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Preliminary Aeroelastic Design of Composite Wings Subjected to Critical
Gust Loads

D.Rajpala,∗, E. Gillebaarta, R. De Breukera

aDepartment of Aerospace Structures and Computational Mechanics, Faculty of Aerospace Engineering, Delft University of
Technology

Abstract

Including a gust analysis in an optimization framework is computationally expensive as the critical load cases
are not known a priori and hence a large number of points within the flight envelope have to be analyzed.
Model order reduction techniques can provide significant improvement in computational efficiency of an
aeroelastic analysis. In this paper, after thorough analysis of 4 commonly used model order reduction
methods, balanced proper orthogonal decomposition is selected to reduce the aerodynamic system which is
based on potential flow theory. The reduced aerodynamic system is coupled to a structural solver to obtain
a reduced-order aeroelastic model. It is demonstrated that the dominant modes of the aerodynamic model
can be assumed to be constant for varying equivalent airspeed and Mach number, enabling the use of a single
reduced model for the entire flight envelope. A dynamic aeroelastic optimization method is then formulated
using the reduced-order aeroelastic model. Results show that both dynamic and static loads play a role in
optimization of the wing structure. Furthermore, the worst case gust loads change during the optimization
process and it is important to identify the critical loads at every iteration in the optimization.

Keywords: Aeroelasticity, Structural Optimization, Gust Loads, Composite Wing

1. Introduction

The goals set out by the European Commission in the Flightpath 2050 report [1], include, among others,
a 75% reduction in CO2 emissions per passenger kilometer, 90% reduction in NOx and 60% reduction in
perceived noise by 2050 as compared to the aircraft in the year 2000. These objectives do not seem to
be realistic for conventional designs as it is becoming increasingly difficult to make the well-known wing
and tube configuration more efficient. Advanced technologies such as composite materials and aeroelastic
tailoring along with novel designs seem to have the potential to address the required leap in performance.
In the traditional design process, knowledge about the design increases, while the design freedom decreases
as one goes from conceptual to preliminary and finally to the detailed design as shown in Figure 1. For
conventional designs, the lack of knowledge during the initial stages is compensated through empirical
knowledge. However, lack of such empirical knowledge for a novel design, results in the need for increased
physics based knowledge during the initial design process.

In the case of a conventional aircraft wing, during the early stages, based on the empirical knowledge,
static load cases due to manoeuvres are considered as the most critical loads that the aircraft will encounter.
However, with the introduction of tailored composite materials, unsteady loads due to gusts can also become
critical [2] and hence the need to include them in the initial design process. In this paper, the focus is to
incorporate the effect of the dynamic gust loads in the preliminary structural design of the composite wings.
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Figure 1: Trend of knowledge and freedom in aircraft design process [3].

Including the gust loads in an efficient and a reliable way during the initial phases of the design process
is quite difficult. The first challenge is that there is no prior information on the flight points which will be
critical with respect to dynamic loads. As per the requirements defined by the European Aviation Safety
Agency (EASA) in the Certification Specifications for Large Aeroplanes (CS-25) [4], a range of load cases
across the entire flight envelope has to be taken into consideration to determine the maximum loads the
aircraft structure will experience. A ballpark approximation of the number of load cases to be taken into
account can be in the order of 10 million [5]. This makes the process of finding the worst case gust loads
computationally expensive. The second challenge is that as the design changes during optimization, the
critical gusts might change as well and hence for every new iteration in the design process, the load cases
have to be updated. This makes the inclusion of gust loads in the initial design process unfeasible.

The idea of improving the efficiency of the dynamic analysis has already received attention in recent
years. Pototzky et al. [6] used the concept of matched filter theory from signal processing to identify
worst case stochastic gust loads. Fidkowski [7] also applied matched filter theory in combination with the
Lyapunov equation to identify critical load for the stochastic gust in the conceptual aircraft design process.
Knoblach [8] used robust performance analysis from control theory to identify critical loads due to discrete
1-cosine gusts. In the work done under the European FP7 project FFAST [5, 9, 10], surrogate modelling,
neural networks and optimization techniques were used for fast prediction of gust loads.

There has been a growing interest in using model order reduction (MOR) techniques to predict gust
loads in an efficient way. The goal of the MOR techniques is to produce a system that shows similar
aeroelastic response characteristics as the original, but consists of significantly fewer state variables, leading
to a reduction in computational cost. Majority of the work done [11–15] was focused on using MOR
techniques to reduce the computational fluid dynamics (CFD) models to predict the gust response. In the
early stages of the design process, there is a need to evaluate a multitude of designs. Hence, even with MOR
techniques, CFD can still be computationally expensive. The industry standard [16, 17], for dynamic loads,
is the potential flow based aeroelastic solver such as MSC NASTRAN. There has not been sufficient focus
in the literature on using the MOR methods for such solvers. Only recently Castellani et al. [18] applied
MOR technique to the potential flow based aeroelastic system for rapid prediction of dynamic gust loads.
For the determination of critical loads, Castellani et al. created a reduced aeroelastic model at different
flight points and used interpolation techniques to cover the entire flight envelope.

In the present paper, the aeroelastic system is reduced by applying MOR method to the time-domain
state-space unsteady vortex lattice model [19] and coupling it to the structural solver. To obtain a robust and
accurate reduced-order model (ROM) for the aeroelastic analysis, four commonly used MOR methods for
the reduction of the aeroelastic system, namely modal truncation (MT) [20, 21], balanced truncation (BT)
[22], proper orthogonal decomposition (POD) [23], and balanced proper orthogonal decomposition (BPOD)
[24, 25] are compared. These methods are used to produce a ROM of the aerodynamic model and their
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performance is measured in terms of accuracy and robustness of the resulting model, and the computational
cost of creating it and using it for simulation. The robustness of the methods is judged by determining the
ability of the method to preserve the stability of the full-order model (FOM) and the amount of user input
required to obtain a proper ROM. The method with the best performance is used to formulate the reduced-
order aeroelastic model (ROAM), based on a global reduced aerodynamic basis, which is independent of
equivalent airspeed and free stream Mach number. The advantage of such an approach is that the reduced
basis needs to be calculated only once and thus the need for interpolation is avoided. This makes the
determination of critical gust loads computationally efficient. The accuracy of the formulated ROAM is
demonstrated by comparing the results with the responses from the FOM. Furthermore, an optimization
framework is formulated using the ROAM which accounts for worst case gust loads at every iteration.
To demonstrate the efficacy of such a framework, aeroelastic tailoring of the NASA Common Research
Model (CRM) wing [26] is carried out. The innovations of this paper can be summarized as follows:

• Four commonly used MOR methods are compared, based on their application to a continuous time
state-space unsteady vortex lattice model. The specific properties, accuracy, robustness and compu-
tational cost of the methods are investigated and compared.

