
 
 

Delft University of Technology

Formalizing Technology Descriptions for Selection During Conceptual Design

Roelofs, Martijn; Vos, Roelof

DOI
10.2514/6.2019-0816
Publication date
2019
Document Version
Accepted author manuscript
Published in
AIAA Scitech 2019 Forum

Citation (APA)
Roelofs, M., & Vos, R. (2019). Formalizing Technology Descriptions for Selection During Conceptual
Design. In AIAA Scitech 2019 Forum: 7-11 January 2019, San Diego, California, USA Article AIAA 2019-
0816 https://doi.org/10.2514/6.2019-0816

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.2514/6.2019-0816
https://doi.org/10.2514/6.2019-0816


An Engineering Systems Graph Description Enabling
Automated Analysis Mapping and Execution

Martijn N. Roelofs∗ and Roelof Vos†

Delft University of Technology, Delft, Zuid-Holland, 2600AA, The Netherlands

Evaluation and assessment of novel technologies for aerospace applications is essential for
business strategy and decision making regarding development efforts. However, technology
evaluation and assessment are challenging to perform objectively using a structured approach.
As a first step towards a more objective and structured approach a graph-based description of
engineering systems is described herein. Analyses can be applied to such a description through
pattern matching, after which the quantities of interest can be computed by an automated
algorithm using a dependency graph. The approach is applied to a simplified aircraft model,
to perform a mission analysis and compute fuel burn. It is shown the method successfully
computes the required parameter and is easily adapted to analyze an electric aircraft as well.

I. Nomenclature

A Analysis
B Behavior
B Set of behaviors
C Component
F Set of flows
GC Context graph
G, H Graph
g Constraint function
P Set of parameters
P Union of parameter sets
pi j Path from i to j
R Set of relations
r Relation
S Set of states
s State
T Technology
u Node
U Set of nodes

Greek symbols
γ Component flow interaction
µ Parameter mapping function

ν Input/Output mapping function

Subscripts and superscripts

′ Modification
k Hierarchy level
in Input
out Output

Acronyms

DAG Directed Acyclic Graph
FPG Fundamental Problem Graph
IRL Integration Readiness Level
MDO Multidisciplinary Design Optimization
PSG Problem Solution Graph
SoI System of Interest
SRL System Readiness Level
TCM Technology Compatibility Matrix
TRL Technology Readiness Level
QoI Quantity of Interest
QPT Qualitative Process Theory

II. Introduction
Early in the conceptual design of engineering systems it is of utmost importance to select those components, technologies
and configurations that are most likely to achieve the specified requirements within a certain timeframe, while reducing
risk and cost (of development, manufacturing and operations). Any part of the system that may or may not be included
can be regarded as a technology. Alternatively, any technical solution for a certain functional requirement can also be
viewed as a technology. Technologies therefore range from differing parameters (e.g. material strength), to components

∗PhD Candidate, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1 2629HS, Delft, The Netherlands
†Assistant Professor, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1 2629HS, Delft, The Netherlands,

Associate Fellow AIAA

1

Former title: Formalizing Technology Descriptions for Selection During 
Conceptual Design



(e.g. electric actuator instead of hydraulic), to behaviors (e.g. a structural element doubling as electric conductor), and
to entire systems (e.g. a fixed-wing aircraft as opposed to a helicopter). Previously, a review on technology selection [1]
identified the following challenges with technology evaluation and selection:

1) The application of design tools is limited to a specific vehicle type, because the sizing method is fixed [2]
2) Flexibility and scalability of disciplinary analysis tools is lacking [2]
3) Parameterization of geometry proves challenging in a generalized sense (i.e. problem specific parameterizations

are possible, but geometry parameterization that holds for any problem is challenging, at the least)
4) Modeling of technologies is usually avoided and replaced by impact factors
5) Extensive use of expert judgment raises challenges due to subjectivity, conservatism, overconfidence and lack of

experts
Additionally, from discussions with practitioners at Saab, the following challenges with technology selection in the

conceptual design phase were identified: (i) non-performance metrics (e.g. the effect of improved human-machine
interaction) need to be included, although prove difficult to define and quantify, (ii) technology descriptions are not yet
meaningful, and cannot traverse from detailed to high-level descriptions, nor capture quantifiable effects and enabling
fair comparison between technologies, (iii) finding the best technology portfolio without enumerating all possible
combinations cannot yet be done objectively, (iv) the assessment of dependencies between technologies is too subjective,
and (v) when uncertainty is quantified, decision making is impaired in case of wide uncertainty bands.

Several conclusions can be drawn from these challenges. Metrics that are not quantifiable cannot be addressed, and
hence, technologies affecting those have no meaning. Alternatively, additional analysis methods should be developed.
Uncertainty should be associated with technology (and system) readiness level (both on impact and development time).
Additionally, the amount of uncertainty should be limited or decision-making in the event of large uncertainty should be
supported. Insight is more important at this stage than arriving at a most optimal result, hence preference is given to
evaluating current possibilities, rather than performing optimization. Therefore, a structured and traceable solution to
technology definition, evaluation and selection is sought.

