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Abstract –  

This paper presents an initial proof-of-concept 
implementation of a comprehensively intelligent 
built-environment based on mutually informing 
Design-to-Robotic-Production and -Operation 
(D2RP&O) strategies and methods developed at 
Delft University of Technology (TUD). In this 
implementation, D2RP is expressed via deliberately 
differentiated and function-specialized components, 
while D2RO expressions subsume an extended 
Ambient Intelligence (AmI) enabled by a Cyber-
Physical System (CPS). This CPS, in turn, is built on 
a heterogeneous, scalable, self-healing, and partially 
meshed Wireless Sensor and Actuator Network 
(WSAN) whose nodes may be clustered dynamically 
ad hoc to respond to varying computational needs.   

Two principal and innovative functionalities are 
demonstrated in this implementation: (1) cost-
effective yet robust Human Activity Recognition 
(HAR) via Support Vector Machine (SVM) and k-
Nearest Neighbor (k-NN) classification models, and 
(2) appropriate corresponding reactions that 
promote the occupant’s spatial experience and well-
being via continuous regulation of illumination with 
respect to colors and intensities to correspond to 
engaged activities.  

The present implementation attempts to provide 
a fundamentally different approach to intelligent 
built-environments, and to promote a highly 
sophisticated alternative to existing intelligent 
solutions whose disconnection between architectural 
considerations and computational services limits 
their operational scope and impact. 

 
Keywords – 

Design-to-Robotic-Production and -Operation, 
Cyber-Physical Systems, Adaptive Architecture, 
Wireless Sensor Networks, Ambient Intelligence. 

 

1 Introduction 

The present paper promotes Design-to-Robotic-
Production and -Operation (D2RP&O) [1] strategies 
and methods as drivers of highly sophisticated Ambient 
Intelligence (AmI) solutions, and demonstrates its 
competence in this endeavor by presenting and 
describing a corresponding high-resolution intelligence 
implementation. Two principal and innovative 
functionalities are described in this implementation, the 
first pertaining to computational intelligence while the 
second to architectural variables / considerations (see 
Section 2).  

With respect to the first functionality, a Machine 
Learning (ML) subsystem is integrated in the proposed 
system-architecture in order to enable Human Activity 
Recognition (HAR) mechanisms. With respect to HAL, 
ML methods have typically used gyroscopic data 
collected via portable devices (e.g., smartphones, etc.) 
[2, 3] or via sensor-fusion [4]. The ML subsystem 
consists of two classification mechanisms developed 
based on polynomial programming of Support Vector 
Machine (SVM) and k-Nearest Neighbor (k-NN) 
classifiers. These SVM and k-NN models are built on a 
dynamically clustered set of high-performance nodes in 
the localized Wireless Sensor and Actuator Network 
(WSAN). Cloud-based SVM and k-NN counterparts are 
generated as alternatives to the localized mechanisms 
for contingency measures (see Section 3.1). With 
respect to the second functionality, an interactive / 
adaptive illumination system capable of identifying and 
mitigating—via said ML mechanisms—fatigue via 
regulation of colors and corresponding intensities is 
proposed (see Section 3.2).  

The comprehensive character of the intelligence 
imbued in said implementation supervenes on the 
mutually corresponding and informing relationship 
between computational mechanisms and architectural 
considerations.  
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2 Concept and Approach 

The present implementation continues to build on 
the adaptive mechanisms and system-architecture 
previously outlined and developed by the authors [5–7] 
(see Figure 1). With respect to intelligence in the built-
environment, it revisits Protospace 4.0’s [8–10] system 
of function-specific differentiated components.  On the 
occasion of the international conference Game Set and 
Match 3 (GSM3) [11] held at the Faculty of 
Architecture and the Built-Environment, Delft 
University of Technology (TUD) (9th-11th of November, 
2016), a fragment of Protospace 4.0 was rebuilt as a 
responsive stage, and a purpose-built interactive LED-
based illumination system was integrated into its 
architecture (see Figure 5). This illumination system 
serves as a subsystem of the present system-architecture.  

