours) 24.73

the full image. For our IEP Counting∗ approach we use the
hierarchy of boxes only at training-time, to learn stronger
models, while for predicting, we only predict on the full image,
as we have noticed that the lower levels in the hierarchy
corresponding to fine-grained boxes tend to add noise to the
count prediction. The IEP Counting∗ outperforms the Full
Image baseline, despite the highly challenging setting of the
experiment.

D. Experiment 3: Class-specific Counting

Experiment 3.(1): Pedestrian counting. This experiment
evaluates our performance on a class-specific problem and
compares with existing prior work [5], [9], [13]. For this we
use the UCSD pedestrian counting dataset [3] and compare
with three other existing methods.

Table VII depicts our results. For comparison with existing
work, we report only MSE scores here. Our method man-
ages to achieve comparable performance without employing
person-specific models as in the case of [9], [13], or detailed
motion segmentation masks as in [5]. This experiment vali-
dates the generality of our counting approach.

Experiment 3.(2): Car counting. We evaluate the task of
vehicle counting using the datasets CARPK and PUCPR+ [10].
We compare our performance on the class-specific counting
problem with the very recent counting approaches in [17], [29]
as well as competitive object detection approaches [33], [35]
fine-tuned on the CARPK and PUCPR+ datasets. Following
[17], we use the same data setup, training on the training set
and evaluating on the test set.

All methods are fine-tuned on the CARPK and PUCPR+
dataset, respectively. [33], [35] perform counting by object
detection, while [29] is the most similar to us as it performs
one-look counting over more loose localization given by
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TABLE VIII
EXPERIMENT 3.(2): COMPARATIVE MAE SCORES ON THE CARPK AND PUCPR+ VEHICLE COUNTING DATASETS. WE COMPARE OUR
METHOD WITH THE RECENT COUNTING METHODS OF [17], [29] RELYING ON PATCH COUNT ANNOTATIONS OR PRECISE BOUNDING-BOX

COUNT ANNOTATIONS, AS WELL AS THE OBJECT DETECTION METHODS [33], [35] FINE-TUNED ON CARPK AND PUCPR+ DATASET,
RESPECTIVELY. OUR METHOD DOES NOT RELY ON GROUND TRUTH BOUNDING BOXES AND YET ACHIEVES SIMILAR PERFORMANCE TO

THE RECENT COUNTING METHODS. WE UNDERLINE THE APPROACHES EXCEEDING THE BASELINES, AND HIGHLIGHT IN BOLD THE
BEST RESULT.

Annotation MAE
level

YOLO [33] box 48.89
Faster R-CNN [35] box 47.45

LPN counting [17] box count 23.80
One look regression [29] patch count 59.46

IEP Counting (ours) image count 52.69 (± 0.884)
IEP Counting∗ (ours) image count 51.83 (± 0.883)

Annotation MAE
level

YOLO [33] box 156.00
Faster R-CNN [35] box 111.40

LPN counting [17] box count 22.76
One look regression [29] patch count 21.88

IEP Counting (ours) image count 15.78 (± 5.18)
IEP Counting∗ (ours) image count 15.12 (± 4.79)

(a) MAE results on the CARPK dataset. (b) MAE results on the PUCPR+ dataset.

Examples from the CARPK dataset.

(a) Low altitude. (b) High altitude. (c) Parked scooters.

Examples from the PUCPR+ dataset.

(a) Cloudy. (b) Rainy. (c) Sunny.

Fig. 6. Experiment 3.(2): Examples from the CARPK and PUCPR+ datasets. In the CARPK dataset the resolution of the cars and the viewpoint and location
vary. Moreover, in the CARPK dataset there are similar concepts present such as: buses and scooters. Dissimilar, the PUCPR+ records a parking lot, under
different weather conditions, with a fixed camera, and there are no other dynamic objects present apart from cars.

patches. However, the method in [29] uses patch annotations
where patches in the image have associated annotations with
the number of cars present. In our case we use patches,
but we do not have associated patch counts, we only have
the total global counts of all cars present in the image. In
[17] a Layout Proposal Network is used to first localize the
cars and subsequently count. Dissimilar to us, the work in
[17] employs precise ground truth bounding boxes to jointly
localize and count the cars present in the images. For this
dataset the location information is important, as detection
methods relying on tight bounding box annotations outperform
counting methods such as [29] and our approach.

