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Abstract— Each day, airlines face disturbances that disrupt 

their carefully planned operations. Events like adverse weather 

conditions, sick crew members, or damaged aircraft often result in 

delays in the airline’s schedule. An airline recovers from such 

disruptions through the role played by its Airline Operations 

Control (AOC). A Multi-Agent System (MAS) approach to airline 

disruption management was recently proposed under the acronym 

MASDIMA (Multi-Agent System for Disruption Management in 

AOC). The purpose of this paper is to evaluate this MAS 

supported AOC approach on its performance and its practical 

introduction. This is done using a scenario-based analysis to 

compare the MAS supported policy to human-team based AOC 

policies. A task-based analysis identifies how well AOC is able to 

cover a set of tasks using the MAS supported policy. The scenario-

based analysis shows that the MAS supported AOC is able to find 

the optimal solution, and to do this significantly faster. The task-

based analysis identified two main challenges for implementing 

the MAS supported AOC policy: i) to overcome the loss of 

experience that is caused by significantly automating humans roles 

in AOC, and ii) to reduce the workload for people that remain in 

AOC after its introduction. The paper concludes that 

implementing the MAS supported AOC policy leads to both better 

and faster resolutions, though the replacement of human roles also 

poses novel challenges that remain to be resolved: a potential 

increase in workload for the remaining human role and loss of 

experience in handling exceptional situations. 

Index Terms—Airline Operations Control, Airline Disruption 

Management, Coordination, Multi-Agent Systems 

I. INTRODUCTION

IRLINES constantly face disturbances that disrupt

their carefully planned operations. Events like 

adverse weather conditions, sick crewmembers, or 

damaged aircraft often cause delays in the airline’s 

schedule. Each airline has its Airline Operations 

Control (AOC) monitoring operations worldwide, 

and managing recovery from disruptions. For an 

airline such disruptions are very costly because they  

tend to cause domino effects in the highly optimized 

air transportation schedule. Over the year 2007 

alone, U.S. carriers lost over $8 billion because of 

delays of some sort (Barnhart, 2009). Reducing the 

impact of disruptions on the airline schedule could 

1 Corresponding author. Email: soufiane.bouarfa@outlook.com. 

considerably reduce these costs. Most  research on  

the improvement of AOC decision making policy 

focusses on using optimization techniques for the 

development of decision support tools. For instance, 

Bratu & Barnhart (2006) propose two optimization 

tools that generate recovery plans for aircraft, crews, 

and passengers by determining which flight leg 

departures to postpone and which to cancel. 

Abdelghany et al. (2008) propose a decision-support 

tool that provides AOC centres with the capability to 

develop a proactive schedule recovery plan that 

integrates all flight resources. The optimization tool 

examines possible resource swapping and flight 

requoting to generate a schedule recovery that 

minimizes flight delays and cancellations. Petersen 

et al. (2012) propose a mixed-integer programming 

tool to solve the fully integrated airline recovery 

problem including the schedule, aircraft, crew, and 

passenger problems. In the same vein, Arikan et al. 

(2017) propose an optimization tool to solve the fully 

integrated airline recovery problem using a conic 

quadratic mixed integer programming formulation. 

Santos et al. (2017), present an integer linear 

programming tool to help AOC controllers decide 

which flights to delay and which flights to make 

depart on time.  

From a combinatorial optimization perspective, 

these tools have the mathematical capability in 

minimizing airline operating costs and passenger 

costs. However, such a combinatorial optimization 

approach fails in capturing the complex socio-

technical nature of AOC (Bruce, 2011a; Feigh 2008; 

Richters et al. 2017). In order to address these socio-

technical challenges, Castro (2013) has taken a 

Multi-Agent System (MAS) based approach to the 

development of a novel decision support tool for 

airline disruption management. The resulting tool is 
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referred to as MASDIMA (MAS for Disruption 

Management in AOC). In order to realize a better 

handling of the complexity of the airline disruption 

management problem, Castro (2013) proposes 

replacing several human roles in AOC by software 

agents. The latter implies a large change in the 

established AOC policy that is largely depending on 

coordination and decision-making by a team of 

humans. The aim of the current paper is to evaluate 

the impact of the MAS supported novel AOC policy 

relative to human-team based AOC policies. To 

accomplish this, we make use of Agent-Based 

Modelling and Simulation (ABMS) of various socio-

technical AOC policies.  

 

Agent-Based Modelling and Simulation (ABMS) has 

shown its effective use in analyzing complex socio-

technical systems (Macal and North, 2010; van Dam 

et al. 2013). Recently, Bouarfa et al. (2015) have 

used ABMS for the evaluation of various AOC 

policies that were based on coordination and 

decision-making by human teams.  Four policies 

were evaluated. Three of these were based on current 

airline practice, whereas the fourth was based on 

joint activity coordination theory from the 

psychology research domain. The simulation 

modeled humans in the AOC team as agents, each of 

which plays its specified role. The study showed that 

the fourth policy led to a better outcome compared to 

the three current airline policies. The aim of the 

current paper is to evaluate the MAS-supported AOC 

policy of Castro (2013)  and to compare it with the 

four AOC policies in (Bouarfa et al., 2015).  

