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Multiscale finite volume method for finite-volume-based simulation of
poroelasticity

Irina Sokolovaa, Muhammad Gusti Bastisyaa, Hadi Hajibeygia,∗

aFaculty of Civil Engineering and Geosciences, Department of Geoscience and Engineering, Delft University of Technology, Delft, The
Netherlands

Abstract

We propose a multiscale finite volume method (MSFV) for simulation of coupled flow-deformation in heterogeneous
porous media under elastic deformation (i.e., poroelastic model). The fine-scale fully resolved system of equations
is obtained based on a conservative finite-volume method in which the displacement and pore pressure unknowns
are located in a staggered configuration. The coupling is treated through a fully-coupled fully-implicit formulation.
On this fully-coupled finite-volume system, coarse-scale grids for flow and deformation are imposed. Local basis
functions for scalar pore pressure and vectorial displacement unknowns are then solved over their respective local
domains at the beginning of the simulation, and reused for the rest of the time-dependent simulations. These local
basis functions are then clustered to form the prolongation operator. As for the finite-volume nature of the proposed
multiscale system, finite-volume restriction operators for poroelastic systems are utilised. Once the coarse-scale
system is solved, its solution is prolonged back to the original fine-scale resolution, providing approximate fine-scale
solution. The finite-volume multiscale formulation provides conservative stress and mass flux both at fine and coarse
scale. Several numerical test cases are provided first to validate the fine-scale finite-volume discrete fully-implicit
simulation, and then to investigate the accuracy of the proposed multiscale formulation. Moreover we compare our
fully implicit MSFV method with hybrid multiscale Finite Element-Finite Volume (h-MSFE-FV). Our multiscale
method allows for quantification of the elastic geomechanical behaviour with using only a fraction of the fine-scale
grid cells, even for highly heterogeneous time-dependent models. As such, it casts a promising approach for field-
scale quantification of the mechanical deformation and stress field due to injection and production in a subsurface
formation.

Keywords: Multiscale finite-volume method, poromechanics, geomechanics, porous media, finite volume method,
Algebraic multiscale solver.

1. Introduction1

Simulation of fluid flow and mechanical deformation in subsurface geological formations is challenging, since2

it involves large-scale models with highly heterogeneous coefficients and complex coupled fluid-rock interactions.3

Simulation accuracy is crucial for proper prediction of subsurface fluid dynamics and rock mechanics (stress and4

deformation), as well as safety assessments of the engineering applications (e.g., hydrocarbon and geo-thermal pro-5

duction). Note that subsurface flow and mechanics are coupled, and affect each other through effective stress and mass6

accumulation, according to the Biot theory [1].7

The demand for accurate simulations urges the use of high-resolution models to capture both mechanical (i.e.,8

elastic moduli) and hydraulic (i.e., permeability) properties. While the accuracy depends on resolving the highly9

heterogeneous coefficients with the physics-based coupled system of equations, high-resolution simulations of such10
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systems are often impractical due to their computational cost. As such, computational efficiency depends on devel-11

opment of advanced simulation techniques which are (1) amenable for massive parallel processing, and, at the same12

time, (2) allow for accurate model order reduction (i.e., construct accurate (multilevel) coarse systems).13

Classically, finite volume (FV) schemes have been the methods of choice for simulation of flow and transport [2],14

whereas finite-element (FE) methods have been preferred for mechanical deformation [3]. There exist several exam-15

ples in the literature where conservative extensions of finite-element (FE) methods (e.g., mixed-FE) have been used16

for flow and transport simulations (e.g., see [4, 5]), as well as mechanical deformation [6]. Similarly, finite-difference17

[7] and FV methods have been proposed recently for mechanical deformation [8–10], motivated by their locally-18

conservative discrete stress representations with only 1 degree-of-freedom (DOF) per element. These FV methods for19

poromechanics are developed for sequentially-coupled flow-mechanics [10, 11], which depend on a careful treatment20

of the flow-mechanics coupling terms [12–17]. Fully-coupled approaches would add to the computational complexity,21

though they would naturally extend the stability of the simulation (compared with sequential approaches). Of partic-22

ular interest is to develop an efficient and scalable fully-implicit flow-deformation system which would benefit from23

both enhanced stability and computational efficiency.24

Irrespective of the type of the discretisation scheme and the choice of the coupling, the fine-scale highly resolved25

systems are required to be solved with advanced methods which are scalable for real-field applications. The multi-26

scale finite-volume (MsFV) [18–22] and finite-element (MsFE) [23–26] methods are developed to provide accurate27

coarse-scale quantities when the underlying fine-scale system entails highly heterogeneous coefficients [27–32]. These28

methods allow for aggressive coarsening, via locally-solved basis functions, and have been so far extensively devel-29

oped for flow and transport with complex fluid physics, from static 2-level multiscale sequential [33–35] to dynamic30

multi-level fully implicit systems [36–38]. Recently, a multiscale finite-element method was developed based on a FE31

fine-scale system for elastic deformation [39–41].32

In this work, we develop a fully-implicit multiscale finite volume method for fully-coupled FV-based porome-33

chanical formulation under the linear elastic deformation. The governing equations are discretised by employing a34

finite-volume scheme for both flow and mechanics in a fully coupled staggered-grid approach. This fully-coupled ap-35

proach, compared with the sequential approaches, extends the stability of our simulations and generates a convenient36

framework for the cases with strong flow-deformation coupling terms. On this fully coupled locally conservative37

stress-mass system, multiscale coarse grids are imposed. Local basis functions for both flow (pore pressure) and38

deformation vector are solved, subject to local boundary conditions. The finite-volume coarse scale system is then39