• A ROAM is created, based on a global reduced aerodynamic basis independent of equivalent airspeed
and free stream Mach number, for efficient aeroelastic loads analysis.

• An aeroelastic optimization method is formulated using the ROAM which has the capability to identify
the critical loads at every iteration in the design process.

2. Aeroelastic Model

The ROAM is based on the framework of PROTEUS, in-house aeroelastic tool, developed at the Delft
University of Technology. In PROTEUS, the wing is first divided into multiple spanwise sections, where
each section is defined by laminates which can vary in the chord wise direction. A cross sectional modeller
uses the laminate properties and the cross-sectional geometry to generate a Timoshenko cross-sectional
stiffness matrices. A non linear aeroeasltic analysis is carried out for multiple load cases by coupling the
geometrically nonlinear Timoshenko beam model to an unsteady vortex lattice aerodynamic model. A
linear dynamic aeroelastic analysis is carried out around the nonlinear static equilibrium solution. In the
post processing, the cross sectional modeller is used to retrieve the strains in the three-dimensional wing
structure. Based on the applied strains in the structure, strength and buckling properties of the wing are
calculated and fed to the optimizer as constraints. A detailed description of the PROTEUS is given in work
by Werter and De Breuker [27]. In the following subsections, the formulation of ROAM has been described.

2.1. Aerodynamic model

In PROTEUS, the aerodynamic model is continuous-time state-space unsteady vortex lattice method
based on the work of Werter et al. [19]. The unsteady vortex lattice is an efficient method, of comparable
fidelity to the doublet lattice method at moderate Mach numbers, but without some of its restrictions: the
wake and planform can be non planar, flow tangency is imposed on the statically deformed geometry, and
in-plane deformations are captured [28]. In the aerodynamic model, the wing is modelled as a thin wing
with a prescribed wake using quadrilateral vortex rings with the collocation points in the center of the
panels. Using the Kutta condition and Helmholtz theorem, a complete state-space system of equations for
the potential flow is given by

AΓt = −V∞ · n (1)

Γt
TE = Γt

w0
(2)

H1Γ
t = H2Γ

t−1 (3)
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where the matrix A contains the aerodynamic influence coefficients, Γ is the vector of unknown vortex ring
strengths, ΓTE is the vector of unknown vortex ring strengths at the trailing edge of the wing, Γw0 is the
vector of unknown vortex ring strengths at the start of the wake, and matrices H1 and H2 describe the
transport of vorticity in the wake.

The vector with vortex ring strengths Γ can be split into three separate sets of unknowns: the body,
Kutta, and wake unknowns. Using this separation of unknowns, the system of equations can be rewritten
into the form of the standard state equation of a state-space system:

ẋa = Aaxa + Bau (4)

where Aa is the aerodynamic state matrix, Ba is the aerodynamic input matrix, u is the input vector
containing the time derivative of the angle of attack per aerodynamic panel of the wing, and xa is the
aerodynamic state vector containing the vortex strengths in the wake and angles of attack. The dot over the
x indicates the time derivative. Combining Equation (4) with expressions for the unsteady lift and moment
acting on the wing, state-space system can be formulated as

ẋa = Aaxa + Bau

ya = Caxa + Dau
(5)

where ya is the output vector containing the aerodynamic forces and moments acting on the wing per
spanwise section. A more elaborate description of the aerodynamic modelling can be found in the work of
Werter et al. [19].

2.2. MOR approach

The dimension or order n, of a state-space system is given by the number of states in the vector xa.
A system with more states generally requires a higher computational cost. Besides system size, sparsity
and system structure are also of importance for the computational cost. In this study, the dimension of
the system is typically in the order of 103 ∼ 104 and the matrices are densely populated due to the use
of a boundary element method. The dimension of the matrices can be significantly reduced and sparsity
increased by applying the MOR method. The general approach for a MOR of linear time-invariant (LTI)
state-space systems is to project the original states onto a reduced basis:

xa = Vrc (6)

where c is a vector with the r reduced states and Vr is the n×r reduced basis onto which the original states
are projected. Inserting Equation (6) into Equation (5) results in a system with r � n states:

ċ = V−1
r AaVrc + V−1

r Bau = Arc + Bru

ya = CaVrc + Dau = Crc + Dau
(7)

Since Vr is rectangular matrix of rank r, V−1
r represents the pseudo inverse of Vr. The number of states r

in the ROM depends on the required accuracy and the basis Vr, but is typically in the order of 10 ∼ 100.
Different MOR techniques can be used to find this reduced basis.

As mentioned in the introduction, four methods are compared here. The MT method originates from the
field of structural dynamics. A selection of the eigenvalues of the system and their corresponding eigenvectors
are used to create a reduced-order model. In structural dynamics, a clear physical interpretation for the
eigenvectors is available. Even though this interpretation is less obvious in aerodynamics, the mathematical
principle can still be applied [21, 29]. The resulting reduced system has the same eigenvalues as the states
that are included, so the stability of the original system is always preserved. Furthermore, the only input
required for the method to work is the order of the resulting ROM, making MT a very robust method.

The BT method is often used in control and simulation applications as a MOR tool. The states of a
system can be described by the terms observability and controllability. The observability of a state describes
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its influence on the output of the system in the absence of any input. Conversely, controllability describes
how easily a state is excited by an input, when the system starts from rest. The principle of BT is to balance
these two parameters, so that a state is equally observable as it is controllable [22]. The aerodynamic system
that is used in this paper also has neutrally stable states, so the system has to be split into a stable and
neutrally stable part. The neutral and stable part can be identified from the eigenvalue decomposition of
the system, and they can be separated from each other. The BT method is applied to the stable system
and after truncation the neutrally stable system is added again. The neutrally stable states are thus always
included in the ROM. The truncation of the stable part of the system preserves its stability [30], so the
combination of the neutrally stable part and the truncated part has the same stability characteristics as the
original system. Similar to the MT method, this method requires no external input other than the required
order of the ROM. These characteristics make the BT method very robust.