 

The evaluation of the MAS supported AOC policy 

consists of two parts (Muller, 2016): a scenario-

based analysis and a task-based analysis. The first 

part examines how AOC manages an airline 

disruption using the MAS approach proposed by 

Castro (2013). It focuses on the same scenario that 

has been used by Bouarfa et al. (2015). The second 

part evaluates AOC tasks that were identified in an 

interview with an AOC expert from a major 

European airline. It analyzes how work changes for 

people that remain in AOC after implementing the 

MAS supported policy. The aim of the evaluation is 

to understand how AOC performs using the MAS 

supported policy compared to using the four human 

team based policies studied in Bouarfa et al. (2017), 

and to identify potential challenges for introducing 

the MAS supported policy in AOC. 

 

This paper is organized as follows. Section II 

provides background on both airline operations 

control and the agent-based paradigm. Section III 

provides a summary of multi-agent coordination 

approaches from literature. Section IV describes the 

MAS supported AOC policy and its application in 

AOC. Section V compares the performance of the 

MAS supported AOC policy and four human 

coordination policies in the context of an airline 

disruption scenario. Section VI describes the expert-

based evaluation of the MAS supported AOC policy. 

Finally, Section VII presents the conclusions and 

recommendations of this research.   

II. BACKGROUND 

A. Airline Operations Control 

The idea of monitoring and controlling a transport 

network in real time is not new. The concept was first 

established in the 19th century in the railway 

industry, when the development of the telegraph 

made it possible for information to travel faster than 

physical transport (Peters, 2006). This allowed for a 

central location in which real-time information about 

the current status of the network could be collected 

and acted upon. Today, the concept of monitoring 

operations in real-time is used across industries, with 

AOC as one example. 

 

Airline disruption management is the last step in 

the airline scheduling process (Figure 1). The 

scheduling process start with publishing a 

preliminary timetable up to 1 year before the day of 

operations. The timetable provides the basis for the 

aircraft schedule, which assigns an aircraft type to 

each flight. With the flights and aircraft types known, 

crew pairing defines the amount and type of crew per 

flight. The next step is to assign specific aircraft and 

individual crewmembers to each flight in the tail 

assignment and crew rostering phase. After 

publishing the crew roster, crewmembers can request 

changes in their schedule in the roster maintenance 

phase. Disruption management is the last step in the 
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process (Grandeau, 1995; Clarke, 1998; Kohl et al., 

2007; Clausen et al., 2010). 

 

 
Figure 1: Disruption management is the last step in the airline 

scheduling process (Kohl et al., 2007) 

 

During the day of operations, the airline schedule 

is subject to many disruptions. The main four  airline 

schedule disruptors are aircraft mechanical 

problems, severe weather, airport congestion, and 

industrial action (e.g. strikes). The goal of AOC is to 

deliver customer promise despite these disruptions. 

In doing so, it should minimize airline costs incurred 

during recovery, and return to the original schedule 

as soon as possible (Kohl et al., 2007). 

 

Disruptions affect the aircraft, crew, and passenger 

resources of an airline. Managing these resources is 

the duty of AOC operators. Each AOC operator has 

his own role. Such roles might vary per airline, but 

six are common to most airlines: flight dispatch, 

aircraft control, crew tracking, aircraft engineering, 

customer service, and Air Traffic Control (ATC) 

coordination (Kohl et al., 2007). Because the airline 

operations supervisor is ultimately responsible for 

AOC operations (Clarke, 1998), he/she has the 

authority to make changes in the nominal schedule. 

 

An airline controller can manage a disruption in 

many different ways. To resolve a problem that 

affects the aircraft resource, a flight can be delayed, 

cancelled, rerouted, or the aircraft exchanged. Crew 

related problems can also be resolved by cancelling 

or delaying the flight, or by calling in new crew or 

reassigning existing crew. To resolve a passenger 

problem, an operations controller might change the 

passenger’s flight or delay the passenger (Barnhart, 

2009; Castro, 2013). 

 

How well disruptions are managed depends on 

how AOC is organized. In fact, Kohl et al. (2007) 

identify organization as one of the main factors 

affecting an airline’s operational stability. According 

to Castro (2008) and Machado (2010), there are three 

types of AOC centers. A decision center, a hub 

control center, and an integrated control center. In a 

decision center, airline controllers are located in the 

same space while other functional groups such as 

maintenance services and crew control are located in 

a different physical space. A hub control center 

oversees the activities at the hub, which may include 

ground and passenger services, but other operations 

such as aircraft control are monitored from a 

different location. An integrated airline operational 

control center integrates all functional groups under 

the same physical location. The research presented in 

this paper considers an integrated control center. 

 

Work practice differs from airline to airline and 

from individual to individual. Smaller airlines tend 

to use schedule visualization software to easily 

enable their controllers detect irregularities, while 

major airlines use software that is able to 

automatically detect these irregularities. Operators 

with similar roles sit next to each other to easily 

communicate and collaborate. Each desk keeps the 

necessary communication equipment such as phone 

and telex. Centrally placed screens show live news, 

as well as weather reports and performance 

indicators. Clocks indicate the time in different time 

zones around the world (Feigh, 2008).  

 

B. Agent-based paradigm 

There are two main agent-based paradigms in the 

literature. The first paradigm is Multi-Agent Systems 

(MAS), and the second paradigm is Agent-based 

Modelling and Simulation (ABMS) of socio-

technical systems. Although there is significant 

knowledge overlap (e.g. both use distributed 

autonomous agents) the two are used in 

complementary ways.  