constructed and solved in a finite-volume framework, using these local basis functions. The coarse-scale solution is40

interpolated back to the original fine-scale resolution, providing a good-approximate fine-scale solution. Through sev-41

eral homogeneous and heterogeneous time-dependent test cases, we first demonstrate the 2nd order of accuracy of our42

fully-coupled finite-scale discrete FV poromechanics formulation, and then the accuracy of our multiscale method for43

time-dependent scenarios. To provide a more thorough study, the accuracy of the MSFV solutions is also compared44

against the multiscale hybrid-FE-FV method.45

Our brief paper is organised as follows. In section 2, the governing equations are briefly described. Then, the fully-46

coupled fine-scale finite-volume discrete system is presented in section 3. Subsequently, the multiscale finite-volume47

method is developed in section 4. Numerical experiments are then demonstrated in section 5, first to validate the48

consistency of our fully-coupled FV formulation, and then to investigate the performance of MSFV method. Finally,49

in section 6, the concluding remarks are given.50

2. Governing equations51

We consider a single-phase flow of slightly compressible fluid through deformable porous media. Subsurface52

rock is modelled based on linear elastic behaviour assumption with no gravity effect. The coupling of mechanical53

deformation and fluid pressure is modelled based on Biot’s theory [1]. Under linear poroelasticity assumption, the54

domain Ω with external boundary Γ is considered. The set of governing equations for conservation of mass and linear55

momentum reads56

∇ · (Cdr : ∇sū − bpI) = f (1)
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and

b∇ · ˙̄u +
1

Mb
ṗ − ∇ · (λ · ∇p) = q, (2)

respectively. Here, ū and p are displacement vector and pore pressure, respectively, Cdr is drained elasticity tensor,
Mb is the Biot’s modulus, and b is Biot’s coefficient. Moreover, λ = K

µ
is the mobility, where K is rock permeability

tensor and µ is fluid viscosity. Note that ∇s is the symmetric gradient operator, and ṗ and ˙̄u represent the time partial
derivatives of p and ū. The linear elasticity constitutive law relates the effective stress to strain through

σ = Cdr : ∇sū. (3)

Equations (1) and (2) subject to the proper selection of the following general boundary conditions57

Prescribed boundary displacement: ūΓ = ū (4a)
Prescribed boundary stress: (Cdr : ∇sū − bpI) · n̄ = f̄ (4b)

Prescribed boundary pore pressure: pΓ = p (4c)
Prescribed boundary flux: −(λ · ∇p) · n̄ = q (4d)

Initial pressure: pΩ = pΩ(t = 0) (4e)
Initial displacment: ūΩ = ūΩ(t = 0) (4f)

form a well-posed system of equations for the vector of displacement ū and pressure p as the unknowns.58

3. Fine-scale formulation and simulation strategy59

This section presents the fully-coupled FV formulation for poroelastic simulation. Similar as in the literature60

[10, 39, 41], the continuous displacement and pressure solutions are described according to their fine-scale nodal61

values and fine-scale basis (shape) functions. To do so, first the displacement and pressure unknowns are placed on a62

staggered grid as shown in Fig. 1. Both pressure and stress have a control volume (CV) assigned as for the FV nature

Figure 1: Fine-scale FV discretization grid. Pressure control volumes are denoted by solid black lines; dashed green lines correspond to stress
control volume boundaries. Displacement interpolation regions coincide with pressure control volumes. Pressure unknowns are placed at fine-scale
cell centeres, whereas displacement unknowns are located at the nodes. Permeability and elastic moduli are defined at the fine-scale cell centres.

63

of the discretisation [10]. Especially for our fully coupled extension for heterogeneous models, such configuration64

allows for the same data structure of permeability and elastic properties which generates a convenient framework to65

treat the subsurface heterogeneity.66

In order to obtain a conservative numerical solution for displacement, linear momentum balance equation is inte-
grated over stress control volumes Ωu

i , i.e.,∫
Ωu

i

∇ · (Cdr : ∇sū − bpI) dV =

∫
Ωu

i

f dV. (5)
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The left hand side (LHS) can be rewritten as a surface integral, using the divergence theorem, i.e.,∫
∂Ωu

i

(Cdr : ∇sū) · n̄ dS − b
( ∫

∂Ωu
i

p dS
)

I =

∫
Ωu

i

f dV. (6)

Note that if weighted integrals over element volumes are imposed, and is replaced by a weak formulation, a finite67

element discrete system is obtained [39]. In the LHS of Eq. (6), the first term corresponds to pure mechanical68

deformation (stress integral over closed surfaces), whereas the second term represents flow-deformation coupling69

(again, pressure integrated over closed surface).70

Similarly, FV discrete system for flow is obtained by integrating the balance equation (2) over pressure control
volume, i.e.,

b
∫

Ω
p
i

∇ · ˙̄u dV +

∫
Ω

p
i

(
1

Mb
ṗ − ∇ · (λ · ∇p)

)
dV =

∫
Ω

p
i

qdV, (7)

which is then re-written using divergence theorem as

b
∫
∂Ω

p
i

˙̄u · n̄ dS +
1

Mb

∫
Ω

p
i

ṗ dV −
∫
∂Ω

p
i

(λ · ∇p) · n̄ dS =

∫
Ω

p
i

q dV. (8)

Note that the first term in LHS represents the dependency of the flow on the displacement field.71

Similar to FE schemes, here in FV-based formulations one also needs to describe the continuum displacement and
pressure field based on the nodal discrete values. For the displacement, one can write

