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ABSTRACT 

Reservations in daily services can improve user satisfaction, and give additional information 

about the demand patterns to the operators. However, providing reservations to carsharing clients 

is difficult. While carsharing is especially convenient if it is allowing one-way trips and vehicle 

drop-off anywhere in the service area (called free-floating), this flexibility increases management 

complexity because of vehicle stock imbalance. Most of the commercial providers of free-floating 

carsharing offer reservations under highly restrictive terms, for example only up to 30 minutes in 

advance. In this paper, we propose an innovative reservation enforcement technique that allows 

substantially longer reservation times while keeping the system profitable and achieving high 

service quality. A simple way to enforce reservations is locking vehicles until the departure time 

of a client. However, it comes at the cost of idling vehicles that could be used by other users and 

decreasing the revenue. Our approach, called relocations-based reservation enforcement method 

(R-BR) combines vehicle locking and relocation movements. It locks vehicles only a short time 

before the trip departure if a suitable vehicle is close enough due to the natural trip patterns. If no 

such vehicle is available, a car is relocated from another place. Further, we propose a variable 

quality of service (QoS) model in which the guaranteed radius around the user within which the 

reserved vehicle will be placed, and the maximum allowed reservation time before the departure 

depends on the zone of trip departure. A simulation-based optimization is used whereby the 

carsharing operation is simulated and optimized using an iterated local search (ILS) metaheuristic 

for adjustment of service level parameters. The proposed technique is tested on a set of artificial 

problem examples and a case study of a simulated working day in the Lisbon Municipality, 

Portugal. Results show that the proposed R-BR method is substantially better than the simple 

vehicle locking when the constant QoS approach is used and that the devised ILS metaheuristic 

can further increase the system performance, especially with high trip volumes.  

Keywords: free-floating carsharing, reservations, relocations, iterated local search, quality of 

service, sustainable transport  
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1. Introduction

Carsharing is a type of mobility service that provides short-term car rental to its users 

(Shaheen et al., 1999, Correia and Antunes, 2012). Such services involve a fleet of vehicles 

distributed across the city that can be accessed and used by their members. Unlike traditional rent-

a-car services, the typical rental durations are very short and charged by the minute or the hour. 

They are typically privately owned and marketed as a membership-based service.  

Carsharing systems provide the flexibility and accessibility of a private car, without, 

however, the costs and responsibilities of owning one. To the user, they are an alternative to both 

private vehicle ownership and public transport (Namazu and Dowlatabadi, 2018.). To 

policymakers, they are interesting due to their potential to reduce pollutant emissions as well as 

the need for parking spaces and costly expansions of the public transport service coverage 

(Litman, 2000; Schuster et al., 2005). Carsharing systems can be divided into round-trip and one-

way trip systems, the latter allowing clients more flexibility as they do not require the vehicle to 

be returned to the original location. Furthermore, they can be divided into station-based and free-

floating systems. In station-based carsharing, users can return the vehicles only to a set of specific 

locations (stations), while free-floating carsharing allows users to park the vehicle in any legal 

parking space in the service area. In both cases, allowing more flexibility to the user also creates 

added management complexity due to vehicle stock imbalance, well documented in the literature 

(e.g., Correia and Antunes, 2012, Huang et al., 2018).  

While carsharing has the potential for lowering the environmental footprint of the city 

commute (Vasconcelos et al., 2017), an important obstacle to the broader adoption is the fact that 

the service is still more difficult to access than for example a taxi. Aside from being dispersed at 

attractive locations around the city to allow walk-ins, the taxi service typically offers the dial-a-

ride, e-hail, and booking services which add additional value and increase the suitability of the 

service for different purposes.  

A possible way to increase availability and user satisfaction in one-way carsharing 

systems could be providing vehicle reservations. Reservations are available in a wide range of 

services and industries: reserving a table at a restaurant, seats in a theatre or booking hotel rooms 

are nowadays ubiquitous everyday actions. Reservations are available in other transportation 

services as well: virtually all of the air traffic is reserved ahead, and most taxi providers allow 

their users to reserve a ride (Copeland and McKenney, 1988, Wang and Cheu, 2013, An and Lo, 

2014, Hu and Liu, 2016; Lu et al., 2018). Reservations can give the providers additional useful 

information, such as daily, weekly and seasonal demand patterns, and the way users respond to 

various campaigns. Knowing the demand ahead helps these services to plan their operations and 

organize the resources to improve efficiency. Therefore, the operators commonly encourage users 
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to perform reservations as soon as possible. Pricing incentives are a frequently used way to 

achieve early user response – booking a hotel room or a flight just one day ahead is almost always 

much more expensive than doing it some months in advance.  

Providing vehicle reservations in carsharing can be a highly challenging issue though, 

and has hardly been addressed in the literature. The topic of using resource reservation as a 

management strategy in carsharing has been mainly explored for parking at the destination when 

there is a shortage of parking spaces (Kaspi et al. 2014, Kaspi et al. 2016). Unlike the airline and 

hospitality industries, where the reserved resources are under complete control by the provider, 

this is not the case in carsharing. The shared fleet movements are dynamic and difficult to predict, 

due to varying demand. For a carsharing service provider, knowing reservations a few days ahead, 

i.e., where a vehicle is going to be picked-up, does not help much in running the enterprise as 

relying on daily user trips is not enough to provide the guarantee that a vehicle will be available 

at the reserved location and time. Instead, some other mechanism needs to be used to enforce the 

reservation service and ensure that the user will have the reserved vehicle at the place and time 

he/she desires.  

A simple and effective strategy that can be used to enforce reservations is vehicle locking. 

In this approach, the user selects a vehicle close to the desired location and the departure time. 

After this, the vehicle is considered locked and inaccessible for use by any other member (similar 

to a waiter in a restaurant putting a “reserved” label on a table). A prominent drawback of such 

approach is that it lowers the vehicle utilization rates and the revenue produced by the locked 

vehicle. This is such a notable issue that many one-way carsharing providers do not have 

reservation services at all, or if they do, they offer it under highly restrictive conditions. For 

example, the global operators Car2Go and ZipCar allow reservations for one-way trips, but only 

up to 30 minutes before the trip start (car2Go, 2017; Zipcar OneWay, 2017). Some other services 

allow longer reservations, however, charge for them by the minute (DriveNow, 2018;  Enjoy, 

2017). The utility of such service is therefore highly limited as reserving a vehicle for a trip to the 

airport a week ahead or a trip to work tomorrow morning is not possible or at best, is expensive. 

These restrictions substantially decrease the quality of service being provided by a mode that is 

supposed to serve a higher share of demand in the future.  

Relocation operations are vehicle movements initiated by the service provider and 

performed by a team of employees. So far, relocations have been used mainly to solve the vehicle 

stock imbalance problem, both in the station based and free-floating carsharing systems. 

Relocation trips do not generate revenue and represent a cost for the company due to the fuel and 

staff expenses. However, research has shown that such investment can lead to higher overall 

profits by providing the ability to fulfill more demand. It is possible to find in the literature several 
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optimization and simulation methods dedicated to this problem (Jorge et al., 2014; Weikl and 

Bogenberger, 2013; Weikl et al., 2016; Boyaci et al., 2015; Deng and Cardin, 2018; Huang et al., 

2018).  

To the best of our knowledge, no research has been done to demonstrate the drawbacks 

of the vehicle locking method for providing carsharing reservations, nor in providing a more 

efficient alternative that can cope with the disadvantages. We propose an innovative reservation 

enforcement method named Relocations-Based Reservations (R-BR) that complements vehicle 

locking with relocations operations in a free-floating one-way carsharing system. We hypothesize 

this approach will allow longer reservation times while keeping the vehicle utilization rates and 

revenues reasonably high.  

Methodologically, this work is based on a simulation-optimization approach. We built a 

custom microsimulation environment that allows insight into user-operator interactions under 

different conditions related to reservations. A carsharing company might not support reservations 

at all or might use various strategies to ensure that reserved vehicles will be at the requested 

location at the required time. Companies might also sometimes reject reservations and users will 

not use the service unless an available car is close enough to reach it by walking. The developed 

model has similar properties to others that have been proposed in the literature to study the 

management of carsharing systems such as (Di Febraro, et al., 2012; Jorge et al., 2014; Nourinejad 

and Roorda, 2014; Kek et al., 2009).  

We assess the reservation quality of service (QoS) using two parameters: (1) time in 

advance allowed for making a reservation, denoted h, and (2) radius around the trip origin, 

denoted r, where the reserved vehicle is guaranteed to be available at the time of the client 

departure. We assume that users would like to be able to reserve a car anytime they want, therefore 

longer h means better user satisfaction. Conversely, we assume that users would like to walk the 

shortest possible distance to the reserved vehicle (Correia et al., 2014). More formally, to improve 

user satisfaction, it is desirable to maximize h and minimize r.  

Applying an equal setup everywhere in the service area might not be optimal. Tactically 

increasing the service quality in certain zones of the city and decreasing it in others has the 

potential to improve the profitability of the service and accepted demand, without impacting the 

service quality too much. Based on this idea, we define the Variable Reservation Service Quality 

Problem (VRSQP): given a set of zones in a city, with the possibility to choose a separate service 

quality level in each zone, we want to find the best set of (radius, time ahead) parameters in order 

to maximize the objective function (denoted Z). The objective function is defined as a weighted 

sum of individual goals: profit (maximized), satisfied demand (maximized), allowed time 

between the moment of reservation and trip start (maximized) and the radius around the user 
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(minimized).  These goals can be contradictory in some cases, which makes the VRSQP a multi-

objective optimization problem. By choosing the appropriate weight for each of the four 

individual goals, it is possible to model the operator preferences: some businesses might be 

entirely profit-oriented and set to ignore all other goals, others might prefer a more balanced 

approach where profit is not improved if it causes large drops in service quality.  

Choosing a setup of the geographically varying pairs of r and h is a complex problem. 

We propose to use an Iterated Local Search (ILS) metaheuristic (Lourenço et al., 2001; Lourenço 

et al., 2003) in a simulation-based optimization approach for finding good and realistic solutions 

to the VRSQP. In this setup, the simulator acts as an evaluator for the variable service quality 

layouts proposed by the ILS algorithm. Based on the evaluation from the simulator, the algorithm 

creates increasingly better solutions and discards those that produced bad results in the simulation.  

The methodology is applied on several problem instances: two extreme hypothetical cities 

(small town and large major city) and a case study of Lisbon Municipality, Portugal, with four 

different demand levels. Two key experiments are performed:   

1) We compare the vehicle locking and the R-BR method under a constant QoS in the 

entire service area,  

2) The R-BR method is further optimized under a variable QoS with the ILS.  

The remainder of this paper is organized as follows: Section 2 brings a detailed 

description of using relocations to enhance the reservations system. Section 3 presents the variable 

reservations quality of service concept by which reservations are offered in a different way across 

the city to maximize an objective function. The paper continues in Section 4 with the description 

of the ILS heuristic proposed to solve the problem in a simulation-based optimization approach. 

Section 5 presents the numerical experiments and application to the Lisbon case study which is 

followed by the results in Section 6. Finally, Section 7 gives the main conclusions of the paper 

and perspectives for future work.  

 

2. The Relocations-Based Reservations (R-BR) method  

Let us imagine that a user calls at 17:00 and wants to reserve a vehicle to be available the 

same day at 21:00 at a specific location of the city. In the vehicle locking approach, the operator 

searches for the closest vehicle to the desired location. If the closest vehicle is within the 

acceptable radius (𝑟) from the location, the reservation is accepted, otherwise, it is rejected. If the 

reservation is accepted, the current closest vehicle is marked as locked and in that way, reserved 

for the user. In our example (Figure 1), the closest vehicle that was found will be locked at 17:00 

and will remain in its location until the desired departure time (21:00) when the user picks it up. 
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Notice that this reservation process would be the same had the user searched a specific vehicle 

himself by using a smartphone or a laptop with internet access.   

 

Figure 1:  Vehicle locking and relocation enforcement strategies 

 

Using the Relocations-Based Reservations (R-BR) method that we propose, when a client 

makes a reservation, no action is taken immediately. At that moment, the reservation is checked 

for feasibility, as there exists the QoS limit of accepting reservations no more than ℎ minutes 

ahead. After the reservation is accepted, all vehicles in the network continue to be available as if 

no reservation has taken place until the response time moment, denoted as 𝑡𝑎. Response time 

moment is the time before the desired departure at which the system starts processing the 

reservation and activates the relocations enforcement mechanism. At that point a decision needs 

to be made: lock some nearby vehicle or use a relocation movement. This decision is made based 

on the location of the closest available vehicle to the client trip origin. If the nearest vehicle is 

within the acceptable QoS radius (denoted as 𝑟), that vehicle is locked until the user takes it at the 

desired departure time.  

