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Experiencing stress during training is a way to prepare professionals for real-life crises. With the help of feedback
tools, professionals can train to recognize and overcome negative effects of stress on task performances. This
paper reports two studies that empirically examined the effect of such a feedback system. The system, based on
the COgnitive Performance and Error (COPE) model, provides its users with physiological, predicted performance

lishing the parameters for the predictive models for the feedback system. Participants (n¼9) performed fire-
extinguishing tasks on a virtual ship. By altering time pressure, information uncertainty and consequences of
performance, stress was induced. COPE variables were measured and models were established that predicted
performance and the chances on specific errors. In the second experiment a new group of participants (n¼29)
carried out the same tasks while receiving eight different combinations of the three feedback types in a coun-
terbalanced order. Performance scores improved when feedback was provided during the task. The number of
errors made did not decrease. The usability score for the system with physiological feedback was significantly
higher than a system without physiological feedback, unless combined with error feedback.

This paper shows effects of feedback on performances and usability. To improve the effectiveness of the
feedback system it is suggested to provide more in-depth tutorial sessions. Design changes are recommended
that would make the feedback system more effective in improving performances.
& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

For professionals to be ready for work under stressful circum-
stances, such as crises, combat or disaster scenarios, they need
proper training. An effective training method for decision making
under stress is learning by experience (Andresen et al., 2001;
Beach and Lipshitz, 1993; Cesta et al., 2014). Scenario-based
training environments can be created in Virtual Reality (VR)
which provide the realistic stressful situations (Peeters et al.,
2014). VR seems to be able to elicit physiological stress responses
in individuals (Busscher et al., 2011; Hartanto et al., 2014) but
leaves out the risk of real-life crisis and disasters (Kinateder et al.,
2014). Experiencing stress in VR enhances professionals’ perfor-
mances in real stressful situations (McClernon et al., 2010). Adding
instructions to such training would provide more advantages,
especially for the training of novices (Kirschner et al., 2006).
Hence, next to the VR training, other training tools are needed to
help the trainee learn to perform tasks under stress.
Ltd. This is an open access article u
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This paper focuses on real-time feedback that can be used dur-
ing simulation-based training to learn to cope with stressful situa-
tions. The motivation behind this work lies in the benefits com-
puters could bring in the acquisition of knowledge about the cog-
nitive and affective processes and their outcomes in simulated
stressful situations. Assisting trainees in VR could be done by
incorporating decision support systems into the learning environ-
ment. Cognitive prostheses are systems that replace cognitive
decision-making processes for the users (Wickens et al., 2004). They
work well in a clearly defined decision making situation, but they
do not seem to work successfully in uncertain situations since they
can only make decisions on pre-programmed situations (Reason,
1987). Human decision processes are often ahead of the system
(Cohen, 1993). People are also reluctant to being subordinate to a
system (Gordon, 1988; Kontogiannis and Kossiavelou, 1999; Wick-
ens et al., 2004). Cognitive prostheses also change the nature of a
task from a decision task to learning to understand the system.
Cognitive tools, however, are designed to provide support to the
decision makers instead of replacing them (Wickens et al., 2004).
They might be more appropriate for use in training settings as they
support the user in learning a skill. In real-life settings, a cognitive
tool can still help professionals to be more aware of negative effects
of stress. Another reason to prefer cognitive tools over cognitive
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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prostheses in uncertain environments is that they fit the decision
process of professionals. Professionals do not seem to pick a deci-
sion after considering several alternatives but they rely on their
experiences (Klein et al., 1986). An effective support tool should be
harmonized to the decision-making processes of its users.