Conventionally, technology selection is performed by collecting technology TRL and IRL levels, describing their
effects in an impact matrix and their compatibility in a Technology Compatibility Matrix (TCM). Such an approach
was taken in the works by Amadori et al. [3, 4], who depict the process as in Figure 1. The data collection phase is
essentially carried out completely using expert judgment, with limited traceability and objectivity.

Fig. 1 Technology evaluation and selection process [4]

Before any quantitative evaluation of technologies can be performed, technologies and their effects have to be
defined, which requires a formal modeling paradigm if each is to be evaluated equivalently. Evidently, other efforts
have been made towards similar goals. Mostly, systems are described by functions/behaviors, leading to the topic
of functional decomposition [5–10], which is mainly used in design synthesis. This allows automatic selection of
components to fulfill certain requirements. Additionally, representing a system in terms of its behavior instead of a

2



certain fixed parameterization gains popularity in model-based systems engineering [6, 11–14], which may be attributed
to the formalization of behavioral descriptions. While these allow for a structured approach to describe systems and
enable automated design synthesis, they all rely on human specified functions, which effectively are only labels. As
such, from another modeler’s perspective, these labels may have to be different. It would model the same system, but
the computer algorithm would not be able to make that deduction (since the labels are unequal).

Efforts for automated execution of analyses have also been conducted. Mainly, a M.Sc. thesis by Ramakers [15] and
the work by Van Gent [16, 17] are of particular interest. Both of these refer to the study of Pate et al. [18]. That study
describes the construction of a Fundamental Problem Graph (FPG) to deduce relations between analysis tools and the
variables of a Multidisciplinary Design Optimization (MDO) problem. From this FPG a Problem Solution Graph (PSG)
is derived that defines how a particular MDO problem should be solved.

Based on the challenges exposed above, a methodology is developed herein that aims to enable technology
assessment. That is achieved through the following goals: (i) to enable a flexible, yet unambiguous description of SoI
and technologies, and (ii) enable flexible analysis of a System of Interest (SoI). A computer algorithm can interpret the
SoI description and perform most of the tasks in the data collection phase (shown in Figure 1) automatically. However,
the focus of this paper is on the system description only, whereas the development of such an algorithm is delayed to
future work. On the other hand, the current method allows analyses to be defined and automatically applied to the SoI,
to compute a certain Quantity of Interest. The method is explained in section III, followed by a case study in section IV,
where the method is applied to a simple aircraft mission analysis example. Consecutively, the philospophy and results of
the presented method are discussed in section V and concluded in section VI, where also future work is elaborated upon.

III. Methodology
An ontology is defined that describes a system of interest (SoI) and the technologies affecting it. This ontology is based
on works for functional decomposition, since it is recognized that functions/behaviors do not change and hence may
form a fixed basis with which to describe any engineering system. The following constructs make up the ontology:
Component, Behavior, Flow, State, Technology, Analysis and Attribute / Parameter, see Table 1. A legend showing
these constructs graphically is shown in Figure 2. A notional example of a SoI is depicted in Figure 3 and the details of
the ontology are elaborated upon in the remainder of this text.

Table 1 Ontological constructs. The meaning of each definition is detailed in the text.

Construct Definition
Analysis (GC,PA, µ, ν)
Attribute (l, q,V ),V = (si, vi)
Behavior (FB, cB,PB)
Component (CF,BC, FC,PC )
Flow (cF,PF )
State Ps

Technology G 7→ H

Each component can be represented as quadruple (CF,BC, FC,PC ), where CF is the flow representation of the
component (any component has some material manifestation), BC are the behaviors performed by the component, FC
the flows associated with the behavior, which is a subset of the flows associated with the behaviors in BC and PC is a
set of attributes that for example specify mass or geometry.

A Flow is a physical entity with a certain classification cF , as defined in Table 2. These classifications are based on
Hirtz et al. [5], although the exact classification is modified for the energy classes. Note furthermore that a Signal can
be carried by an Energy, while Energy in turn can be carried by Material. As such, composite flows may be constructed.
In fact, a flow could consist of multiple material flows and/or multiple energy flows. Although Hirtz specified power
conjugates of these flows, such as force and pressure, here they are treated at the same level as flows. Especially in
aircraft design it is useful to express forces and similar concepts that affect the (energy) flows in Table 2. Therefore,
these have been explicitly included in the current ontology as Efforts, shown in Table 3. On each Flow or Effort a set of
attributes PF may be defined.

To uniquely define a Behavior, three elements need to come together: why, what and how. "Why" are the functions

3



B1

C1

F1

p1

A1

Component

Behavior

Flow

Attribute / 

parameter

Analysis

Fig. 2 Legend relating the constructs from Table 1 to a graphical notation.