When the vehicle is relocated, it will be locked until the user takes it. If there are no 

vehicles available for relocation a taxi must be provided to the client since he/she was expecting 

a vehicle. In our example shown in Figure 1, the vehicle locking system caused the vehicle to stay 

idle for 4 hours whilst using the R-BR method we propose, the car would be idle much shorter 
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(only up to 1 hour in the example). The flowchart of this approach is presented in Figure 2. Note 

that the values of r and h can be set globally, equal for the entire service area or they can vary 

depending on the origin zone as in the VRSQP problem.   

  

Figure 2: Flowchart of the proposed relocations based reservation enforcement strategy 

 

An important aspect that needs to be decided is how long before the reservation does the 

system need to respond. If the response time is too long, we expose the system to the risk of 

having low vehicle utilization rates, similar to the ones obtained with vehicle locking, if it is too 

short, we risk having unreliable service where delays can happen. In this paper, we propose that 

this parameter should be set in such a way that the system still has enough time for a relocation, 
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even under the most pessimistic traffic conditions for the particular case-study city. While a more 

realistic value could be used in the function of actual traffic conditions, we decided to use the 

most conservative estimates due to the fact that such forecasting could be unreliable. Last-minute 

cancellations of accepted reservations would undermine the user trust, and therefore we selected 

higher reliability instead of slightly better profit.  

A key issue when applying R-BR method is choosing a right balance of QoS parameters 

r and h and other performance indicators such as profit and satisfied demand. Any change of these 

will affect users who in general want to be able to reserve as early as possible and want their cars 

to be as close to them as possible. Achieving a high quality of service can require more effort 

from the provider, and it has the potential to cause drops in profitability. In this paper, we propose 

two algorithms that can help set these parameters: (1) a simple QoS-sweep algorithm to choose 

the best global service quality (equal in the entire service area regardless of the origin location) 

and (2) an ILS metaheuristic to choose these parameters when they can vary, depending on the 

origin zone.  

 

2.1.Vehicle stock balancing  

The simulation environment we designed supports two different types of relocations:  

1. Reservation support relocation movements,  

2. Balancing relocation movements.  

The key application of relocations in this work is the first one: relocations are used to 

bring a vehicle to the location of a reservation if there are no nearby cars. The second type is a 

traditional application in carsharing, used to improve the vehicle stock balance and increase the 

probability that a vehicle will be close to the average user, including the users doing walk-ins 

(Jorge et al. 2014). Even though the focus of this work is on the first type, in the simulator, both 

can be used independently or complementary. In both cases, the relocation decisions are based on 

the current state of the simulated fleet (reserved, available and occupied vehicles), and the demand 

forecast data in the rectangular grid across the city, during several time periods.  

While the first type of movements has a reservation support purpose, they can 

nevertheless be used to improve balance. Consider the situation where a type 1 movement is 

needed because there are no vehicles close to the user for a reserved a ride. A relocation movement 

will be performed to move a vehicle to the departure location. Depending on the choice of the car 

to relocate, we could increase or decrease system balance. Always choosing the closest car is the 

myopic cheapest move, however, it does not take the vehicle stock balance into account and has 

the potential to worsen it. Conversely, performing relocation trips that are best from the balancing 
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point of view could lead to a large number of long and expensive relocation trips. For the 

reservation support movements, we use the middle-ground approach, where cars are relocated 

from the closest zone with a vehicle stock surplus. In the case where there are no surplus zones in 

the system, the closest available car is relocated.  

For the second type, we implemented a simple strategy where a number of balancing trips 

is periodically dispatched. Balancing effort intensity is parametrized by two parameters: (1) 

balancing trips per period, denoted bn  and (2) balancing period duration, denoted 𝑏𝑝. All the 

balancing trips are started at the same time at the beginning of each balancing period. Increasing 

the number of balancing trips per period and shortening the period (increasing the dispatch 

frequency) will improve the balance, however, the costs of operating these relocations will 

increase.  

The balancing algorithm uses the forecasted demand during several days and the city area 

divided into a rectangular grid to determine which zones have a surplus of vehicles and which 

have a deficit. Depending on the severity of the deficit/surplus, the zones are prioritized into 

suppliers and demanders, and relocation movements from suppliers to demanders are produced. 

Cost of relocation movements is calculated based on the cost per minute driven for relocation 

trips, denoted 𝐶𝑟.  

We note that faithfully modeling different balancing relocation strategies is a separate, 

complex issue that is still under research on its own (Weikl and Bogenberger, 2013; Jorge et al., 

2014; Weikl et al., 2016, Boyaci et al., 2015). Considering that a highly realistic simulation of 

relocations is not the goal of this paper, and to ensure faster execution of the model, we 

intentionally omit details related to advanced optimization approaches for relocation movements, 

as well as the details of running the appropriately sized workforce. We assume that at any given 

moment, a staff member can immediately be available in any part of the city to start the relocation 

if needed. This is a simplification of the real systems which often work with their own staff team 

who require some time to reach the vehicles to be relocated and have a varying number of 

available staff throughout the day. However, we assume that the relocations are performed by 

out-sourced people who do each relocation operation one service at a time and are paid by minute 

of relocation rides. When other staff payment models are used, some approximations are needed. 

For example, an operator might observe that approximately 35% of their relocation costs are spent 

traveling to the relocation movement origin and take that into account when calculating the value 

of the 𝐶𝑟 parameter.  
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3. Variable Reservation Quality of Service (QoS) 

Varying the service parameters such as prices according to the local conditions is widely 

used in transport services as referred before (Yang et al., 2010; Jorge et al., 2015; Angelopoulos 

et al., 2018; Xu et al., 2018). To further tailor the one-way carsharing operation to the demand, 

aiming at increasing the profit of the company whilst allowing for reservations and keeping the 

service quality high, we propose a variable QoS model across a city. Given varying trip patterns 

across the zones of a city, tailoring the reservation parameters has the potential to improve the 

system efficiency. In the variable service model, the service area is divided into 𝑁 zones, with 

individual QoS parameter values in each trip origin zone:  

𝑄𝑜𝑆𝑖 = (𝑟𝑖, ℎ𝑖),  

where 𝑟𝑖 is the maximum allowed distance of the reserved vehicle (radius around the user) in the 

i-th zone and ℎ𝑖 is the maximum allowed reservation time ahead of the trip start in the same zone.  

The Variable Reservation Service Quality Problem (VRSQP) is defined in general terms 

as the problem of finding the optimal set of QoS parameters for the zones in the city, for which 

an objective function that describes the operator preferences is maximized. While the profit of a 

carsharing company is a good foundation for comparing the solution quality from the perspective 

of the operator, it is clearly not enough to guarantee that service of good quality is being provided 

to the travelers. Large 𝑟 might lead to savings in relocation trips and higher profits, nevertheless, 

the users prefer it to be as small as possible. For many users, walking half a kilometer to reach 

the vehicle makes little sense, especially if their trip is going to be short. Likewise, users prefer 

to be able to place reservations with as few restrictions as possible, therefore the longer the 

allowed reservation time, the better the service quality offered to the clients. Finally, the satisfied 

demand is the fourth important factor which determines the solution quality, higher demand 

acceptance levels mean that a better user coverage was achieved.  

Therefore we define the problem of finding the optimal reservation parameters as a 

combination of all or some of the following individual objectives 1) maximizing the profit, 2) 

maximizing the reservation times, 3) minimizing the radius around the user where the reserved 

vehicle will be available, and 4) maximizing the satisfied demand. All of those can be combined 

into a multiobjective function as follows: 

𝑀𝑎𝑥(𝑍) =  𝑤𝑃

𝑃 − 𝑃𝑚𝑖𝑛

𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛

+ 𝑤ℎ

ℎ̅

ℎ𝑚𝑎𝑥

+ 𝑤𝑟 (1 −
𝑟̅

𝑟𝑚𝑎𝑥

) + 𝑤𝑑

𝑑𝑠𝑎𝑡

𝑑𝑡𝑜𝑡

 (1) 

 

where 𝑃 is the profit for a given solution, 𝑃𝑚𝑖𝑛 and 𝑃𝑚𝑎𝑥 are the lower and upper profit bound 

estimates, ℎ̅ is the average reservation time across all zones of the city, ℎ𝑚𝑎𝑥 is the maximum 
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reservation time, 𝑟̅ is the average radius across all zones of the city, 𝑟𝑚𝑎𝑥 is the maximum 

radius, 𝑑𝑠𝑎𝑡 is the number of satisfied trips, 𝑑𝑡𝑜𝑡is the total demand (maximum potential number 

of carsharing trips) and 𝑤𝑃, 𝑤ℎ, 𝑤𝑟and 𝑤𝑑 are the weight factors determining the relative 

priority of each function component during optimization. Since the radius is to be minimized, in 

the objective function it is converted to a maximization objective by subtracting 
𝑟̅

𝑟𝑚𝑎𝑥
 from 1.  

The operator has complete freedom to choose the relative importance of each 

performance indicator and even to entirely exclude them from consideration. For example, a 

profit-oriented business might optimize only profit (𝑤𝑃 = 1, 𝑤ℎ = 𝑤𝑟 = 𝑤𝑑 = 0), not caring at 

all about satisfied demand or cars being close to the users. Some other operator might be in a 

middle of a marketing campaign during which they want to increase satisfied demand and brand 

exposure, even at the cost of slightly lower profit. A third provider might choose a balanced 

approach where service quality drops are acceptable, but only if they are justified by a high profit 

increase.  

Note that the components of the objective function are normalized to an interval of [0, 1]. 

Therefore, if the weight factors are chosen in a way that their sum is equal to one and the profit 

limit estimates are correct, the entire objective function will be normalized to that interval as well, 

thus being possible to be represented by a percentage. The bound values ℎ𝑚𝑎𝑥, 𝑟𝑚𝑎𝑥 and 𝑑𝑡𝑜𝑡 are 

known in advance as they are the input to the optimization. However, the upper and lower bounds 

of the profit, 𝑃𝑚𝑎𝑥 and 𝑃𝑚𝑖𝑛 are not known in advance and need to be estimated.  

In the variable QoS solutions generated by the algorithm, there might be considerable 

variance in radiuses and times across the service area. While a constant service quality is certainly 

easier for users to understand, we argue that implementing and communicating the variable QoS 

to users is not an insurmountable challenge. In commercial applications, a large part of the trips 

is requested using smartphone applications or online, and similar information can easily be 

communicated via phone as well. E-hail services such as Uber or Lyft, use dynamic pricing, 

where prices change during the day, depending on the demand and the number of cars on the 

road. Despite using nontransparent and variable pricing model, such services are well 

accepted by users.  

In our simulation model, we use a fixed trip database and assume that the input demand 

is constant. Giving the optimizer too much freedom when choosing the service quality would 

certainly break this, e.g., frequently placing a car 3 km away from the user who reserved it would 

give a very bad impression and discourage users from using the service, this way also lowering 

the demand and invalidating the profit calculation based on the constant demand assumption. To 

achieve ceteris paribus conditions in the optimization process, especially related to the input 
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demand volume, the simulation framework provides two ways to control the algorithm’s freedom 

to modify the solution: (1) hard QoS limits ℎ𝑚𝑎𝑥, 𝑟𝑚𝑎𝑥, ℎ𝑚𝑖𝑛, 𝑟𝑚𝑖𝑛 and (2) soft objective function 

weights.  

By imposing a hard limit using the algorithm parameters, it is guaranteed that service 

quality will never reach nonsensical values that would impose significant changes in the demand: 

the operator might request the cars always to be placed 500m or less from the user. The soft 

configuration of the objective function further adjusts the degree of the algorithm’s freedom. 

Unlike the hard limits, using these soft weight parameters defines only the tendency to give higher 

importance to some performance indicators over the others, without guarantees on the final 

values. Combining both the hard limits and precisely defining the tendency to prioritize certain 

parameters, it is possible to ensure that the optimization objectives of the operator are met and 

that the service quality variations are sufficiently small to prevent having a notable impact on the 

demand.  