The principle of POD is rather simple. The response of the FOM to a certain input is simulated and at a
number of points in time a snapshot is taken of the states of the system. This training data is used to find a
basis for optimally approximating the data set. Even though this model provides an optimal approximation
of the training data, its accuracy for inputs other than the training input depends on whether the required
behavior is included in the simulation of the FOM. Furthermore, the method does not guarantee preservation
of the stability characteristics of the original model. This makes the POD method less robust compared to
the MT and BT methods.

In the BPOD method, certain analytical computations from the BT method are replaced by empirical
approximations to speed up the process because BT is a relatively expensive method when larger systems
have to be reduced. Combined with a projection method to reduce the number of outputs of the system [25],
a significant improvement in computational cost can be obtained. Even though BPOD is an approximation
of BT, it does not automatically mean that it will preserve the stability of the original model as BT does.
However, it does typically suffer less from instabilities compared to POD [31]. The method is also dependent
on empirical data, but this data is always the impulse response of the original system. This makes the method
more robust than the POD method.

To compare the performance of the four methods, ROMs of the two aerodynamic systems are created,
namely a heaving wing and an accelerating wing.

2.2.1. Heaving wing

The first test case is a rectangular heaving wing with an aspect ratio of 4. The wing oscillates up and
down with a specific reduced frequency, creating a periodic aerodynamic response. The wing is discretized
into 40 elements in chordwise direction and 10 in the spanwise direction. The wake, with a length of 10
times the chord, is automatically discretized into 203 elements in the chordwise direction, resulting in 2,030
state variables. The reduced frequency of the oscillation is computed as follows:

k =
ωb

V∞
(8)

where ω is the frequency of the oscillation in rad/s, b is the airfoil half chord, and V∞ is the freestream
velocity. The heaving amplitude is equal to 10% of the chord.

The variations in lift and moment coefficients in time are computed with the FOM and the four ROMs.
Figures 2 and 3 show the comparison for a reduced frequency of 0.1. All the ROMs are formed using 100
mode shapes. Data from the FOM for a similar oscillating wing is used as training data for the POD ROM.

The lift coefficient curves of the ROMs all lie very close to the FOM. The curve of the MT method
has the largest deviation, as is demonstrated in the next paragraph. For the moment coefficient curve of
the MT method, the deviation from the FOM is more pronounced. In contrast to the lift coefficient, the
moment coefficient is strongly influenced by the pressure distribution on the wing. On inspection of the
mode shapes resulting from the method, an explanation for this effect can be found. The mode shapes stay
close to zero at the start of the wake and grow towards the end of the wake. At higher mode shapes this
effect becomes more clear, as can be seen in Figure 4. Accurately approximating the variation of the state
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Figure 2: Lift coefficient variations in time for a flat wing
with A= 4 and k = 0.1.
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Figure 3: Moment coefficient variations in time for a flat
wing with A= 4 and k = 0.1.

variables in the wake is impossible with these modes since variations at the beginning of the wake cause
large oscillations at the rear. This problem is illustrated in Figure 5. The first part of the wake response is
accurately reproduced by the ROM, but towards the end of the wake the ROM response starts to oscillate
around the FOM response.
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Figure 4: Higher MT mode shape distributions over the
wake of a 2-dimensional airfoil.
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Figure 5: Comparison of the wake response of the FOM
and the MT ROM for a point in time.

Behbahani-Nejad and Changizian [32] have also encountered oscillations in the wake when they applied
MT to a model of an unsteady partial cavity flow. Calculating the cavity length and lift coefficient for these
flows required an accurate approximation of the wake response. The results showed that these parameters
could only be accurately approximated when all mode shapes were included in the ROM, resulting in a
model which is exactly the same as the FOM. The problem is not mentioned in other literature on the
application of MT to unsteady aerodynamics, most likely because an accurate reproduction of the wake
response turns out to be less important for lift calculations of an airfoil or wing, as will be shown for the
test cases. Because of this mode shape behaviour, the MT method is unable to reproduce the wake response
accurately resulting in an inaccurate pressure distribution and thus, combined with the deviation in the lift,
a large deviation in the moment coefficient is observed.
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The convergence of the ROM with increasing number of included mode shapes is evaluated using the
root-mean-square error (RMSE) between the FOM and ROM results, resulting in Figure 6. The MT method
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Figure 6: Lift coefficient RMSE for the heaving wing test
case with k = 0.1.
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Figure 7: Lift coefficient RMSE for the heaving wing test
case with k = 0.1, using exact FOM data as training data
for POD.

converges fast up to 15 modes, but diverges when more modes are included. This divergence is caused by the
phenomenon that was already shown in Figure 5. The oscillating wake causes inaccuracies in the solution.
Only when a large portion of all modes are included in the ROM does it slowly start to converge again,
because the oscillations start to cancel each other out. When the final few modes are included it converges
more rapidly again. This last behavior is not shown in Figure 6.

The convergence of the BPOD method is superior for this test case. Whereas the error of the other
methods levels off relatively soon, it keeps decreasing to a RMSE of 10−10 % for BPOD. The method
also outperforms BT on this aspect, even though it is an approximation of the latter. An explanation for
this result is that larger systems become more ill-conditioned, due to the larger differences in aerodynamic
influence coefficients. Both the MT and BT methods inverse the right eigenvector matrix to obtain the
left eigenvector matrix. This step becomes inaccurate for larger systems, due to the ill-conditioning of the
eigenvector matrix. The BPOD method does not require this step and thus remains more accurate. This
problem is clearly visible in the modal residuals computed with Equation (9)

R = ||V−1AV −Λ|| (9)

where V is a matrix with the right eigenvectors as columns and Λ is a matrix with the eigenvalues on its
diagonal. Both the MT and BT method produce the same modal residuals, which are shown in Table 1
for variations in spanwise and chordwise elements. The residual significantly increases for a larger system,
resulting in the reduced accuracy of the two methods.

