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Relocating Strategies under Parking Constraints for a Fleet of Shared Automated Vehicles 

1. Study objectives 

With the possible emergence of self-driving vehicles offering demand-responsive, taxi-like, transport 

services, questions about the impact of such fleets on transport system utilization and performance 

are gaining relevance. In this study, the impact of shared automated vehicles (SAV) on urban traffic is 

analysed in terms of (1) congestion, (2) parking consumption, and (3) a potential transport mode 

shift. In particular, the focus is put on the relocation strategies for idle vehicles of a fleet of SAV. 

Vehicle relocation is part of dispatching strategies, and has shown to have an impact on the 

performance of taxi fleets (Bailey and Clark 1992; Winter et al. 2017a). The relocation of SAVs is 

different from relocation of regular taxi services, because SAVs are fully compliant, always ready for 

operation, and do not compete with other fleet members (Zhang et al. 2016). In this study, we build 

on the relocation studies for taxis, but takes this fundamentally different dimension of SAVs into 

account. Four relocation strategies have been distinguished in the literature for SAV or comparable 

transport services: remaining at the drop-off location of the last customer (Fagnant and Kockelman 

2014; Lioris et al. 2010; Maciejewski et al. 2016); relocating the vehicle based on demand 

anticipation (Sayarshad and Chow 2017; Zhang et al. 2016); relocation to guarantee distribution of 

supply (Azevedo et al. 2016; Fagnant and Kockelman 2014; Zhang et al. 2016); or letting the vehicle 

cruise through the network (Zhang et al. 2015). In none of these existing studies, the analysis of the 

dispatching and relocation strategies has taken possible spatial constraints caused by limited parking 

facilities into consideration.  

In this study, five heuristic relocation strategies for SAV are tested under the constraints of limited 

parking facilities. The SAV are assumed to provide flexible public door-to-door transport services by 

operating in a cooperating fleet and to be allocated by one common dispatcher. This research is part 

of an on-going project aiming at capturing the spatial requirements of SAV and how parking policy 

can contribute to shaping the success of SAV services while mitigating undesirable externalities such 

as increased traffic volumes or an excessive occupation of parking facilities.  

2. Relocation Strategies and Modelling approach 

To analyse the impact of different approaches for managing idle vehicles in a fleet of SAV, five 

heuristic relocating strategies are tested in an agent-based simulation model, partly in combination 

with parking search strategies for on-street parking facilities. The strategies consist of (1) remaining: 

remaining idle at the last drop-off location, (2) cruising: cruising randomly through the network, (3) 

demand anticipation: relocating and parking in a demand-anticipatory manner, (4) supply 

anticipation: relocating and parking to achieve an even distribution of idle vehicle supply in the 

network on a zonal level, (5) demand-supply balancing: relocating and parking in order to balance 

demand and supply for the vehicles on a zonal level. The first two strategies allow benchmarking the 

three anticipatory relocation strategies in terms of additional driven mileage, congestion and 

location-specific parking space consumption. The relocation and parking heuristics applied in these 

five strategies are specified in more detail in Table 1. For the process of selecting a parking location, 

the vehicle dispatcher is assumed to have full knowledge about the current availability of parking 

spots and is able to reserve free parking spots for the SAV. The relocation of a vehicle can be 

interrupted at any time during the simulation if new requests for SAV appear. In such cases the 
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vehicle path is diverted towards the pick-up location of the incoming request and any potential 

parking reservation is cancelled. 

Table 1: Overview of the proposed relocation and parking strategies  

 
remaining cruising 

demand 
anticipation 

supply 
anticipation 

demand-supply 
balancing 

parking 
constraints 

unlimited 
parking facilities 

per link 
not applicable limited parking facilities per link 

relocation 
strategy in case 
no further open  
request is 
present 

no relocation 

vehicle starts 
randomly 

cruising through 
the network 

vehicle moves 
to a link with 
free parking 
spots, link 

selection based 
on the 

probability of a 
future request 

occurrence until 
horizon time tH 

vehicle moves 
to the zone with 

the lowest 
forecasted 

number of idle 
vehicles parked 
there at horizon 

time tH 

vehicle moves 
to the zone with 

highest 
forecasted 

vehicle deficit 
at horizon time 

tH 

parking 
strategy 

vehicle parks at 
current drop-off 

location (with 
unlimited 
parking 

facilities) 

no parking 
vehicle parks at 

selected link 

vehicle parks at the link with 
highest number of free parking 

spots within the zone of 
destination 

 

 

From the simulation, the following key-performance indicators are collected, based on which the five 

relocation strategies are analysed: 

 the total generalized passenger travel costs, representing the overall system performance for 

each relocation strategy, 

 the modal split, reflecting the agents’ choices in the face of the performance of the SAV, 

 the waiting times for agents using SAV, representing the service quality provided by SAV, 

 the ratio of SAV mileage with and without passengers, representing the service efficiency of 

SAV, 

 the extra driven SAV mileage due to relocation and parking of the vehicles, 

 the use of curbside parking space by SAV per zone throughout the day. 

Simulating SAV in a setting where agents make mode choices based on the performance of the 

modes allows investigating the impact of operational decisions concerning SAV on the success of 

SAV. A crucial aspect for SAV becoming a competitive mode are waiting times experienced by users. 