ū ≈
4∑

i=1

ūi Ni(x, y) in Ω̆u
i , (9)

where ūi are the displacement nodes (see Fig. 1) and Ni(x, y) are the interpolation (shape) functions corresponding to72

each node of the element Ω̆u
i . Similar as in the literature [10, 39], we employ bilinear functions for displacement. This73

interpolation allows for convenient integration of the displacement and its derivatives over any interface, specially74

over finite-volume control volumes. Note that our finite volume formulation provides locally conservative stress field,75

with much fewer degrees of freedom compared with the mixed-FE formulation [6].76

Similar formulation can be written for the pressure, which for the case of piece-wise constant approximation,
reads

p̄ ≈ pi in Ω
p
i . (10)

Employing bilinear fine-scale interpolation for displacement and a classical (piece-wise constant) interpolation77

for pressure, allows computation of the FV integrals of the pressure and displacement unknowns. Note that for the78

convective flow term we follow a two-point-flux-approximation (TPFA) scheme.79

The fully-implicit system of equation A x = F, using Euler backward (implicit) time-integration, is finally obtained
for the coupled displacement-pressure unknowns as[

Auu Aup

Apu App

]
︸        ︷︷        ︸

A

·

[
ūn+1

pn+1

]
︸︷︷︸

x

=

[
F̄u

Fp

]
︸︷︷︸

F

, (11)

where Fp = Q̄ +Cpn + Apuūn. The system matrix A is constructed by the finite-volume-based discrete entries for fluid80

and rock balance equations, x is the vector of the coupled unknowns, and F is the righ-hand-side vector containing81

source terms and explicitly known quantities. In addition, Auu stands for stiffness matrix for pure mechanical deforma-82

tion, App corresponds to sum of transmissibility and accumulation matrices, Aup and Apu represent flow-deformation83

and deformation-flow coupling terms, respectively, F̄u and Q are stress and flow volumetric source terms. Moreover,84

tn (and the index n) represents the previous time step, and C is the fluid mass accumulation matrix.85

For the test cases presented in this paper, the solution of the fully-implicit system (11) is obtained by using the86

Matlab backslash (exact solver) operator. For large-scale test cases, iterative solvers need to be used for the solution87

of this system.88
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4. Multiscale formulation89

The aim of multiscale method is to obtain an approximate fine-scale solution by using only a fraction of fine-scale90

cells. This is achieved by superimposing a coarse-scale grid on the fine-scale mesh, on which elastic and hydraulic91

properties are defined. The solution is obtained on a coarse scale via sets of local basis functions and interpolated92

back to the fine scale, using the same basis functions.93

For fully coupled 2D poromechanics system solved on N f fine-scale grid cells, there exist approximately (3N f )94

unknowns (1 pressure and 2 displacement per node). Thus, reducing the number of computational nodes would sig-95

nificantly reduce the size of matrix of linear system, and, consequently, improve the overall computational efficiency.96

In this work, a fully-coupled multiscale finite volume (MSFV) method is proposed for solving fully coupled porome-97

chanics system. Independent coarse grids are superimposed on flow and deformation fine-scale mesh. In practice,98

this allows to apply a higher coarsening ratio to large geomechanics models, whereas flow can be solved with lower99

coarsening ratios if necessary.100

The basis functions are obtained algebraically both for flow and mechanical deformation, in order to construct the101

prolongation operator and map the solution from coarse to fine scale. Restriction operators for flow and deformation,102

which map the fine-scale system to the coarse scale, are constructed in a finite volume manner as integration over the103

coarse control volumes.104

4.1. Multiscale formulation for fully coupled poromechanics system105

A multiscale formulation for fully coupled system of Eq. (11) requires construction of prolongation and restriction
operators. Prolongation operator P transforms solution vector from coarse scale to fine scale, whereas restriction
operator R brings quantities from fine to coarse scale. Thus, a coarse scale fully coupled poromechanics system for
the coarse-scale unknowns xc = (ūc, pc)T and righ-hand-side Fc = R (F̄u,Fp)T = R F yields

Ac xc = (R A P) xc = Fc. (12)

In order to obtain a coupled coarse scale system (12) with independent coarsening ratios applied to pressure and
displacement fields, global prolongation P and restriction R operators are constructed as

R =

[
Ru 0
0 Rp

]
(13)

and

P =

[
Pu 0
0 Pp

]
, (14)

where the sub-indexes u and p stand for sub-block operators for displacement and pressure, respectively. Note that the
block-diagonal structure of the prolongation and restriction operators indicate the independent flow-mechanics local
basis formulations. Once the coarse-scale system is solved, the approximate multiscale solution x ≈ x′ = (ū′, p′)T is
found as [

ū′n+1

p′n+1

]
= P

[
ūn+1

c
pn+1

c

]
. (15)

Note that the MSFV simulation strategy can be improved by adopting an iterative procedure, which allows error106

control to any desired accuracy.107

4.2. Construction of basis functions for mechanical deformation108

The approximate fine-scale displacement ū′ is then obtained from the coarse-scale solution as

ū′ = Puūc, (16)
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where prolongation operator Pu is constructed from displacement basis functions Φu such that Pu = [Φ1
u, ...,Φ

NH
u

u ].
Note that NH

u is the number of coarse-scale displacement nodes. The displacement basis functions are computed by
solving local momentum balance equation within primal coarse cells, subject to local boundary conditions as