Table VIII depicts our results. On the CARPK dataset, in
table VIII.(a), our method achieves comparable performance
with the recent work of Mundhenk et al. [29], without using
region-based counting supervision. The work of Hsieh et al.
[17] performs better than the work in [29] and our work, as

it uses additional supervision by employing precise bounding
box annotations during training. On PUCPR+ dataset, in
table VIII.(b), we outperform all detection baselines [33], [35].
Our method has a large variance on this dataset, which we
believe to be caused by the very limited number of training
examples: in the range one hundred. However, our method
performs on par with the recent counting methods [17], [29],
despite not using region counts, or bounding box ground truth
annotations. This experiment validates the generality of our
counting approach, which can be applied either for generic
object counting as in experiment IV-C, or for class-specific
counting as tested here.

Cross-dataset variance analysis on the task of car counting.
There is a large variance in performance between the two
datasets for most of the methods reported in Table VIII. The
CARPK dataset contains an aerial video recorded from differ-
ent altitudes and in different locations. The resolution of the
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cars varies considerably throughout the video, as seen in the
first row of Figure 6. Moreover, in the CARPK dataset other
concepts are present, that may confuse the car counting: e.g.
buses, pedestrians, scooters, etc. The supervision is provided
only for cars, the other concepts being ignored.

Unlike CARPK, the PUCPR+ dataset contains images from
a fixed surveillance camera, filming a parking lot under
different weather conditions: e.g. sunny, rainy, cloudy. In this
dataset there are no other dynamic objects present, apart from
cars. A few examples from the PUCPR+ dataset are displayed
on the second row of Figure 6.

Table VIII shows that counting methods based on object
detection such as [33] and [35] perform considerably better
on the CARPK dataset, while having a large error on the
PUCPR+ dataset. On the contrary, counting methods such as
ours and [29] perform well on the PUCPR+ dataset while
having lower performance on the CARPK dataset. The method
in [17] has a consistent performance on both datasets as it
relies on car-localization, with bounding box supervision, and
it fine-tunes both the car localization and the car counting
on the CARPK and PUCPR+ dataset. The object detection
methods [33], [35] are also fine-tuned on the two car- datasets.
The CARPK dataset has ≈ 10 × more samples than the
PUCPR+ dataset, and therefore the fine-tuning of the car
detectors is more effective on the CARPK dataset than on the
PUCPR+ dataset. The number of training samples per dataset,
is one motivation for the variance in performance across
datasets. Another reason for this variance across datasets, is
the confusion generated in car counts by other objects present
in the CARPK dataset such as scooters and pedestrians, which
do not have associated object counts. Object detectors are
optimized to distinguish cars from scooters or other objects
and, therefore, are more accurate on the CARPK dataset. Our
method is only trained with the object count labels, which
makes it more challenging for it not to over-count in the
presence of unlabelled similar classes.

V. CONCLUSION

This work proposes an approach towards generic object
counting with unsupervised local image information. Our
method relies on unsupervised object proposals or uniform
grid partitions and adds geometric information in the loss opti-
mization through the inclusion-exclusion principle. Moreover,
we propose to learn from local image features, and predict
global image object counts. Therefore, we do not rely on any
form of local supervision. In experimental section IV-B we
analyse the added value of each one of the building blocks
composing our proposed approach: the effect of the depth of
the hierarchy of image divisions on the counting performance,
the importance of the preciseness of locality offered by object
regions, the added value of the IEP-based counting, as well as
the generality of the IEP layer when applied on a different
architecture. Finally, in the section IV-C we evaluate our
proposed method on the large scale MS-COCO dataset, while
IV-D tests the generality of our method on three class-specific
dataset: pedestrian counting in the UCSD dataset, and two
vehicle counting dataset, CARPK and PUCPR+, and compares
with recent object detection and counting works.
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