B1

B2FC

F1

F2

p1

C1

p2

p3

p4

p5B1

B2FC

F1

F2

p1

C1

p2

p3

p4

p5

Fig. 3 System of Interest (SoI) notional example. Note that FC is the flow representation of C1. The relation
between p2 and p3 indicates p2 is the derivative of p3 with respect to p5.

/ requirements of the Component that exhibits the Behavior, "what" are the flows and form of the Component that
are necessary to exhibit its Behavior (which in turn fulfills the function) and "how" is a set of physical phenomena
taking place in and around that Component. Functions and requirements are not specifically included in the current
implementation. Nonetheless, functions are merely a subset of the Behavior (i.e. the part of the Behavior that is
intended). Requirements may be added through constraints on attributes and states associated with the Behavior.
Using the form of the associated Component in the Behavior definition is expected to inhibit equality / equivalence
determination of behaviors for this reason: comparing form (geometry) is not a trivial task. However, a Behavior should
be characterized by the form exhibiting it. Therefore, this challenge is left for future study.

In the current implementation, a Behavior is a phenomenon that operates on a set of flows FB, performing a state
change. This state change does not necessarily correspond to a transition (e.g of time): some behaviors are continuous
and instantaneous (e.g. aerodynamics or structure dynamics). It is chosen here to classify behaviors into two types
of functions on a set of flows. These are summarized in Table 4. The philosophy is that a Flow retains its identity
under certain behaviors although its properties may change (Transformation). Alternatively, a Flow is converted into a
different class of Flow (Transmutation). A behavior may be further characterized by a set of attributes PB. As such, a
Behavior is represented as a triple (FB, cB,PB), where cB is a class of basis behaviors from Table 4.

Components can be assemblies of other components, and similarly, behaviors can be composed of other behaviors
(and flows). Each of these decompositions leads to a more detailed description of the system; a finer granularity. As
such, a hierarchy can be formed that describes the relationship between sub-component / behavior and assembly /
behavior. A trivialized example is shown in Figure 4, which depicts the essence of the remainder of this paragraph. The
hierarchy forms a tree, where the root node is the highest-level component or behavior. Each node branches of in at least
two other nodes, forming the next level in the hierarchy. At each level k, the nodes uk

i are connected through flows
(forming interactions by stating flow equivalence between components or behaviors). Formally, uk

i 7→ (Uk+1, {γ}),

4



Table 2 Flow basis, based on Hirtz [5]. The Energy class subdivision is modified. The tertiary class has all
the properties of its associated secondary class, and likewise for the secondary class w.r.t. the primary class.
Furthermore, Material may contain Energy, and Energy may contain Signal.

Primary class Secondary class Tertiary class
Material

Solid
Liquid
Gas

Energy
Kinetic
Potential

Gravitational, Elastic, Electric, Chemical
Magnetic, Nuclear, Thermal, (Rest)

Kinetic & Potential
Mechanical Rotation, Mechanical Translation
Mechanical Wave, Radiant (electromagnetic)

Signal

Table 3 Effort basis. These form conjugates to the (energy) flow basis.

Effort Conjugate for energy class
Force Kinetic, Potential Energy
Torque Mechanical Rotation Energy
Pressure Potential Energy
Stress Elastic Energy

where Uk+1 is the set of children and {γ} is a set of unordered pairs that connect a flow from one child to another:
γi = {Fv ∈ Fuk+1

n
, Fw ∈ Fuk+1

m
}, where n , m. Hence, each level in this tree forms a graph, that describes the same system

or behavior in more detail. It is allowed to add flows and behaviors while descending the hierarchy, but not to remove them.
Thus, each flow Fk

i in the graph of level k maps to a flow in the lower level k + 1: Fk
i 7→ Fk+1

v . For each path pki j = (Fk
i ,

Fk
j ) there is a transformation taking place described by the behaviors in between: Bpk

i j
: Fk

i 7→ Fk
j . This path and

corresponding transformation must also be present at level k+1, although it may be a superset of it (i.e. there is additional
behaviors and flows). Hence, pki j 7→ pk+1

vw = (Fk+1
v , Fk+1

w ), which has the behavior Bpk+1
vw
⊆ Bpk

i j
: Fk+1

v 7→ Fk+1
w . This

is exactly the case in Figure 4.

B1

B2 B3

F1 F2

F1 F3 F2

Level 0

Level 1

Fig. 4 Hierarchy for behavior B1, which is broken down into two behaviors B2 and B3 at level 1. The total effect
of the behavior remains unaffected (F1 and F2 are unaffected).

Technologies are pivotal to the present method, yet a detailed description of their implementation and working is
delayed to a follow-up paper. Here it suffices to say they represent some function T : G 7→ H , i.e. they map a certain
graph G to another graph H. Both of these graphs follow the ontology described presently, and a modification to a

5



Table 4 Behavior basis: two basis level behaviors with an associated mathematical function. Each Behavior
maps a Flow x (or set of flows) onto itself (Transformation) or another set of flows y (Transmutation).

