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Long-Stroke Hydraulic Robot Motion Control with

Incremental Nonlinear Dynamic Inversion
Yingzhi Huang, Daan M. Pool, Member, IEEE, Olaf Stroosma, QiPing Chu

Abstract—High precision motion control of hydraulic manip-
ulators is challenging due to the highly nonlinear dynamics
and model uncertainties typical for hydraulic actuators. This
paper addresses the implementation of a novel sensor-based
Incremental Nonlinear Dynamic Inversion control technique
for a high-precision hydraulic force controller in existence of
parameter uncertainties. Combined with a widely used force
computation outer-loop controller, the proposed motion control
structure is implemented on a 6-DOF hexapod hydraulic robot,
the SIMONA (Simulation, Motion and Navigation) Research Sim-
ulator at TU Delft. The proposed control technique is inherently
robust to hydraulic parameter uncertainties. As an important
contribution, the robustness against parameter uncertainty is
rigorously proven. Stability of the proposed controller is also
analysed. Techniques for solving characteristic implementation
issues, such as higher-order valve dynamics and oil transmission
effects, are discussed in detail. Motion tracking experiment
results on the SIMONA simulator validate the effectiveness of
the proposed method in terms of performance and the robustness
against parameter uncertainties. Significant control accuracy
improvement is demonstrated by comparing with the state-of-
the-art motion control implementations.

Index Terms—Hydraulic robots, parallel robots, force control,
motion control, model uncertainty.

I. INTRODUCTION

HYDRAULIC robotic systems are widely used in heavy-

duty machines, legged robots, and vehicle simulator

motion systems. They still have higher power-to-weight ratios

and inherently higher stiffness and rigidity compared with

electrical motors. For applications where high precision con-

trol performance is required, such as legged robots control [1],

[2], manipulator impedance control [3], [4] and flight simulator

motion control [5], high performance controller development

is receiving increasing attention in the academia.

One challenge of the hydraulic robot control problem is that

hydraulic actuators regard the input as a velocity command,

instead of a force command as their electrical counterparts

do. This fact prevents the extensively studied general robot

control techniques [6]–[9] from direct application, which gen-

erally work with force inputs. A few studies successfully

implemented model-based control methods based on the in-

tegrated mechanics and hydraulic dynamics. Nevertheless, the

highly nonlinear hydraulic dynamics have to be significantly

simplified by linearization or neglecting leakage or oil com-

pressibility [10], [11]. More importantly, a lack of hydraulic

pressure/force controllers largely limits their applications in

The authors are with Control and Simulation Section, Faculty of Aerospace
Engineering, Delft University of Technology; Kluyverweg 1, 2629HS, Delft,
The Netherlands.

robot impedance control, vibration isolation and active suspen-

sion, where ideal force actuators are generally assumed [12].

One systematic solution for hydraulic systems is cascading the

controller into a multi-loop structure, as shown in Fig. 1. An

inner-loop hydraulic force controller decouples the hydraulic

dynamics from the mechanics, while guiding it to generate

the required actuation forces given by the outer-loop mo-

tion controller. With a decoupled inner-loop force controller,

various advanced (outer-loop) control schemes developed for

electrical manipulators become possible to be directly applied

to hydraulic robotic systems.

Force control of a hydraulic actuator is challenging due to

the highly nonlinear dynamic behavior, and the model un-

certainties resulting from model simplification and parameter

uncertainty. Meanwhile, as shown in [13], linear controllers

(e.g. PID) are fundamentally not capable of achieving high

performance for advanced hydraulic force control, since they

are severely bandwidth limited in such applications, causing

significant phase lag which increases with frequency. This

makes more advanced model-based control schemes necessary,

such as feedback linearization [3], [14] and its variants, includ-

ing Nonlinear Dynamic Inversion (NDI) based control [15],

Cascade ∆P controller (CdP) [16] and flatness-based control

[17]. However, the performance of the feedback linearization

based controllers relies on an accurate model and is signif-

icantly degraded in existence of parameter mismatches. For

linear dynamic inversion, general techniques such as additive-

state-decomposition (ASD) have been proposed to deal with

model uncertainty and disturbance [18], [19]. When con-

sidering the nonlinear hydraulic model uncertainty problem,

nonlinear adaptive control is one extensively studied approach

[20]–[23]. Among them, as concluded in [24], the most ad-

vanced works in terms of motion control accuracy are [22] for

hydraulic serial manipulators and [23] for hydraulic parallel

robots, each of which provides a stability-guaranteed controller

with adaptation of hydraulic parameters. However, in all the

mentioned adaptive approaches, the design of the hydraulic

parameter adaptation law is coupled with the complete control

system design in order to guarantee the stability. It is difficult

to directly combine the hydraulic adaptive methods with a

different outer-loop controller. Therefore, a high performance,

fully decoupled and less model-dependent hydraulic force

controller is still to be developed.

Incremental Nonlinear Dynamic Inversion (INDI) [25] is

a novel sensor-based nonlinear control technique based on

the feedback linearization of the nominal incremental part

of the system dynamics. INDI solves the inherent problem

of model dependency of traditional feedback linearization. A
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Fig. 1. Cascade-control architecture for hydraulic robots with inner and outer
control loops

number of state-of-the-art nonlinear control applications with

INDI have been reported [26], [27], validating the achievable

control performance and robustness of INDI towards model

uncertainties under the assumption of a high sampling rate.