∇ ·
(
Cdr : ∇sΦu

i
j

)
= 0 in ΩP

j

∇|| · (Cdr : ∇s
||
Φu

i
j) = 0 in ∂ΩP

j

Φu
i
j(x̄k) = δik ∀ x̄k ∈ {1, ...,NH

u },

(17)

where Φu
i
j stands for a basis function associated with coarse displacement node i in primal coarse block ΩP

j , subscript
|| denotes a reduced problem along primal coarse cell boundary ∂ΩP

j and δik is the Kronecker delta. While the local
basis functions are solved fully coupled, the localization condition, i.e., the reduced problems for both x- and y-
displacement in x- and y-directions are solved independently. Thus, no bending is allowed along the coarse cells
edges. The reduced-dimensional condition described by Eq. (17) is solved algebraically. For this purpose, the fine-

Figure 2: Primal coarse and fine-scale MSFV grids for mechanical deformation. ΩP
j denotes primal coarse block j and ∂ΩP

j corresponds to primal
coarse cell boundary.

scale displacement nodes are classified as vertex, internal, horizontal and vertical edge nodes as shown in Fig. 2 [20].
Displacement solution at vertex nodes is obtained by solving coarse scale Eq. (12). Thus, the linear system for 2D
mechanical deformation with reduced conditions along the coarse cells edges reads

AII
xx AIEh

xx AIEv
xx AIV

xx AII
xy AIEh

xy AIEv
xy AIV

xy
0 A||EhEh

xx 0 A||EhV
xx 0 0 0 0

0 0 A||EvEv
yy A||EvV

yy 0 0 0 0
0 0 0 (Ac)xx 0 0 0 (Ac)xy

AII
yx AIEh

yx AIEv
yx AIh

yx AII
yy AIEh

yy AIEv
yy AIV

yy
0 0 0 0 A||EhEh

xx 0 A||EhV
xx 0

0 0 0 0 0 0 A||EvEv
yy A||EvV

yy
0 0 0 (Ac)yx 0 0 0 (Ac)yy


·



u′x
I

u′x
Eh

u′x
Ev

u′x
V

u′y
I

u′y
Eh

u′y
Ev

u′y
V


=



0
0
0

(Fc)uc x

0
0
0

(Fc)ucy


, (18)

where Ai j are sub-matrices stating the connectivities between unknowns ui and u j [20, 43]. Here superscripts I, Eh, Ev,V109

stand for internal, horizontal and vertical edge nodes and vertex nodes, respectively, whereas ((Fc)uc x , (Fc)uTcy )
T =110

RuF̄u. Consequently, prolongation operator Pu is obtained by writing displacement at internal and edge nodes in111

terms of the known displacement at vertex nodes (coarse solution).112

With this approach, the resulting prolongation operator has a block structure, associated with x− and y− displace-
ment components, as well as xy and yx cross terms, i.e.,

Pu =

[
Pu

xx Pu
xy

Pu
yx Pu

yy

]
. (19)
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Thus, the approximate fine-scale displacement solution is obtained, taking the interconnection of x− and y− displace-
ment into account as [

ū′x
ū′y

]
=

[
Pu

xx Pu
xy

Pu
yx Pu

yy.

]
·

[
ūcx
ūcy

]
. (20)

An example of basis functions for homogeneous and heterogeneous cases is illustrated in Fig. 3.113

The restriction operator for displacement applies the same finite-volume integration in x- and y-directions over114

displacement coarse-scale control volumes. As such it has a block-diagonal structure with the same entries in each115

sub-block matrix, i.e.,116

Ru =

[
RFV

u 0
0 RFV

u

]
, (21)

where the sub-block matrix RFV
u have non-zero entries ri j = 1 only if the fine-cell j belongs to the coarse grid cell i.117

4.3. Construction of basis functions for flow118

Multiscale formulation for flow constructs basis functions Φp which are solved over dual coarse grids as shown in
Fig. 4, i.e.,

p′ = Pp pc, (22)

where Pp = [Φ1
p, ...,Φ

NH
p

p ]. Here, NH
p is the number of coarse-scale pressure elements. The basis functions are obtained

by solving the (flow-only) local mass balance equation, i.e.,
−∇ ·

(
λ · ∇Φp

i
j

)
= 0 in ΩD

j

−∇|| · (λ · ∇||Φp
i
j) = 0 in ∂ΩD

j

Φp
i
j(x̄k) = δik ∀ x̄k ∈ {1, ...,NH

p },

(23)

where Φp
i
j stands for a basis function associated with node i in dual coarse block ΩD

j , subscript || denotes a reduced119

problem along primal coarse cell boundary ∂ΩD
j and δik is the Kronecker delta. A detailed description of algebraic120

procedure for flow basis function calculation is presented in the literature [20].121

Figure 4: Dual coarse and fine-scale MSFV grids for flow. ΩD
j denotes dual coarse block j and ∂ΩD

j corresponds to dual coarse cell boundary.
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(a) (b)

Figure 3: Example of basis functions for mechanical deformation in homogeneous (i.e., Fig. 3a) and heterogeneous (i.e., Fig. 3b) cases. Here the
domain of 1 × 1m2 is discretised by 22 × 22 fine and 2 × 2 coarse-scale displacement elements, respectively (coarse grid is denoted by solid black
line). The upper row panels show Young’s modulus distribution within the domain, the middle row depicts the basis function Φu

xx and the bottom
row demonstrates the cross term Φu

xy of the basis function.
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5. Numerical results122

In this section several numerical examples, including benchmarking ones, are considered to investigate the de-123

veloped methods. First, the consistency of the fine-scale FV discretization scheme is investigated for mechanical124

deformation on a synthetic test case, for which the analytical solution is known. Then, the fully implicit FV method is125

studied on Terzaghi (1D) and Mandel (2D) benchmarking test cases [1]. For Mandel test case, the order of consistency126

of the time-dependent pressure solution is presented. The accuracy of fully implicit MSFV method is investigated for127

both Terzaghi and Mandel test cases. For the latter, the MSFV results are compared with the hybrid Multiscale Finite128