Basis Behavior Function
Transformation x 7→ x ′

Transmutation x 7→ y, x , y

system description is represented by the function T . So, in short, the method described here to formalize a system
description consequently formalizes the description of technologies to be applied as well.

An Attribute is a tuple: (l, q,V ), where l is some label, q is a quantity type (e.g. mass, force, etc.) andV = (si, vi),
i.e. a set of tuples that specify a value vi corresponding to a certain state si . Finally, analyses can be defined as a
quadruple (GC,PA, µ, ν). Here GC is a graph that serves as a context for the analysis, in such a way that it is a graph
pattern that will be matched against the SoI graph. As a result, analyses can be applied flexibly to any part of the system
of interest that matches the prerequisites for the analysis. The second term PA are the analysis parameters (both input
and output). These do not necessarily correspond directly to the attributes defined in the system, and multiple system
attributes may correspond to only one analysis parameter (if this is a vector, for example). Hence, µ is a function that
maps the set of attributes PGC collected from GC to the analysis parameters: µ : PGC 7→ PA. Finally, the analysis is
a function that takes an input subset of its parameters P in

A and maps them to an output subset of its parameters Pout
A
.

However, different directions of computation may be available, so that a set of functions results:

νi : P in
Ai
7→ Pout

Ai
∀νi ∈ ν (1)

Note that each νi has its own set of input and output parameters. This also means that P in
Ai
, P in

A j
∀i, j : i , j and

likewise for the output parameter sets. Each νi is called a mode of the analysis, and essentially specifies a direction that
the analysis can be applied in.

An example pattern GC is depicted in Figure 5, which is to be mapped onto the SoI shown earlier in Figure 3. From
this figure it can be deduced the analysis parameters PA are pa, pb and pc . Suppose this analysis has only one mode ν0:

ν0 : pc = pa · pb (2)

If we furthermore state that Fa and F1 are of the same class and F2 is not, then the parameter map µ becomes:

µ :




p1 7→ pa
p4 7→ pb
p2 7→ pc

(3)

Ba

Fa

pa

Ca

pc

pb

Ba

Fa

pa

Ca

pc

pb

Fig. 5 Example analysis pattern GC with an application in the SoI from Figure 3

Having a set of analyses and a system of interest (SoI), an algorithm is developed that automatically finds where
these analyses can be applied. Then for each application, a map µ is created that maps the attributes in the SoI to the
analysis parameters. From that information, a so-called dependency graph is built as shown in Figure 6 (this is similar
to the Fundamental Problem Graph [18]). This graph has all attributes in SoI as nodes, as well as analysis nodes. Each
analysis node is a triple (A,m, H), where A is the analysis it refers to, m is a mode of analysis A and H is the subgraph
of the SoI that matches the analysis pattern. The nodes in the dependency graph are connected with directed edges from
attributes to analyses and vice versa. The direction of the edges indicates the flow of information. Finally, an attribute
may specify the derivative of another attribute. This derivative is with respect to a third attribute. For example, fuel

6



Q

p1 p2 p3

p4

t

p5 p6

A1, m1

A2, m1

A3, m1

Fig. 6 Dependency graph for Quantity of Interest Q. The parameter p4 is a derivative of p1 with respect to t.
Three different analyses a1, a2 and a3 compute the various parameters using their first mode m1. (Note that the
mode belongs to that analysis, so m1 is not the same object for each analysis.)

burn (kg/s) is the derivative of fuel mass (kg) with respect to time. Such a structure is also present in Figure 6 between
the parameters p4 and p1 with respect to t.

In order to compute a Quantity of Interest (QoI) Q, the initial state s0 and terminal state st need to be specified.
The initial state contains the values for all parameters needed to compute Q (and to compute any intermediate values).
Furthermore, it contains the initial value for a certain transition variable t. This transition variable is the variable that
separates states from one another. Usually it is time, but it could well be any other variable. The terminal state only
contains a value for t, such that the algorithm knows when to stop.

The dependency graph Gd may not be connected (there are multiple disjoint components), so any component that
does not contain the QoI will be removed (since these are not required to compute Q). Consecutively, all cycles that do
not contain a derivative will be removed. Such a cycle represents the following function:

Indeterminate cycle : f (x) 7→ x (4)

Such a cycle may converge, diverge or oscillate on the parameter x. Without knowing the specifics of the analyses
executed within such a cycle, it is impossible to deduce which of the three will be the case. Thus it was chosen for the
present implementation to omit such cycles altogether. Otherwise, a maximum iteration counter may be set, but the
values obtained are still questionable. (It is interesting to note that the transition variable t may actually be such an
iteration counter, generalizing the current approach to this case. Such an option has to be investigated in future work,
however.) When a derivative is present in the cycle, it does not have to be removed. Basically, at any derivative edge,
the computation can be split into two different states, separated by the transition variable (shown in Figure 7). Such a
cycle can be written as:

Determinate cycle :
g(x) 7→ y

y = dz
dt

h(z) 7→ x




= x (s0) 7→

(
dz
dt

) (s0)
∆t
7→ z(s1) 7→ x (s1) = f (x (s0)) 7→ x (s1) (5)

Thus, x (technically x in state s1: x (s1)) depends on itself, albeit in a previous state (x (s0)). Hence, such a cycle can be
computed without issues.