Short waiting times can only be achieved by operating a sufficiently large fleet of SAV. With the focus 

being put on relocating and parking idle vehicles of such a fleet, the spatial requirements of idle 

SAVs, in terms of quantity and location, can be analysed. This analysis can be used for developing 

parking management strategies for SAV that seek to provide comparable levels of service across 

space (in terms of waiting time) while minimizing undesired externalities of SAV such as overly 

occupying curbside parking space or induced congestion due to parking search or empty cruising of 

SAV.      
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3. Model implementation 

The five relocation strategies are assessed in an agent-based simulation model (MATSim), which 

simulates mode choice as a result of the performance of a mode vis-à-vis an agent’s desired activity 

pattern (Horni et al. 2016). Each agent has a daily plan with scheduled activities and trips to reach 

these activities. After the simulation of a complete day, plans are scored based on their utility, and 

agents can partly alter their plans for the next run, including changing modes. Agents memorize a set 

of plans and the respective scores, which allows them to select the best plan with each run. The 

selection of plans is based on the Charypar-Nagel Utility Function inherent to MATSim (Nagel et al. 

2016), which assesses the performed daily activities in terms of punctuality and activity performance. 

The mode choice model features cost and time related parameters as well as alternative specific 

constants for each mode. The values for parameters and their coefficients are derived from 

established values for the Dutch population for the currently existing modes. For SAV it is based on 

values derived from a stated-preference experiment featuring these vehicles, which has been 

previously conducted as part of this research project (Winter et al. 2017b). 

4. Application and preliminary results 

To analyse what impact SAV can have on urban mobility and urban infrastructure use, all five 

strategies are tested for the case study of Amsterdam. For this case study, more than 180,000 agents 

are generated based on the Dutch activity-based model ALBATROSS (Arentze and Timmermans 

2004). These agents represent a fifth of all agents traveling within, towards or away from Amsterdam 

in the ALBATROSS model. The agents travel in a network consisting of more than 30,000 links with 

limited parking facilities (around 72,162 parking places are provided). The study area covers the 

entire built-up area of Amsterdam, which is divided into 82 zones (Figure 1). Simulated modes are 

private car, a fleet of SAV, public transport, biking and walking. Different scenarios are drawn in 

terms of the fleet size of the SAV service, starting at 500 vehicles and going up to a fleet size that 

could potentially serve the current travel demand for trips in private motorized vehicles as boundary 

cases.  

In this abstract we describe the preliminary results for a sample of 2105 the agents, for which the 

functionality and validity of the simulation model has been tested. These results are not discussed as 

findings yet, mainly for the following three reasons: 1) the underlying behavioural model needs to be 

further calibrated, 2) the selected fleet size of 80 SAV has been too small in order to satisfy the 

simulated demand for SAV and 3) convergence of the agent behaviour has not been reached within 

the simulated period of 50 iterations. Nevertheless, parts of the outcome are presented in Figure 2a-

c and Table 2 in order to showcase what kind of results will be obtained with the simulation model in 

terms of the key-performance indicators discussed above.  
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Figure 1: Network (white lines), zones (yellow areas) and parking facilities (blue dots) as featured in the case study of the 
city of Amsterdam 

 

 
 

Figure 2a: Exemplary results- passenger waiting times in minutes for SAV (minimum: blue, average: yellow, 
maximum: red) per zone for the relocation strategy remaining 



6 
 

 
 

Figure 2b: Exemplary results- congestion levels on the road network (here no congestion has been detected) for the 
relocation strategy demand anticipation in the morning peak hour at 9.00 am. 

 

 
 

Figure 2c: Exemplary results- parking duration in hours for SAV (bar charts, showing the minimum, average and 
maximum) and the use ratio of the available parking facilities (indicated by the different shades of red per zonal 
polygon) per zone for the relocation strategy supply anticipation 
 

Table 2: Exemplary results for the five relocation strategies for a fleet size of 80 SAV serving 2105 agents, obtained after 
50 iterations of the simulation model: modal split, average passenger waiting times for SAV, average parking duration for 
SAV, average empty drive ratio for SAV 

 

modal Split: 
[bike, car, public 

transport, SAV, walk] 

average passenger 
waiting time for SAV 
in minutes [number 

of occurrences] 

average parking 
duration for SAV in 
minutes [number 
of occurrences] 

average 
empty drive 

ratio  for SAV 
in % 

remaining 
[40.8%, 25.7%, 1.6%, 

24.9%, 6.8%] 
148.7 [1877] 281.4 [92] 27.09% 

cruising 
[42.9%, 25.3%,  1.3%, 

23.8%, 6.7%] 
148.8 [1828] 344.88 [80] 28.50% 

demand 
anticipation 

[42.1%, 25.6%, 1.4%, 
24.5%, 6.2%] 

146.6 [1859] 273.6 [95] 27.95 % 

supply anticipation 
[41.5%, 25.2%, 1.8%, 

24.3%, 7.1%] 
141.3 [1868] 297.7 [87] 28.3 % 

demand-supply 
balancing 

[42.4%, 24.7%, 1.8%, 
24.1%, 6.9%] 

141.4 [1862] 286.5 [91] 28.82 % 
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