 

4. Solution Algorithm for the Variable Reservation Service Quality Problem 

(VRSQP) 

In the past decades, various metaheuristic techniques have shown to be successful on 

difficult problems characterized by a large search space and complex constraints. They are generic 

algorithmic frameworks that can be applied to a diverse range of optimization problems, and while 

they do not guarantee to find the optimum, they are providing results of great practical utility. For 

many problems, they are yielding state-of-the-art results (Glover et al., 2006; Luke, 2013).  

In our simulation-based optimization approach, we combine simulation with the ILS 

metaheuristic (Lourenço et al., 2001; Lourenço et al., 2003) to solve the Variable Reservation 

Service Quality Problem (VRSQP). The metaheuristic is used to devise a set of QoS parameters 

that are provided to the simulator as an input, and the simulator is used to evaluate profit and 

satisfied demand. Based on this feedback, the algorithm iteratively decides which changes in the 

QoS across the city to perform to enhance the objective function further. This way, the simulator 

is acting as an evaluator for the solutions suggested by an algorithm to solve the VRSQP.  

 

4.1. Reservation Simulator  

For this research, we devised a custom discrete-event microscopic simulator to 

investigate various reservations-related decisions and reproduce the user/operator interactions 

under different conditions. The main design goals for the simulator were:  
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 Ability to model user decisions while performing walk-ins or reserving a vehicle while 

taking into account the spatial effects of moving vehicles in a minute-to-minute 

simulation environment;  

 Ability to model the provider behavior when deciding whether to accept or reject 

incoming trips; 

 Ability to choose reservation demand as a percentage of walk-ins vs. reservation 

requests;  

 Ability to estimate performance indicators such as the revenue, operating costs, profit, 

and percentage of satisfied and rejected demand.  

Our simulation-based methodology assumes the existence of a carsharing trip database 

with origin/destination coordinates, start times and trip durations for each trip. Trip estimation 

can be performed by surveying users or specialized mode choice simulations. Further, the demand 

forecast can be based on historical data on fleet utilization and individual trips. Given that most 

contemporary carsharing providers use sophisticated fleet tracking systems that record precise 

movements of vehicles during the time, we believe that acquiring trip datasets should not be an 

issue for potential customers. Since there is ample research on this separate subject (Ortúzar and 

Willumsen, 2011; Sinha and Labi, 2007), detailed elaboration of the techniques for demand 

modeling is out of the scope of this paper.  

The simulation is based on a list of walk-in and reservation trips synthesized from the 

initial trip database by a component called mode divider. The number of reservations is 

parametrized by the reservations percentage parameter 𝜌 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑡𝑟𝑖𝑝𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑝𝑠
, defined as 

a ratio of the number of trips that are reserved ahead and the total number of trips. The mode 

divider uses the Monte Carlo method to divide the input demand into walk-ins and reservations 

and set up the reservation times.  

Summarized, the inputs to the simulator are 1) walk-in trips 2) reservation trips, 3) initial 

vehicle locations, 4) QoS parameters (arrays of 𝑟 and ℎ across the service area), 5) maximum 

comfortable walk-in distance 𝑐𝑤𝑑, 6) forecasted ideal vehicle stocks in the service area during 

periods of time Bideal, and 7) balancing relocations dispatch period bp, 8) balancing relocations trip 

number per period limit bn. The pseudocode of the simulator is available in Algorithm 1.  The key 

component of the simulator is the vehicle location record data structure, denoted as VLR. It is a 

dictionary which contains the vehicle status and locations for each minute in the simulated period. 

Supported values of the status variables for a vehicle are: 1) “stationary and available”, 2) 

“stationary and locked”, 3) “moving by user”, 4) “moving by a staff member”. Vehicles are 

available to start new trips and to be reserved only when in status 1) “stationary and available”. 

In all other cases, they are already assigned to a user or in use by a staff member. The simulation 
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starts by loading the initial vehicle locations and initializing the vehicle time record. Results of a 

simulation run are estimates of the carsharing provider profit and satisfied demand as well as the 

complete record of all vehicle movements (OD locations and trip start and end time for each 

performed trip).  

 

Algorithm 1: Reservation simulator pseudocode 

Procedure Reservation Simulator (walk-ins, reservations, initial vehicle locations, 𝑸𝒐𝑺, 𝒄𝒘𝒅, 

𝑩𝒊𝒅𝒆𝒂𝒍, bp, bn) 

VLR = initialize vehicle time record(initial vehicle locations) 

for each t in the simulation period 

initialize set WIDt containing all walk-in demand starting at 𝑡 

initialize set RDt, containing all reservations to respond to at 𝑡 

for each walk-in trip 𝑤𝑖  in WID:  

get the closest stationary and available vehicle 𝑐𝑠𝑎 

if (closest vehicle distance > 𝑐𝑤𝑑)  

reject walk-in  

else accept walk-in:  

calculate walking duration tw 

lock vehicle  𝑐𝑠𝑎 from t until tstart = t+ tw 

Update VLR: set status of the vehicle 𝑐𝑠𝑎  to “moving by user”  

from tstart until tend = tstart + duration of the trip  

Update VRL: set status of the vehicle 𝑐𝑠𝑎  as “stationary and available”  

at  the destination location of 𝑤𝑖   from tend  onwards 

next i 

for each reservation trip 𝑟𝑒𝑠𝑖  in RD:  

processReservation(𝑟𝑒𝑠𝑖 , 𝐵𝑖𝑑𝑒𝑎𝑙)  

next i  

if(t mod 𝑏𝑝 = 0)  

dispatchBalancingTrips(𝐵𝑖𝑑𝑒𝑎𝑙 , 𝑏𝑛)  

end-if 

 

next t 

calculate profit 

 

The simulation model filters the trips from the trip database for each minute 𝑡 

sequentially. Walk-ins are accepted or rejected by the user, as defined by the comfortable walk-

in distance (𝑐𝑤𝑑) parameter. If a walk-in is accepted, it is assumed that the user will reach the 
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vehicle by walking from his current location (trip origin) to the closest vehicle and that he will 

start walking immediately after sending the request. Walking duration tw is estimated under the 

assumption that the walking speed is 5 km/h and that the walking distance is the Euclidean 

distance multiplied by a random number in the interval [1, 2] to take the impact of the street layout 

into consideration. Note that 𝑐𝑤𝑑 is a parameter used to define user behavior with regard to walk-

ins and that it is not related to reservation service quality parameter r which applies only to the 

reservations.  

Reservation enforcement (Type 1 relocations) are handled by the 

processReservation(𝑟𝑒𝑠𝑖 , 𝐵𝑖𝑑𝑒𝑎𝑙) function in Algorithm 1. There are two possible 

implementations this function can be redirected to: locking and relocations. The locking version 

is simple and straightforward: if close enough, lock the closest vehicle from the moment the 

reservation is made, until the departure, otherwise reject the reservation. The relocations strategy 

is implemented as detailed previously in Figure 2, and uses the ideal vehicle stock 𝐵𝑖𝑑𝑒𝑎𝑙 to choose 

vehicles to relocate. The carsharing operator resorts to a taxi service as a backup to ensure the 

reservations are satisfied even in cases where the fleet is overloaded and there are no free vehicles. 

The user will be charged the standard service price and the carsharing company will pay the taxi. 

This way, the service is paying the difference between normal carsharing fees and taxi rides. 

These trips are considered to be satisfied demand as the service ensured the trip can be performed 

under the same pricing conditions. Such trips are undesirable as a taxi is typically more expensive 

and these outsourced trips generate losses.  

The balancing trips (type 2 relocations), if balancing is used (i.e., if 𝑏𝑛>0) are dispatched 

in regular time intervals which is denoted as dispatchBalancingTrips(𝐵𝑖𝑑𝑒𝑎𝑙, 𝑏𝑛) function in 

Algorithm 1. Balancing trip assignment is performed based on comparisons of the vehicle stock 

in the currently running instance and their ideal distribution. Vehicles are relocated from zones 

with the highest surplus to the zones with the highest deficit (Jorge et al, 2014), where a set of all 

zones in a time interval t is denoted 𝐖𝒕. In case more relocations than 𝑏𝑛 are needed to fully 

balance the system, the simulator will have to choose the distribution according to probabilistic 

priorities. For each cell with a surplus (supplier) and for each cell with a deficit (demander) origin 

and destination probabilities are calculated according to the following equations:   

𝑃𝑟𝑜𝑏_𝑂𝑖𝑡
=

𝑆𝑡𝑖𝑡
− 𝐵𝑖𝑑𝑒𝑎𝑙 𝑖𝑡

∑ 𝑆𝑡𝑗𝑡
− 𝐵𝑖𝑑𝑒𝑎𝑙 𝑗𝑡𝑗∈𝑁,𝑆𝑡𝑗𝑡

−𝐵𝑖𝑑𝑒𝑎𝑙𝑗𝑡
>0

, ∀𝑖𝑡 ∈ 𝐖𝒕, 𝑆𝑡𝑖𝑡
− 𝐵𝑖𝑑𝑒𝑎𝑙 𝑖𝑡

> 0, (2) 

𝑃𝑟𝑜𝑏_𝐷𝑖𝑡
=

𝐵𝑖𝑑𝑒𝑎𝑙 𝑖𝑡
− 𝑆𝑡𝑖𝑡

∑ 𝐵𝑖𝑑𝑒𝑎𝑙 𝑗𝑡
− 𝑆𝑡𝑗𝑡𝑗∈𝐍,𝐵𝑖𝑑𝑒𝑎𝑙𝑗𝑡

−𝑆𝑡𝑗𝑡
<0

, ∀it ∈ 𝐖𝒕, 𝐵𝑖𝑑𝑒𝑎𝑙 𝑖𝑡
− 𝑆𝑡𝑖𝑡

< 0, (3) 
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where 𝑃𝑟𝑜𝑏_𝑂𝑖𝑡
 is the probability that cell 𝑖 will be an origin for the balancing trip at time 𝑡, 

𝑃𝑟𝑜𝑏_𝐷𝑖𝑡
 is the probability that cell 𝑖 will be a destination for the balancing trip at time 𝑡, 𝑆𝑡𝑖𝑡

 is 

the vehicle stock in zone 𝑖 during time 𝑡. Based on these probabilities, the origin and destination 

is assigned in each trip, using a random proportional rule (Dorigo and Birattari, 2011; Hancock, 

1994).   

While real systems would most likely include undesirable effects, such as no-shows and 

late cancellations, in this work, we do not take them into account. Each area is likely to have 

slightly different no-show patterns, depending on the local culture and user habits and such data 

is difficult to obtain. Nevertheless, we believe that each provider will devise some type of a 

penalty strategy (e.g., charging a no-show fee or forbidding the user to re-book the same vehicle 

after not taking it on time) to discourage such behavior and compensate for the financial losses, 

similar to practices in taxi reservations (He et al., 2018). For this reason, we argue that the effects 

of no-shows can be neglected for the purpose of this work.   

Several decisions in the simulator are based on random behavior, for example, user-car 

walking time estimation and dividing the demand into walk-ins and reservations. The simulator 

has two modes: non-deterministic and deterministic. In the deterministic mode, random value 

generators are always initialized with the same seed thus producing the same list of random 

numbers.  

The profit (denoted P) calculation is performed by going through the VLR and calculating 

the revenue (𝑅) and costs (𝐶) of vehicle operations:  

𝑃 = 𝑅 − 𝐶.  

The revenue component is calculated as a sum of individual revenues of user trips, based 

on the service price per minute, denoted as 𝜋, and the given trip duration estimates, denoted 

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑡𝑟𝑖𝑝𝑖):  

𝑅 =  ∑ 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑡𝑟𝑖𝑝𝑖) ∙ 𝜋

𝑖∈𝑳

, 

 

where 𝑳 is the set of all user trips. The costs are calculated as a sum of fixed costs (𝐶𝑓) and variable 

costs (𝐶𝑣):   

𝐶 =  𝐶𝑓 + 𝐶𝑣. 