Removing the derivative edges from the dependency graph we obtain a (or possibly multiple) so-called computation
graph(s). These are directed acyclic graphs (DAG) and specify the order of analysis execution (the two blocks in

7



Figure 7). Each computation graph starts with the attributes which have no predecessors. These are the input for their
analysis successors. These compute another set of attributes, which propagate into the next set of analyses, until the end
of the graph is reached (those attributes which have no successors). All attribute values computed using these graphs
are in the initial state the computation is started in. Finally, for each derivative edge the value of its source attribute
(which is in s0) is used along with the change in transition variable ∆t to compute the value of its integral variable (the
target attribute) in st .

One final remark has to be made regarding the above approach. From the dependency graph it can be derived
whether the transition from s0 to st can be performed in one step, or has to be marched with small changes in the
transition variable. When a cycle with derivative (see Equation 5) exists in the dependency graph it means that some
parameter used to compute Q (or even Q itself) is dependent on its own value in a previous state (as is the case for the
dependency graph in Figure 6). Furthermore, if that parameter’s derivative is dependent on t (conversely on the state)
too. If this is the case, a marching solution is required, that divides ∆t into some specified amount of intervals. The
computation is started from s0 and the above procedure is executed to compute each intermediate state si until st is
reached, which is depicted in Figure 7, where Next state becomes Initial state after each computation step.

Δ t

Q

p1 p2 p3

p4

A1, m1

p5 p6

Q

p1 p2 p3

p4

A1, m1

p5 p6

A2, m1

A3, m1

A2, m1

A3, m1

Fig. 7 A notional computation graph. The dependency graph from Figure 6 is broken down into state-
independent parts, which are separated by the derivative between p4 and p1. The QoI Q is dependent on this
transition, so a marching solution over the parameter t is required to arrive at a certain terminal state.

IV. Case study
A simplified aircraft model is shown in Figure 8, which represents the case study for the presented method. The

arrows from flows to behaviors (and vice versa) have been included for clarity, although in the actual graph these are
undirected, to prevent a false sense of causality. The Component Aircraft exhibits four behaviors: Steady flight, Store,
Combustion and Propulsion. All parameters needed for computation of the fuel mass m f at the end of cruise flight are
present in Figure 8. The lift-to-drag ratio L/D, operational empty mass OEM and thrust-specific energy consumption
T SEC are assumed constant.

A set of four analyses are defined with the patterns shown in Figure 9. Clearly, these map easily to the system in
Figure 8, although it should be emphasized the method does not use the labels shown in the figures. These are merely
there for clarity. Furthermore, the Store analysis is very generic: it can be applied to any component storing any Flow,
where both have a mass. Similarly, the Combustion analysis and Propulsion analysis are high-level descriptions of
physical phenomena and can be applied to a wide variety of systems. Using the hierarchical structure described in

8



Combustion

Steady 

flight
Solid

Fuel

En.

t

Air

W

Act

Store

L+D

Propulsion

T

P 

(J/s)

mf 

(kg)

f 

(kg/s)

ma 

(kg)

∑F=0

F 

(N)

F 

(N)

F 

(N)

TSEC 

(J/Ns)

L/D

(-)

Aircraft

SE

(J/kg)
OEM 

(kg)

Fig. 8 A simplified aircraft model that allows computation of the fuel mass m f throughout cruise flight.

section III these can be detailed when more specific representations are required, without losing generality as they still
align with this high-level description.

Analysis A5 (not shown in the figure) automatically computes the weight force on the solid from its mass. Each
analysis is assumed to have only one mode, which compute one of the attributes as follows:

Store analysis A1 : mc = m f +OEM (6)
Combustion analysis A2 : f = P/SE (7)
Propulsion analysis A3 : P = T SEC · T (8)

Steady flight analysis A4 : T = W · (L/D)−1 (9)
Gravity analysis A5 : W = ma · g (10)

From these modes and the maps of the analysis patterns to the system graph, the dependency graph is derived as shown
in Figure 10. It shows a cycle where the QoI m f depends on its derivative f (w.r.t. time t), which in turn depends on m f

itself. Hence it is deduced automatically a marching solution in t is required. Analogous to how the computation graph
is derived in Figure 7, it is done here, which is not shown for brevity. Finally, the initial state s0 and terminal state st
have to be defined. The initial state should contain values for m f , OEM, L/D, T SEC, SE and t. The terminal state
only needs to contain a value for t. The QoI m f is then computed in a pre-defined amount of intermediate states, and
finally in the terminal state.