Table 1: Modal residuals of MT and BT for varying numbers of chordwise (nbc) and spanwise (nbs) elements.

nbc = 10 nbc = 20 nbc = 40

nbs = 2 8.3 · 10−8 2.5 · 10−2 1.5 · 101

nbs = 4 5.2 · 10−7 1.4 · 10−1 3.4 · 101

nbs = 8 4.8 · 10−6 7.3 · 101 7.3 · 101

The accuracy of the POD method is low for a small number of included modes. The result gradually
converges to that of the FOM as more modes are included. However, it is observed that the training data
can have a large influence on the convergence behavior of this method. In the previous section, it was

7



mentioned that the POD method obtains a reduced basis that approximates the original data set in an
optimal way. Consequently, if the exact data of the FOM for this test case is used, the POD method
performed approximately on par with the BPOD method, as Figure 7 shows. These results demonstrate
the importance of selecting the right training data, as the accuracy of simulations outside the scope of
the training data will suffer from reduced accuracy. Working in the frequency domain would reduce the
challenge of selecting the best training data as the selection is based on frequencies instead of time-domain
disturbances [33, 34]. Choosing the range of frequencies of interest will provide a ROM which is accurate in
this range.

Figure 8 shows the convergence of the moment coefficient and looks similar to Figure 6. The main
difference is the larger effect of the inaccuracy of the MT and BT methods, due to the system size. Their
convergence flattens out at a higher RMSE compared to the lift coefficient convergence.
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Figure 8: Moment coefficient RMSE for the heaving wing test case with k = 0.1.

To make a fair comparison of the computational cost involved with the MOR methods, they are set up
to have a maximum RMSE of 0.1% for both the lift and moment coefficient. Figure 8 shows that for MT
this accuracy cannot be achieved, so the optimum at 15 modes is used. The computations are performed
on a PC with an Intel Core i5-3470 processor and 4 GB of memory using MATLAB R2013b. The cost of
computing the ROM and of simulating it, listed in Table 2, show that these MOR methods can significantly
reduce the cost of the aerodynamic analysis when multiple analyses have to be performed with the same
model. In, for example, a gust load analysis of a wing, hundreds or even thousands of different conditions
have to be analyzed and these ROMs can provide a large saving in computational cost. The last column of
Table 2 shows after how many simulations a profit in computational time is gained compared to the FOM,
taking into account both the extra cost related to the formulation of the ROM and reduced cost of the
simulation. Please note that even though the MT method has the lowest break even number, its accuracy
is approximately one order of magnitude lower compared to the other methods.

Table 2: Computational cost of building the ROMs and simulating it compared to the cost of simulating the FOM.

Method (states) Building ROM [s] Simulation [s] Break even number

FOM (2030) - 6.2 -
MT (15) 22.4 0.005 4
POD (89) 66.1 0.012 11
BPOD (22) 61.8 0.005 10
BT (78) 631.3 0.012 102

The computational cost for building the ROM strongly depends on the size of the original system. The
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three parameters determining the size of the system are the number of body elements in the spanwise and
chordwise direction, and the length of the wake. Figures 9a to 9c show the variation of the computational
cost for variations in these parameters. All the methods show a close to a cubic relation between the
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Figure 9: Computational cost as a function of discretization for the heaving wing test case.

computational time and the number of spanwise elements. However, for the other two parameters the
BPOD method deviates from this trend. It seems to be insensitive to the number of chordwise element and
the length of the wake. This can be explained by the way the BPOD ROM is computed. The computational
time required for this method is dominated by the singular value decomposition (SVD) of the product of
the direct and adjoint impulse data matrices. Even though the size of these matrices themselves depends
on all of the parameters, the product only depends on the number of spanwise elements. The influence of
the other two parameters is thus only seen in the impulse simulation time, which is only a small portion of
the full computational cost.

2.2.2. Accelerating wing

The second benchmark is a rectangular wing experiencing an instantaneous acceleration from zero to a
constant velocity. The wing, with an aspect ratio of 6, is discretized into 50 elements in chordwise and 10
elements in the spanwise direction. The wake is discretized into 127 elements in the chordwise direction and
has a length of 5 times the chord, generating a system with 1,270 states.

The BT and BPOD methods recreate the FOM response very accurately, whereas the MT and POD
methods have some difficulties, as can be seen in Figure 10a. All four responses are obtained using 50 modes.
At the start, the MT ROM deviates significantly from the FOM, but as time progresses it converges and
matches the FOM response almost exactly. From Figure 10a it seems that the POD ROM slowly converges
to the FOM solution, but when a longer time period is plotted it becomes clear that it does not. On
inspection of the eigenvalues of the reduced system this is confirmed, as multiple of them have a positive
real part and are thus unstable. This instability can be solved by increasing the number of mode shapes
included in the ROM. The POD response shown in Figure 10b, obtained using 100 modes, is still not very
close, but no longer diverges. It can also be seen that the MT ROM converges slightly faster to the FOM
compared to when 50 modes are included.

From the test cases presented here, the conclusion can be drawn that BPOD is the most suitable method
for reducing the aerodynamic model. The method combines high accuracy at low numbers of states with a
relatively low computational cost and good robustness. The other methods all show problems in at least one
of these characteristics. For the remainder of the paper, the BPOD method is thus used for the reduction
of the aerodynamic model within the aeroelastic framework.

2.3. Reduced Order Aerodynamics

For the determination of critical loads, the aeroelastic system must be solved over a large number of
flight points to calculate the various responses of the aircraft over the entire flight envelope. A significant
saving in computational expense can be achieved if a reduced-order aeroelastic system can be used instead
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Figure 10: Lift response for a suddenly accelerated, flat wing with A= 6.

of a full order system. However, the full order aerodynamic system depends on parameters such as altitude,
Mach number and velocity, hence every new flight point would necessitate a new ROAM. Thus an efficient
way of applying the reduced-order aeroelastic system without the need of performing a new reduction at
each flight point has been formulated.

Benner et al. [35] have provided a comprehensive survey on MOR for a parametric state-space system.
Generally, the approaches for the parametric model order reduction can be differentiated into local and
global based methods. In the local based methods [36, 37], the reduced basis required at a given point can
be generated by interpolating local reduced bases generated at a fixed number of points in the parameter
space. In the global based methods [38], a single reduced basis is generated by projecting the global matrix
containing snapshots at various points in the parameter space. By projecting a global matrix, dominant
modes across entire parameter space are selected, thus giving a good approximation. For the current
aerodynamic system, a method similar to the global based methods is used. A reasonable assumption can
be made that, for a given wing planform, the dominant aerodynamic modes will be the same for all the
points inside the flight envelope. The basis for this assumption is explained below.