With respect to computational intelligence, an ML 
framework is deployed as a subsystem to enable cost-
effective yet robust HAR mechanisms via established 
classifications models—i.e., SVM and k-NN. A 
smartphone as well as three Light Blue Beans™ (LBBs) 
were used to gather gyroscopic and accelerometer data 
from the user via the Open Sound Control (OSC) 
protocol. The generated dataset was used to train two 
SVM and k-NN models, one via local clusters using 
open-source and purpose-written Python scripts, and 
another via an external computer—simulating cloud-
based analytics services—using third-party proprietary 
software. The principal intention was to imbue the 
proposed system with both localized as well as web-
based analysis mechanisms in order to ascertain ML 
robustness and resilience in case either mechanism 
failed. A secondary intention was (a) to demonstrate 
that open-source solutions could be as effective as those 
rendered by proprietary software while reducing costs; 
and (b) to illustrate how purpose-written scripts 
integrated more seamlessly and efficiently (in terms of 
interoperability) than did proprietary software.   

The integration of both built-environment as well as 
computational intelligences instantiates a high-
resolution intelligence environment capable of 
translating sensed data into informed and correlated 
active, reactive, and interactive responses pertinent to 
the activities engaged by the user. The SVM and k-NN 
mechanisms are trained to identify certain data values as 
corresponding to a variety of activities, and to use this 
prediction power to dynamically mitigate fatigue in the 
user via an active and adaptive regulation of colors and 
intensities (see Section 3.2.2). Moreover, the responsive 
stage is also imbued with predetermined behavioral 
patterns such as pulsating when idle, tracing paths, 
correlating different colors to identified body parts (via 
Microsoft® Kinect™ V2) of up to six different 
individuals (see Section 3.2.1). 

 

 

Figure 1: Top: Heterogeneous system-
architecture with three dynamic ad hoc clusters. 
Bottom: Runtime processes distribution. 
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3 Methodology and Implementation 

The development of the detailed implementation 
consists of three parts: (1) the design and development 
of cost-effective HAR system (see Section 3.1), which 
involved the development of (1a) a dynamic ad hoc 
heterogeneous clustering system (see Section 3.1.1) as 
well as (1b) data-gathering and -parsing scripts for ML 
training and testing purposes (see Section 3.1.2 ); (2) the 
design and installation of the LED-based illumination 
subsystem and its corresponding electronic setup (see 
Section 3.2); (3) the integration of the previous parts 
into a unified closed-loop system architecture. The first 
and second parts were developed in parallel and tested 
as working subsystems before integration. 

3.1 Development of a cost-effective Human 
Activity Recognition (HAR) system 

Due to their evolving and resilient characters, ML 
classifiers have been implemented in a variety of 
applications built on WSANs [12]. HAR, as one such 
application, has successfully exploited said classifiers in 
the last five years (see, for example, [13–15]).  However, 
due to the cost-effective and low energy-consumption 
character typical of WSAN nodes, computational 
processing with respect to feature extraction has been 
considerably limited [16]. To overcome this limitation, 
the present implementation is capable of instantiating ad 
hoc clusters consisting of a variety of high-performance 
nodes. Furthermore, several clusters may be instantiated 
simultaneously in order to enable parallel high-
performance information processing activities. 

Another way to overcome this limitation is to avoid 
it altogether by outsourcing all high-performance 
information processing to cloud-based ML services (e.g., 
Google® CloudPlatform™, Amazon® Machine 
Learning™, Microsoft® Azure™, etc.). But there are a 
number of limitations with this approach. The first, and 
perhaps the most salient, is the cost incurred by 
including proprietary services in any proposed 
intelligent built-environment solution. A second yet no 
less important limitation may be the impact to the 
solution’s resilience. That is to say, should said built-
environment lose access to the Internet, it would be 
incapable of generating classification models.  

The present implementation proposes the integration 
of both cloud-based as well as localized ML capabilities 
in order to ascertain robustness and resilience. 
Whenever possible, ML processes are locally and 
dynamically executed via ad hoc node-clustering. But 
should this prove impossible either due to failure or 
unavailability of proper resources, cloud-based ML 
services are used.  