Fixed costs do not depend on the number of performed trips and are calculated as a sum 

of daily parking costs and daily vehicle depreciation costs for all the vehicles in the fleet:  
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𝐶𝑓 = 𝐴 ∙ 𝐶𝑝𝑎𝑟𝑘 + 𝐴 ∙ 𝐶𝑣𝑒ℎ,  

where 𝐴 is the fleet size (number of cars), 𝐶𝑝𝑎𝑟𝑘 is the cost of parking per vehicle per day in the 

city and 𝐶𝑣𝑒ℎ denotes the costs of depreciation per vehicle per day as defined before. Variable 

costs are calculated as the sum of costs of vehicle maintenance, relocation and taxi:  

𝐶𝑣 =  ∑ 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑡𝑟𝑖𝑝𝑖) ∙ 𝐶𝑚𝑣

𝑖∈𝑳

+  ∑ 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑡𝑟𝑖𝑝𝑖) ∙ 𝐶𝑟

𝑖∈𝐿′

+ ∑ (C𝑡𝑎𝑥𝑖𝑠𝑡𝑎𝑟𝑡
+  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑡𝑟𝑖𝑝𝑖) ∙ C𝑡𝑎𝑥𝑖𝑘𝑚

)

𝑖∈𝐺

, 

where 𝑳 is the set of all user trips, 𝑳′ is the set of all relocation trips, 𝐶𝑚𝑣 is the cost of vehicle 

maintenance per minute driven, 𝐶𝑟 is the cost of a relocation operation per minute driven, 𝑮 is the 

set of all trips redirected to taxi, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑡𝑟𝑖𝑝𝑖) is the estimated distance of trip 𝑖, C𝑡𝑎𝑥𝑖𝑠𝑡𝑎𝑟𝑡
 is 

the taxi start price and C𝑡𝑎𝑥𝑖𝑘𝑚
 is the price of driving 1 km in a taxi.  

 

4.2. Iterated Local Search 

 We apply the iterated local search (ILS) metaheuristic (Stützle and Hoos, 1999; 

Lourenço et al., 2001; Lourenço et al., 2003; Luke, 2013) to solve the VRSQP. Iterated local 

search is a simple, but an effective method based on repeated applications of the local search and 

perturbation operators to perform exploration of the neighborhoods of known good solutions 

while avoiding being stuck in local optima. There are numerous implementations of this 

metaheuristic and it has been successfully applied for solving classical optimization problems 

such as the travelling salesman problem (TSP) and graph coloring problems (GCPs) (Stützle and 

Hoos, 1999; Katayama and Narihisa, 1999, Chiarandini and Stutzle, 2002), as well as more 

specific ones, e.g. scheduling and vehicle routing (Lourenço et al, 2003; Carlier, 1982; Hashimoto 

et al, 2008).  

The key component of the algorithm is the local search operator (LSO). Local search is 

based on a definition of a neighborhood structure and proximity measures for our solutions. The 

operator is based on searching for the best solution in a close neighborhood of a given solution. 

(Johnson et al., 1988). It enumerates all solutions from the neighborhood and results in a local 

optimum which is the element of the neighborhood with the best evaluation of the objective 

function. The quality of local optima greatly depends on the definition of the neighborhood 

structure and the initial solution.  

While local optima are as good as or better than the initial solution, in the context of all 

possible solutions to the problem, there is no guarantee of their quality. Unless the choice of the 
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initial solution is incredibly lucky or the problem is very simple to solve, local search results tend 

to be globally suboptimal. To expand the search from the initial solution neighborhood, the 

perturbation operator (PO) is used in the ILS. The PO introduces the modifications to the current 

solution, and in the ILS algorithm, it is used to give a “kick” to the results of the local search. The 

intensity of the modifications of the PO should be high enough to ensure that the LSO does not 

converge back to the same solution in the next iteration, but also low enough to prevent the 

algorithm from degrading to random restart local search.  

The set of feasible solutions 𝒬 is defined by a tuple 𝒬(𝑁, 𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥, ℎ𝑚𝑖𝑛, ℎ𝑚𝑎𝑥). It 

contains all possible values of the 𝑟 and ℎ parameters within the allowed radius [𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥] and 

time [ℎ𝑚𝑖𝑛, ℎ𝑚𝑎𝑥] intervals for each zone 𝑛 ∈ 𝑁. For the purpose of using a heuristic to solve the 

problem, we discretize both radius and reservation time values, with minimum resolution steps of 

𝑟𝑟𝑒𝑠𝑜𝑙 and ℎ𝑟𝑒𝑠𝑜𝑙 as parameters which, along with the allowed intervals for r and h, define the 

solution space: 

|𝒬| = ((
𝑟𝑚𝑎𝑥 −  𝑟𝑚𝑖𝑛

𝑟𝑟𝑒𝑠𝑜𝑙
+ 1) ∙ (

ℎ𝑚𝑎𝑥 − ℎ𝑚𝑖𝑛

ℎ𝑟𝑒𝑠𝑜𝑙
+ 1))

𝑁

 

Note that the size of the feasible solution space grows as the radius and time resolution 

increases and especially quickly as spatial resolution is increased (number of zones 𝑁). Further, 

we emphasize that 𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥, ℎ𝑚𝑖𝑛and ℎ𝑚𝑎𝑥 are algorithm parameters for establishing possible 

ranges of variation, not necessarily corresponding to actual values the algorithm will produce in 

the solutions. They are defined in order to allow users control over the values of the QoS – 

allowing the radius to be larger than 500m does not make much sense as this has a potential to 

place cars too far from the users to be practically accessible. The algorithm guarantees that 

solutions will not have radius r larger than 𝑟𝑚𝑎𝑥 in any of the city zones.  

For each QoS set, it is possible to calculate the profit and the accepted demand by running 

the simulator with these specific reservation parameters in the city zones. To ensure that the 

evaluation of different solutions can be compared we use the deterministic mode of the simulator. 

The pseudo-code of the algorithm is given in Algorithm 2. The overall algorithm has five 

parameters: execution time and the allowed QoS radius and time intervals. The LSO and PO 

operators have more detailed parameters as described below. The algorithm begins by generating 

an initial solution 𝑄𝑜𝑆𝑖𝑛𝑖𝑡𝑖𝑎𝑙, with ℎ and 𝑟 across zones initialized to random values in the allowed 

intervals as set in the input, 𝑟 ∈ [𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥], ℎ ∈ [ℎ𝑚𝑖𝑛, ℎ𝑚𝑎𝑥]. The local search is then applied 

to this solution, resulting in the first local optimum 𝑄𝑜𝑆∗. The main algorithm loop then runs until 

the allowed time passes (𝑡𝑖𝑚𝑒). The loop consists of the perturbation operator generating the 

current perturbed solution 𝑄𝑜𝑆′ and then applying the local search to the perturbed solution to 

create a new local optimum 𝑄𝑜𝑆′∗. The best found solution is kept at all times and the random 
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ILS movement strategy is used, meaning that the next initial solution for the LSO is always the 

current perturbation result.  

 

Algorithm 2: Pseudocode of the implemented iterated local search (ILS) metaheuristic  

Procedure Iterated Local Search (𝑡𝑖𝑚𝑒, 𝑟𝑚𝑖𝑛 , 𝑟𝑚𝑎𝑥 , ℎ𝑚𝑖𝑛 , ℎ𝑚𝑎𝑥  ) 

𝑄𝑜𝑆𝑖𝑛𝑖𝑡𝑖𝑎𝑙=generate initial solution(𝑟𝑚𝑖𝑛 , 𝑟𝑚𝑎𝑥 , ℎ𝑚𝑖𝑛 , ℎ𝑚𝑎𝑥)  

𝑄𝑜𝑆∗ = local search(𝑄𝑜𝑆𝑖𝑛𝑖𝑡𝑖𝑎𝑙) 

repeat until time expired 

𝑄𝑜𝑆′ = perturb(𝑄𝑜𝑆∗) 

𝑄𝑜𝑆′∗ = localSearch(𝑄𝑜𝑆′) 

if the evaluation for 𝑄𝑜𝑆′∗
 is greater than the evaluation for 𝑄𝑜𝑆∗ then 

𝑄𝑜𝑆𝑏𝑒𝑠𝑡 = 𝑄𝑜𝑆′∗ 

𝑄𝑜𝑆∗ = 𝑄𝑜𝑆′∗ 

end-if 

loop 

 

4.3. Local Search Operator (LSO) 

The LSO used in our approach is a simple method that tries to increase and then decrease 

both the reservation distance and reservation time in the solution. After trying all the options, it 

chooses the change that caused the biggest improvement in the objective function value or retains 

the original value if no improvements have been produced. It has eight parameters: the initial 

solution QoS; the distance and time steps 𝑟𝑠𝑡𝑒𝑝 and ℎ𝑠𝑡𝑒𝑝 define the increments of the variables 

that the local search will perform; the partToSearch value needs to be in the interval [0, 1] and it 

determines the approximate percentage of the QoS table which can be changed by the operator; 

the parameters 𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥, ℎ𝑚𝑖𝑛, ℎ𝑚𝑎𝑥 define the allowed interval for the reservation distance and 

reservation time. The pseudocode of the operator can be found in Algorithm 3.  

Algorithm 3:  Pseudo-code of the local search operator (LSO)  

Procedure local search (𝑄𝑜𝑆, 𝑟𝑠𝑡𝑒𝑝, ℎ𝑠𝑡𝑒𝑝,𝑟𝑚𝑖𝑛 , 𝑟𝑚𝑎𝑥 , ℎ𝑚𝑖𝑛 , ℎ𝑚𝑎𝑥 , partToSearch) 

for each element i in the service quality table QoSi = (𝑟𝑖,ℎ𝑖) 

initialize random number 𝑒 ∈ [0, 1] 

if e > partToSearch  

continue with next element QoSi+1 

else  

while(improvement achieved)  

𝑟𝑑𝑜𝑤𝑛 = 𝑟𝑖 − 𝑟𝑠𝑡𝑒𝑝 , unless this would make 𝑟𝑑𝑜𝑤𝑛 < 𝑟𝑚𝑖𝑛 
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𝑄𝑜𝑆𝑅𝑑𝑜𝑤𝑛 = (𝑟𝑑𝑜𝑤𝑛 , ℎ𝑖) 

𝑟𝑢𝑝 = 𝑟𝑖 + 𝑟𝑠𝑡𝑒𝑝, unless this would make 𝑟𝑢𝑝 >  𝑟𝑚𝑎𝑥  

𝑄𝑜𝑆𝑅𝑢𝑝 = (𝑟𝑢𝑝 , ℎ𝑖) 

update QoS to the element of {𝑄𝑜𝑆, 𝑄𝑜𝑆𝑅𝑑𝑜𝑤𝑛, 𝑄𝑜𝑆𝑅𝑢𝑝} for which Z 

is maximal  

loop 

while(improvement achieved)  

ℎ𝑑𝑜𝑤𝑛 = ℎ𝑖 − ℎ𝑠𝑡𝑒𝑝 , unless this would make ℎ𝑑𝑜𝑤𝑛 < ℎ𝑚𝑖𝑛 

𝑄𝑜𝑆𝐻𝑑𝑜𝑤𝑛 = (𝑟𝑖 , ℎ𝑑𝑜𝑤𝑛) 

ℎ𝑢𝑝 = ℎ𝑖 + ℎ𝑠𝑡𝑒𝑝 , unless this would make ℎ𝑢𝑝 >  ℎ𝑚𝑎𝑥  

𝑄𝑜𝑆𝐻𝑢𝑝 = (𝑟𝑖 , ℎ𝑢𝑝) 

update QoS to the element of {𝑄𝑜𝑆, 𝑄𝑜𝑆𝐻𝑑𝑜𝑤𝑛, 𝑄𝑜𝑆𝐻𝑢𝑝} for which  

 Z is maximal  

loop 

end-if 

next i  

 

The operator visits each element of the QoS table in the main loop. The functionality of 

determining the part of the table to change is implemented by a random number generator which 

accepts modifications of solution elements with probability equal to the partToSearch parameter. 

The operator is non-deterministic and this way, it can achieve more diversity in the search. For 

each table element that the local search is modifying, the operator first tries to adjust the 

reservation radius. It first adds 𝑟𝑠𝑡𝑒𝑝 to the current distance value, then it subtracts 𝑟𝑠𝑡𝑒𝑝 and 

evaluates both modifications. If neither the adding nor the subtracting of the step value improved 

the solution, the table remains unchanged. If any of these produced an improvement, the table is 

updated so that the new 𝑟 value for the current element is either the added or subtracted value, 

depending on which one caused a greater quality increase in the objective. The analogous 

procedure is performed with the reservation time-ahead parameter ℎ.  

The procedure ends when the main loop has iterated through all table elements. By 

systematically investigating the effects of distance and time variation and combining the effects 

of small changes, the local search can produce notable improvements to the initial solutions, 

especially when iterated with the perturbation operator in the ILS metaheuristic.  