Element-Finite Volume (h-MSFE-FV) method, which is recently developed by Castelletto et al. [39]. The applicabil-129

ity of the MSFV method to practical problems of reservoir simulation is shown for two heterogeneous test cases of130

simulating compaction process and land subsidence induced by reservoir depletion. Note that since the poroelasticity131

equations are linear, one can conveniently scale our synthetically selected K and E values with the factors α and β,132

respectively, i.e., K̃ = αK and Ẽ = βE, in order to adjust them for a given realistic scenario. Doing so will scale other133

parameters as t̃ = t/α, ˜̄u = ū/β, M̃b = βMb, λ̃ = αλ/β and q̃ = αq/β.134

5.1. Synthetic test case for mechanical equilibrium135

Consistency of fine-scale FV scheme for mechanical equilibrium is illustrated on a synthetic test case with known136

analytical solution. A set of exact solutions for x- and y-displacement is defined as137

ux = 10−5 sin
(
πx
L

)
sin

(
πy
W

)
uy = 10−5 cos

(
π(L − x)

L

)
sin

(
πy
W

)
,

(24)

where L and W are domain length and width respectively. Internal forces that would cause this solution are obtained138

analytically and used as source terms in the numerical simulation. For this test case, a homogeneous medium is139

considered with dimensions L = W = 10 m, the elastic moduli are E = 4 · 108 Pa and ν = 0.33. Dirichlet boundary140

conditions are applied at all four domain boundaries. Everywhere in the manuscript, except mentioned otherwise, the141

error is calculated based on scaled-L∞ norm defined as142

ε =

∥∥∥xre f − x′
∥∥∥
∞∥∥∥∥xh

re f

∥∥∥∥
∞

=
maxi∈{1,2,...,Nh}

∣∣∣xre f ,i − x′i
∣∣∣

maxi∈{1,2,...,Nh}

∣∣∣xre f ,i

∣∣∣ , (25)

where Nh is the total number of the elements and x′ = ū′ or x′ = p′ for estimating displacement or pressure errors,143

respectively. Either analytical solution or fully resolved fine-scale solutions can be considered as a reference.144

The convergence test is performed by refining the grid from 10×10 fine-scale grid cells to 100×100 with the step145

of 10 cells. The error plot, as shown in Fig. 5, illustrates that the introduced FV discretisation scheme is 2nd order146

accurate in space.147

5.2. Terzaghi problem148

Fine-scale and Multiscale FV methods are validated for the Terzaghi test case in a 1D domain [1]. This test case149

describes a fluid-saturated column of height L with a constant loading applied from the top. Drainage is allowed150

through the upper moving boundary only, whereas the column base is fixed. The load is applied instantaneously at151

time t = 0 yielding a non-zero initial overpressure and a corresponding displacement. The model parameters are152

as follows. The column length and the Young’s modulus are L = 1 m and E = 104 Pa, respectively. Also, the153

Poisson’s ratio is ν = 0.2 and Biot’s modulus is M = 10100 Pa in order to simulate incompressible fluid and grains.154

Rock permeability is K = 10−7 m2 and fluid viscosity µ f = 10−3 Pa · s. In addition, the Biot’s coefficient of b = 1 is155

employed, which corresponds to strongly coupled (flow-mechanics) system. Constant load at the top boundary is 100156

Pa.157
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Figure 5: Error plot for synthetic test case for mechanical equilibrium. The solution for x- and y- displacement is 2nd order consistent in space.

Figure 6: Terzaghi problem: the left figure corresponds to vertical pressure distribution in fluid saturated column; the right figure represents
displacement distribution along the column. Analytical solution is denoted by solid black line; dotted blue line corresponds to fine-scale solution
with 42 pressure and 42 displacement elements, red dashed line represents multiscale solution obtained with coarsening ratio of 7 for all unknowns.
Analytical, fine-scale and multiscale solutions are obtained with constant time step ∆t = 0.0009 s, and compared at t = 0.009 s.

Computational domain entails 42 pressure and 42 displacement elements at fine scale, which grid size of ∆x =158

0.024 m. For multiscale solution, the same coarsening ratio is applied to both pressure and displacement unknowns.159

The quality of the multiscale solution x′ is accessed individually for pressure and displacement with respect to the160

reference solution xre f in terms of the scaled L∞-norm as stated in Eq. (25).161
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Table 1: Terzaghi test case: accuracy of mutiscale solution for pressure and displacement obtained with different coarsening ratios. Here εp
and εu stand for errors of approximate pressure and displacement solutions respectively. Pseudo-1D fine-scale grid consists of 42 pressure and
displacement elements. The error of multiscale solution is reported for coarsening ratios of 3 and 7.