For every point inside the flight envelope, the aerodynamic state-space matrices depend upon the equiv-
alent air speed (Veq), and the free stream Mach number, M . For the assumption to be valid, the dominant
modes of the aerodynamic system should not change with a change in Veq and M . With respect to Veq, the
aerodynamic system of equations described in Equations 1, 2 and 3 can be reformulated as

K1Γb + K2Γw0
+ K3Γw = −V∞nx −V∞nzα (10)

K4Γb + K5Γw0
= 0 (11)

K6(Veq)Γw + K7(Veq)Γw0
= Γ̇w (12)

where K1, K2 and K3 are a parts of the aerodynamic influence coefficient (AIC) matrix, K4 and K5 connect
the trailing edge panel to the first wake panel satisfying the Kutta condition, and K6 and K7 describe the
transport of vorticity in the wake. The subscripts b and w indicate the body and wake, respectively. Both K6

and K7 depend on Veq. The AIC matrix also depends upon the velocity. A change in velocity necessitates
a change in the trim angle, which leads to a change in angle between the body and the wake and thus a
change of the AIC matrix. However, in a linear analysis, for small deviations in the trim angle, the AIC
matrix can be assumed to be constant. Expressing Γb and Γw0

as function of Γw, the state equation of
state-space system can be derived as
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Γ̇w = K8(Veq)Γw + K9(Veq)α + K10(Veq) (13)

where K8, K9 and K10 have linear dependencies on equivalent airspeed.
To compute the aerodynamic output, forces and moments are split into steady component and an un-

steady component. The steady component of the aerodynamic forces is given by

Fst = ρV∞ × Γ = ρV∞ × eΓΓ (14)

where eΓ is the vector along the vortex segment and Γ is the vortex strength of the vortex segment. The
unsteady component of the aerodynamic forces is given by

Funst = ρV̂∞ × êΓ
∂Γi,j

∂t
Hi,j (15)

where V̂∞ is the unit vector in the direction of the free stream velocity, êΓ is the unit vector in the direction
of the leading vortex segment and H is the AIC matrix. By defining a reference axis with respect to which
the aerodynamic moments are computed, the total aerodynamic forces and moments are expressed as[

Fa

Ma

]
=

[
Fst

Mst

]
+

[
Funst

Munst

]
= L1(Veq)Γb + L2(Veq)Γ̇b (16)

where L1 and L2 have linear dependencies on equivalent airspeed. Relating Γb to Γw leads to[
Fa

Ma

]
= L9(Veq)Γw + L10(Veq)α+ L8(Veq)α̇+ L11(Veq) (17)

Using Equations 13 and 17, the aerodynamic state-space equation is given as

ẋa =

[
K8(Veq) K9(Veq)

0 0

]
xa +

[
0 K10(Veq)
I 0

]
u,

ya =
[
L9(Veq) L10(Veq)

]
xa +

[
L8(Veq) L11(Veq)

]
u,

(18)

Thus the aerodynamic system can be assumed to have an affine dependency on the velocity. The aerodynamic
state-space system can then be formulated as

ẋa = F1(Veq)Âaxa + F2(Veq)B̂au,

ya = F3(Veq)Ĉaxa + F4(Veq)D̂au,
(19)

where the modified state-space matrices are now independent of the equivalent airspeed, and the influence of
the airspeed is collected in the matrices F1 to F4. These matrices are found by taking out the dependencies
of the equivalent airspeed during the formulation of the state-space system. As a result, the characteristics
of the state matrix will remain the same for different velocities, validating the assumption that dominant
aerodynamic modes for different velocities can be assumed to be the same.

Before describing the effect of Mach number on the mode shapes, the effect of the change in aspect ratio
on the mode shapes is investigated. In Figure 11 the mode shapes for a backward swept wing are shown for
4 different aspect ratios of the wing. The aspect ratios are 9.5, 8, 6.5 and 5. Please note that only the shapes
along the chordwise and spanwise directions with the origin at the root trailing edge point are displayed to
enable a good comparison between the mode shapes for different aspect ratios.

The mode shapes for the first three, most dominant modes, are practically constant with changing the
aspect ratio of the wing. Up to mode 7 the shapes remain very similar. As the mode number increases
further, a larger difference is seen with increasing aspect ratio, although the trend is still similar. A similar
trend is also observed for a forward swept wing. A conclusion can then be made that the shapes for the first
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(b) Mode 2
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(c) Mode 3
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(d) Mode 4
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(e) Mode 5
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(f) Mode 6
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(g) Mode 7
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(h) Mode 8
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Figure 11: First 9 BPOD mode shapes for a untapered, swept backward wing for different aspect ratios.

7 dominant aerodynamic modes remain almost similar for different aspect ratio.
With respect to the Mach number effects, the application of Prandtl Glauert transformation brings the

parametric dependency of the aerodynamic system on the Mach number. The Prandtl Glauert transforma-
tion scales the geometry in the x-direction by a factor

√
1−M2, effectively changing the aspect ratio of the

wing. The first seven dominant modes of the aerodynamic system stay nearly constant with the change in
the aspect ratio. Hence, a change in Mach number results in a nearly no change in the dominant modes.
Thus, with the assumptions mentioned before, a reduced basis constructed at one flight point can reasonably
span the entire flight envelope.

2.4. Aeroelastic Framework

In the present work, the reduced-order aerodynamic system, as described in the previous section, gen-
erated using BPOD, replaces the full order unsteady aerodynamic model in the PROTEUS framework.
For the purpose of completeness, the state-space equation for the coupled dynamic system is derived. The
governing equation of a linear dynamic structural model is given by:

Mp̈ + Kp = Fs (20)
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where M is the global mass matrix, K is the global stiffness matrix, p contains the structural degrees of
freedom and Fs is the force vector. This system of equations can be converted to a first order state-space
system by including both ṗ and p in the vector of state variables, resulting in:(

p̈

ṗ

)
=

[
0 −M−1K
I 0

](
ṗ

p

)
+

[
M−1

0

](
Fs

0

)
(21)

(
p̈

ṗ

)
= As

(
ṗ

p

)
+ Bs

(
Fs

0

)
(22)

where I is the identity matrix, 0 the zero matrix, and As and Bs the structural state and input matrices,
respectively. Coupling Equations 7 and 22 and performing some algebraic manipulation, results in the
reduced-order dynamic aeroelastic state-space system:

ẋ = Aaex + Baeu(
F

p

)
= Caex + Daeu

(23)

where the state vector x is given by
[
c ṗ p

]T
, F contains unsteady lift and moment forces and Aae, Bae,

Cae and Dae are the aeroelastic state, input, output and feedthrough matrices.