INDI is particularly attractive to high precision force control

of hydraulic robots with the following features: 1) Inherently

robust to parameter uncertainty and continuous external dis-

turbances, without an explicitly adaptive or robust control al-

gorithm; 2) High control precision with low computation load

and straightforward controller design procedures; 3) Achieving

precise feedback linearization of highly nonlinear systems

without precise knowledge of their dynamics.

In previous reports of this research project, the preliminary

theoretical application of INDI was discussed for a single

hydraulic actuator model [28] and a hydraulic flight simulator

model [29]. However, these simulation studies did not provide

any experimental validation. Also, practical issues such as

oil pipeline dynamics of long-stroke hydraulic actuators were

neglected in the simulation models. Furthermore, none of

aforementioned works gave a rigorous proof of the parameter

uncertainty resistance features and the stability of INDI.

In this paper, the novel INDI technique is improved in

theory, and implemented in real-world for the inner-loop force

controller of the long-stroke hydraulic hexapod motion system

of the SIMONA Research Simulator (SRS) at TU Delft. The

key practical issues for INDI, such as additional dynamics

between controller output and actuator sensor (including the

valve dynamics and oil pipeline dynamics), are considered

and solved. Directly combined with a typical computed force

outer-loop controller with PD feedback in the actuator space,

the overall motion control system is designed. Two motion

profiles are used for experiments in this paper: a symmetric

motion for control performance evaluation and benchmarking

and an asymmetrical profile to validate the effectiveness of the

proposed controller with more system nonlinearities excited.

The main contributions of this paper are: 1) The robustness

of INDI against parameter uncertainty of the complete model,

including the control related term, is rigorously proven for the

first time, based on which a necessary stability condition for

the INDI with parameter uncertainty is provided. A rigorous

stability proof of the INDI is also given; 2) The novel INDI

method is applied in a real-life hydraulic parallel robot for the

first time; 3) The experiment results demonstrate improved

control performance compared with the state-of-the-art meth-

ods discussed in a recent survey paper [24], even in existence

of large model parameter mismatches.
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Fig. 2. A valve controlled symmetry hydraulic actuator

This paper is organized as follows. Section II summarizes

the model of the hydraulic robots for purpose of controller

design. Section III introduces the novel INDI methodology,

including the stability and robustness proofs. Section IV dis-

cusses the application details and practical issues in designing

the INDI hydraulic control system. The experiment results on

the SRS are described in Section V and the main conclusions

are given in Section VI.

II. SYSTEM DYNAMIC MODEL

The rigid-body dynamic equations of an n-link robot are

generally given by a second-order nonlinear differential equa-

tion [23]. Particularly, for parallel robots such as hexapod

robotic systems considered in this research as an example,

Newton-Euler approach [30] is typically used to obtain the

dynamic equations in Cartesian space:

M (z) s̈+ η (ṡ, z) = JTF , (1)

where z ∈ R
6 and ṡ ∈ R

6 are the end effector pose and

velocity vectors defined in the Cartesian space, F ∈ R
6 is the

vector of actuation forces, M ∈ R
6×6 is the mass matrix and

η ∈ R
6 contains the centrifugal and Coriolis terms. J ∈ R

6×6

is the Jacobian matrix of the system, defined by J = ∂q̇/∂ṡ,

where q is the vector of the actuator displacements. A detailed

discussion of the model can be found in [31].

A single symmetrical hydraulic actuator controlled by a

typical valve is illustrated schematically in Fig. 2. Φp1 and Φp2

are the oil flows into and out of the cylinder chambers through

the oil transmission lines. The oil supply and return pressures

are denoted by Ps and Pt, respectively. The hydraulic force

dynamics are generally described by writing the dynamic

equation of the cylinder pressure difference, PL = Pp1 −Pp2,

based on the oil compressibility effect, given by [29]:

ṖL = 2Cm (q) (Φm − ClPL −Apq̇) , (2)

where q denotes the actuator cylinder displacement, Ap is

the cylinder area, Cl is the leakage coefficient, Φm =
(Φp1 +Φp2) /2 is the controlled oil flow. The piston depen-

dent oil stiffness Cm is

Cm =
1

2

(
E

V1 (q)
+

E

V2 (q)

)
, (3)

where E is the oil bulk modulus and V1 and V2 are the volumes

of the cylinder chambers.
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For an ideal critical center valve with matched and symmet-

rical orifices, the oil flow is given by [32]

Φm = Cdwxm

√
Ps

ρ

(
1−

xm

|xm|

PL

Ps

)
. (4)

where xm is the valve displacement, Cd is the discharge

coefficient and w is the orifice width.

By defining the maximum flow at the maximum valve stroke

xm,max and zero load pressure as Φn = Cdwxm,max

√
Ps/ρ,

and the system input as the normalized valve displacement

u = xm/xm,max, (4) is substituted in (2) and gives:

ṖL = 2Cm (q)

(
Φn

√
1−

xm

|xm|

PL

Ps

u− ClPL −Apq̇

)

= GA (PL, xm, q)u+ fA (PL, q, q̇) .

(5)

The servo-valve dynamics are generally modeled as a

second-order linear system with a bandwidth much higher than

the rest of the system [3]. It will be shown in Section IV that

with a valve displacement feedback in the proposed control

scheme, the explicit use of the valve dynamic model can be

avoided. The influence of the oil transmission line dynamics

is also discussed in Section IV.