The primary goal in ABMS of socio-technical 

systems is to search for explanatory insights into the 

collective behavior of agents obeying specific rules 

(Nicolic & Kasmire, 2013; Wikipedia 2017). The 

primary goal of MAS is to exploit the agent-based 

paradigm as an approach in resolving complex 

practical or engineering problems (Wikipedia, 2017). 

Researchers in ABMS of socio-technical systems 

develop simulations that can reveal system behavior 

emerging from the agent’s collective actions and 

interactions. In these simulations, the agent entities 



 4 

are used to represent actors in the real world (e.g. 

individuals or teams as well as (intelligent) technical 

system agents. They are programmed to react to the 

computational environment in which they are 

located, where this environment is a model of the real 

environment in which the actors operate (Gilbert 

2008). So with ABMS comes the need to model 

human behavior and social interactions.  

On the other hand, a technical MAS is a 

computerized system composed of multiple 

interacting (intelligent) agents. Here agents can for 

example conduct some methodical, procedural or 

algorithmic search. The main difference between 

ABMS and MAS is that ABMS sets up agents 

believed to have crucial characteristics of real world 

analogs to see what happens when they do whatever 

they do; while in a MAS agents are set up with 

exactly the characteristics, connections and choices 

that they need to achieve certain desired emergent 

states. 

III. MULTI-AGENT COORDINATION APPROACHES  

This section gives an overview of multi-agent 

coordination approaches in software agent systems, 

followed by a review of complementary coordination 

approaches in human teams. 

 

A. Coordination by Software Agents 

One of the classic coordination approaches is the 

master/ slave technique that is typically used for task 

and resource allocation among slave agents by a 

master agent (Nwana et al. 1996). The master agent 

plans and distributes fragments of the plans to the 

slaves. The slaves may or may not communicate 

among themselves, but must ultimately report their 

results to the master agent. Another classic 

coordination technique is the contract net protocol 

(Bourne et al. 2001). In this approach, agents assume 

two roles: 1) A manager who breaks a problem into 

sub-problems and searches for contractors to solve 

them, as well as to monitor the problem’s overall 

solution, and 2) A contractor who does a sub-task. 

However, contractors may recursively become 

managers and further decompose the sub-task and 

sub-contract them to other agents.  

Other coordination approaches include, multi-

agent planning (Nwana et al. 1996), negotiation 

protocols (Sycara 1989, Bussmann & Muller 1992), 

and voting methods (Bosse & Treur 2006). In multi-

agent planning, agents build and maintain a multi-

agent plan that details all of the future actions and 

interactions required to achieve their goals, and 

furthermore interleave execution with more planning 

and re-planning. Due to the re-planning feature, 

multi-agent planning is particularly useful in 

dynamic situations. Negotiation is defined by 

Bussmann and Muller (1992) as the communication 

process of a group of agents in order to reach a 

mutually accepted agreement on some matter. Sycara 

(1989) has explained that to negotiate effectively, 

agents must reason about beliefs, desires, and other 

agents. Voting methods refer to various techniques 

that are used to describe decision-making processes 

involving multiple agents. Although originating 

from political science, they are currently used within 

a number of domains such as gaming theory and 

pattern recognition.  

The various coordination approaches presented have 

their relative advantages and disadvantages and there 

is no universally best method. In general, the 

theoretical methods produce good results for 

narrowly defined coordination problems but many of 

their underpinning assumptions have limitations in 

developing real-world systems (Lesser 2014). 

 

B. Complementary Approaches in Human Teams 

Various complementary coordination approaches 

are of use in human teams, ranging from routine and 

psychological approaches, to ecological, socio-

technical and integrative approaches; i.e. a fusion of 

multiple different approaches (Paris et al. 2000). 

Thompson (1967) identified two basic 

complementary coordination approaches in human 

teams, namely routines/protocols and mutual 

adjustment. The first approach involves the 

establishment of rules that constrain the action of 

each unit or position into paths consistent with those 

taken by others in the interdependent relationship. 

An important assumption in coordination by routine 

is that the set of rules need to be internally consistent, 

and this requires that the situations to which they 

apply must be relatively stable, repetitive, and few 

enough to permit matching of situations with the 

appropriate rules. The second approach, mutual 

adjustment, involves the transmission of new 

information during the process of action. March & 

Simon (1958) refer to this as “coordination by 

feedback”. The more variable and unpredictable the 
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situation, the greater the reliance on coordination by 

mutual adjustment. 

 

Gittell (2002) identified two other approaches, 

namely team meetings and supervision. Team 

meetings give participants the opportunity to 

coordinate tasks directly with one another. 

According to organization theory, they increase the 

performance of interdependent work processes by 

facilitating interaction among participants and are 

increasingly effective under conditions of high 

uncertainty. Supervisors, also known as boundary 

spanners, are individuals whose primary task is to 

integrate the work of other people. 

Socio-technical coordination approaches include the 

team situation awareness model by Endsley & Jones 

(1997, 2001), and the joint activity model by Klein 

et al. (2005). The team situation awareness model 

conceptualizes how teams develop high levels of 

situation awareness (SA) across members and 

includes four crucial elements on which team SA is 

built. These include an understanding of what 

constitutes SA requirements in team settings, 

devices, and mechanisms that are important for 

achieving high levels of shared SA and the processes 

that effective teams use. 