4.4. Perturbation operator (PO) 

The perturbation operator introduces random changes in the part of the QoS table 

elements. The operator has eight parameters: the input QoS to modify, number of changes to make 

𝑐, distance and time change steps ∆𝑟 and ∆ℎ and maximum allowed distance and time, denoted 
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𝑑𝑚𝑎𝑥 and ℎ𝑚𝑎𝑥. In total, the algorithm performs 𝑛 change attempts of the randomly selected cells 

in the QoS table. It might change up to 𝑐 cells or less if some cells are changed multiple times or 

left unchanged due to reaching the allowed limits of their values.  

After choosing an element to change, the distance for the current element is modified. 

The algorithm first decides on the direction of the change: increase or decrease. To perform this 

choice, a random Boolean value 𝜔𝑟 is produced by the random value generator. If 𝜔𝑟 is true, then 

the distance in the current element will be increased for the distance step ∆𝑟, if it is false it 

performs the decrease, unless the change would take r out of the [𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥] interval. The 

analogous operation is performed for the reservation time-ahead using the Boolean variable 𝜔ℎ.  

The fact that both the perturbation as well as the local search operator act only on a 

randomly selected subset of the table, combined with various possibilities for parameter selection, 

provides possibilities to adjust the algorithm to work as needed: so that the perturbation is low 

enough in order to keep the algorithm focused but still high enough not to prevent the algorithm 

from being stuck in local optima.  

Algorithm 4:  Perturbation operator  

Procedure perturb (QoS, c, ∆𝑟, ∆ℎ, 𝑟𝑚𝑖𝑛 , 𝑟𝑚𝑎𝑥 , ℎ𝑚𝑖𝑛 , ℎ𝑚𝑎𝑥 ,) 

repeat 𝑐 times 

choose a random element of the QoS table QoSi =(𝑟𝑖, ℎ𝑖) 

choose two random Boolean variables 𝜔𝑟 and  𝜔ℎ  

 

if 𝜔𝑟 is true 

𝑟𝑖 =  𝑟𝑖 + ∆𝑟, unless it would make 𝑟𝑖  >  𝑟𝑚𝑎𝑥  

else  

𝑟𝑖 =  𝑟𝑖 − ∆𝑟, unless it would make 𝑟𝑖 <  𝑟𝑚𝑖𝑛  

end-if 

if 𝜔ℎ is true 

ℎ𝑖 =  ℎ𝑖 + ∆ℎ, unless it would make ℎ𝑖  >  ℎ𝑚𝑎𝑥  

else  

ℎ𝑖 =  ℎ𝑖 − ∆ℎ, unless it would make ℎ𝑖 <  ℎ𝑚𝑖𝑛  

end-if 

end-repeat  
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5. Computational experiments  

To test the performance of the proposed methodology we use two sets of benchmark 

problem instances: hypothetical cities and case-study city. The demand for the hypothetical cities 

is generated using a custom built trip generator with trip patterns based on typical features for two 

extreme cases: town and metropolis. The case-study city in this paper is the Lisbon municipality 

in Portugal, whose data was obtained from an agent-based model of Lisbon carsharing mobility 

(Martinez et al., 2017). Both categories include trips from a single working day of carsharing with 

reservation-ahead times assumed to be less than 16 hours. Even though we simulate only one day, 

reservations from “the night before” and any time before t=0 in the simulation are allowed as long 

as there is enough time for a system response during the simulation period. In real systems that 

do not have simulation limitations, periods much longer than 16 hours might be feasible. Trips 

that start at t < ta require response too early during the simulation start, and are rejected by the 

system.  

While we ran several experiments that simulated up to three days of trips, it has shown 

that the results tend to be approximately proportional to the simulated number of days. Since the 

current limit of 16 hours allows simulating overnight reservations, we believe that simulating only 

one day is sufficiently representative for the purpose of this work. When simulating largest 

datasets, scalability issues start to occur as simulation times get longer. Due to the analyses above 

that indicate that there is no loss of generality when running one day and given the speed benefits 

of it, in this work, we simulate one day of trips.  

 

5.1. Hypothetical cities  

Problem instances for hypothetical cities are generated using a custom generator, built 

specifically for this study to enable generating carsharing trips in different environments. Two 

different hypothetical cities are used: town and metropolis: the town is representative of a small 

urban area with several tens of thousands of people, while the hypothetical metropolis is a large, 

densely populated urban area, typical of some of the largest cities in the world. Throughout this 

paper, we use a convention on naming our problem instance based on the city name followed by 

the number of trips in the parentheses, e.g., Town (500). The detailed features of the hypothetical 

cities used in this work are shown in Table 1, where geographical size, trip number, average trip 

duration and distance, number of cars and response time ta are defined. In the case of a small 

town, response time is much shorter than in the metropolis since even in the most conservative 

estimates, it takes up to 40 minutes to reach any location in the service area. In the metropolis, 

this is estimated to take up to three hours.  
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Table 1: Hypothetical city features 

Problem 

instance 

Total size Trip 

number 

Average trip 

time (min) 

Average trip 

distance (km)  

Fleet size 

A (cars)  

𝒕𝒂 (min) 

Town (500) 5 x 5 km  500 5 2.6 km  10 40  

Metropolis 

(40,000)  

50 x 50 km 40,000 51 24.6 km 2000 180  

 

The generation process involves both trip generation and distribution. It takes into 

account the total volume of trips and the temporal and spatial demand variations, all of which can 

be specified in the input. Generating trips based on an input distribution is implemented using a 

technique inspired by the fitness proportional selection operator used in genetic algorithm and the 

pseudorandom proportional rule in the ant colony optimization metaheuristic (Dorigo and Stutzle, 

2006; Hancock, 1994; Luke, 2013).  

Modeling trip intensity is done analogously: for each time interval, an individual value 

can be set up for the relative probability that an individual cell will be an origin and a separate 

value for the probability that the same area will be a destination. This allows modeling of the 

demand variations, as can be seen in Figure 3 which shows the origin/destination probabilities 

during the morning rush hour. The city consists of a highly populated central business district and 

broad residential areas on the outskirts. The southern part of the service area is water surface, 

therefore all relative chances of being an origin or destination are zero in these zones. As typical 

in the mornings, residential areas have more outgoing trips than the business areas. Business areas 

have more incoming trips during the morning. Initial vehicle locations are devised based on the 

trip origin probabilities during morning rush hour – this way the initial number of vehicles is 

proportional to the number of origins across zones to match the morning demand.  
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Figure 3: Relative chances of being an origin (left) and destination (right) in the 

“Metropolis (40,000)” problem instance during the morning rush hour  

 

5.2. Case-study city: Lisbon 

Realistic problem instances are based on the carsharing trip forecasting case study of the 

Lisbon municipality in Portugal (Lopes et al., 2014; Martinez et al., 2017) and an extensive 

mobility survey, performed by the Lisbon Municipality (Câmara Municipal de Lisboa, 2005; 

Jorge and Correia, 2013). Results from these studies were also used to decide on the fleet size and 

initial vehicle distribution. Unlike the rough estimates included in the hypothetical city models, 

this model takes into account the precise transportation habits of the local population and 

microscopic effects occurring on a high-resolution network of nodes.  

The Lisbon area has been dealing with several mobility issues, including congestions and 

lack of parking space. Innovative transport solutions, including carsharing, are one of the 

alternatives that could help reduce mobility problems in the city. Details of the Lisbon problem 

instances are reported in Table 2.  

 

Table 2: Lisbon problem instances features 

 Geographical 

size (km)  

Trip 

number 

Average trip 

duration (min)  

Average trip 

distance (km)  

Fleet size 

A (cars)  

𝒕𝒂 

(min) 

Lisbon (3,000) 11.6 x 11.0  3,000  14.3  4.3  80 60  

Lisbon (6,000) 11.6 x 11.0  6,000 14.5 4.5  159 60  

Lisbon (12,000) 11.6 x 11.0  12,000  14.5  4.4   318 60  

Lisbon (25,000) 11.6 x 11.0  25,000 14,5  4,4   664 60  

 

5.3. Simulation parameters for all runs  

All of the following parameters are the same for all problem instances defined above. 

This can be a limitation since for instance parking price should be different in a small city when 

compared to a big city. Nevertheless maintaining these parameters equal allows for a better 

comparison between the scenarios.  

The costs of vehicle ownership are estimated using the Interfile tool for car ownership 

costs estimation (INTERFILE, 2016). As a reference vehicle, we use an average city vehicle with 

the initial cost of 20,000€, under assumptions that the company financed the entire initial cost 

using a loan with an interest rate of 12% and the vehicle’s residual value after three years equal 

to 5,000€. For such a vehicle, the cost of depreciation (𝐶𝑣) is 17€ per day, with expected use 
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duration of 3 years. The cost of maintaining the vehicle (𝐶𝑚𝑣) is estimated to be 0.007 € per 

minute, taking into account insurance, fees, taxes, fuel, maintenance and wear of the vehicle. The 

relocation cost 𝐶𝑟 is estimated to 0.20€ per minute, and it includes fuel, vehicle maintenance and 

staff costs, as well as the compensation for the cost of reaching the relocation trip origin. We 

estimate the parking cost 𝐶𝑝 to be 1.2€ per hour (Emel Lisboa, 2018). The service fee per minute 

is set to 0.30€ per minute, based on the rates of the global operator Car2Go (Car2Go, 2017). Taxi 

start price is set to 3.5€ and price of driving 1 km is 0.47€ (Numbeo, 2018).  User walking speed 

is set to 5 km/h and the vehicle walk-in distance 𝑐𝑤𝑑 is set to 250 m (Correia, 2009).  

 

5.4. Running the experiments 

The simulator and the optimization algorithm are implemented in Java 1.8 programming 

language. The experiments were performed on a computer equipped with a 2.4 GHz Intel Core 

i7-4700HQ processor and 16 GB of RAM, using Java 1.8 runtime environment under Windows 

10 operating system. The running time to simulate one full day is less than a second in the smallest 

instances and around 30 seconds for the ones with the largest number of cars and trips.  

The objective function parameters are chosen to give half of the weight to the profit: 𝑤𝑝 =

0.5 and the rest is equally distributed to other three service quality components: 𝑤𝑟 = 0.167, 

𝑤ℎ = 0.167 and 𝑤𝑑 = 0.167. The sum of all factors is equal to one, to ensure that the resulting 

values will be normalized to the [0, 1] interval. To optimize metaheuristic performance, tuning 

experiments were performed on the Lisbon (6,000) dataset. The best performing configuration 

found during tuning is shown in Table 3, and this set of algorithm parameters was used in all 

subsequent experiments in this work. Note that all of these parameters are algorithm input 

parameters, as explained in Section 4.2 and that the distance and time limits [𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥], 

[ℎ𝑚𝑖𝑛, ℎ𝑚𝑎𝑥] refer to allowed intervals, not the realized values in the solutions, although they 

might coincide.  

 

Table 3: Iterated local search metaheuristic parameters 

Parameter Value 

Comfortable walk-in distance cwd 250 m  

Local search distance step 𝒓𝒔𝒕𝒆𝒑 200 m 

Local search time step 𝒉𝒔𝒕𝒆𝒑 480 min 

Local search percentage to explore partToSearch 100 %  

Perturbation distance change ∆𝒓 100 m 

Perturbation time change ∆𝒉 300 min  
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Perturbation number of elements to consider 𝒄 50 (50%) 

Minimum allowed distance 𝒓𝒎𝒊𝒏 50 m 

Maximum allowed distance  𝒓𝒎𝒂𝒙 500 m 

Minimum allowed time 𝒉𝒎𝒊𝒏 60 min 

Maximum allowed time 𝒉𝒎𝒂𝒙 1080 min  

Radius resolution 𝒓𝒓𝒆𝒔𝒐𝒍 1 m  

Time resolution 𝒉𝒓𝒆𝒔𝒐𝒍 1 min  

 

6. Results  

6.1. R-BR Method under Constant QoS 

In the first round of the experiments, we wanted to assess the differences in the described 

reservation enforcement strategies under constant service quality in the entire city area. The 

reservation service quality for all experiments in this round was set to 𝑟 = 200 𝑚, ℎ = 600 𝑚𝑖𝑛 

(10 h). In the input trip volume, which consists of spontaneous walk-ins and trips reserved ahead, 

we varied the reservations percentage (denoted 𝜌), while keeping all other conditions constant. 