2.5. Common Research Model

The NASA CRM [26], originally developed for the 4th AIAA drag prediction workshop, is used as a case
study for the current analysis. The main characteristics of the aircraft are summarized in Table 3. Figure
12 depicts the wing planform. The wing consist of 54 ribs with a rib spacing of 0.55 m that are taken into
account as concentrated masses. Additionally, fuel, engine, leading edge devices and trailing edge devices
are also accounted for as concentrated masses. The top and bottom skin of the wing is strengthened with
the help of stringers that run along the span of the wing.

Table 3: Characteristics of the CRM wing.

Parameter Value

Span 58.769 m
Leading edge sweep angle 35 deg
Wing aspect ratio 8.4
Taper ratio 0.275
Planform wing area 412 m2

Cruise Mach 0.85
Design Range 14,300 km
Design Payload 45,000 kg
Maximum takeoff weight 296,000 kg

2.6. Response to Varying Gust Length

To demonstrate the application of the reduced-order aeroelastic framework in determining the gust
response of aircraft, the CRM wing model is subjected to a discrete 1-cosine gust of varying gust lengths.
The 1-cosine profile for the discrete gust is given by [4]

U =
Uds

2

(
1− cos

(πs
H

))
(24)
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Figure 12: CRM wing planform.

where U is the gust velocity, s the distance penetrated into the gust, H the gust gradient, and Uds the
design gust velocity defined as

Uds = UrefFg

(
H

350

)1/6

(25)

where Uref is the reference velocity that reduces bi-linearly from 17.07 m/s at sea level to 13.41 m/s at 4,572
m and then to 6.36 m/s at 18,288 m, and Fg is the flight profile alleviation factor related to the aircraft
maximum take-off weight and maximum landing weight.

Figure 13 depicts the four different gust velocity profiles having gust gradients of 9 m, 30 m, 80 m and
110 m. Figures 14 and 15 depict the root bending moment and root torsional moment responses of the
CRM wing to the four different gust gradients as obtained by the FOM and the ROAM, using 20 out of
1188 modes, for a flight point of M = 0.73 at an altitude of 11,000 m. As can be seen, the error in the
responses from the ROAM as compared to the responses from the FOM is less than 0.5% across the entire
time history. With respect to computational efficiency, the ROAM took 160 s to build and 1.2 s to simulate
whereas the FOM took 29.3 s to simulate. The time required for building the ROAM outweighs the benefit
in this case, because only a small number of flight points are included. The simulation time, however, is
decreased by 96%, so if more flight points will be included, the reduction in simulation time will at some
point outweigh the time spend on building the ROAM, as is demonstrated in the next subsection.
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Figure 13: Gust Profile for different gust gradients.
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Figure 14: Root bending moment response for the FOM
and ROAM of the CRM wing.
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Figure 15: Root torsional moment response for the FOM
and ROAM of the CRM wing.

2.7. Response across the flight envelope

To demonstrate the applicability of the reduction method, the response of the standard backward swept
CRM wing and a forward swept version of the CRM wing using both the ROAM and the FOM is evaluated
at 36 different flight points across the flight envelope. For each flight point, 68 different gust gradients,
ranging from 9 m to 107 m, are considered, bringing the total number of evaluated flight points to 2448.
For the froward swept version, a forward sweep of 36 degrees is applied on the leading edge. Table 4 gives
a summary of the different flight conditions considered in this study. A reduced basis is calculated at the
cruise condition with a cruise speed of 220 m/s at 10 km altitude and a Mach number of 0.73. The altitude
has been reduced from the standard 11 km to 10 km in order to bring down the Mach number and remain
within the validity of the high subsonic potential flow theory. The first 20 out of a total of 1188 aerodynamic
modes of this basis are used as the global reduced basis for the ROAM.
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Table 4: List of flight points.

Flight parameter Number

Flight speed 3
Altitude 12
Gust gradient 68
Total number of points 2,448

The load plots over the complete flight envelope, also called potato plots, for combination of root bending
moment, root shear force and root torsional moment for both backward swept wing and forward swept wing
are shown in Figures 16, 17, 18 and 19. A good agreement of the ROAM with the FOM across the entire
flight envelope is obtained with the maximum error being less than 0.5%.
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Figure 16: Root bending moment versus shear force for
the backward swept CRM.
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Figure 17: Root torsion moment versus shear force for the
backward swept CRM.

Table 5 compares the computational effort required by the FOM and the ROAM for sweeping the flight
envelope. The time related to the model setup for the ROAM is kept low by using the single reduced
basis as the global basis, as was explained before. The achieved reduction in simulation time is an order of
magnitude larger than the extra time required for creating the ROAM, resulting in an 85.5% saving in the
computational effort in identifying the critical loads.

Table 5: Breakdown of computational time required for the critical load identification (Values in the bracket indicate
savings in computational time of ROAM simulations with respect to FOM simulations in terms of percentage).

Model setup
(min)

Simulation time
(min)

Total time
(min)

FOM 0 171 171
ROAM 2.7 22.1 24.8
Difference 2.7 (-) 148.9 (87.1%) 146.2 (85.5%)
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Figure 18: Root bending moment versus shear force for
the forward swept CRM.
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Figure 19: Root torsion moment versus shear force for the
forward swept CRM.

3. Optimization Framework

As has been mentioned before, in the case of gust loads, there is no prior information on the flight
point which leads to the critical load. During the optimization process, for every iteration, an update in
the design of the wing would lead to a modification in the aeroelastic characteristics of the wing, which
could result in a different critical gust load. As a result, at every iteration, a range of load cases across the
entire flight envelope needs to be evaluated to determine the worst case gust load. Hence an optimization
framework, depicted in Figure 20, is formulated which has the capability to determine the critical gust
load at every iteration in a computationally efficient manner. It starts with the identification of the worst
gust load for the initial design using the ROAM. Next, for the given critical dynamic and static load
conditions, PROTEUS analyses the initial design and calculates the analytical sensitivities which are then
fed to the optimizer. Optimizer calculates the new design variables which are fed to ROAM as well as
PROTEUS. ROAM analyzes the entire flight envelope with respect to the new design variables, identifies
the critical loads and feeds it back to PROTEUS. The process continues until an optimum has been reached.
Since the analytical sensitivities of the objective function and constraints, including the sensitivities of the
critical dynamic loads, are available, the gradient based optimizer Globally Convergent Method of Moving
Asymptotes (GCMMA) developed by Svanberg [39] is used.