  

As is pictured in Figure 2, the joint activity model 

(Klein et al. 2005) distinguishes three specific types 

of process phases that are required for effective 

coordination namely: 1) Criteria for joint activity, 2) 

Requirements for joint activity, and 3) Choreography 

of joint activity. The criteria for joint activity are that 

participants intend to work together (known as the 

basic compact) and their work has to be 

interdependent. The basic compact constitutes a level 

of commitment for all parties to support the 

coordination process, e.g. the commitment to some 

degree of goal alignment, and commitment to try and 

detect and correct any loss of common ground that 

might disrupt the joint activity. If these criteria are 

satisfied, the parties have to fulfill certain 

requirements such as making their actions 

predictable, sustaining common ground, and being 

able to redirect each other. The form for achieving 

these requirements (the choreography) is a series of 

activities that are guided by various signals and 

coordination devices. 

 

 
Figure 2: Joint activity theory of Klein et al. (2005) 

IV. MAS SUPPORTED AOC POLICY 

Castro (2013) developed MASDIMA as a MAS 

based tool set in support of an AOC policy in which 

several human roles are automated. This tool set 

makes use of intelligent software agents that 

negotiate with each other to manage airline 

disruptions, but keeps the human in the loop as 

supervisor. This means that both software agents and 

humans have to coordinate their actions. 

Coordination approaches between software agents as 

well as between human agents are therefore relevant 

for a MAS supported AOC policy.  

Figure 3 compares current AOC with MASDIMA  

supported AOC. This figure shows how software 

agents replace the passenger team, aircraft team, and 

crew team. The roles for humans that remain in AOC 

are the supervisor, maintenance services, and flight 

dispatch. 

Figure 4 shows how software-agents form 

MASDIMA’s architecture. Rectangles represent 

software agents and rounded rectangles represent 

human agents. Solid arrows show interactions 

between agents, whereas dashed arrows indicate 

querying of one of the many data sources. Data 

sources are shown as cylinders in the oval located on 

the lower side of the figure. The cloud around the 

supervisor agent and manager agents indicates that 

these agents negotiate with each other. 

MASDIMA manages a disruption as follows. The 

first step in the disruption management process is to 

detect disruptive events. This is done by the monitor 

agent which reads the event database (see dashed 

arrow between the monitor agent and the data 

sources in Figure 4). Flight dispatch is responsible 
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for entering information about disruptions in the 

event database. From the event database, the monitor 

agent assesses which airlines resources are affected 

and requests a solution to the disruption problem 

from the supervisor agent. A problem has three 

dimensions: the aircraft, the crew, and the passenger 

dimension. To find a solution the supervisor agent 

negotiates with an aircraft, crew, and passenger 

manager. Each manager can solve one dimension of 

the problem. To get a solution on all three 

dimensions, the manager agents negotiate with each 

other. I.e. the aircraft manager solves aircraft related 

problems, but for problems that also affect the crew 

it has to negotiate with the crew manager. The crew 

manager then provides a solution to the crew 

problem. This negotiation allows manager agents to 

present an integrated solution, that is, a solution to all 

dimensions of a disruption problem.  

A manager agent has many options to solve a 

disruption. For instance, to solve an aircraft related 

problem, the aircraft manager may delay or cancel 

the flight, or exchange aircraft. To find which of 

these options is best, each manager defines its utility 

function. This allows the manager agents to find a 

solution that is optimal from their perspective. The 

aircraft manager aims to minimize aircraft delay and 

aircraft cost, the crew manager minimizes crew delay 

and crew cost, and the passenger manager minimizes 

passenger trip time and passenger costs.  

 

 
 

Figure 3: Castro (2013) proposes to automate several of the roles in AOC 
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Figure 4: MASDIMA architecture (Castro, 2013) 
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To illustrate this concept, Equation (1) shows the 

utility function for the aircraft manager. In this 

equation 𝑡𝑎𝑑 is the total aircraft delay for all flights 

in the schedule. The value 𝑚𝑎𝑥(𝑡𝑎𝑑) is the total 

aircraft delay of the solution that results in the 

maximum delay. Similarly, 𝐶𝑎/𝑐 is the total aircraft 

operating cost and  𝑚𝑎𝑥(𝐶𝑎/𝑐) the aircraft cost for 

the solution with the maximum total aircraft 

operating cost. The weights 𝜔1 and 𝜔2 determine the 

relative importance of aircraft delay versus aircraft 

cost. 

 
The software agents in MASDIMA negotiate at 

two levels. At the first level, the manager agents 

negotiate with each other to find a solution to all 

three dimensions of the problem. At the second level, 

negotiation takes place between the supervisor agent 

and the manager agents. When the supervisor agent 

requests a solution from the manager agents, it may 

receive three different solutions. This is because the 

manager agents each have their own definition of 

what is an optimal solution. To determine what 

solution is best, the supervisor agent defines its 

utility function. This function covers all three 

dimensions of the problem. It takes into account 

aircraft cost and aircraft delay, crew cost and crew 

delay, passenger compensation cost and passenger 

travel time. 

V. EVALUATING AOC DISRUPTION MANAGEMENT 

POLICIES 

A scenario-based evaluation was conducted to 

compare the MAS supported with four human 

coordination  policies in AOC. This section gives an 

overview of  these five policies in relation to the 

coordination approaches reviewed in Section III. 

Next, it describes the scenario and performance 

indicators used in the comparison. This section 

concludes with the results of the scenario-based 

evaluation.  

A. Five AOC Disruption Management Policies 

We number the five specific AOC disruption 

management policies to be considered as P1-P5. 