Note that 𝜌 = 10% does not mean 10% more trips in total, it means that 10% of trips that were 

walk-ins in the original dataset are now long-term reservations.  

The results are shown in Figure 4. The x-axis of each graph shows the reservation 

percentage, and the y-axis shows the daily profit in euros for that day. A detailed breakdown of 

profit into its components: revenue (R), fixed, variable and total cost (denoted 𝐶𝑓, 𝐶𝑣 and 𝐶 

respectively) as well as the percentage of demand satisfied and outsourced demand (taxis) are 

specifically presented for the Town (500) and the Lisbon (25,000) problem instances in Tables 4 

– 7.  

When the reservation service is not offered (𝜌 = 0), Town (500), Lisbon (3,000) and 

Lisbon (6,000) instances are generating losses and all others are profitable. As seen in Table 4, in 

our Town (500), only 9.80% of the demand is satisfied for 𝜌 = 0. Despite the fact that there are 

500 potential trips, most of them are not done because the closest vehicle is too far for a 

comfortable walk-in at the moment of the request (𝑐𝑤𝑑= 250m). A small fleet with only 10 

vehicles is not enough for sufficient coverage and to ensure that, on average, vehicles are close 

enough to interested users. The revenues generated by such a low number of trips are not sufficient 

even to cover the fixed costs of fleet ownership and parking. Similar results are observed in the 

smallest Lisbon instances.  These results indicate that carsharing can hardly be profitable below 

a certain threshold of a minimum trip volume and confirm similar findings in other studies 

(Klintman, 1998; Celsor and Millard-Ball, 2007; Rotaris and Danielis, 2018).  
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When reservations are allowed (𝜌 > 0) and vehicle locking is applied as the enforcement 

method, the profit steeply drops. At 𝜌 = 20%, only Lisbon (25,000) is profitable and when 𝜌 

reaches 30%, vehicle locking is not profitable in any of our problem instances. This method causes 

long waiting periods during which vehicles are idle and therefore it reduces the overall service 

availability for potential trips. These effects are clearly visible in Table 4 and Table 6: more 

reservations bring less satisfied demand and less revenue. Very large losses result from high 

reservation percentages and high trip volume, e.g., more than 20,000 € per day in Lisbon (25,000).  

 

Figure 4: Comparison of vehicle locking and reservation strategies under constant QoS 

The proposed RB-R method also brings profit drops when reservations are present. 

However, in all problem instances except in Town (500), R-BR  considerably outperforms vehicle 

locking. In Lisbon (3,000) and Lisbon (6,000), R-BR brings more revenue and allows more 

demand to be satisfied. Nevertheless, the improvement is not sufficient to turn around these losses. 

In the remaining four instances, R-BR can maintain the profitability of the operations with two to 

three times the reservation volume than the vehicle locking. While R-BR imposes additional 

relocation and taxi costs, the method leads to less rejected trips which brings higher revenues 
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(Table 5 and Table 7). Whether the benefits of the added revenue will outweigh the costs depends 

on the number of performed trips. Note that even with 𝜌 = 100% all trips are not accepted since 

the QoS settings allow the system to reject reservations more than 10 hours ahead (h=600min).  

In the Town (500) instance, the profit of vehicle locking is similar to the RB-R for low 𝜌, 

however, with more than 50% of reservations, the RB-R quickly starts to be worse than locking 

(Figure 4). Part of this is due to the increased costs brought by the relocation movements, 

however, the key reason for poor performance with high 𝜌 is the increased level of trip 

outsourcing to taxi. With 𝜌 > 50%, the outsourcing rate quickly starts rising, adding large extra 

costs (Table 5).  

The performance of the newly proposed R-BR method outperforms the simple vehicle 

locking, in all cases with sufficiently high demand. While R-BR method has a high potential to 

improve the profit, it should only be considered for the systems that are profitable with no 

reservations as the added operational cost of enforcing reservations can lead to even more losses 

when the number of trips is small.  

Table 4: Vehicle locking method performance in Town (500 trips) problem instance 

Reservations 

percentage (𝜌) 

Profit (P)   

(€/day) 

Costs  (€/day) Revenue (R)  

(€/day) 

Demand 

satisfied  
C Cf Cv 

0 %  -351.27 460.55 458.00 2.55 109.28 9.80% 

20 %  -370.68 460.09 458.00 2.09 89.40 8.03% 

40 %  -383.93 459.77 458.00 1.77 75.83 6.48% 

60 %  -384.66 459.75 458.00 1.75 75.09 5.89% 

80 %  -391.00 459.60 458.00 1.60 68.60 5.28% 

100 %  -419.37 458.92 458.00 0.92 39.56 4.10% 

 

Table 5: R-BR method performance in Town (500 trips) problem instance 

Reservations 

percentage (𝜌) 

Profit (P)   

(€/day) 

Costs  (€/day)  Revenue (R) 

(€/day) 

Outsourced 

(taxi) demand 

Demand 

satisfied 
C Cf Cv 

0 %  -351.27 460.55 458.00 2.55 109.28 0.00% 9.80% 

20 %  -368.91 605.95 458.00 147.95 237.04 2.21% 21.29% 

40 %  -391.47 813.42 458.00 355.42 421.95 7.44% 35.81% 

60 %  -535.02 1,102.37 458.00 644.37 567.35 16.53% 51.61% 

80 %  -686.17 1,405.30 458.00 947.30 719.12 28.43% 64.72% 

100 %  -829.65 1,744.10 458.00 1,286.10 914.46 40.69% 80.57% 

 

Table 6: Vehicle locking method performance in Lisbon (25,000 trips) problem instance 

Reservations 

percentage (𝜌) 

Profit (P)   

(€/day) 

Costs  (€/day) Revenue (R)  

(€/day) 

Demand 

satisfied  C Cf (Cv) 

0 %  15,249.54 31,502.07 30,411.20 1,090.87 46,751.61 42.92% 

20 %  12,870.18 36,080.55 30,411.20 5,669.35 48,950.73 34.41% 

40 %  9,497.43 42,789.81 30,411.20 12,378.61 52,287.24 26.61% 

60 %  1,558.51 54,054.44 30,411.20 23,643.24 55,612.95 20.61% 
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80 %  -4,965.13 68,583.61 30,411.20 38,172.41 63,618.48 14.75% 

100 %  -10,402.24 84,073.84 30,411.20 53,662.64 73,671.60 9.86% 

 

Table 7: R-BR method performance in Lisbon (25,000 trips) problem instance 

Reservations 

percentage (𝜌) 

Profit (P)   

(€/day) 

Costs  (€/day) 
Revenue (R)  

(€/day) 

Outsource

d (taxi) 

demand 

Demand 

satisfied  C Cf Cv 

0 %  15,249.54 31,502.07 30,411.20 1,090.87 46,751.61 0.00% 42.92% 

20 %  12,870.18 36,080.55 30,411.20 5,669.35 48,950.73 0.00% 45.62% 

40 %  9,497.43 42,789.81 30,411.20 12,378.61 52,287.24 1.15% 49.91% 

60 %  1,558.51 54,054.44 30,411.20 23,643.24 55,612.95 4.35% 54.96% 

80 %  -4,965.13 68,583.61 30,411.20 38,172.41 63,618.48 12.33% 64.68% 

100 %  -10,402.24 84,073.84 30,411.20 53,662.64 73,671.60 23.97% 77.29% 

 

Given that the h limit of ten hours allows very long vehicle idle periods, we performed 

an additional investigation of the vehicle locking performance with various durations of the 

allowed reservation time. The results for Lisbon (25,000) problem instance, shown in Figure 5, 

demonstrate that decreases in h allow higher profits. However, these profit improvements come 

at the cost of accepting less demand and less user satisfaction. With very short h=120 min, only 

up to 8% of reservations is accepted, the number of accepted trips is approximately equal to the 

number of walk-ins and reservations hold only a very small share of total accepted trips. As the 

number of walk-ins drops linearly as we increase the 𝜌, the profit drop is roughly linear as well 

when h is low.  These results show that even with high trip volume, vehicle locking is not a viable 

strategy to achieve long reservation times, hence the current carsharing operators’ practice of very 

short reservation periods makes sense.  

 

Figure 5: Vehicle locking performance under various reservation time limits 
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To assess the sensitivity of the profit and accepted demand on variations in the service 

level, we used a simple QoS sweep algorithm which examines all (r, h) combinations with the 

(200 m, 240 min) steps under various reservation percentages. The algorithm was applied to 

Lisbon (12,000) problem instance with the R-BR method. The reservation QoS variations do not 

influence the system when there are no reservations, and in this case, the profit is 3,767.44€, and 

36.20% of trips are accepted. For the same problem instance, Figure 6 shows the results of the 

QoS sweep when reservations are present. Increasing the reservation percentage, in general, 

lowers the profit and increases the accepted demand. A notable exception is the case with very 

small ℎ = 120 𝑚𝑖𝑛 (2 hours), for which the demand decreases due to highly limited capability to 

accept reservations.  

Variations in r change the level of accepted demand only slightly since neither walk-ins 

nor reservations depend directly on it. Walk-in acceptance depends on the separate, comfortable 

walk-in distance parameter (cwd) and the vehicle stock around the user. As r increases, there is 

less need for relocations as reservation support. These trips help balance the system, and therefore 

r increases cause less balanced vehicle stock, leading to less performed walk-ins. Reservations 

acceptance depends only and directly on ℎ. Therefore, a higher reservation percentage causes 

higher sensitivity of demand on ℎ changes. At 𝜌 = 100% and with ℎ = 0, no trips are accepted. 

With ℎ = 18ℎ (1080 min), all trips are accepted as the longest time-ahead in our problem 

instances is 18h before departure. The rate of the reservation acceptance increase as a function of 

ℎ depends on the distribution of time-ahead among these trips.  

 

Figure 6: Profit and accepted demand under various constant QoS levels 

Profit is sensitive to both ℎ and 𝑟. A small radius means the lower probability that an 

available car will be close enough to the requested departure location at the system response 

moment. This causes the costly relocators to do more work, thus decreasing the profit. Increasing 

ℎ increases the profit until the levels at which the fleet becomes saturated and a large degree of 
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trip outsourcing is needed. At 𝜌 = 100%, this effect is clearly visible: the profit first grows as ℎ 

increases from 120 to 360, however further increases to ℎ ≥ 600 𝑚𝑖𝑛 do not help and start 

decreasing the profit.  

 

6.2. R-BR and Fleet Size  

Fleet size planning is an important issue any potential carsharing service faces, especially 

when the operator is starting its business. Too many vehicles will lead to costs that are too high 

to reach a profit. Conversely, an insufficient vehicle number will reduce service coverage and 

customer satisfaction. We conducted experiments in the Metropolis instance with constant QoS 

r=200 m and h=600 min to investigate the influence of fleet size on the carsharing profit when 

reservations are allowed. As can be seen in Figure 7, the best profit with no reservations (𝜌 = 0) 

is achieved with 3,000 vehicles (approximately equal to the profit with 2,000 vehicles). Having 

5,000 vehicles causes a prominent profit drop. From the chart on the left, it is visible that with 

𝜌 > 0 and vehicle locking, small fleets give the best results.  

When the R-BR method is applied, the decision is more complex as fleet sizes that work 

great with no reservations can perform poorly with a high number of reserved trips. The key issue 

with R-BR and small fleets is that many expensive outsourced trips are required as the number of 

reservations increases. The chart on the right in Figure 7 illustrates this: having 1,000 vehicles 

gives results close to the best configurations with no reservations, however, with more than 20% 

the profit quickly drops. Using 3,000 vehicles gives the best profit, especially with high 

reservation percentages. Adding more does not help as is visible in the 5,000 vehicles case that 

causes a fixed cost increase that is not justified by the savings in outsourced taxi trips.  

 

 

Figure 7: Profit with different relocation enforcement methods and number of vehicles  
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6.3. Balancing relocations  

Relocation movements are a frequently used technique to ensure vehicle stock balance 

across different areas of a city. We wanted to investigate the effect of balancing relocations when 

used with and without reservations. Without reservations, the effect of relocations on profit is 

directly a result of better vehicle stock balance and better coverage of the areas with the most 

demand. We ran a series of experiments in Lisbon (6,000), Lisbon (12,000), Lisbon (25,000), and 

Metropolis, where a varying balancing intensity was used with walk-ins only allowed (no 

reservations). The impact of the movement limit bn is investigated with balancing movements 

starting at each hour (bp = 1h).  