Combining (1) and (5) through the relation F = ApPL,

the overall dynamic model of a hydraulic robot is given. Note

that good lubrication is assumed for the hydraulic actuator and

that frictions are considered as small continuous disturbances.

Hence, friction is neglected for controller design, due to their

smallness and the fact that the proposed INDI controller is

inherently resistant to continuous disturbances, which will be

discussed in Section III.

III. INCREMENTAL NONLINEAR DYNAMIC INVERSION

Traditional Nonlinear Dynamic Inversion (NDI) control is

a variant of the feedback linearization [33] approach, which

is widely used in flight control problems [34]. Similar ap-

proaches using inverse dynamics, such as computed torque

[35] or flatness-based control [17], are also developed for other

applications. However, a common disadvantage of feedback

linearization based approaches is the dependency on a precise

model and hence an inherent sensitivity to model uncertainties.

The INDI technique implements the NDI method based on

an incremental form of the system dynamics, in which the

contribution of most model parameter dependent terms is

minimized to a small perturbation. As a consequence, the INDI

approach does not explicitly depend on precise model and is

thus not sensitive to uncertainties.

A. Theory and Stability

The system of interest is a general nth order nonlinear

control inputs affine system given by

ẋ = f (x) +G (x)u+ d

y = h (x) ,
(6)

where f is a vector field in R
n, u ∈ R

m is the input,

d ∈ R
n is a continuous external disturbance and G ∈ R

n×m

is the control effectiveness matrix. x, d and h are assumed

continuous, f (x) and G (x) are assumed to be C
∞ functions

of x and all degrees of differentiation are bounded.

Assuming that h (x) = x, the relative degree of the system

is (1, · · · , 1)1×n, and the first-order time derivative of the

output is

ẏ = ẋ = f (x) +G (x)u+ d, (7)

where the control input u appears explicitly in the above

equation. For a fully actuated system for which m = n, the

traditional NDI, or a general feedback linearization approach,

can be implemented if G (x) is invertible.

Different from the NDI approach, in order to obtain the

incremental form of the studied system, the system dynamics

in (7) are rewritten by applying the Taylor series expansion

at the beginning instant of each sampling interval (denoted by

subscript 0):

ẋ = ẋ0 +G (x0) (u− u0) +
∂ [f (x) +G (x)u]

∂x

∣∣∣∣
0

(x− x0)

+ (d− d0) +O
(
(x− x0)

2
)
.

(8)

Defining the last three terms of (8) as

δ (∆x,∆d) =
∂ [f (x) +G (x)u]

∂x

∣∣∣∣
0

∆x+∆d+O
(
∆x2

)
,

(9)

in which the increments of the variables with respect to their

current values are denoted by ∆, (8) is then written as

ẋ = ẋ0 +G (x0) (u− u0)︸ ︷︷ ︸
nominal part

+ δ (∆x,∆d)︸ ︷︷ ︸
perturbation

, (10)

In (10) the system dynamics are divided into an incremental

nominal part, which contains the first two terms, and a

perturbation term.

Using the continuity of x and d and the boundedness of

the differentiation of f (x) and G (x), the limits of (9) as the

time increment Ts goes to 0 is calculated as

lim
Ts→0

δ (∆x,∆d) = 0. (11)

(11) suggests that with a fast sampling rate, the contribution

of the perturbation δ to the system dynamics in (10) ap-

proaches zero. Note that the continuity is not assumed for the

system input u in (10). Thus the INDI control law is designed

by using the NDI based on the nominal part of (10) in every

sampling interval, given by

u = u0 +G−1 (x0) (ν − ẋ0) , (12)

where ν is the pseudo control input to be determined and the

system state derivatives ẋ0 are assumed to be measured. Note

that the subscript 0 means the beginning of every sampling

interval, instead of a fixed reference point. For every sampling

interval, the control increment ∆u = G−1 (x0) (ν − ẋ0)
is calculated and recursively added to u0, the integrated or

measured control input of the previous sample, as illustrated

in the block diagram presented in Fig. 3. Thus the control law

(12) can also be written in a recursive discrete form as:

uk = uk−1 +∆u

∆u = G−1 (xk−1) (ν − ẋk−1) ,
(13)
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Fig. 3. Block diagram of a general INDI controller

Substituting (12) into (10), the closed-loop system dynamics

are given by

ẋ = ν + δ (∆x,∆d) . (14)

Combining (11) and (14), it is clear that under an in-

finitesimal sampling time, the system is fully linearized. By

simply choosing the linear control law ν = ẋd+Kp (xd − x),
where −Kp is Hurwitz and the subscript d denotes the desired

trajectory, the system error dynamics are written as

ė = −Kpe+ δ (∆x,∆d) , (15)

where e = x − xd. With an infinitesimal Ts, the origin of

(15) is globally exponentially stable. This is the reason that

the INDI is based on the assumption of a high sampling rate.

However, in practice, the small sample time Ts is a finite value.

(11) suggests that ∀ ε > 0, ∃Ts > 0, s.t. ‖δ (∆x,∆d) ‖2 ≤ ε.

Thus the stability of INDI is given by the lemma below.

Lemma 1: Consider the closed-loop system in (15), where

−Kp is Hurwitz, if ‖δ (∆x,∆d) ‖2 ≤ ε, the error e will be

globally ultimately bounded by εc for some c > 0.