Coarsening ratio
(# of fine elements per coarse) εu εp

3 3.61 × 10−2 3.33 × 10−2

7 1.23 × 10−1 1.19 × 10−1

Fig. 6 shows a snapshot of pressure and displacement profiles at early time after the loading is applied; thus, the162

fastest pressure change happens in a proximity of the upper boundary. The fine-scale solution accurately represents163

pressure and displacement fields, as shown in Fig. 6. The biggest error is observed for displacement at the upper164

boundary, caused by the finite volume restriction operator for displacement with no correction nor iterative improve-165

ment strategy. This restriction operator, however, guarantees the conservation of stress and mass at coarse scale.166

Overall, the accuracy of the multiscale results are quite satisfactory. The error of MSFV method is reported in table 1.167

5.3. Mandel problem168

Mandel problem is a classical benchmarking case for linear elastic poromechanics, in which a non-monotonic169

pressure behaviour is observed [1]. The problem describes an infinitely long homogeneous poroelastic slab saturated170

with fluid and bounded by two rigid, frictionless and impermeable plates. A constant load is applied instantaneously171

from the top at t = 0 yielding a non-zero initial overpressure and a corresponding displacement. Drainage is allowed172

from the side boundaries of the slab.173

(a) (b)

Figure 7: Mandel problem set-up for mechanical deformation (i.e., Fig. 7a) and flow (i.e., Fig. 7b). The domain is subject to roller constrain at
south, west and north boundaries, whereas the east boundary is considered traction-free. No-flow boundary conditions are imposed at south, west
and north boundaries, whereas the drainage is allowed through the east boundary.

Taking the advantage of its symmetric geometry, as shown in Fig. 7, the computational domain is considered
for the top-right quarter of the shown physical domain with appropriate symmetry boundary conditions applied at
the west and the south boundaries. At the north boundary, the prescribed y-displacement resulting from the applied
loading is imposed. Thus, the boundary conditions of 2D Mandel problem read

−(λ · ∇p) · n̄ = 0, ux = 0, σxy = 0 (x, y) ∈ ∂ΩW (26a)
p = 0, σxx = 0, σxy = 0 (x, y) ∈ ∂ΩE (26b)

−(λ · ∇p) · n̄ = 0, uy = 0, σxy = 0 (x, y) ∈ ∂ΩS (26c)
−(λ · ∇p) · n̄ = 0, uy = u∗ σxy = 0 (x, y) ∈ ∂ΩN (26d)
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Here, u∗ is taken from the analytical solution to the Mandel problem [1]. We consider computational domain of 1 × 1174

m with the following model parameters: Young’s modulus E = 104 Pa, Poisson’s ratio ν = 0.2 and Biot’s modulus175

M = 10100 in order to simulate incompressible fluid and grains. Rock permeability is K = 10−7 m2 and fluid viscosity176

µ f = 10−3 Pa · s. Moreover, the Biot’s coefficient of b = 1 is employed, which corresponds to strongly coupled177

(flow-mechanics) system. These parameters result in characteristic consolidation time t = 0.9 s, which is considered178

as end of the simulation. Constant load at the top boundary is 2 Pa. The above mentioned model parameters are used179

in simulations for fine-scale and multiscale FV methods validation, described in the following sections.180

5.3.1. Fully coupled fine-scale FV method validation181

The proposed fine-scale fully coupled FV method is validated on benchmarking Mandel test case. Moreover, the182

results are compared with the fine-scale hybrid finite element-finite volume (h-FE-FV) scheme, where mechanical183

deformation is solved using FE discretization, whereas flow is solved based on FV method.184

Figure 8a shows a change of pressure at central point of the domain (which is equidistant from all four boundaries)185

over time. Here computational domain entails 99 × 99 pressure and displacement elements at fine scale, with a grid186

size of ∆x = ∆y = 0.0101 m, whereas the time step of simulation is ∆t = 0.003 s. Note that the fine-scale solution187

accurately captures non-linear pressure behaviour. Moreover, the results obtained with fine-scale discrete FV and188

h-FE-FV methods are close. Note that FV scheme produces conservative stress field.189

With this numerical example we demonstrate the consistency of time-dependent pressure solution. The error map190

shown in Fig. 8b was obtained by estimating the error of numerical pressure solution at the central point of the domain191

at the end of the simulation with a range of time steps between 0.018 s and 0.0018 s and grid sizes between 0.1 m and192

0.01 m. The resulting error plot, presented in Fig. 8b, shows that, as expected, pressure solution is 1st order accurate193

in time, while the order of accuracy for both unknowns in space is 2 (shown in section 5.1).194

(a) (b)

Figure 8: Fine-scale simulation results for Mandel’s problem. Fig. 8a depicts pressure history at central point of the domain over time. The
fine-scale mesh consists of 99×99 pressure and displacement elements, whereas the time step ∆t = 0.003 s. The results obtained with fully coupled
FV and h-FE-FV methods are shown for comparison. Fig. 8b shows error map for time-dependent pressure solution obtained with fully coupled
FV method.

5.3.2. MultiScale solution195

The proposed MSFV method is validated on Mandel test case with model parameters described in Section 5.3.196

Moreover, MSFV results are compared with a solutions obtained with h-MSFE-FV method for a series of coarsening197
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ratios. Similar to Section 5.3.1, computational domain entails 99 × 99 pressure and displacement elements at fine198

scale, with a grid size of ∆x = ∆y = 0.0101 m, whereas the time step of simulation is ∆t = 0.003 s.199

Fig. 9 shows pressure history at central point of the domain over time, reconstructed from coarse-scale solutions200

obtained with different coarsening factors. The results of MSFV method and h-MSFE-FV method are shown in Fig.201

9a and Fig. 9b, respectively, for comparison. Although the performance of both methods for coarsening ratios of202

11 × 11 and 3 × 3 are similar, the result of MSFV method with the most aggressive coarsening ratio (i.e., 33 × 33)203

is significantly more accurate. This effect is especially visible at the beginning of simulation where most of the non-204

linear pressure behaviour is observed. Presumably, lack of stress conservation produced by h-MSFE-FV method has205

an influence on pressure solution over the larger coarse cells, whereas MSFV method remains stable even for the206

extreme coarsening ratios.207

(a) (b)

Figure 9: Pressure history at central point of the domain over time, reconstructed from coarse-scale solutions obtained with different coarsening
ratios (denoted in legend in parenthesis). Figures 9a and 9b show the results of MSFV and h-MSFE-FV methods respectively. Computational
domain entails 99×99 pressure and displacement elements at fine scale. Multiscale solutions are presented for coarsening ratios of 33×33, 11×11
and 3 × 3 fine elements per coarse.