The charts in Figure 8 show the changes in the profit (y-axis) resulting from various 

relocation intensities (trips per hour, x-axis). In the left chart, it is evident that balancing cannot 

improve the profit with the low demand in Lisbon (6,000) problem instance. Without balancing 

(0 balancing trips per hour), the system is generating losses of 653 € per day and adding balancing 

trips only makes it worse as cost of relocations is not compensated with increased revenue from 

additional trips. With a sufficient number of daily trips, however, the balancing helps, as the 

demand density is higher and a significant revenue increase is possible with the vehicle stock that 

better follows the demand. As seen in the right chart in Figure 8, using 50 relocation trips per hour 

produces the best results in Lisbon (25,000). However, even in this instance with high demand, 

insisting on a perfectly balanced system can be too costly. As seen in the example with 300 

balancing trips per hour in Figure 8, too much effort to balance the system can significantly 

undermine the profit, even cause the profitable system to start producing losses.  

Detailed results of applying balancing relocations are provided in Table 8, where profit 

for the best found balancing intensity is shown for four problem instances with sufficient demand. 

While in Lisbon instance with moderate and high demand balancing helps, in Lisbon (6,000) and 

in Metropolis, the simple balancing approach was not able to improve profit. In Lisbon (6,000), 

it is most likely due to low demand, while a possible reason for inefficiency in Metropolis is a big 

service area, in which the standard 10 by 10 grid might not be detailed enough to provide precise 

information about hot-spot locations.  

Table 8: Balancing relocations performance 

Problem instance Initial profit (€) Best found balancing intensity  

(trips per hour) 

Profit with balancing (€) 

Lisbon (6,000)  -652.96 0 -652.96 

Lisbon (12,000)  3,767.44 5 3,936.03 
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Lisbon (25,000)  15,249.54 50 17,447.98 

Metropolis (40,000)  16,573.85 0 16,573,85 

 

Figure 8: Effect of balancing relocations with no reservations (walk-ins only) 

 

When balancing is used complementary to the R-BR method of enforcing reservations, 

both the reservation (type 1) and the balancing movements (type 2 relocations) help improve the 

vehicle stock balance. In Figure 9, the impact of balancing intensity on the profit (y-axis) is shown 

for varying reservation percentage (x-axis). Moderate intensity of balancing trips helps improve 

profit when the number of relocation trips is low, as seen with 50 balancing trips per hour. 

However, as the reservations percentage becomes higher than 20%, balancing starts causing profit 

declines. As we use free-floating carsharing, the balancing does not help much with reservations 

when the radius around the user is low (200 m in our reference example) – except in the unlikely 

case where the relocator moved the vehicle to a position inside the allowed radius around an 

unknown future reservation. The balancing algorithm balances the vehicle stock across zones 

without knowing the future reservation demand hot-spots. Since a reserved trip requires an 

additional relocation if the previous balancing trip did not bring the vehicle close enough, an 

overall number of relocation trips might unnecessarily increase when combining reservations and 

balancing.  

While the results with reservations produce lower profit than best results with no 

relocations, due to the different nature of the demand involved, they are not directly comparable. 

This experiment assumes a constant number of trips, therefore not accounting for the potential of 

reservation service to attract more customers and generate more trips. Such increases in trip 

volume depend on the market and user preferences, and if substantial, they would allow 

carsharing providers to further benefit from all positive effects of increased trip volume. Finally, 

implementing more sophisticated relocations, e.g., better integration between relocation support 
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and balancing has the potential to improve performance further when balancing is used along with 

R-BR method.  

Given the fact that simple balancing relocations combined with reservations appear 

detrimental even with low reservation percentages, and to ensure the ability to compare the results 

with vehicle locking, the variable QoS experiments presented in the following sections were done 

without balancing relocations. 

 

Figure 9: Balancing relocations used with the R-BR method 

 

6.4. Variable QoS  

To further improve the performance of the reservations, we ran the devised ILS 

metaheuristic on our problem instances in a setting with high reservation load: 𝜌 = 50%. Profit 

bounds for all problem instances 𝑃𝑚𝑖𝑛 and 𝑃𝑚𝑎𝑥were estimated by running the QoS sweep 

algorithm, however with a finer resolution of (50 m, 60 min). Further, an additional run of the 

ILS was done for highly profitable problem instances. After the profit bounds have been 

established, the best constant QoS was found by calculating the entire objective function in the 

QoS sweep algorithm.  

We performed five runs of the ILS metaheuristic on each problem instance with the initial 

solution being a random solution with  𝑟 ∈ [50, 500] and ℎ ∈ [60, 1080]. The other algorithm 

parameters were used as in Table 3. For smaller problem instances, the algorithm is able to 

produce good solutions more quickly than for those with more trips and cars. Therefore, the time 

limit of 2 hours was used for problem instances with less trips, while up to 10h was used for those 
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with more trips and longer time needed for solution evaluation. The results are given in detail in 

Table 9, where average, median, best and worst Z in the performed runs, as well as the standard 

deviation of the objective function values. The results show that ILS was always able to find a 

better solution than the best known with constant QoS.  

 

Table 9: ILS performance in 5 runs 

Problem instance 

 Constant 

QoS 

 Variable QoS  

 
Best 

known Z 

 
ILS time 

limit (h) 

Z in 5 ILS runs 

  
Average Median Best Worst 

Std. 

dev 

Town (500)  53.81%  2 62.74% 62.00% 71.54% 57.72% 5.66% 

Metropolis (40,000)  76.49%  10 80.79% 81.02% 82.75% 79.07% 1.38% 

Lisbon (3,000)  68.24%  2 74.14% 73.93% 74.97% 73.21% 0.75% 

Lisbon (6,000)  66.59%  2 77.14% 77.05% 78.35% 75.92% 1.05% 

Lisbon (12,000)  68.08%  2 76.58% 76.03% 79.87% 73.09% 2.53% 

Lisbon (25,000)  70.42%  5 76.92% 78.73% 78.96% 72.18% 2.95% 

 

A detailed comparison of best known constant and variable QoS solutions is provided in 

Table 10, where the elements of the objective function are given: average time ℎ̅, and radius 𝑟̅, 

over zones, as determined by the heuristic as well as the satisfied demand, profit and the overall 

objective function value Z. These results show that the ILS metaheuristic was able to improve the 

profit in all problem instances, in some of them substantially. In most examples, the satisfied 

demand is slightly lower than with the constant QoS. Further, average 𝑟 and ℎ are very 

comfortable for all variable QoS solutions: less than 200m and more than 12h in all problem 

instances. Further, Lisbon (6,000) is not profitable even with the best constant QoS. However, 

ILS was able to achieve high increases of the profit, turning the service generating losses into a 

profitable one. Attaining profitability with the large reservations pressure of 50% used in these 

experiments is very difficult, as shown in the constant QoS experiments. Nevertheless, using ILS, 

it was possible to optimize the profit to the levels which are better than the profits with no 

reservations. The especially good QoS with high profits for Metropolis (40,000) and Lisbon 

(25,000) problem instances show the potential of this method with large trip volume. For example, 

the Metropolis (40,000) with no reservations has a daily profit of 16,573.85 € (Figure 4), while 

the profit of the best variable QoS solution with 50% reservations is a slightly higher value of 

17,905.17€. At the same reservation level, the constant QoS solution with the best Z is barely 
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profitable (less than 300€ per day). The highest known constant QoS profit is 11,122.17€, 

achieved with much higher r and similar h QoS (r=500m, h=840 min). For an additional 

comparison, vehicle locking with 50% of reservations causes losses of more than 35,000 € per 

day.  

We additionally compared the performance of both ILS and best constant solutions with 

the basic random restart search algorithm in which the best out of randomly generated solutions 

is selected. With run-times equal to those given to the ILS, the random restart algorithm was not 

able to outperform the best found constant solution and the solutions found by ILS outperform it. 

A very simple algorithm such as random restart is not able to refine the solutions well enough to 

give good results and produces a very irregular distribution of radiuses and times that does not 

reflect the shape of the central business district as ILS does.  

 

Table 10: Comparison of best known constant and variable QoS solutions 

Problem 

instance 

 Best found constant QoS  Best found variable QoS 

 
h 

(min) 
𝒓 (m) 

𝑑𝑠𝑎𝑡

𝑑𝑡𝑜𝑡

 Profit (€) 𝒁  
𝒉̅ 

(min) 
𝒓̅ (m) 

𝑑𝑠𝑎𝑡

𝑑𝑡𝑜𝑡

 Profit (€) 𝒁 

Town  

(500 trips) 

 
180 50 19% -368.59 53.81%  751.39 129.0 38% -335.44 71.54% 

Metropolis 

(40,000 trips) 

 
1080 50 53% 293.15 76.49%  924.71 139.15 47% 17,905.17 82.75% 

Lisbon  

(3,000 trips) 

 
1080 50 49% -1,368.32 68.24%  764.65 135.56 40% -725.82 74.97% 

Lisbon  

(6,000 trips) 

 
900 50 50% -1,255.04 65.39%  786.83 153.35 44% 275.90 78.35% 

Lisbon 

(12,000 trips) 

 
900 500 52% 2,267.86 68.08%  821.83 196.36 48% 2,832.93 79.87% 

Lisbon 

(25,000 trips) 

 
960 500 57% 10,668.61 70.42%  785.12 186.32 51% 11,552.52 79.88% 

 

Detailed values of QoS parameters across the zones for the best-known solution for 

Metropolis (40,000) are shown in Figure 10, where the radiuses (left) and reservation times ahead 

(right) are displayed in a heat map. Comparing these figures with O-D probabilities in Figure 3, 

indicate that the ILS metaheuristic was able to capture the general behavior of the system. In 

general, the algorithm lowered the service quality in zones with many trips and kept it very high 

in areas with fewer trips. Increasing the radius in the central business district has the benefit of 

lowering the relocation costs. Likewise, it is in general kept low in zones with fewer trips where 
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due to the low concentration of vehicles, relocations will most likely be needed regardless of 𝑟. 

Average 𝑟 is 139m, however, median 𝑟 is 50m, equal to the lowest allowed value rmin = 50m. 

Distribution of times ahead is similar: the h heat-maps (Figure 10, right) give an approximate 

outline of the city center contours. In areas with a lot of trips, the algorithm had a tendency to 

lower the allowed time-ahead 𝑡, most likely due to the fact that many reservations in these areas 

have the potential to overload the fleet and cause too many relocations and outsourcing costs. The 

average and median values of 𝑟 and ℎ are only slightly worse than in the best known constant 

QoS and even the zones with the lowest QoS by far outperform the reservation time-ahead of 30 

minutes that is nowadays allowed by the carsharing operators.  

 

Figure 10: radiuses (left) and times ahead (right) in the best known variable QoS 

solution for Metropolis (40,000) 

 

6.5. Choosing the optimization objective 

The experiments conducted so far used a balanced set of weights that put 50% of the 

weight into the profit, and the remaining 50% was equally distributed on the satisfied demand, 

radius and reservation times. To evaluate performance with different goals, we performed 

additional two experiments: (1) optimising only the profit while not caring about other objectives 

with weights set to 𝑤𝑝 = 1.0, 𝑤𝑟  =  𝑤ℎ  =  𝑤𝑑  =  0 and (2) optimizing only the demand and 

not caring about other objectives, using weight factors 𝑤𝑝  =  𝑤𝑟  =  𝑤ℎ  =  0, 𝑤𝑑 = 1.0. Both 

experiments were performed on Lisbon 12,000 problem instance with very high reservation load 

(𝜌 = 50%). The results in Table 11 show the performance of the best-found solution in 5 different 

runs with the two different objective function setups.  
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In the first experiment, a highly profitable result of 2,875.64 €/day was found. While this 

profit oriented solution for Lisbon (12,000) is the best known profit for that problem instance, it 

is only slightly better than 2,832.93 €/day found from a solution with more balanced optimization 

criteria (Table 10). In practical terms, those values can be considered equal as the difference 

between the two values is 42€/day, which is a profit increase of only 1.4%. While both solutions 

result in a similar profit, the solutions themselves are considerably different, and the other criteria 

are much worse in the “for-profit-only” result. The average radius around the user in the profit-

oriented solution (361m) is almost two times bigger than the radius in the balanced solution 

(196m). Likewise, the allowed reservation time is on average 25% shorter in the “for-profit-only” 

solution. Given the fact that 1% profit increase does not give sufficient justification to force users 

to walk double the distance to reach a reserved car, a reasonable provider will choose the solution 

from the balanced configuration.  