Proof: applying Lemma 13.4 in [36]. �

Lemma 1 shows that the tracking error of the proposed INDI

controlled system is globally ultimately bounded and that the

ultimate bound can be decreased by reducing the magnitude of

the perturbation term δ (∆x,∆d) in a single time increment,

with a higher controller sampling frequency. In practice, the

perturbation term is sufficiently small with a sufficiently high

sampling frequency such that it can be neglected from (14).

Besides, a simple proportional controller is generally chosen

for the pseudo control ν, as the system is linearized as a

single integrator. Fig. 3 gives the general structure of the INDI

controller, where e−sTs denotes the transport delay in a single

sample time Ts. When model uncertainties exist for G, the

estimated value Ĝ is used for the controller.

Note that in the INDI control law (12), the information of

ẋ0 is assumed to be obtained by reliable sensor measurements

and updated in every sampling period. Consider the system dy-

namics in (10), by reducing the sampling time, the contribution

of the perturbation term to the system dynamics is reduced to

be significantly less than the rest nominal part that contains

ẋ0. Thus INDI is dependent on its accurate measurement.

B. Robustness to Parameter Uncertainty and Disturbance

Considering the general system given by (6), INDI is

inherently insensitive to parameter uncertainty in f (x) and

continuous disturbances d. This is because information of

these quantities is not explicitly used in the INDI control law

in (12), and the contribution of these two terms to the system

dynamics only appear in the perturbation term which, will only

influence the ultimate bound of the error dynamics and can be

reduced to be negligible by increasing the sampling rate.

It is observed in various applications that INDI is also

insensitive to parameter uncertainty in the matrix G (x) in (6),

with according proofs [25], [26]. However, all these proofs

are based on the assumption that ẋ = ẋ0 with small time

increment. This assumption requires the continuity of ẋ, which

conflicts with the basic assumption of the INDI that the system

input u, and consequently the state derivative ẋ, are not

necessarily continuous. This was also pointed out in [37], in

which, however, a new proof was not given. In this section,

it is rigorously proven that INDI is insensitive to parameter

uncertainty in G (x) without requiring the continuity of ẋ.

First consider a SISO system for which G is a scalar. In

Fig. 3, with the assumption of high sampling rate, the system

dynamics of G is regarded as a slowly varying gain of a input-

linear system. f (x) + d is regarded as a lumped disturbance

term, i.e., D = f (x) + d, the increment of which in one

sampling period is δ in (11). When the estimated Ĝ is used

for the controller, the transfer function from ν (s) to ẋ (s) can

be easily calculated as

H (s) =
ẋ (s)

ν (s)
=

GĜ−1

1 +
(
GĜ−1 − 1

)
e−sTs

=
1

α+ (1− α) e−sTs

,

(16)

where α = ĜG−1 indicates the level of model mismatch.

Replacing e−sTs in (16) by z−1, the stability condition of

the equivalent z-domain transfer function is that the poles are

located inside the unit circle, which requires that α > 0.5.

Considering the frequency response of H (jω), it can be

proven that if α > 0.5, the real part of H (jω) is always

positive for any ω, and thus the phase angle of H (jω) satisfies

−0.5π < ∠H (jω) < 0.5π, if α > 0.5. (17)

According to the final value theorem, the step response of

H (s) is lims→∞ H (s) = 1. This means that if only the

estimated Ĝ is bigger than half of the real G (α > 0.5), ẋ will

converge to ν. Thus the model uncertainty in Ĝ introduces

dynamics, instead of a disturbance, to the linearized single

integrator ν = ẋ. The speed of the dynamics would increase

when the sample time Ts decreases. In fact, (16) shows that

H (s) is equal to 1 when Ts approaches zero. This proves why

the INDI controller is robust to model uncertainty in G.

The robustness of INDI against uncertainty in f (x) and

d has been explained in the time domain, but can be further

verified by calculating the closed-loop transfer function from

the lumped disturbance D = f (x) + d to ẋ, which is

ẋ (s)

D (s)
=

1− e−sTs

1− e−sTs +GĜ−1e−sTs

. (18)

When the controller sampling rate is sufficiently high, the

magnitude of (18) approaches 0 as Ts approaches 0. This is

consistent with the fact that δ becomes negligible when Ts is



IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. , NO. 5

x

ssTe s

x
pK

dx

Fig. 4. The transfer function of the controlled system

small. Besides, even without this assumption, according to the

final value theorem, the step response of (18) converges to 0.

This means that the lumped disturbance term D = f (x) + d

is inherently rejected over time, and its influence is further

attenuated with a small sampling period.

The transfer function of the controlled system is thus given

in Fig. 4. The open-loop transfer function is

P (s) =
Kp

s (α+ (1− α) e−sTs)
=

Kp

s
H (s) . (19)

According to (16) and (17), if α > 0.5, P (s) is stable

and its phase angle satisfies −π < ∠P (jω) < 0 because

∠P (jω) = −0.5π + ∠H (jω). This means the Nyquist plot

of ∠P (jω) will stay below (and will never intersect) the real

axis. This first means that the open-loop Nyquist plot will

never encircle the -1+i0 point, which guarantees the stability

of the closed-loop system. Second, as the Nyquist plot of

∠P (jω) will always intersect with the unit circle below the

real axis, the controlled system always has positive phase

margin and infinite gain margin in the presence of model

uncertainty. Note that the validity of (16) to (19) relies on the

linearization of the system within a single sampling period in

(10), which requires a fast sampling rate.

This proves the robustness of INDI for SISO systems with

a single necessary condition ĜG−1 > 0.5, which will be

validated with experiments in Section V. It can be extended

to MIMO systems with the following lemma.