For those readers wondering why in Figure 8 the Propulsion and Combustion behaviors are specified separately,
consider the aircraft is electric. Instead of fuel there is an electric energy store (i.e. a battery). Its energy content EB is
analogous to the fuel mass, and the attribute P specifying the power required for propulsion is its derivative w.r.t. time t.
The dependency graph then becomes as shown in Figure 11, where it can be seen there still is a derivative present, but
no cycle. Therefore, knowing the same values as for the fuel-driven aircraft in the initial state, only one iteration is
required to compute the energy content EB of the battery in the terminal state.

9



Combustion FuelEn.

P 

(J/s)

SE

(J/kg)

f 

(kg/s)

En. Propulsion T

P 

(J/s)

TSEC 

(J/Ns)

F 

(N)

F

Store

mf 

(kg)

mc 

(kg)
C

Steady 

flight
Solid

Air

W

Act

L+D

T

∑F=0F 

(N)

F 

(N)

F 

(N)

L/D

(-)

Aircraft

OEM 

(kg)

Fig. 9 Patterns for four analysis methods implemented in the case study.

V. Discussion
A formal language is constructed for describing engineering systems, and consequently technologies. The considerations
put forth in the introduction motivated the decisions made herein. However, by no means does this imply the above
method is the only, nor necessarily correct way to achieve the goals set out in the introduction. That is to say, the way
humans think about physics and these systems is very different from how a computer likes to operate on information. To
align the two requires a substantial amount of abstract thinking on the human’s account. Even in the best attempt, it is
likely assumptions and simplifications are made. In fact, the goal here is not to achieve a 100% accurate description of
physics; such would be too complicated for conceptual design and hence technology selection. Additionally, different
practitioners think differently about system descriptions. Although the current method aims to allow for that, while
resulting in the same semantics, the method itself is also subject to different views, which is why the reader is encouraged
to envision whether or not the claims made herein seem acceptable.

The attentive reader might have noticed the similarities of the presented approach with other modeling paradigms
like Modelica, HOPSAN, SysML and PaceLab, which is expected to enable translation from either side to the other.
As such, systems described in one language may be imported into the current approach and vice versa. As of now,
such translations are not available. When available, these will improve integration of the current approach into existing

10



t

P 

(J/s)

mf 

(kg)

f 

(kg/s)

mc 

(kg)

T (N)

W 

(N)

TSEC 

(J/Ns)

L/D

(-)

SE

(J/kg)

OEM 

(kg)

A1

A5

A4

A3

A2

Fig. 10 Dependency graph derived for the case study. There is a cyclic dependency of m f on itself, with a
derivative allowing it to be temporally separated.

workflows. On the other hand, we believe our current approach allows for more flexibility in a few different aspects.
Firstly, specifying analyses separately from a specific element or behavior allows them to be specified more generically,
e.g. independent of the amount of input flows. Secondly, even if the behavior (as in the pattern of the analysis) is
specified in more detail, it can be condensed into a more high-level description using the hierarchical structure defined
above. Then, the analysis can be carried out as before (i.e. there is no strong coupling between granularity and analysis).
Thirdly, different analysis can be mapping to the same part of the system, allowing different fidelity analyses to be
applied to a certain element. Therefore, there is no strong coupling between system description and analysis fidelity.
Finally, the approach enforces a graphical representation of the system and the available analyses, which may clarify to
an analyst better what is computed and how.

Forbus, in his pivotal paper on Qualitative Process Theory (QPT), expresses the concept of what he dubs the Causal
Directedness Hypothesis: Changes in physical situations which are perceived as causal are due to our interpretation
of them as corresponding either to direct changes caused by processes or propagation of those direct effects through
functional dependencies [19]. What he means by this is that humans tend to observe physical processes as causal,
without these necessarily being so. The same problem was faced by the first author when attempting to apply the
established functional bases [5] and structure-behavior-structure [20] models. These tend to work well for electrical
and mechanical systems, where electricity moves from A to B, first through a resistor, then through a lamp. Or when
modeling a hydraulic pump, with a certain hydraulic flow going in, and a pressurized one going out. On the other hand,
if one tries to describe the Behavior of a wing moving through an airflow, this causal description tends to happen too,
although it leads to a description that should not be: the wing affects the airflow, which creates a force on the wing. This
force deforms the wing, which then alters the airflow again, and so on. While this is how we analyze such aero-elastic
behavior, it should not be described as such, since the behavior itself is instantaneous and should be interpreted as such
by a computer algorithm. The same case of describing a wing’s behavior revealed a challenge with the common Flow
breakdown (from [5]): it becomes very tedious, if not impossible to describe the exchange of energy between the wing
and airflow. This is why the Effort basis in Table 3 is introduced. Even though these bases appear to be a good starting
point, a more mathematical formulation may perhaps prove to be more useful. The work of Tonti [21] might provide a
means on how to achieve this.