Effective support tools for uncertain situations should focus on
skill or knowledge enhancement, or control. Biofeedback methods,
for example, have been used for personal stress control by providing
individuals with an insight into their physiological reactions to stress.
Trainees try to reduce these reactions and over time they learn to
control the physiological reactions to stress. Being more aware of
one's emotional state is said to leave more cognitive resources for the
task (Driskell and Johnston, 2006; Gohm et al., 2001). Some studies
demonstrated biofeedback's ability to reduce stress, and conse-
quently improve performance (Bouchard et al., 2012; Prinsloo et al.,
2013), but these findings may be biased due to un-blind trials
(Raaijmakers et al., 2013).

Support tools focussing on skill or knowledge enhancement
generally offer three types of feedback: (1) outcome feedback states
the current performance of a task, (2) cognitive feedback explains
how to perform the task, and (3) feed-forward helps the user to
anticipate on different decision options. When outcome perfor-
mance is provided on its own, it does not seem to be effective in
increasing task performance (Gonzalez, 2005; Lerch and Harter,
2001). It might still put the trainee in an unguided learning situa-
tion. Combining it with feed-forward feedback on the other hand,
did result in increased task performance (Lerch and Harter, 2001). It
seems important to support trainees in understanding feedback
that shows performance levels. For example, confronting trainees
with their error tendencies helps them to avoid making these errors
(Dörner and Schaub, 1994). In situations with varying situational
dynamics and teamwork interdependencies, the chances to make
errors are relatively high. In such situations, errors often appear as a
result of a lack of communication or inappropriate task allocation
(Sasou and Reason, 1999). To address this, Kontogiannis and Kos-
siavelou (1999) have made a number of suggestions for making
decision support tools more efficient for team decision making. For
example, tools should provide information on team-strategy chan-
ges fitting to the situation. Furthermore, tools should also provide
insight into event escalations and indicate when changes in com-
munication are needed. And finally, they suggest that these tools
should indicate when adaptations are needed in the task allocations
and structures of team members.

The effectiveness of feedback also depends on the timing
between task and feedback. First of all, mood or state-dependent
learning shows that retrieval works better when people are in the
Fig. 1. Schematic view of the COPE model of external and cogniti
same mood as they were in when they were learning (Kenealy,
1997). If feedback is delayed to after the task it is likely that a person
is in another mood, i.e. no longer stressed. Secondly, trainees will
interpret the feedback in the context in which it is given. As a
training scenario unfolds and the context changes the interpreta-
tion of the feedback may be altered. Effective feedback is therefore
offered quickly after the task but not during the performance of the
skill (Anderson et al., 1995; Wickens et al., 2004). Trainees will
otherwise ignore the feedback resulting in no effect or they will be
distracted from the task they are performing which might result in
decreased performance. Shute (2008) drew the same conclusion in
her review on the length and complexity of feedback. When feed-
back is too long or too complex, trainees will not pay attention to it.
Contrary to this finding, there are also studies that did not find an
effect of length and complexity of feedback.

Based on the above literature, this paper takes the stance that
trainees’ performances benefit from receiving immediate (real-
time) feedback about their physiological stress response, predic-
tions about their performance, and predictions about the chances
that they will make specific errors. These types of feedback let
users recognize their current stress state and their behavioural
consequences of stress. Such a feedback system, based on the
COgnitive Performance and Error (COPE) model, proved effective
when provided to Naval students working in a high-end simulator
(Cohen, 2015). The experiment presented here, continues this line
of research by studying the effects of the different combinations of
immediate feedback on task performance.

1.1. COPE model

The COgnitive Performance and Error (COPE) model (Cohen
et al., 2012, 2015) shows the influences of factors in the external
world, via cognitive factors, on performances. A graphical repre-
sentation of the COPE model is shown in Fig. 1. The COPE model
starts with stimuli from the work content. Tasks that need to be
performed have certain goals and task demands. The more difficult
the expected reaction to the event, the higher the task demands.