Lemma 2: If the square matrix ĜG−1 is diagonalizable

and all its eigenvalues are real and bigger than 0.5, then

the nominal part of (10) can still be exactly linearised to be

ẋ = ν, given the control law in (12) with estimated control

effectiveness matrix Ĝ, with an infinitesimal sample time Ts.

Proof: The INDI control law with parameter uncertainty in

Ĝ (x) is given by

u = u0 + Ĝ−1 (x0) (ν − ẋ0) , (20)

thus the nominal dynamics of (10) become

ẋ = ẋ0 +GĜ−1 (ν − ẋ0) . (21)

Considering (21) as a linear system with slowly changing

gain GĜ−1 (as the sampling rate is high), and describing it

in terms of samples instead of signals, we obtain

ẋ(k) = ẋ(k−1) +GĜ−1
(
ν(k) − ẋ(k−1)

)
, (22)

which is identical to

ĜG−1ẋ(k) =
(
ĜG−1 − I

)
ẋ(k−1) + ν(k). (23)

Consider the eigenvalue decomposition of the matrix ĜG−1

ĜG−1 = MΛM−1, (24)

and the state variable transformation

χ̇ = M−1ẋ, υ = M−1ν, (25)

then (23) is transformed to diagonal form:

Λχ̇(k) = (Λ− I) χ̇(k−1) + υ(k), (26)

the system is transformed into n decoupled scalar equations:

λiχ̇i(k) = (λi − 1) χ̇i(k−1) + υi(k). (27)

Taking the z-transform to the above equations, the transfer

function between the transformed pseudo control inputs and

system state derivatives is calculated as:

Hi (z) =
χ̇i (z)

υi (z)
=

1

λi + (1− λi) z−1
, (28)

which turns out to be a discrete filter that has a stable pole

inside the unit circle when λi > 0.5. When the sample time Ts

is infinitesimal, the normalized frequency ω = fTs approaches

zero, thus the frequency response of Hi (z) is

lim
Ts→0

Hi

(
ejfTs

)
=

1

λi + (1− λi)
= 1, (29)

Combining this result with (25), we obtain ẋ = ν. �

Lemma 2 shows that (14) still holds with parameter uncer-

tainty in G (x) for a high sampling rate. The uncertainty adds

dynamics in the form of a stable discrete filter in (28) for the

linearized nominal system, instead of disabling it as in the

case of traditional feedback linearization.

In practice the controller sampling rate for INDI is chosen

to be sufficiently higher than that of the trajectory signal,

which validates the assumption of a infinitesimal normalized

frequency. Lemma 2 also gives the tolerance of the INDI to

the model mismatch of G (x), as a condition for (28) to be

stable.

In conclusion, INDI is a practical nonlinear control tech-

nique for overcoming the sensitivity to parameter uncertainties

and continuous disturbances of traditional feedback lineariza-

tion methods.

The proposed INDI controller is similar in form to the well-

known Time-Delay-Control (TDC) technique [38], which also

introduced an incremental form of the control law. However,

both have totally different theoretical bases. Consequently,

different approaches are used to prove stability and robustness.

Besides these differences, the application of this incremental

form of control law on hydraulic force control problems has

so far not been reported.

IV. CONTROLLER DESIGN

This section addresses the design of the INDI-based hy-

draulic actuator force controller for the SRS, a 6-DOF hy-

draulic parallel robot, which is illustrated in Fig. 5. Implemen-

tation issues such as valve dynamics and oil pipeline dynamics

are discussed. As a baseline controller to be compared with,

a traditional NDI-based force controller is briefly introduced.

A force computation outer-loop motion controller is combined

with the proposed inner-loop controller to close the loop of the

complete motion control system, as proposed in Fig. 1. Note

that the proposed approach can be applied to more general

outer-loop controllers.
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Fig. 5. A hexapod motion system SRS at TU Delft (left), and a its schematic
drawing (right) [29]

A. Inner-loop INDI hydraulic force controller

The hydraulic actuator dynamics given by (5) are a first-

order system with a relative degree of 1 if we choose the state

PL as the output. The control effectiveness matrix G is GA in

this case, which is a scalar and it is not equal to zero except

in the case of load saturation. In practice, a small constant

is chosen for GA in the controller when it is smaller than a

particular value, in order to avoid singularity. By choosing a

high-bandwidth servo-valve, the valve dynamics bandwidth is

well above that of the rest of the system (the bandwidth of the

servo-valve is around 150Hz for the SRS) [39]. As pressure

sensors are commonly used in the hydraulic actuators, the

state measurement is generally available. Thus, all assumptions

and conditions for INDI are fulfilled for the studied hydraulic

system.

Consider the hydraulic pressure dynamics in (5), the actu-

ator velocity term 2CmApq̇ exists as an interaction from the

platform dynamics. It is considered as a continuous distur-

bance to the local pressure dynamics. Following the procedure

of the INDI methodology from (8) to (14), the incremental

form pressure dynamics are written as

ṖL = ṖL0 +GA (u− u0) + δ (∆q̇,∆Ps) , (30)

where

GA = 2Cm (q0) Φn

√
1− sgn (xm0)

PL0

Ps

. (31)

Linearizing the nominal part of (30), the INDI control law

is given by [29]

u = u0 +G−1
A

(
ν − ṖL0

)
, (32)

and the linear relation between ν and ṖL is achieved in

existence of the perturbation term:

ṖL = ν + δ (∆q̇,∆Ps) . (33)

By choosing a sufficiently high controller sampling rate,

the magnitude of the perturbation is reduced to be negligible.