 

3.1.1 Dynamic Clustering mechanism 

The system’s clustering mechanism uses the 
Message Passing Interface (MPI) standard via MPI for  
Python (mpi4py) [17] (see Figure 1, Bottom). The 
system’s ecosystem consists of nine types of 
development platforms, Microcontroller Units (MCUs), 
and proprietary trackers: (1) Intel® Joule™, (2) Asus® 
Tinkerboard™, (3) Raspberry® Pi 3™ and (4) Pi Zero 
W™, (5) SeedStudio® BeagleBone Green™ (BBG), (6) 
Punch Through® Bean+™ and (7) LBB, (8) Fitbit® 
Charge HR™, and (9) Arduino® UNO™ (see Figure 1). 
Sets of items 1, 2, 3, and 5 may be dynamically 
clustered ad hoc via WiFi for high-performance 
information processing, and are connected to the rest of 
the network via WiFi, ZigBee, BLE wireless 
communication protocols and—in the case of an 
instance of item 3—Ethernet / USB cables. Items 4, 7, 
and 9 are considered as low-computation end devices 
meshed into the WSAN via ZigBee, with 6 serving as 
router for 7 via BLE.  Since there is a direct relationship 
between computational power vs. energy-consumption, 
end device and router nodes are concerned exclusively 
with sensor-data gathering and relaying with minimal 
information processing. Depending on the task, nodes 
exchange data via pertinent protocols and frequencies. 

3.1.2 Machine Learning (ML) mechanisms 

As detailed in Section 2 and Section 3.1, two ML 
mechanisms are integrated into the present 
implementation: (1) a localized ad hoc cluster system 
based on open-source and purpose-written Python 
scripts, and (2) a simulated cloud-based analytics 
service using MathWorks® MATLAB™. In both 
mechanisms SVM and k-NN classification models are 
generated. 

In the localized mechanism, a script based on pyOSC 
is first written to receive OSC data from any device and 
application capable of broadcasting in said protocol. 
While all the WiFi-enabled nodes in the system’s 
WSAN have the capacity to receive this data-streaming, 
only one of the nodes of the cluster instantiated to 
generate classification models stores it locally and 
streams it to a cloud-based data visualization service 
(i.e., Plotly™). Should the receiving node fail, another 
high-performance node will replace it automatically. 
Since the proposed solution uses a smartphone and three 
LBBs for data redundancy, resolution, and validation, 
the script in question proceeds to parse and to reduce the 
noise in the received multi-sensor data in order to 
generate a robust and unified dataset. At this point the 
dataset is processed through two ML scripts based on 
scikit-learn [18, 19], one for SVM and another for k-NN 
classification models (see Figure 2).  
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Figure 2: Top: OSC-data receiving and parsing. 
Bottom: 95.7% prediction success with respect to 
HAR via SVM (left) vs. 97.85% via k-NN 
(right). 

It should be noted that each time a classification 
model is generated, regardless of whether it is done via 
open-source or proprietary means, its resulting 
prediction success rate will vary. For the purposes of the 
present discussion, the success rate generated in the last 
sample run is used. That is to say, the success rate of the 
localized SVM mechanism was 95.7% while that of the 
k-NN mechanism 97.85%.  

In the proprietary cloud-based mechanism, as 
simulated by a computer external to the system’s 
WSAN and running MATLAB™, the same datasets are 
processed through several Classification Learners (see 
Figure 3).  

 

Figure 3: Sample MATLAB™-generated ML 
models with corresponding success rate.  

It may be observed that the most successful 
classification model generated by MATLAB™ is based 
on cubic SVM with a prediction success rate of 97.6%, 
which is higher than the rate corresponding to the 
localized and open-source SVM result (i.e., 95.7%). But 
it may also be noted that the localized and open-source 
k-NN success rate is higher than any of the k-NN 
models generated by MATLAB™ (i.e., 97.8% vs. 95.9%, 
93.5%, 88.1%, and 93.5%). It may not be inferred from 
this that the localized is superior to the proprietary, nor 
vice versa. It may be considered, however, that the 
localized and open-source mechanism yields 
comparably robust results as that of the proprietary one 
within the scope of the present implementation. 

Having generated two sets of classification models 
via localized and cloud-based means, the ones with the 
most successful prediction rate are used at runtime, with 
precedence given to the localized mechanism—if and 
only if said mechanism fails or has unavailable 
resources are cloud-based ML models be used. The 
duration of said runtime may be determined by the user, 
but it should be as brief as practicable in order for the 
dataset to be updated with new data. For example, the 
user may decide to schedule the generation of a new 
updated model every 24 hours and only during sleep 
periods. This way the user would wake up to updated 
and relatively more attuned models every day. 
Furthermore, via this incrementally updating process, 
classification models may be trained to detect and/or 
predict new activities or patterns in a gradual manner, 
thereby enabling the intelligent built-environment to 
evolve with its user.   