The accuracy of MSFV method is accessed by estimating the error of pressure and displacement solutions with208

regards to analytical solution as shown in Eq. (25). The error is calculated in the end of simulation for a series209

of numerical experiments performed with different coarsening ratios. The detailed error report is presented in table210

2. Note that the MSFV method provides conservative solutions for both pressure and displacement with accuracy211

comparable to h-MSFE-FV method.212

5.4. Plain strain subsidence213

Modelling of land subsidence induced by reservoir depletion is a practical problem for geo-engineering appli-214

cations. In this numerical experiment, we consider the subsurface as a heterogeneous porous medium, where the215

elastic properties vary in z-direction. Based on this assumption, a 3D problem can be reduced to 2D under plain strain216

conditions. This study is focused on modelling of mechanical deformation response on a complete depletion of the217

reservoir, thus, the dynamics of fluid flow within the reservoir is not simulated.218

The producing reservoir is 120 m thick and 1200 m wide. Reservoir top is located at the depth of 1000 m.
Mechanical deformation is modelled within the span of 10 km in x-direction and 3 km in y-direction. Initial reservoir
pressure of 100 bar corresponds to normally pressurised formation at the depth of consideration, assuming normal
fluid gradient of 0.1 bar/m. The distribution of Young’s modulus in the subsurface is obtained based on a constitutive
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Table 2: Mandel test case: accuracy of MSFV and h-MSFE-FV methods for different coarsening ratios; εp and εu stand for errors of approximate
pressure and displacement solutions respectively. The fine-scale grid consists of 99 × 99 pressure and displacement elements. The error of
multiscale solution is presented for coarsening ratios of 33 × 33, 11 × 11, 9 × 9 and 3 × 3 fine elements per coarse.

Coarsening ratio
(# of fine elements per coarse)

MSFV h-MSFV-FE
εp εu εp εu

33 × 33 3.90 × 10−2 1.61 × 10−2 1.91 × 10−2 6.21 × 10−3

11 × 11 8.43 × 10−3 3.18 × 10−3 5.98 × 10−3 9.87 × 10−4

9 × 9 7.15 × 10−3 2.66 × 10−3 5.49 × 10−3 1.17 × 10−3

3 × 3 4.83 × 10−3 1.73 × 10−3 4.66 × 10−3 1.58 × 10−3

model for one-dimensional vertical compressibility, developed in [42] for the northern Adriatic sedimentary basin. In
this model, the vertical uniaxial compressibility cM is related to vertical effective stress σ′y as

cM = 0.01241
∣∣∣σ′y∣∣∣−1.1342

, (27)

where cM and σ′y are expressed in [bar−1] and [bar] respectively and the vertical effective stress is obtained as super-
position of total vertical stress σy and hydrostatic pressure p, i.e.,

σ′y = σy + p = −0.12218 |y|1.0766︸               ︷︷               ︸
σy

+ 0.1 |y|︸︷︷︸
p

. (28)

The Poisson ratio ν = 0.3 is assumed for the whole section. Thus, Young’s modulus can be expressed implicitly as a219

function of depth (see Fig. 10a) through cM , i.e.,220

E =
(1 − 2ν)(1 + ν)

(1 − ν)cM
. (29)

(a) (b)

Figure 10: Plain strain subsidence model. Figure 10a depicts Young’s modulus distribution within geological section, described by Eq. (29).
Location of the reservoir is denoted by the red box. Figure 10b illustrates boundary conditions for mechanical deformation: the domain is subject
to roller constrains at west, east and south boundaries, whereas the north boundary is traction-free.

The domain is subject to roller constrains at west, east and south boundaries, whereas the north boundary is221

traction-free (Fig. 10b). Computational domain is discretised at fine scale by 450×225 elements, resulting in fine cell222

size of 22.2 × 13.3 m2. In order to keep the system in equilibrium at initial reservoir conditions, the initial reservoir223

pressure is added as a source term for mechanical equilibrium in agreement with Eq. (1), where f = 0. Ultimately,224

the reservoir is considered to be fully depleted, thus, the overall pressure drop ∆p = 100 bar.225
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The multiscale solution is obtained with coarsening ratio of 9 × 9 fine-scale displacement elements per coarse,226

resulting in 51×26 coarse displacement nodes against 451×226 nodes on the fine-scale. Fig. 11 shows the comparison227

of the reference fine-scale and multiscale solutions. The error of land subsidence estimation is accessed relative to the228

fully resolved fine-scale solution as shown in Eq. (25).229

Figure 11: Plain strain subsidence test case: comparison of multiscale solution obtained with MSFV method (dashed red line) and reference
fine-scale (FV) solution (solid blue line). The fine-scale grid consists of 450 × 225 displacement elements, whereas the MSFV coarse-scale mesh
conatins 50 × 25 elements.

For the chosen coarsening ratio, mean error does not exceed 5.3% as shown in table 3. Overall, the quality of230

multiscale solution is satisfactory.231

Table 3: Plain strain subsudence: accuracy of mutiscale solution for displacement obtained with 9 × 9 coarsening ratio; εu stands for the displace-
ment solution error. The fine-scale grid consists of 450 × 225 displacement elements. The error of multiscale solution is presented for coarse mesh
with 50 × 25 coarse elements.