Figure 20: Schematic representation of the optimization framework.
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3.1. Optimization Setup

References [40–43] have performed aero-structural sizing and optimization of the aforementioned CRM
wing subjected to only static loads. Stodieck et al. [44] performed aeroelastic tailoring of the CRM wing
by also taking into account the gust loads. Stodieck et al. used only 3 flight points to analyse the gust
loads and these flight points were also kept constant during the optimization. In the current study, for the
aeroelastic tailoring of the CRM wing, clamped at root, gust load analysis is carried out on 64 flight points
and at every iteration, to identify the critical gust loads, all the 64 points are evaluated. Table 6 shows
the material properties used for the CRM wing. To account for the effect of material scatter, barely visible
impact damage and environmental effects, the strength allowables are knocked down by a factor of 0.416
[45]. Table 7 gives the information regarding the optimization setup considered in the current study. The
objective is to minimize the structural weight of the wing. The wing is divided into 10 spanwise sections.
Each section of the top skin and the bottom skin consists of two laminates in the chordwise direction and
each section of each spar has one laminate. This distribution results in 64 unique laminates. The laminates
are represented by lamination parameters which describe the in-plane and out-of-plane behaviour of the
composite laminates which are symmetric and unbalanced. For every laminate, there are eight lamination
parameters and one thickness variable resulting in a total number of 576 design variables. Figure 21 depicts
the laminate distribution along the top skin of the wing. It also shows the stiffness for each laminate, where
the wing stiffness distribution is represented by the polar plot of thickness normalized modulus of elasticity
Ê11(θ) which is given by

Ê11(θ) =
1

Â−1
11 (θ)

(26)

where Â is the thickness normalized membrane stiffness matrix and θ ranges from 0 to 360 degrees.

Table 6: Material Properties.

Property Value

E11 147 GPa
E22 10.3 GPa
G12 7 GPa
ν12 0.27 GPa
ρ 1600 kg/m3

Xt 2280 MPa
Xc 1725 MPa
Yt 57 MPa
Yc 228 MPa
S 76 MPa

Table 7: Optimization Setup.

Type Parameter # responses

Objective Minimize Wing Mass 1

Design Variables
Lamination Parameter

576
Laminate Thickness

Constraints

Laminate Feasibility 384
Static Strength 1024/load case
Buckling 4096/load case
Aeroelastic Stability 10/load case
Aileron Effectiveness 1/load case
Local Angle of Attack 22/load case

Lamination feasibility equations formulated by Hammer et al. [46], Raju et al. [47] and Wu et al. [48]
are applied to make sure that the lamination parameters represent actual ply distributions. The static
strength of the laminate is assessed by the failure envelope calculated using Tsai-Wu criterion formulated
for lamination parameter domain by Khani et al. [49]. The stability of the panel in buckling is based on an
idealized buckling model formulated by Dillinger et al. [50]. To ensure that the wing is aeroelastically stable,
the real part of the eigenvalues of the state matrix should be less than zero within the flutter flight envelope.
The local angle of attack is constrained to a maximum of 12 degrees and a minimum of -12 degrees. The
aileron effectiveness computed as the negative ratio of the roll coefficient induced by the aileron deflection
and the roll coefficient due to the roll manoeuvre, is set to a minimum of 0.1 to ensure reasonable handling
quality [50].

Table 8 gives the information on the static load cases which are used for the current study. These
load cases provided by NASA, represent the cruise condition, 2.5g symmetric pull up manoeuvre and -1g
symmetric push down manoeuvre. With respect to dynamic load cases, 84 flight points covering the entire
flight envelope are investigated. For each flight point, 40 gust gradient both positive as well as negative,
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Figure 21: Laminate Distribution of the top skin of CRM.

ranging from 9 m to 107 m are considered. To simulate the effect of different mass configurations on the
dynamic loads, 40 different fuel configurations were selected for initial evaluation. These configurations were
selected based on requirements given by EASA CS-25 [4] which states that:

1. Load combinations must include each fuel load in the range from zero fuel to the selected maximum
fuel.

2. Any critical fuel loading conditions, not shown to be extremely improbable, which may result from
mismanagement of fuel.

Out of these 40 configurations, 6 critical combinations, depicted in Table 9, are included in the dynamic
loads analysis. Thus, in total, 20,160 load cases will be scanned to determine the critical loads. Figure 22
displays the flight envelope with their respective flight point ID. For each gust load case, the wing response
is analyzed at six time instances namely maximum and minimum root bending moment, maximum and
minimum tip displacement and maximum and minimum tip twist. It will be shown later in the results part
of the paper that with these six instances, the most critical load on the wing across the entire time history
of the gust can be approximated.

Table 8: List of Static Loadcases.

Loadcase ID
Veq

(m/s)
Altitude

(m)
Load Factor

Fuel level/Max fuel
(%)

1 136 11000 1 70
2 240 3000 2.5 80
3 198 0 -1 80
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Table 9: Details of Fuel Configurations Considered in Dynamic Load Cases.

Fuel Mass Case ID
Fuel Tank 1

(%)
Fuel Tank 2

(%)
Fuel Tank 3

(%)
Fuel Tank 4

(%)

1 0 0 0 0
2 80 0 0 0
3 0 0 0 80
4 0 0 80 80
5 80 0 0 80
6 80 80 80 80
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Figure 22: Flight Envelope.