3.2 Development of the architecture-
embedded interactive / adaptive 
illumination subsystem  

As detailed in Section 2, a fragment of Protospace 
4.0 was repurposed to conform a responsive stage on the 
occasion of the GSM3 conference. 16 differentiated and 
function-specific components, viz., protoCELLs [10], 
are assembled to conform said stage while integrating a 
custom-designed and -built interactive / adaptive LED-
based illumination system. The indented borders of each 
component were lined with LED-strips, which enabled 
individual color control. In conjunction, these indented 
borders create a continuous indented seam between all 
components, which is covered with translucent material 
in order to enable diffusion of color and intensity. The 
combination between this translucent cover with two 
separate individually controlled LED-strips enables the 
instantiation of multiple color gradients and intensities 
(see Figure 4).  
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Figure 4: Top: Single protoCELLs (Left); testing 
Perspex® over LED1 (Right). Bottom: Generated 
color gradient (Left); Acrylic connections & two 
LED-strips within the seam of two protoCELLs 
(Right).  

The system-architecture of the interactive / adaptive 
illumination system involves 12 Arduino® UNO™ 
MCUs that are physically connected to a computer via 
USB hubs. In the implemented revision, this computer 
is replaced by an Intel® Joule™ (see Figure 1), thereby 
integrating the stage and its responsive illumination into 
the system-architecture ecosystem of the present 
implementation. As a stand-alone system, the stage is 
configured to behave in particular and predetermined 
patterns. As a subsystem of a more sophisticated 
system-architecture, it is now imbued with ML 
capabilities for non-predetermined actions, reactions, 
and interactions.  

3.2.1 Predetermined Scenarios 

There are three predetermined scenarios: (1) 
Pulsating, (2) Lecture, and (3) Break, all of which are 
described as follows: 

In the first scenario, as soon as the illumination 
system is powered, the stage slowly pulsates in one 
color—i.e., oscillates between intensities of a same 
color. This creates an effect viscerally reminiscent of a 
beating heart, tacitly suggesting that the stage is “alive”. 
The intention of this scenario is to instigate interest and 
curiosity in the users, inviting them to engage with it 
(see Figure 5, Top image 2).  

In the second scenario, two different types of 
interaction are envisioned during the conference 
presentations. The first involves the stage’s reaction 
towards the movements of the speaker, where by 
stepping on or touching one or multiple components 
he/she instigates a gradual shift from the initial or 
passive colors to active colors for a certain period of 
time, after which active colors would default back to 
passive ones (see Figure 5, Top images 3, 4). The 
second interaction inverts this causal relationship to 
have the stage influence the speaker—i.e., the speaker 

knows his/her time is up when the first type of 
interaction ceases and the stage defaults back to a single 
color (see Figure 5, Top image 5).   

 

 

Figure 5: Top: images (1) 3D model with lights 
off; (2) Pulsating; (3) Activation of discrete 
components; (4) Leaving a trace; (5) Manual 
override; (6) individual activity detection 
correlated with color. Bottom: Implemented 
fragment. 
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In the third scenario, the stage invites interaction 
from the audience in-between lectures by allowing them 
to “paint the stage” via body gestures. That is, in this 
mode, the stage tracks body parts of up to six 
individuals and instantiates corresponding color changes 
across the components, hence correlating certain 
movements or body parts with certain colors (see Figure 
5, Top image 6). 

 Finally, it should be noted that in addition to these 
three automated cause-and-effect scenarios, the 
illumination system is also designed with a manual 
override control. A proprietary fee-based Apple®’s 
iOS™ application, viz., TouchOSC™ (by Hexler 
Limited®) is used to develop customized control screens 
to provide override capabilities to the illumination 
system (see Figure 6).  

 

Figure 6: iOS OSC Applications: TouchOSC 
(proprietary).  