A simple linear controller can be chosen for ν, turning the

hydraulic system into a force generator:

ṖL = ν = Kp (Fref/Ap − PL) , (34)

where Fref is the desired actuation force.

From a controller design perspective, the INDI approach

is straightforwardly implementable for control applications in

industry, and the stability and robustness against uncertainties

are guaranteed by Lemma 1 and Lemma 2. The effectiveness

of the proposed controller is verified in simulation work in

[29]. However, some implementation issues are met in real-

world application for the SRS. It will be shown below that

they can be solved with simple techniques integrated in the

framework of the INDI method.

B. Solving implementation issues

1) Numerical differentiation: The derivative of the current

actuator pressure difference ṖL0 is required by the INDI

control law in (32), which is typically not directly available as

measurement. In practice it is obtained by numerical differen-

tiation of the measurement of the pressure sensor available on

most hydraulic actuators. The noises amplified by numerical

differentiation are attenuated by a typical low-pass filter [27].

As will be discussed in Section IV-B3, the filter also has

another purpose, that is, to attenuate the oil pipeline dynamics,

thus the corresponding solution for the common issue of the

introduced phase lag will be discussed in detail there.

In addition to the practical low-pass filter, more advanced

differentiation methods such as Kalman filters or Savitzky-

Golay filters [40] can be considered to deal with the noise.

Note, however, that for applications to other systems, the state

derivatives may be directly measured. For instance, the angular

acceleration of an aircraft or robotic systems can be measured

with angular accelerometers.

2) Valve dynamics: The theoretical INDI control law given

by (32) is in the form of the accumulation of the control

increments calculated in each time step. This requires the

assumption of infinitely fast actuator dynamics, which in

the hydraulic system applies to the servo-valve dynamics.

In practice, the finite actuator bandwidth may cause stability

problems [27], even if it is sufficiently higher than that of the

rest of the system. Thus in real-world applications, the real-

time measurement of the hydraulic servo-valve spool position

is used for u0 in (32) (as shown in Fig. 8), instead of the

theoretical memory of the accumulated control input. It will

be shown in (35) that by doing this, with stable servo-valve

dynamics, the system stability will not be influenced.

3) Transmission line dynamics: For hydraulic applications

such as flight simulators, the relatively large operational space

asks for long-stroke actuators, which inherently introduce

high-frequency transmission dynamics of the relatively long

oil pipelines between the valve and the actuator, as shown

in Fig. 2. The modeling of these transmission dynamics was

extensively studied in literature [41]. In [42], the so-called

”model approximation technique” is adopted to describe the

transmission dynamics by an infinite product series of second

order models, each of which gives rise to a resonance mode. In

the case of the SRS, with the pipelines of around 1.2 meters,

a linearized model analysis shows resonance frequencies at

200, 600, 1000 Hz and higher [42]. Given a digital controller

at 5000 Hz and valve bandwidth up to about 150 Hz, the first

mode is relevant for controller design and analysis.

Fig. 6 shows the Bode plots from the input xm to the output

PL of a hydraulic actuator model including the transmission
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Fig. 7. High frequency oscillation of load pressure and valve due to the
resonance frequencies of transmission lines.

lines. The eigenfrequencies of the two transmission lines at

around 200 Hz combined with the 180◦ phase lag brought on

by the valve dynamics cause stability problems by pressure

feedback [39], [42]. In early experiments without consideration

of these effects, a heavy self-sustaining oscillation at about 200

Hz occurred for the proposed controller, as shown in Fig. 7.

The easiest way to solve this problem is to add a second-

order low-pass filter Ht (z) in the pressure feedback loop

before the differentiator (see Fig. 8), in order to attenuate the

resonance peaks and shift the crossover frequency. In practice,

a filter with a 35 Hz natural frequency is used for the SRS,

with a balance of stability and performance based on trial and

error experiments. As discussed before, Ht (z) has a second

purpose in smoothing the PL measurement, thereby avoiding

the amplification of the measurement noise by the numerical

differentiation.

As a result, the filtered pressure measurement ṖLf , instead

of the real value ṖL0, is used for feedback. Extra dynamics are

thus introduced to the loop and the phase lag introduced by

Ht (z) will degrade the control performance [25]. In this study,

the technique proposed in literature [27] is adopted, where

Ht (z) is also added in the valve spool position measurement

loop, as shown in Fig. 8. It will be shown in (35) that with

this compensation, the influence of the additional dynamics is

canceled from the system dynamics. We emphasize here that
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Fig. 8. Practical INDI control scheme for inner-loop hydraulic actuator force
tracking.

the synchronization of the filters in both loops is an important

practical solution for dealing with the phase lag introduced by

state derivative estimation.

Taking these issues into consideration, the INDI force

controller implemented in reality is illustrated in Fig. 8 with a

z-domain block diagram representation, where V (z) denotes

the valve dynamics and the subscript f denotes the filtered

signals. The system dynamics in the dotted line box is based

on the incremental form of system dynamics given in (30).

The controller follows the framework proposed in previous

theoretical work [29].