When only the demand is optimized, as seen in the second experiment in Table 11, the 

result has a high demand. However, the best-found solution from Table 9 outperforms it in all 

other criteria, low profit being especially notable. While this means that optimizing only the 

demand is not an attractive option for commercial providers, it is still an effective demonstration 

of the flexibility that the weighted multiobjective function provides.  

The algorithm can prioritize different user preferences and adapt to various business 

goals. Each carsharing provider has complete freedom to choose the optimization goals that best 

fit its current moment. Further, it is possible to run multiple algorithm configurations for the same 

problem and then leave the final decision to the human. Provided with several different solutions, 

the operator can decide on a good trade-off between various criteria, with the results from Table 

10 and Table 11 being a good illustration of that potential.  

 

Table 11: Algorithm results with different optimization goals in Lisbon 12,000  

Experiment 

 

Weights setup  Results 

 
Profit 

(wp) 

Radius 

(wr) 

Time  

(wh) 

Demand  

(wd) 

 

𝒉̅ (min) 𝒓̅ (m) 
𝒅𝒔𝒂𝒕

𝒅𝒕𝒐𝒕

 Profit (€) 𝒁 

1. Optimize profit  
 

1.0 0.0 0.0 0.0 
 

641.17 360.86 46.26% 2,875.64 98.44% 

2. Optimize demand  0.0 0.0 0.0 1.0  715.87 251.06 52.79% 93.12 52.79% 
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6.6. Performance comparisons  

In previous experiments, the effects of various carsharing operation alternatives such as 

adjusting the fleet size and balancing relocations were investigated in a reservation context. The 

variable QoS experiments in Section 6.4 and 6.5 were performed with very high reservation 

percentage (𝜌 = 50%) and they show that the R-BR method is robust and cost-efficient and keeps 

the operation profitable even under such immense pressure on the reservation support services. 

We, however, also wanted to evaluate the R-BR performance under low percentage of reserved 

trips, for example in cases where users are not very interested in reservations, or in early stages 

of implementation, when promotional activities are still in progress and users are not yet informed 

about the new service. To assess the performance of the system under low usage of the 

reservations, we did a series of experiments on four input instances: Lisbon (6,000), Lisbon 

(12,000), Lisbon (25,000) and Metropolis, and compared the performance of three different 

reservation enforcement mechanisms: (1) vehicle locking, (2) R-BR with a constant QoS 

(r=200m, h=600 min) and (3) R-BR with variable QoS. The ILS algorithm parameters were set 

as in Table 3 and computation times can be checked in Table 9. The results in Figure 11 show 

profit variation depending on the reservation percentage with each of the operation configurations. 

It is evident that R-BR always outperforms vehicle locking and that optimized solutions with 

variable QoS always outperform both other techniques.  

 

Figure 11: Profit comparison for low reservation percentages   
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Furthermore, comparison of variable QoS with balancing, given in Table 12 indicates that 

for each problem instance except Lisbon (25,000), the variable QoS with reservations achieves 

better profit than having no reservations. When reservation percentages are very low (< 5%), the 

profits become approximately equal to the base case. The Lisbon (6,000) variable QoS 

performance case is especially important as it demonstrates that, provided sufficient reservation 

trips, the optimization method can turn a business struggling with losses into a profitable one.  

 

Table 12: Comparison of R-BR and balancing relocations 

 Profit (€) with no reservations  Reservations profit (€) with variable QoS R-BR 

    Reservation percentage 𝝆 (%) 

 No optimizations Balancing  5 10 15 20 

Lisbon (6,000)  -652.96 -652.96  -155.31 51.98 82.206 513.08 

Lisbon (12,000)  3,767.44 3,936.03  4,259.42 4,260.87 4,077.65 4,551.93 

Lisbon (25,000)  15,249.54 17,447.98  14,875.58 14,673.76 13,904.72 14,721.02 

Metropolis 16,573.85 16,573.85  20,010.56 21,895.06 23,753.08 25,047.84 

 

 

6.7. Practical considerations  

We recommended gradual implementation in the existing carsharing systems. Before 

implementation, a rigorous viability assessment of reservations is required, since long-term 

reservations are not well suited to, e.g., carsharing systems with low demand or small fleets. 

Reservations have a clearly defined market: airport trips, intermodal trips connecting users to 

trains, buses, and other modes with a fixed schedule, users who need a temporary replacement car 

for everyday commute, people who do not own a car and might want to use carsharing to go to 

work during a week of bad weather etc. Therefore, a survey of user preferences to assess the 

market size for the long-term reservation service should be performed prior to implementing R-

BR to help decide if the revenue increase from such a service would justify the change in 

operations.  

The gradual implementation of the R-BR methodology can be performed in the following 

four steps:  

1. Setting up the constant service quality reservation system,  

2. Experimenting with improving the key performance indicators (profit, satisfied 

demand, user satisfaction) using the ILS metaheuristic,  

3. Evaluating the real-world performance and repeating steps 2 and 3.  
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The optimization in step 2 requires a demand database or a forecast. Further, the ILS 

algorithm in a simulation-optimization approach is not fast enough for real-time decisions so it 

would typically be used for long-term iterative planning, on, e.g., weekly or monthly basis. 

Depending on the yearly and daily variations in demand, it is advisable to create several separate 

setups for typical working day vs. a weekend, summer months, and other specific circumstances. 

We recommend experimenting with several different solutions before choosing the final one, 

while carefully monitoring the service quality KPIs in the real carsharing system.  

 

6.8. Experiments’ summary  

We summarize the results of all experiments performed in this work in Table 13, where 

a list of tested reservation enforcement methods and a list of problem instances that were part of 

the experiments are given. The table further provides a short description of the observed results 

as well as the Section where the experiment is described in more detail. We use “VL” as an 

abbreviation for vehicle locking method, “all” for experiments in which all 6 of our problem 

instances described were tested, and “sufficient demand” for all except Town (500) and Lisbon 

(3,000).   

 

Table 13: Experiments summary 

Experiment Methods Problem 

instances 

Section Result 

Varying 𝝆 with constant QoS 

VL, 

R-BR 
all 6.1 

R-BR achieves higher profit than VL 

except in Town (500) with high 𝜌  

Varying h with constant QoS 

with vehicle locking  

VL 
Lisbon 

(25,000)  
6.1 

Vehicle locking achieves higher profit 

with less accepted reservation demand 

when h is small  

Varying 𝝆 with different 

combinations of constant QoS 

R-BR 
Lisbon 

(12,000) 
6.1 

Variations in r and h have a large impact 

on profit and demand 

R-BR and Fleet size 
R-BR 

Metropolis 

(40,000) 
6.2 

Investments in additional vehicles that are 

not reasonable with no reservations can 

cause substantial profit improvement with 

reservations 

Balancing relocations  
R-BR 

sufficient 

demand 
6.3 

With enough trips and low reservation 

percentage, simple balancing strategies 

help improve profit 
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Variable QoS (balanced) 
R-BR all 6.4 

ILS can improve the profit without 

lowering the QoS and the demand too 

much, according to the desired goals  

Variable QoS (profit oriented) 
R-BR 

Lisbon 

(12,000)  
6.4 

ILS can focus on profit only if the 

operator desires to do so  

Performance comparisons  

VL,  

R-BR 

sufficient 

demand 
6.6 

Variable QoS has the potential to produce 

a better profit than with no reservations  

 

7. Conclusions and Future Work 

Carsharing systems are being classified as a sustainable green mode, especially if 

provided with electric vehicle fleets. Nevertheless, one-way systems, in which the user may drop-

off the vehicle anywhere inside a service area, are still being used by only a small segment of the 

urban transport demand. As the number of users grows, so do the logistic management problems 

to be solved if the quality of service and profitability are to be maintained.  

Vehicle reservations provided through simple vehicle locking, by which the vehicle must 

stay idle until the client comes, have a too high impact on the profit to be viable as we showed in 

this paper. While we are not aware of any research which estimates the potential of reservations 

to attract more customers, we believe that customers do not favor highly restricted versions of 

reservations provided by commercial carsharing providers. Services such as restaurants, theatres, 

and hotels allow flexible reservation options, however, one-way carsharing reservations are 

currently mostly limited to very short time or are at best, very expensive. As the carsharing 

services do not control the trips their clients will be doing, additional information about the 

demand gathered from the reservations is not very valuable without a reliable and sustainable way 

to ensure that a reserved vehicle will indeed be in the correct place at the proper time.  

In this paper, we have proposed an innovative relocations-based reservations (R-BR) 

method in which vehicles are only locked sometime before the beginning of the trip, and if a 

vehicle is not naturally available, one will be relocated. We hypothesized that this method could 

perform well even with much higher reservation times ahead than the commercial carsharing 

providers offer nowadays (typically 30 min). Furthermore, we proposed optimizing the allowed 

reservation time ahead and the proximity of reserved vehicles to users in different areas of the 

city to tailor the system to the demand profile.  

To test the performance of both types of reservations (with and without the variable 

quality of service), we have created a simulator that enables evaluating various service 

configurations related to reservations. Several test instances have been created with daily 

carsharing trips in typical cities of various sizes. Our instances include the trips in two artificial 
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cities and a set of experiments with the case-study city of Lisbon (Portugal) where long 

reservation times are allowed. Results show that the vehicle locking strategy with long reservation 

times gives bad results for anything but a very low number of reservations (up to 20% of the total 

trip number). Furthermore, we show that the relocations method we propose is able to keep the 

system profitable with up to 60% reservations in the Lisbon (25,000 trips) example. The R-BR 

method achieved better results than locking in all problem instances except the Town (500) with 

a very low number of trips.  

Unprofitable results for low trip volumes are in line with similar conclusions by other 

researchers: small towns are not well suited for commercial carsharing services. In such places, 

the revenues are too low to allow the successful operation of commercial providers, and the 

successful examples are typically restricted to the volunteer-based community services (European 

Commission, 2009). Conversely, big cities have shown to be very suitable for carsharing as it is 

much easier to sustain a company with a high concentration of the demand in areas with high 

population density and high revenue from a lot of daily trips.  

As a guideline to operators interested in implementing reservations, if the system is not a 

profitable one without reservations, offering them may be risky. While this method is able to 

increase the customer satisfaction and the profit of already successful carsharing enterprises, in 

systems that are not profitable, the gains from adding reservations will most likely be very low to 

none, and with low trip volume, it might even cause profit decreases. The sensitivity to the vehicle 

fleet size experiments indicates that investments in additional vehicles can be useful when R-BR 

is applied even in cases when it shows little benefits in traditional systems where no reservations 

are allowed.  

The implemented ILS metaheuristic was able to perform complex trade-offs of increasing 

the profit without lowering the service quality and the demand too much. It is able to learn from 

the performed daily trips and successfully identify areas with the highest demand, where QoS 

adjustments bring the most benefits. In general, increasing the r in the areas with the highest 

demand has shown to be a very effective tool that ILS used to lower relocation costs and increase 

profit. Further, lowering h in the areas with the highest demand can help prevent system overload 

and high costs of reliance on outsourcing. The flexibility of adjusting the relative importance of 

multiple optimization criteria allows further adjustments to the current goals of the operator.  

While the objectives of this work were achieved using the above experiments, several 

refinements to the methodology are possible. We believe that an interesting research direction 

would be giving more attention to adding more realism to reservation time distribution and 

investing more computational resources to simulate longer periods of time, as well as supporting 

more realistic relocations, e.g., for companies with permanent staff in charge of relocations. 
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Another interesting direction is investigating the performance of reservations when used with 

various different balancing mechanisms.  

In this paper, we do not consider added demand as a result of introducing the reservation 

system. A more detailed demand model that adjusts the demand with the QoS changes would 

further improve the accuracy of the obtained results and extend the applicability of the method to 

allow larger variance in the QoS. This approach would also allow users of the model to view more 

precise profit effects of each optimization variable that has been changed. Better integration of 

the effects of the QoS variation into the profit calculation is especially suitable for businesses, 

which are typically concerned with profit maximization as their top priority. Such demand models 

are usually non-linear mode choice models, nevertheless, they are suitable for integration into the 

simulation model, which is another advantage of the simulation-based optimization approach.  
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