3.2.2 Non-predetermined Scenario 

The ML-driven HAR mechanism implemented in 
the present system (see Section 3.1.2), in conjunction 
with an adaptation of the human state estimation 
mechanism developed by Nakaso et al. [20], is used to 
detect general fatigue in the user. By learning from the 

user’s behavior as a consequence of lighting 
conditions—both in terms of colors and intensities—the 
system can learn to identify which combinations of 
colors and intensities ameliorate or exacerbate the user’s 
fatigue. Having made this identification, the 
illumination system continuously seeks to improve the 
state of the user by regulating the experience of the 
ambiance. Unlike predetermined scenarios, the system 
is not programmed to associate a given color with a 
given human state or action—nor vice versa—but rather 
the ML mechanisms establish such correlations as 
processed via HAR. More specifically, the localized k-
NN classification model is capable of learning to predict 
which colors and intensities are conducive to mood 
amelioration / fatigue mitigation and to promote them. 
Such colors and intensities may change over time, as 
saturations in the frequency of particular colors and 
intensities over short periods of time could actually 
instigate an adverse effect. The ML mechanisms, 
however, can account for this change as they evolve 
accordingly.  

Like the OSC-enabled manual override provided in 
the predetermined scenarios, the present scenario also 
integrates a correction mechanism based on human 
intervention. However, unlike the manual override, the 
correction mechanism is used to provide feedback—i.e., 
to “teach”—the system when a prediction is inaccurate. 
This fact is then considered in the next iteration of a 
new and updated classification model. The correction 
mechanism is implemented via a free and open-source 
OSC iOS™ application, viz., Control (by Charlie 
Roberts) (see Figure 7).   

 

Figure 7: iOS OSC Applications: Control (open-
source).  
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4 Conclusions and Future Work 

The present paper attempts to promote a highly 
sophisticated intelligent built-environment framework 
based on D2RP&O principles and methodologies. It 
does so by presenting an implementation where 
sophisticated intelligence is imbued both in physical as 
well as computational terms. It promotes high-
resolution computational intelligence by integrating ML 
mechanisms for HAR via a subsystem of dynamic ad 
hoc clustering. It also promotes high-resolution 
intelligence in terms of the built-environment by 
demonstrating how an interactive / adaptive illumination 
system can learn—via the detailed ML mechanisms—to 
reduce user-fatigue via the promotion of certain colors 
and intensities and the mitigation of others. Finally, by 
integrating both kinds of intelligences, the present 
implementation demonstrates the feasibility of a more 
sophisticated heterogeneous, open and scalable, and 
open-source AmI solution. Nevertheless, further work 
must be conducted in order to validate said feasibility in 
more complex scenarios, with more explicit and 
sophisticated expressions of D2RP for the integration of 
intelligence in the built-environment, and with 
correspondingly sophisticated expressions of D2RO 
with respect both to advances in ICTs as well as to ML 
mechanisms based on Artificial Neural Networks 
(ANNs).   

A next iteration of a high-resolution intelligence 
implementation is presently being developed (1) to 
implement ANN-based ML; (2) to enhance fatigue 
detection; and (3) to extend the built-environment’s ICT 
ecosystem to be open to more proprietary products and 
protocols.    

With respect to the first task: in the present 
responsive stage implementation, the system detects 
fatigue exclusively via the analysis of detected patterns 
in the eyes (i.e., eyelids) of the user in conjunction with 
HAR data. However, due to the ambiguous character of 
human activity, it is difficult to differentiate a fatigued 
gait from a slow yet healthy one. The fatigue-detection 
precision may be improved by building on Ogawa et 
al.’s [21] facial-recognition and visual knee-position 
detection methods. 

With respect to the second task: supervised and 
unsupervised learning ANN models are being explored 
for their suitability to given tasks. It is not necessarily 
the case that ANN models must be superior to SVM or 
k-NN models, as performance depends on the 
complexity, scale, and scope of the given tasks. At 
present a comparison matrix of ML models is being 
developed. 

With respect to the third task: the system-
architecture that the authors have been developing 
incrementally is highly heterogeneous both in terms of 
hardware, software, and communication protocols. This 

will continue to be a core interest in subsequent work. 
For example, present work is being conducted (A) to 
integrate Amazon®’s Alexa Voice Service™ into the 
ecosystem of the intelligent built-environment; and (B) 
to implement LoRaWAN as a Low Power Wide Area 
Network (LPWAN) protocol in order to extend 
interactions between high-resolution intelligence built-
environments, whether these be private or public.  
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