The strategies introduced in this section can be easily

verified by calculating the closed-loop transfer function from

ν to ṖL:

ṖL (z)

ν (z)
=

V (z)
(
1− V (z)Ht (z) z

−1
)
−1

1 + V (z) (1− V (z)Ht (z) z−1)−1 Ht (z) z−1

=
V (z)

1− V (z)Ht (z) z−1 + V (z)Ht (z) z−1
= V (z) .

(35)

The valve dynamics V (z) show up in the controlled system

transfer function, instead of a single integrator in (34). (35)

suggests that by using the servo-valve output measurement as

feedback, system stability is not influenced with the stable

servo-valve dynamics. With this measurement, the valve dy-

namics are considered in the control system, while a precise

model is not necessary. It is also verified that the introduction

of the filter Ht (z) in the control input memory loop canceled

its influence on the measurement feedback loop. With this

simple relation, the proportional controller of (34) is still suf-

ficient to stabilize the system. The use of input measurement

feedback and the compensation filter in that loop to deal with

unmodeled dynamics are the main features of the practical

INDI technique.

C. Inner-loop NDI based force controller

NDI is a more traditional nonlinear control strategy as an

example of feedback linearization. A direct application can be

made to the hydraulic pressure dynamic equation given in (5)

by simply inverting it as follows:

u = G−1
A (PL, xm, q) (ν − fA (PL, q, q̇)) , (36)

and the pressure dynamics become ṖL = ν, which allows for

a simple linear controller for ν. This strategy is adopted in

various applications [3], [43]. Variants of NDI are also called

”cascade ∆P” (CdP) or ”cascade” control for some hydraulic
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Fig. 9. Outer-loop computed torque controller with PD feedback for the SRS

control applications [16], [44], [45], which have also been

adopted for the SRS [39]. Such NDI-based controllers rely on

an accurate model and it will be shown that the performance

is significantly degraded when parameter mismatches exist.

D. Outer-loop motion controller

As in this study we focus on the novelty of the inner-

loop INDI force controller, a widely applied computed torque

control approach [6] is used for the outer-loop controller, as

illustrated by Fig. 9. A feedforward force Fff is calculated

by the inverse dynamics of the hexapod and added to the PD

feedback terms in the actuation space, before it is sent to the

closed-loop hydraulic subsystem. The outer-loop control law

is given by:

Fref = Fff +KP (qd − q) +KD (q̇d − q̇) . (37)

V. EXPERIMENT RESULTS

This section demonstrates the force control performance

of the proposed INDI technique for motion tracking tasks

for the hydraulic hexapod motion system of the SRS at TU

Delft, for both nominal conditions and cases with significant

parameter mismatches. The overall system performance is also

demonstrated and compared to a baseline NDI approach, as

well as other similar state-of-the-art control schemes.

A. Hardware Setup

The SRS is a 6-DOF flight simulator with a movable mass

of around 4000 kg, capable of carrying two pilots, as shown

in Fig. 5. The SRS is equipped with a hexapod motion system

consisting of six hydraulic cylinders with 1.25 meters total

stroke. With a 160 bar working pressure, the actuators are

capable of exerting a maximum force of Fm = 40 kN,

with a 1 m/s maximum actuator velocity. Each actuator is

equipped with a Rexroth 4WSE3EE three-stage servo-valve

and a PAINE 210-60-090 pressure transducer. Temposonic

position sensors are installed on the actuators for position

measurement and velocity estimation. The nominal parameters

for the actuator model were identified in off-line experiments

for the NDI-based controller as a baseline.

The motion control computer (MCC) is equipped with the

dSPACE DS1005 system clocked at 1 GHz. The inner-loop

controller is sampled at 5000 Hz and the outer-loop controller

at 1000 Hz. The filters are designed in the analog plane and

discretized using the bilinear transformation.
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Fig. 10. Inner-loop force tracking errors for NDI and INDI in nominal and
parameter mismatch conditions.
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B. Motion Profile 1

A set of symmetric motion tracking tasks along the vertical

axis are tested first to demonstrate the efficiency of the pro-

posed method with nominal hydraulic parameters. The force

tracking error (normalized by PsAp) of each actuator with the

INDI controller and the NDI-based controller in tracking the

reference trajectory zd = 0.2 sin 0.4πt m around the neutral

point are shown in Fig. 10. The maximum tracking error is

consistently around 1% for the INDI controller and 2.5% −
4% for the NDI controller. The performance of the INDI

controller is consistently better than that of the NDI controller.

The performance of NDI varies significantly for the different

actuators, due to the different individual nonlinear dynamics

that are not completely canceled. The advantage of INDI is

thus already obvious in the nominal case.

The robustness of the INDI controller against parameter un-

certainties is demonstrated by intentionally introducing param-

eter mismatches to the controller in the motion tracking test. In

practice, the uncertainty of GA results from model mismatches

of Φn, Cm or disturbances of Ps. In this paper, the value of

GA used for the controller is offset from the nominal case, as

would for instance be caused by the proportional mismatches
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TABLE I
ρ INDICATORS COMPARED WITH STATE-OF-THE-ART STUDIES

Study ρ [s] |e|max [mm] DOF Type

Koivumaki 2015 [22] 0.0050 5.20 3 serial
Sirouspour 2001 [23] 0.0100 2.60 6 parallel
INDI nominal 0.0035 0.87 6 parallel
INDI 50% mismatch 0.0036 0.91 6 parallel

of the maximum oil flow Φn, between their estimated and real

values. The force tracking errors in mismatch conditions for

INDI and NDI are also shown in Fig. 10. The performance of

the NDI controller is significantly degraded with only +10%
mismatch of ĜA, while that of the INDI controller remains

almost intact for up to 50% parameter mismatch. Fig. 11

gives the average Root-Mean-Square (RMS) of the nomalized

force tracking error of all actuators for both controllers, under

different levels of parameter mismatch in terms of ĜA, from

-20% to +50%. The INDI shows equivalent performance at

each condition, with an RMS of around 0.003, while that of

the NDI quickly deteriorates from 0.02 to 0.1 as the mismatch

level increases.