3.2. Results

It took 42 iterations to obtain an optimized configuration resulting in a structural weight of 8,684 kg
which is 86.5% of the initial weight. Figure 23 shows the stiffness and the thickness distribution of the
optimized CRM wing. The strain, and buckling constraints can be seen in Figure 24. The inner half of the
wing is mainly dominated by strain and buckling constraints, whereas the outer half is dominated by aileron
efficiency and strain constraints. In the inner half, the region near the wing root is dominated by buckling
and as a result, the out of plane stiffness properties are more pronounced as compared to the rest of the
wing. The middle part of the wing is sized by the strain and hence the in-plane stiffness are oriented along
the wing axis to maximize the load carrying capabilities of the wing. The thickness in the inner half of the
wing increases from the root till the region around the engine. Additionally, the front part has a higher
thickness as compared to the aft, thus shifting the elastic axis forward and introducing wash-out twist upon
wing bending which alleviates the load. In the outer half of the wing, the in-plane stiffness are oriented aft
to increase the aileron effectiveness. Furthermore, the aft part is thicker than the front part, shifting the
elastic axis aft thus making it beneficial in terms of aileron effectiveness.

Figures 25 and 26 depict the critical loads at various iterations in the optimization process on the top and
bottom skin of the CRM wing respectively. For each laminate, the number outside the bracket indicates the
critical flight point, the number inside the bracket indicates the fuel mass case ID and the colour indicates
the critical gust gradient. The laminates with grey colour are critical with respect to the static load cases.
Flight points 1, 2 and 3 are static load cases described in Table 8 and the rest are the dynamic flight points
as shown in the Figure 22.

Looking at the critical loads, the change in the design variables leads to modification in the aeroelastic
properties of the wing, which results in the variation of critical loads. Figure 27 shows the mean change in
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Figure 23: Stiffness and thickness distribution for the optimized CRM wing (In-plane stiffness: black, out-of-plane
stiffness: red).

the design variables along the optimization process and Figure 28 shows the corresponding change in the
frequency of the first bending mode. Additionally, Figure 29 shows for every iteration, the number of critical
load cases that have been added or removed with respect to the previous iteration. As can be seen, the
biggest change in the design variable as well as the first bending mode frequency happens in the first few
iterations. As a result, the change in the critical loads is also significant in the first few iterations. Thus, in
the case of the dynamic aeroelastic optimization process, the worst case gust loads need to be determined
at every new iteration during the first few steps as the change in the later steps is minimal.
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(a) Top Skin (b) Bottom Skin

(c) Spars

Figure 24: Strain and buckling factor distribution on the optimized CRM wing.
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Figure 25: Critical flight points and gust gradients on the top skin during the optimization process.

Figure 26: Critical flight points and gust gradients on the bottom skin during the optimization process.
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Figure 27: Mean change in the design
variables.
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Figure 29: Total number of the change
in the critical load cases.

To understand the importance of updating critical loads during the optimization process, the CRM wing
is optimized with respect to the critical loads determined only for the initial design. Figure 30 shows the
maximum strain factor for each laminate of the optimized wing obtained by analyzing the entire flight
envelope. As can be seen, the optimized wing violates the strain constraints by a maximum of 5 %. This is
due to the fact that the critical loads are different than the loads that the wing is optimized for. Although
for the current design, the maximum violation is of only 5%, in the area of loads, such a small violation can
cause a huge penalty in terms of weight of the wing. Additionally, the magnitude of the violation depends
on how close the initial design is with respect to the optimum configuration. If there is a big difference,
then the violation could be bigger as well. The failure of the optimized wing under gust loads illustrates the
importance of identifying gust loads at various iteration in the design process.

Figure 30: Strain factor distribution of the CRM wing optimized with a fixed set of critical loads.

Gust response is dominated by the dynamic pressure and the reference gust velocity. As per the cer-
tification requirements, the reference gust velocity decreases as the altitude increases. Hence, along with
cruise load case, the points at sea level also are responsible for the critical gust loads. With respect to gust
gradient, critical length increases as we move from the outer part towards the inner part of the wing. And
with respect to fuel mass configurations, fuel mass case 6 is the critical fuel mass case for the entire wing
except for the outer laminates in which fuel mass case 5 becomes critical.

It should be noted that the present study is performed on a clamped wing only. Due to the flight
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dynamics, the gust loads on a free flying aircraft are usually lower than on a clamped wing, however, the
critical gust load cases are still expected to change during the optimization process. The methodology,
proposed to identify critical gust loads at every iteration and include it in the optimization for the clamped
wings, can be adapted to a free flying aircraft as well.

As was mentioned before, the wing response is evaluated at six instances per gust load. To prove the
validity of this approach, the highest strain factor for the optimized wing is calculated by analyzing wing
response at every instance of the time history and compared with the highest strain factors analyzed by
taking into account only 6 aforementioned instances in the response. Figure 31 shows the increase in strain
factor by taking the entire time history into account. The highest difference is about 0.5%, thus validating
the approach taken.

Figure 31: Comparison of the strain factor determined for the entire time history with strain factor determined only
at 6 aforementioned instances.

4. Conclusions

In this paper, a dynamic aeroelastic optimization method was formulated using the ROAM. The ROAM
which is based on PROTEUS was created by reducing the order of the unsteady vortex lattice model and
coupling it to the structural solver. To find a suitable MOR method for such an aerodynamic model, MT,
BT, POD, and BPOD methods when applied to the unsteady vortex lattice model were investigated by
applying them to two test cases. The combination of high accuracy with very few states, relatively low
computational cost for a typical model size of interest, and sufficient robustness, made the BPOD the most
suitable MOR method for the aeroelastic framework.

The ROAM formulated using the BPOD method predicts the wing responses caused by different gust
gradients very accurately. To be able to efficiently cover the complete flight envelope of an aircraft for a
given wing planform, a new formulation for the state-space system was derived where the influence of the
equivalent airspeed was isolated from the state-space matrices. Furthermore, it was demonstrated that the
Mach number, which in this vortex lattice model is implemented using the Prandtl-Glauert correction, has
a negligible effect on the reduced basis. A single ROM could thus be used to analyze the aeroelastic loads
throughout the flight envelope, reducing the computational cost significantly. The comparison of the loads
acting on a backward and forward swept version of the NASA CRM obtained with the ROAM and FOM
proved the validity of the assumption. A considerable saving in computational cost of about 89% for the
analysis of 2448 flight points, was obtained using this method.

Using the developed ROAM, a dynamic aeroelastic optimization framework was formulated and thickness
and stiffness optimization of the CRM wing clamped at the root was carried out. The results showed that
both static as well as gust loads are critical for a composite clamped wing. Furthermore, the change in
the design variables was highest during the first few iterations which lead to a considerable change in the
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critical loads in the first few iterations. This showed the importance of updating the critical loads along the
dynamic aeroelastic optimization process.
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