Forbus also states the following: QPT concerns the structure of qualitative dynamics. We can view it as specifying a
language in which certain commonsense physical models can be written. Can this language be extended to form a full
language of behavior for physical systems? Although I have not yet done so, I will argue that the answer is yes, and that
several advantages would result from the extension. [19]. The same belief is held by the first author, and it is even
deemed a necessity for a true unambiguous language to describe engineering systems and technologies. For example,
think of how one should describe the Behavior flying. Some might say it is equivalent to moving through air, which
can be more formally described as one Flow (a solid) being submerged in another Flow (air) and their velocity vectors

11



t

P 

(J/s)

EB (J)

ma 

(kg)

T (N)

W 

(N)

TSEC 

(J/Ns)

L/D

(-)

A5

A4

A3

Fig. 11 Dependency graph in case the aircraft from Figure 8 is electric. Since the Combustion and Store
behaviors have been omitted, analyses A1 and A2 are not required anymore and the dependency graph is acyclic.

being unequal. However, considering the flight of birds and aircraft, more is going on; the former definition also holds
for falling through air, which is clearly not what a flying aircraft or bird are considered to be doing. Therefore, the
ideal is to construct a language consisting of a finite set of atoms (analogous to an alphabet), which can be understood
unambiguously, while allowing to express more high-level concepts according to one’s own view. However, these
higher-level concepts are a collection of these atoms, related in some way, and as such, even though two behaviors may
have been called flying, a clear disambiguation can be made between the two.

Connecting analyses by means of variables required and computed has been done before, as mentioned in the
introduction [16–18]. However, those approaches focus on multidisciplinary design optimization (MDO). It should
be emphasized the current approach is not necessarily aimed at MDO, although it may in the future be used towards
that end. On the contrary, the current approach does not allow analyses to form a cycle (e.g. analysis 1 computes y
from x, while analysis 2 computes x from y), since it is presumed it cannot be guaranteed such a cycle will converge.
Logically, this is a restriction that can easily be removed (it would actually simplify the algorithm, since cycle detection
and removal is computationally expensive). The only case where a cycle is allowed is when there is a derivative relation
in it, allowing it to be broken and becomes a linear computation in the states. The ability of the current method to
“understand” derivatives is unique to the knowledge of the authors.

VI. Conclusion
In this work, a method is presented that aims to provide a more structured, formal and unambiguous way to model
engineering systems and their behavior. Concretely, an ontology consisting of components, behaviors, flows, attributes,
states, technologies and the various relationships between these constructs is developed. The entire ontology enables
systems to be described in graphs, where nodes are the constructs and the edges the relationships between them. An
analysis can be mapped to this graph using pattern matching. A dependency graph is deduced which relates the
attributes with the analyses, from which a computation graph is constructed, which shows the order of computation. It
is automatically derived when a marching solution is required, or a direct solution is possible. Finally, the computation
for a specified Quantity of Interest is carried out automatically given enough information in the initial state.

In future work, algorithms will be developed that automatically generate the technology compatibility matrix, find
relationships between technologies, and evaluate technologies, search for the most promising technology portfolios and
estimate uncertainty of the impact metrics and input variables. The final aim is to arrive at a structured workflow, that
gives a designer / engineer insight into the technologies and their effects and uncertainty, supporting the technology
selection decision-making process.

12



Acknowledgements
This research is sponsored by the European Commission under the CleanSky II research program as part of project
MANTA with grant agreement number 724558. The authors would furthermore like to thank Kristian Amadori,
Christopher Jounannet and Erik Bäckström from Saab for valuable discussions and their feedback. Likewise, the
insights from Ingo Staack at Linköping University were much appreciated. Finally, thanks to Jelle Boersma for critical
reflections and meaningful discussions.

References
[1] Roelofs, M., and Vos, R., “Technology Evaluation and Uncertainty-Based Design Optimization: A Review,” 2018 AIAA

Aerospace Sciences Meeting, AIAA, Kissimmee, Florida, 2018. doi:10.2514/6.2018-2029.

[2] Lu, Z., Yang, E.-S., DeLaurentis, D., and Mavris, D., “Formulation and test of an object-oriented approach to aircraft
sizing,” 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, AIAA, Albany, 2004, pp. 1–14. doi:
10.2514/6.2004-4302.

[3] Amadori, K., Bäckström, E., and Jouannet, C., “Selection of Future Technologies during Aircraft Conceptual Design,” 55th
AIAA Aerospace Sciences Meeting, AIAA, 2017, pp. 1–11. doi:10.2514/6.2017-0233.

[4] Amadori, K., Bäckström, E., and Jouannet, C., “Future Technologies Prioritization for Aircraft Conceptual Design,” 2018 AIAA
Aerospace Sciences Meeting, AIAA, Kissimmee, Florida, 2018. doi:10.2514/6.2018-1746.