Coarsening ratio
(# of fine elements per coarse) εu

9 × 9 5.26 × 10−2

5.5. Compaction of heterogeneous media232

This test case is inspired by classical Terzaghi problem described in section 5.2. In this numerical example, a233

compaction process of 2D heterogeneous medium is modelled. The aim of this numerical experiment is to test the234

ability of MSFV method to capture heterogeneities.235
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(a) (b)

Figure 12: A set-up for compaction of a heterogeneous medium test case. Fig. 12a and 12b illustrate boundary conditions for mechanical
deformation and flow respectively. The domain is subject to roller constrain at south, west and east boundaries, whereas the constant vertical
loading is applied at the northern boundary. No-flow boundary conditions are imposed at south, west and east boundaries, whereas the drainage is
allowed through the north boundary.

We consider a fluid-saturated domain of 1× 1 m2 with highly heterogeneous mechanical and hydraulic properties,236

originally taken from a part of SPE10 dataset and scaled to derive elastic and hydraulic properties. The constant237

Piossin’s ratio of ν = 0.2 is considered for the entire domain. A constant loading of 100 Pa is applied at the top. The238

initial fluid pressure of 100 Pa is uniformly distributed throughout the domain. The applied vertical loading results239

in compaction of the domain, whereas saturating fluid is allowed to drain through the northern boundary. Fine-scale240

mesh entails 45 × 45 pressure and displacement elements. As illustrated in Fig. 12, the domain is subject to roller241

constrains at all boundaries except north, where the constant loading is applied. All the boundaries except north are242

subject to no-flow boundary conditions, whereas zero pressure is considered at the north. The resulting deformation243

and pressure are obtained at t = 0.06 s with the time step ∆t = 2 × 10−4 s.244

In section 5.3.2 it is shown that reducing coarsening ratio leads to the reduction of error for homogeneous media.245

However, that is not always the case if there are heterogeneities involved. Thus, the quality of multiscale solution246

is accessed for a series of experiments with varying coarsening ratios. The detailed error report is presented in table247

4. As Fig. 13 shows, the MSFV solution obtained with very high coarsening factor of 15 × 15 can be considered a248

valid approximation of the reference fine-scale (FV) solution for both pressure and displacement. The error of MSFV249

solution (see table 4) for displacement varies from 7% to 21%, whereas the error of pressure solution lies in the range250

between 2% and 14%.251

Table 4: Compaction of heterogeneous media test case: accuracy of multiscale (MSFV) solution for displacement and pressure, obtained with
various coarsening factors; εu and εp correspond to the errors of displacement and pressure solutions with respect to reference fine-scale (FV)
solution. The fine-scale grid consists of 45 × 45 pressure and displacement elements. The errors are reported for a series of multiscale solutions
obtained with coarsening ratios from 15 × 15 to 3 × 3 at t = 0.06 s with the time step ∆t = 2 × 10−4 s.

Coarsening ratio
(# of fine elements per coarse) εu εp

3 × 3 1.15 × 10−1 1.88 × 10−2

5 × 5 6.88 × 10−2 4.54 × 10−2

9 × 9 1.39 × 10−1 5.97 × 10−2

15 × 15 2.10 × 10−1 1.42 × 10−1
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Figure 13: Simulation results for compaction of heterogeneous media test case. The upper row illustrates elastic (Young’s modulus E) and hydraulic
(fluid mobility λ) properties on the left and right figures respectively. Rows 2-4 show the comparison of the reference fine-scale (FV) solution for
pressure, x- and y-displacement (figures on the left) with the corresponding multiscale solutions obtained with MSFV method (figures on the right).
Fine-scale mesh entails 45× 45 pressure and displacement elements, whereas the coarsening factor for multiscale solution is 15× 15. The end time
of simulation is t = 0.06 s and the time step ∆t = 2 × 10−4 s.
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6. Conclusions252

In this work, a fully implicit Multiscale finite volume method (MSFV) for fully-coupled flow-mechanics simu-253

lations under linear elasticity is proposed. Finite volume discretisation for both flow and deformation is motivated254

by conservative nature of mass and momentum balance equations. In finite volume (FV) discretisation scheme for255

mechanical deformation, displacement derivatives are approximated based on bilinear interpolation functions. FV256

discretisation of mechanical deformation is integrated into fully coupled fully implicit poromechanics simulation257

framework based on Biot’s theory.258

MSFV framework is built on the developed fully-implicit finite-volume-based fine-scale system. Independent259

coarse grids for flow and deformation are imposed on this fine-scale computational domain. Basis functions for pres-260

sure and displacement are computed algebraically by solving a set of local problems with reduced boundary conditions261

at the coarse volume boundaries. Note that our MSFV method constructs the basis functions at the beginning of the262

simulation, and for all the next time steps, it employs them (with no update) to construct and solve the coarse-scale263

system. As for the restriction, a FV-based operators was used in order to apply an integration over the coarse scale264

control volumes (for both displacement and pressure).265

To verify the method, first the consistency of the fully-coupled fine-scale FV poromechanics discretisation scheme266

was investigated for Terzaghi and Mandel benchmarking problems. The accuracy of MSFV method was studied for267

the two aforementioned test cases and was also compared to h-MSFE-FV method. Moreover, MSFV method was268

tested on practical problems of reservoir simulation, involving land subsidence and modelling of heterogeneous rock269

compaction. Numerical results showed that the developed MSFV method provides an accurate approximation of the270

fine-scale results. Thus it casts a promising approach for simulation on large-scale heterogeneous fields. Similar to271

the flow [43], further research is required to benchmark the overall speed-up of the devised multiscale approach for272

coupled flow-deformation in 3D heterogeneous geoscience applications.273
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