Policies P1-P3 are based on established AOC 

practices (Bruce 2011a, 2011b). Policy P4 is based 

on the joint activity coordination theory of Klein et 

al. (2005). P5 is the MAS supported AOC policy 

described in section IV. Policies P1-P4 are 

summarized below; for a complete description see 

(Bouarfa et al., 2016).  

 

1) AOC policy P1 – Elementary level of 

performance: Airline controllers identify various 

basic level considerations such as aircraft patterns 

and availability, crew commitments and 

maintenance limitations. For example, when a 

maintenance problem is reported, controllers at this 

level appear to acknowledge the information 

provided and begin considering the basic 

consequences of the scenario. They also identify 

opportunities to replace the aircraft or rebook 

passengers on alternative flights. 

 

2) AOC policy P2 – Core level of performance: 

Airline controllers have a greater comprehension of 

the problem. They take into account more complex 

consequences of the problem than those evident at 

the elementary level. Several constraints such as 

crew restrictions, slot times, and curfews are 

identified at this level. Controllers would for instance 

negotiate maintenance requirements and crew 

limitations in order to reduce the risk of breaching 

the curfew. 

 

3) AOC policy P3 – Advanced level of performance: 

Airline controllers demonstrate thinking beyond the 

immediacy of the problem. They examine creative 

ways to manage the disruption. For instance, 

controllers at this level would consider more 

complex crewing alternatives such as positioning a 

crew from one airport to another airport where the 

flight crew is needed. Also, in case of a maintenance 

problem, controllers at this level would seek 

alternative information and recheck the reliability of 

information, e.g. through organizing a conference 

call with the maintenance watch people. 

 

4) AOC Policy P4 – Joint activity policy 

The fourth AOC policy P4 is based on the joint 

activity framework of Klein et al. (2005) that is 

depicted in Figure 2. In order to apply the joint 

activity based approach to AOC disruption 

management, Bouarfa et al. (2016) have identified 

rules that AOC agents should adhere to in order to 

comply with Klein’s joint activity theory (Klein et al. 
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2005). These rules are defined for each of the three 

types of joint activity process phases, and are 

described in more detail in Bouarfa et al. (2016). 

Subsequently, Bouarfa et al. (2012) have shown 

through ABMS the great potential this joint activity 

theory has for improving current AOC policy. 

 

B. Coordination Approaches of P1-P5 

Table 1 gives shows which coordination approaches 

reviewed in Section III apply for each of the five 

policies P1-P5. This shows that almost all 

coordination approaches of Section III (except 

Voting methods) are used within one or more of the 

five AOC policies P1-P5. 
 

The AOC policies P1-P4 have several coordination 

approaches from Section III in common, i.e. 

master/slave, contract net protocol, multi-agent 

planning, routines/protocols, mutual adjustment, 

supervision and criteria for joint activity. This 

commonality stems from the typical airline manner 

of flight planning and their AOC organization. 

Policy P1 has only one coordination approach 

complementary to this common set, i.e. dedicated 

routines/protocols in resolving a disruption. Policy 

P2 also makes use of negotiation protocols between 

team members as a complementary approach. Policy 

P3 is similar to Policy P2, though makes use of team 

meetings instead of negotiation protocols. Policy P4 

is an extension of Policy P3 with Team Situation 

Awareness (Endsley & Jones 1997, 2001) and a 

replacement of the dedicated routines/protocols of 

P3 by the rules of joint activity theory (Figure 2). 

Policy P5 has less commonality with the P1-P4 

because human-centred coordination policies play a 

lesser role.  

 
Table 1: Approaches from the coordination literature used by AOC 

policies P1-P5 

 

C. Scenario 

The scenario used to evaluate the MAS supported 

AOC policy P5 originates from Bruce (2011b). 

Bouarfa et al. (2015) used the same scenario to 

evaluate human coordination policies P1-P4. The 

scenario considers an aircraft mechanical failure at 

an airline’s outstation. As a consequence of this 

failure, the flight is delayed by 3 hours. This may 

cause crew to exceed their legal duty time. AOC is to 

find a solution. 

Table 2 shows the flight schedule for the two long-

haul aircraft that are in Europe around the time of the 

disruption. 𝐴𝑑𝑒𝑝 and 𝐴𝑎𝑟𝑟 refer to airport of 

departure and arrival, respectively. Reg. is the 

aircraft registration, and Day indicates a fictional day 

of departure. The scheduled time of departure and the 

scheduled time of arrival are represented by 𝑡𝑠𝑑 and 

𝑡𝑠𝑎 . Furthermore, 𝑡𝑓𝑙𝑖𝑔ℎ𝑡 is the flight time in minutes 

(excluding taxiing), and 𝑑𝑓𝑙𝑖𝑔ℎ𝑡 the great circle 

distance in kilometers between departure and arrival 

airport. The airline’s fictional hub Pacific (PCF) is 

assumed to be located 806km and 90 flight-minutes 

south of Hong-Kong (Bouarfa et al. 2015). 

 

Table 2: Flight schedule for the two long-haul aircraft that are in Europe 

around the time of the disruption. Flight schedule from Bruce (2011b). 

Flight times and flight distances from Travelmath.com (2015) 

 

 

The scenario chronology is as follows. The 

disruption is detected at 06:55 UTC. Flight 705 is 

unserviceable in Paris (CDG). An engineer observed 

a hydraulic pump leak during routine maintenance. 

The engineer contacted the ground-supervisor and 

informed him about the leak. Subsequently, the 

engineer found out that the hydraulic pump should 

be changed. Moreover, because of bad weather he 

believed it is best to do the pump change in a hangar. 