This result validates that INDI is resistant to even an

unrealistic magnitude of error in parameter estimation for

GA while keeping high-precision performance, as long as the

necessary condition α = ĜAG
−1
A > 0.5 (see Section III)

is fulfilled. Note that INDI is inherently not sensitive to the

leakage term ClPL and the velocity related term Apq̇ in (5), as

they are minimized as the perturbation term and do not appear

in the control law at all.

Combined with the same outer-loop controller, the overall

position tracking errors of both controllers are shown in Fig.

12. The maximum position error of the NDI controller is 1.303

mm in nominal condition, and is rapidly increased to 3.3 mm

with only +10% mismatch on ĜA. The performance of INDI

is insensitive to the ĜA mismatch, with a maximum position

error of 0.867 mm in nominal condition and a barely larger

0.905 mm maximum error with +50% mismatch. Note that the

result for INDI with +10% mismatch is not presented in the

graph, as it is not distinguishable from the other settings.

The performance of the proposed controller is evaluated and

compared to the state-of-the-art hydraulic robotic manipulator
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control systems reviewed in a recent survey paper [24], in

which the stability guaranteed adaptive nonlinear controllers

[22], [23] show the best performance. In [24], a performance

indicator ρ is suggested to evaluate the performance by taking

into consideration of not only the absolute error, but also the

maximum velocity of the trajectory, which is defined as

ρ =
max (|xd − x|)

max (|ẋ|)
=

|e|max

|ẋ|max

. (38)

In Table I, the performance indicators of the proposed INDI

control system in nominal and +50% parameter mismatch

conditions are compared with the best performance counter-

parts for parallel hydraulic systems and serial manipulators

concluded in the survey [24]. It is clear that the INDI control

system gives almost the same performance in both nominal

and parameter mismatch conditions, which have also better

ρ indicator values listed than other approaches in literature.

The advantage of the proposed method is even more obvious

by taking the size of the systems into consideration, as the

INDI controller applied to the considered SRS system achieves

improved position tracking accuracy with a significantly heav-

ier load of over 4000 kg. It can be concluded that the INDI
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hydraulic control system has one of the best motion control

performance of the current hydraulic robotic manipulators.

C. Motion Profile 2

A more aggressive asymmetrical motion used for a previous

state estimation experiment [46] is used to further evaluate

the proposed controller, with more excitation of all nonlinear

dynamics and kinematics. In this motion, the upper platform

traces a 0.5 m radius circular path in the horizontal plane with

a period of five seconds. A periodic roll and pitch motion with

an amplitude of 10 deg/s and a period of 2.5 s is superimposed

on this planer movement. With maximum actuator displace-

ment and velocity of 0.7 m and 0.7 m/s, respectively, this

motion exploits up to about 60% of the total safe stroke and

70% of the maximum velocity. The force and position tracking

errors of Actuator 2 with different controller settings are shown

in Fig. 13. The performance of INDI with 50% mismatch is

still almost identical to the nominal case, with about 2.5%
maximum force error and 2.2 mm maximum position error,

while for the NDI controller these are 10% and 6.5 mm for the

nominal case and degraded to 20% and 11 mm with only 10%
parameter offset. This result indicates that the performance of

traditional feedback linearization deteriorates faster than the

INDI with more aggressive motions, because more serious

nonlinear effects are excited when the system exploits a larger

operation space. The trajectory tracking performance in the

horizontal plane is illustrated in Fig. 14. The maximum error

of INDI with 50% parameter mismatch is well below 2 mm,

much better than that of the NDI with 4.5 mm in nominal

condition and 8 mm with 10% mismatch.

The experiment results show that high-precision hydraulic

robot force/motion tracking is achieved with the proposed

INDI controller even in existence of significant magnitude of

parameter mismatch, without explicit use of computationally

heavy adaptive or robust control algorithms. From a practical

point of view, the INDI controller design procedure is straight-

forward and can be easily implemented for other applications.

VI. CONCLUSION

This paper presents the implementation of the INDI con-

troller on a full-scale hexapod hydraulic flight simulator mo-

tion system. Acting as a hydraulic actuator force tracking

controller, the proposed technique is robust against even un-

realistic hydraulic parametric uncertainties and disturbances,

while providing better tracking performance than a tradi-

tional feedback linearization approach. The robustness of INDI

against parameter uncertainty and its stability are proven, and

an estimation of parameter mismatch tolerance is given as a

necessary condition for stability. Combined with a commonly

applied force computation outer-loop motion controller, a

high-precision motion control system is developed for the

hexapod motion system of the SRS. For the implementation

on this long-stroke system, solutions to practical problems,

such as oil transmission line resonance effect, have been

discussed comprehensively, as a guide for other real-world

applications. We demonstrate a significant improvement of

tracking accuracy compared with the state-of-the-art research.

The simplicity of the design procedure and the low compu-

tation load makes the INDI a potential off-the-shelf control

technique for other hydraulic motion systems.
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