[5] Hirtz, J., Stone, R. B., Mcadams, D. A., Szykman, S., and Wood, K. L., “A functional basis for engineering design : Reconciling
and evolving previous efforts,” Research in Engineering Design, Vol. 13, 2002, pp. 65–82. doi:10.1007/s00163-001-0008-3.

[6] Judt, D. M., and Lawson, C., “Development of an Automated Aircraft Subsystem Architecture Generation and Analysis Tool,”
Engineering Computations, Vol. 33, No. 5, 2016, pp. 1327–1352. doi:10.1108/EC-02-2014-0033.

[7] Yuan, L., Liu, Y., Sun, Z., Cao, Y., and Qamar, A., “A hybrid approach for the automation of functional decomposition in
conceptual design,” Journal of Engineering Design, Vol. 27, No. 4-6, 2016, pp. 333–360. doi:10.1080/09544828.2016.1146237.

[8] Sen, C., Summers, J. D., and Mocko, G. M., “A protocol to formalise function verbs to support conservation-based model
checking,” Journal of Engineering Design, Vol. 22, No. 11-12, 2011, pp. 765–788. doi:10.1080/09544828.2011.603295.

[9] Sen, C., Summers, J. D., and Mocko, G. M., “Physics-Based Reasoning in Conceptual Design Using a Formal Representation
of Function Structure Graphs,” Journal of Computing and Information Science in Engineering, Vol. 13, 2013, pp. 1–12.
doi:10.1115/1.4023488.

[10] Wilschut, T., Etman, L., Rooda, J., and A. Vogel, J., “Generation of a function-component-parameter multi-domain
matrix from structured textual function specifications,” Research in Engineering Design, February 2018, pp. 1–16. doi:
10.1007/s00163-018-0284-9.

[11] Judt, D. M., and Lawson, C. P., “Application of an automated aircraft architecture generation and analysis tool to unmanned
aerial vehicle subsystem design,” Journal of Aerospace Engineering, Vol. 229, No. 9, 2015, pp. 1690–1708. doi:10.1177/
0954410014558691.

[12] Guenov, M. D., Molina-Cristobal, A., Voloshin, V., Riaz, A., and Van Heerden, A. S. J., “Aircraft Systems Architecting – a
Functional - Logical Domain Perspective,” 16th AIAA Aviation Technology, Integration, and Operations Conference, AIAA,
Washington, 2016. doi:10.2514/6.2016-3143.

[13] Castet, J., Rozek, M., Ingham, M., Rouquette, N., and Chung, S., “Ontology and Modeling Patterns for State-Based Behavior
Representation,” 2018 AIAA Aerospace Sciences Meeting, AIAA, Kissimmee, Florida, 2015. doi:10.2514/6.2015-1115.

[14] Kaderka, J., Rozek, M., Arballo, J., Wagner, D., and Ingham, M., “The Behavior, Constraint and Scenario (BeCoS) Tool: A
Web-Based Software Application for Modeling Behaviors and Scenarios,” 2018 AIAA Aerospace Sciences Meeting, AIAA,
Kissimmee, Florida, 2018. doi:10.2514/6.2018-1216.

[15] Ramakers, M. A. Y., “Accelerating Aircraft Design Using Automated Process Generation,” M.sc. thesis, Delft University of
Technology, October 2015.

[16] Van Gent, I., Ciampa, P. D., Aigner, B., Jepsen, J., La Rocca, G., and Schut, E. J., “Knowledge Architecture Supporting
Collaborative MDO in the AGILE Paradigm,” 18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,
Denver, Colorado, 2017. doi:10.2514/6.2017-4139.

13



[17] Van Gent, I., Lombardi, R., La Rocca, G., and d’Ippolito, R., “A Fully Automated Chain from MDAO Problem Formulation to
Workflow Execution,” EUROGEN 2017, Madrid, Spain, 2017.

[18] Pate, D. J., Gray, J., and German, B. J., “A Graph Theoretic Approach to Problem Formulation for Multidisciplinary
Design Analysis and Optimization,” Structural Multidisciplinary Optimization, Vol. 49, No. 5, 2014, pp. 743–760. doi:
10.1007/s00158-013-1006-6.

[19] Forbus, K. D., “Qualitative Process Theory,” Artificial Intelligence, Vol. 24, 1984, pp. 85–168.

[20] Umeda, Y., Tomiyama, T., and Yoshikawa, H., “FBS modeling: modeling scheme of function for conceptual design,”
Proceedings of the 9th international workshop on qualitative reasoning, 1995, pp. 271–8.

[21] Tonti, E., The Mathematical Structure of Classical and Relativistic Physics, 1st ed., Birkhäuser Basel, 2013.

14


	Nomenclature
	Introduction
	Methodology
	Case study
	Discussion
	Conclusion