This would delay the flight by at least 3 hours, such 

that the crew of flight 705 exceeds their legal duty 

time. 

Flight 705 is not fully booked. It carries 420 

passengers on an aircraft with a maximum seat 

capacity of 450 passengers. There is another long 

Coordination Approach Simulated Coordination Policies 

P1 P2 P3 P4 P5 

Master/ Slave technique + + + + + 

Contract net protocol + + + + + 

Multi-agent planning + + + + + 
Negotiation protocol - + - - + 

Voting methods - - - - - 
Routines/ protocols + + + + - 

Mutual adjustment + + + + - 

Supervision + + + + - 
Team meetings - - + + - 

Criteria for joint activity + + + + - 

Requirements for joint activity - - - + - 
Choreography of joint activity - - - + - 

Team Situation Awareness - - - +  
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haul flight from Europe to Pacific around the same 

time. This is flight 701 from London (LHR) to PCF, 

carrying 445 out of 450 passengers. Because this 

flight is almost fully booked, it cannot carry any 

additional passengers from flight 705. There are no 

reserve aircraft available at either CDG or LHR. 

An expert panel described the optimal solution to fly 

in reserve crew from PCF to BOM. Subsequently, 

this reserve crew can fly the aircraft from BOM to 

PCF without violating their legal duty time Bruce 

(2011a). 

D. AOC Performance Indicators 

To assess the solution corresponding to the MAS 

supported policy, the same performance indicators 

used by Bouarfa et al. (2015)  are considered: 

- Flight: This performance indicator describes 

what happens to the flight. For instance, the 

flight can be cancelled, delayed, or diverted. 

- Integrated solution: A solution to an airline 

disruption problem has three dimensions: the 

aircraft solution, the crew solution, and the 

passenger solution. For instance,  the aircraft 

solution could be to fix the aircraft 

mechanical failure. 

- Disruption management time: The time it 

takes to solve a disruption problem starts 

when the disruption is first detected, and ends 

when a solution is found and implemented by 

AOC. Implemented here means that the 

changes are applied to the operational 

schedules, and all involved parties are 

informed of the solution. 

- Operational Costs: The cost model by 

Bouarfa et al. (2015) is used to compare the 

solution by policy P5 to the solutions 

corresponding to policies P1-P4. For the 

operational costs, Bouarfa et al. (2015) use 

recent costa data from Air France-KLM (Air 

France - KLM, 2014). 

- Passenger compensation: European 

legislation prescribes that, under certain 

conditions, passengers can claim 

compensation from the airline if their flight is 

cancelled or delayed. When a flight is 

cancelled without prior notice, passengers 

flying longer than 3500km can claim €600, or 

€300 if the airline provides an alternative 

itinerary (European Parliament, 2004). 

- Passenger delay: The passenger delay is 

calculated as the difference in hours between 

the scheduled time of departure and the 

estimated time of departure. 

E. Results for P1-P5 

Table 3 shows the results obtained for the five AOC 

policies P1-P5. The results for P1-P4 are from 

Bouarfa et al. (2015). The results for P5 have been 

obtained as follows. 

  

A scenario-based analysis showed that policy P5 

would propose to delay flight 705 to fix the aircraft 

mechanical problem, to replace the crew from flight 

705 by the crew from inbound flight 706, and to keep 

passengers on the same flight. The airline operating 

cost was found to be €326,000 and it would take 17 

minutes to find and implement the solution. 

The solution to the scenario was established as 

follows: first the ground engineer detects the leak and 

calls the ground-supervisor. The ground supervisor 

enters the disruption into the Aircraft Movement 

System, which can be read from the AOC center. 

Flight dispatch notices the disruption, and enters the 

information into MASDIMA’s event database. 

  MASDIMA’s monitor agent detects the disruptive 

event from the database and requests the supervisor 

agent to solve the problem. As the aircraft, crew, and 

Table 3: Results of the scenario-based analysis. The novel policy P5 finds the same solution as policy P4, which is better than the solutions 

found by policies P1-P3. Results for policies P1 to P4 originate from Bouarfa et al. (2015). 

 AOC 

policy 

Flight Aircraft 

mechanical 

problem 

Crew 

problem 

Passengers problem Minimum 

disruption 

mgmt time  

Costs for the airline [Euros] Passenger 

travel delay  

(hours)  Operating 

costs 

Legal pax. 

compensation 

 P1 Cancelled Fixed Not 

resolved 

Pax. accommodated in hotel 

(i.e. distressed) 

26 min 326 kEUR 168kEUR 24 

 P2 Cancelled Fixed Not 

resolved 

Pax. accommodated in hotel 

(i.e. distressed) 

30 min 326 kEUR 168 kEUR 24 

 P3 Diverted Fixed Resolved Pax. significantly delayed 
due to fixing aircraft and 

diverting  

33 min 360 kEUR 126 kEUR 8 

 P4 Delayed Fixed Resolved Pax. delayed until aircraft is 
fixed 

20 min 326 kEUR 0 kEUR 3 

 
P5 Delayed Fixed Resolved 

Pax delayed until aircraft is 

fixed 
17 min 326 kEUR 0 kEUR 3 
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passenger dimensions are all affected, all manager 

agents participate in the negotiation to propose a 

solution. For the aircraft manager agent, the optimal 

solution is to delay the flight until the aircraft is 

fixed. For the crew manager agent, the optimal 

solution is to exchange the crew from flight 706 with 

the crew from flight 705. The most optimal solution 

for the passenger problem is to keep the passengers 

on the same flight. The manager agents now start 

negotiating with each other to obtain an integrated 

solution. In this case, the optimal solutions proposed 

by the aircraft manager, crew manager, and 

passenger manager are compatible, and therefore 

proposed to the supervisor agent. This is also the 

solution proposed to the human supervisor. If the 

human supervisor accepts the proposal, the solution 

is implemented in the operational schedule. 

The time to obtain the final solution was determined 

based on (Machado (2010), Castro and Oliveira 

(2011)) together with data from developer of policy 

P5. The timing of the different steps is presented in 

Table 4. 

 
Table 4: Timing of steps in disruption management policy P5  

Step tsolve 

(min) 

Ground engineer contacts station supervisor to inform him about 
the leak 

3.5 

Station supervisor enters information on the disruption in the 

AMS 

4.5 

Flight dispatch reads AMS and decides to put the information in 

the 
event database 

2.5 

Flight dispatch puts disruption in event database 4.5 

MASDIMA solves the disruption 1 

Human supervisor approves solution by MASDIMA 0.5 

MASDIMA applies solution on the operational plan 0.5 

Total time to resolve disruption  17 

VI. EXPERT-BASED EVALUATION OF P5 

Introducing MAS supported policy P5 to AOC might 

have an impact on the current airline disruption 

management process. To investigate this, an AOC 

expert from a major European airline was 

interviewed. This has led to the identification of 

several key AOC tasks that could be affected. These 

tasks have been evaluated from a current AOC 

perspective.  

A. AOC Tasks considered 

The AOC tasks have been identified during an 

interview with an AOC expert. This interview had 

the form of an open discussion on the operational 

changes implied by MAS supported policy P5. The 

list of tasks identified was not exhaustive, but it 

identified a rough cross-section of AOC tasks 

affected by policy P5 (See table 5).  

 
Table 5: AOC tasks affected by MAS supported policy P5 

AOC Task 

# 

Task Description 

1 Monitoring flight safety 

2 Monitoring whether a flight will make it for its time-slot 
3 Judging the amount of pilots needed on a flight 

4 Checking whether crewmembers reported for a flight 

5 Finding a reserve crewmember 
6 Finding a new itinerary for disrupted passengers 

7 Asking for a crewmember’s permission 

 

Furthermore, the introduction of MAS supported 

policy P5 may change the workload for people that 

remain in AOC. Figure 3 compared AOC under 

policies P1-P4 (Fig. 3a) to AOC under the MAS 

supported policy P5 (Fig. 3b). This shows that the 

passenger team, the aircraft team, and the crew team 

are replaced by the automated passenger manager, 

the automated aircraft manager, and the automated 

crew manager respectively. In order to gain insights 

into potential effects of these replacements, each task 

will be evaluated in relation to workload. 

 

B. Results of Expert-Based Task Evaluation 

The expert-based evaluation identified for each of 

the tasks in Table 5 potential problems for the 

introduction of MAS supported policy P5 in AOC. 

The details of these potential problems are described 

for each of these tasks.  

 

1. Monitoring flight safety  

Monitoring flight safety is currently the task of 

flight dispatch. Castro (2015b) proposes to 

make flight dispatch responsible for entering 

information on disruptions in the MAS based 

tool. Unstructured information like weather 

info is entered manually. The increased 

workload from this additional task may 

interfere with the task of monitoring flight 

safety.  

 

2. Monitor whether a flight will make it in time 

for its time-slot 

In some occasions, airspaces are so crowded 

that flights are allocated a time-slot to enter it. 

Flight dispatch is currently responsible for 

following a flight and noticing when a flight 
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will not make it in time for the assigned slot. 

The MAS based tool does not check 

automatically whether a flight misses its time-

slot, and therefore lacks an important 

functionality. 

 

3. Judging the amount of pilots needed on a 

flight 

Some flights are on the border between 

requiring two or three pilots. These flights 

require a third pilot if the flight is expected to 

take longer than scheduled, for instance due to 

adverse weather conditions at the arrival 

airport. Currently flight dispatch monitor 

flights and judges if an extra pilot is needed . If 

this role is automated,  it might leads to not 

having enough pilots reporting for a flight.   

 

4. Checking whether crewmembers reported for 

a flight 

Crewmembers generally have to check-in to 

report for a duty. The Crew Tracking System 

(CTS) keeps track of whether crewmembers 

reported for a flight and at what time. Currently 

flight dispatch monitors the CTS and checks 

whether all crewmembers reported in time. In 

order to avoid potential confusion, the MAS 

supported tool should also read this 

information from the CTS automatically.  

 

5. Finding a reserve crewmember 

Crewmembers do not always report for duty. 

All kinds of last minute changes in a 

crewmember’s life may result in a no-show. To 

find a replacement crewmember, AOC 

currently has a crew reserve list. The crew team 

is responsible for contacting a crewmember on 

this list (e.g. by calling or by SMS) and asks if 

he or she can replace the original crewmember. 

When an airline would introduce the MAS 

supported policy P5, this contacting task shifts 

to the people that remain in AOC after its 

introduction. This increases their workload and 

is potentially problematic. 

  

6. Finding a new itinerary for disrupted 

passengers 

When an airline cancels a flight, it is often 

responsible for providing an alternative 

itinerary for disrupted passengers. Currently 

the passenger team is responsible for providing 

this alternative itinerary. With the introduction 

of MAS supported policy P5, this tasks shifts 

towards the automation, but reviewing the 

solution remains a task for humans. With the 

passenger team automated by P5, a complaint 

by a passenger should be handled by the 

supervisor. As this is an additional task, it 

increases the supervisor’s workload and 

therefore this task may be potentially 

problematic to cover.  

  

7. Asking for a crewmember’s permission 

In some case AOC requires a crewmember that 

is not officially on stand-by to fulfill a duty. 

Currently it is up to the crew team to check 

whether the crewmember is willing to help. 

Because P5 eliminates the crew team, the AOC 

supervisor has to call a crewmember to ask 

permission. This increases the supervisor’s 

workload and is potentially problematic.  

 

C. Challenging Scenarios 

In addition to the expert-based evaluation of 

specific AOC tasks, the expert also identified 

the following four challenging scenarios.  

 

1. Finding solutions to exceptional situations  

 

There are many examples in which airline 

employees bypass standard procedures to solve 

a situation that would otherwise have resulted 

in a disruption. If an airline were to use MAS 

supported policy P5 the experience and ability 

to judge such situations has to be centered in 

the supervisor. Introducing policy P5 therefore 

increases the task of the supervisor in handling 

exceptional situations by for example 

circumventing standard procedures. 

 

2. Transporting passengers in the direction of 

their destination 

 

In some cases it is not possible to get 

passengers to their final destination. As an 

alternative, an airline may choose to transport 

passengers as much as possible in the direction 

of their destination. For instance when 

passengers cannot directly fly to New York 
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from Amsterdam, the airline may still be able 

to fly passengers to Houston and transport 

passengers by another transport mode to their 

final destination. Currently the passenger team 

is responsible for finding these types of 

solutions. Currently there is no feature in 

policy P5 addressing such solutions.  

 

3. Protecting the airline’s strategic position 

 

Some routes are important to an airline for 

strategic reasons, whilst flights on these routes 

are relatively easy or cheap to cancel. From 

literature it appears that no one in AOC is 

currently explicitly responsible for protecting 

the airline’s strategic position, but it is assumed 

that this is inherent to AOC tasks. MAS 

supported policy P5 does not include a feature 

that protects the airline’s strategic position 

because it replaces several human AOC roles. 

Such task will shift to the remaining people and 

increases their workload.  

 

4. Taking into account political situations 

 

Political friction between countries may 

require attention from an airline, especially 

when the airline flies to disputed areas. 

Currently no one in AOC is explicitly 

responsible for this task, but it is assumed to 

be inherent to AOC roles. MAS supported 

policy P5 does not include a feature to check 

for politically sensitive situations. Ensuring 

the political neutrality of an airline therefore 

shifts towards the people that remain in AOC 

and increases their workload.  

VII. CONCLUSION 

This paper presented a scenario-based and an 

expert-based analysis of an AOC disruption 

management policy that makes explicit use of the 

MAS-based decision support system MASDIMA.  

 

The scenario-based analysis showed that the MAS 

supported policy P5 identified the best known 

solution for the challenging disruption considered. 

This best solution was also found by an advanced 

human-based AOC resolution policy P4 studied by 

Bouarfa et al. (2015). However,  this best solution 

was not found by three conventional types of AOC 

disruption management policies P1-P3.  

It was estimated that the MAS based AOC policy P5 

takes 17 minutes to identify the best solution. This is 

significantly faster than any of the other AOC 

disruption management policies considered. 
 

The expert-based task analysis of the MAS supported 

AOC policy P5 identified the potential for increasing 

tasks for the supervisor. Comparing causes for tasks 

to be problematic, three main categories could be 

identified.  

 

First, for several tasks the workload increases for 

human that remain in AOC after the introduction of 

the MAS supported AOC policy P5. Under policy 

P5, these tasks can only be performed by the AOC 

supervisor, which may increase his/her taskload 

significantly. 

  

Second, eliminating the aircraft team, the crew team, 

and passenger team asks for centering their 

experience with the AOC supervisor. The analysis 

showed that the MAS decision-support tool provides 

a range of solutions to standard disruption problems, 

such as finding a reserve crewmember or an 

alternative itinerary. Because Policy P5 eliminates 

part of the AOC operators by software agents, AOC 

loses experience that is key to its flexibility. The 

effect is that for cases where the pre-programmed 

solutions are not the best options, the efficiency of 

AOC decreases and workload increases.  

 

Third, collaboration is key to finding solutions to 

disruption problems. Automating several human 

AOC roles also means their contacts and their ability 

to collaborate are lost. This reduces the resilience of 

AOC to recover from disruptions and increases the 

workload for people that remain in AOC.  

 

The scenario-based analysis used in the paper 

considers one demanding scenario. In order to 

generalize the findings, it is recommended to also 

identify and evaluate other demanding scenarios. 

With respect to the expert-based evaluation, the 

interview with an AOC expert identified many AOC 

tasks, but the list was not exhaustive. It is therefore 

recommended to further extend the list of AOC tasks 

for expert-based evaluation.  



 14 

 

Nevertheless, based on the challenging scenario 

alone, it can be concluded that MAS-based decision-

support has great potential in improving established 

AOC disruption management policy. Expert-based 

evaluation showed that there are some remaining 

issues for which further improvements of MAS 

supported AOC policy is expected to be beneficial.   
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