When a task is being perceived, the primary appraisal will state
the severity of potential danger. The secondary appraisal will assess
the situation as either a challenge or a threat. A task will be seen as a
challenge when individuals believe they are able to cope with the
task. When they feel they cannot cope with the task, it is seen as a
threat. Individuals also rate a task on its level of perceived task
demand. Experiencing a stressful event or task also influences the
emotional state. The PAD-model by Mehrabian (1996) divides
emotional state in arousal, valence and dominance. Valence
ve factors, predicting an individual's performance and errors.
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indicates the level of positivity or negativity, dominance indicates
the level of control, and arousal is a level of activity. Arousal can be
measured objectively with physiological factors such as heart rate
(HR) and heart rate variability (HRV) (Brouwer et al., 2011; Hjortskov
et al., 2004; Krantz et al., 2004).

The work content determines the appraisal, perceived task
demand and arousal levels. Those variables have on their turn,
influence on an individual's behaviour and actions responding to
the external world. Whether a response to a task is appropriate or
not, determines the level of performance. The COPE-model
focusses on two types of performance: expert rated performance,
a value given to the actions determined by experts; and the
number of errors made during the event.

1.2. COPE feedback

Based on the COPE model, a feedback (FB) system (Fig. 2) was
created that provides three types of feedback: physiological feedback (2
in Fig. 2), performance prediction feedback (1 in Fig. 2), and error-
chance feedback (3 in Fig. 2). When heart rate increased, trainees could
consult the other types of feedback to check what consequences the
current stress had on their performance. The performance prediction
feedback is a prediction about the current performance level. Although
performance predictions as feedback might not be effective on its own,
combined with other feedback it seems to increase performance
(Gonzalez, 2005; Lerch and Harter, 2001). The third feedback type the
system provided was predictions of specific error chances. The COPE
model can predict four specific error tendencies (Cohen et al., 2015)
namely: planning errors, communication errors, errors concerning the
speed of task execution, and task allocation errors.

For all three feedback types, a higher bar graph represents a
higher value. The bar graphs belonging to the same feedback type
were grouped according to the principle of common region (Rock
and Palmer, 1990).

The users were expected to see their heart rate increase when
perceived stress increased. Instead of just focusing on reducing
their physiological reactions to the perceived stress as one would
do when only biofeedback is offered (Gatchel et al., 1978), they
could see the consequences of the stress on their performances
and adjust their behaviour accordingly.

1.3. Prototype evaluation; research questions

Although the COPE-FB system is a generic system, different
scenarios require different predictive functions. Previous work
Fig. 2. Presented feedback. Performance predictions feedback on the left (1), physiologic
(3), with from left to right first communication error, planning error, speed error, and l
showed that variables in the COPE model are influenced by tasks
characteristics (Cohen et al., 2016). Therefore, the first experiment
of this paper calibrates the predictive functions and also creates a
set of stressful scenarios for the second experiment. In the second
experiment, the COPE-FB system is used to examine the effect of
providing the various types of immediate feedback by testing the
following three hypotheses:

1. Immediate feedback improves trainees’ performances and the
perceived usability of the feedback system.

2. Immediate (a) physiological feedback, (b) predicted perfor-
mance feedback, or (c) predicted error-chance feedback
improves trainees’ performances and the perceived usability
of the feedback system.

3. Offering combinations of immediate feedback types, results in
an additional positive contribution on top of the effects created
by individual types of feedback, on the trainees’ performances
and the perceived usability of the feedback system.
2. Experiment 1: Model parametrizing

The first experiment was set out to calibrate the predictive
models by determining the parameters, for the specific tasks and
target groups in this paper. The first experiment also allowed to
find stressful scenario's for the second study. The study was
approved by the ethics committees of both TNO Soesterberg and
Delft University of Technology.
2.1. Methods

2.1.1. Participants
Nine participants between 21 and 29 years old, with an average

of 24 years old, participated in the experiment. Two of the parti-
cipants were male. Eight of the participants were interns at TNO
and all nine were students at the University of Utrecht. They were
all experienced computer users and were naïve with respect to the
purpose of the experiment until the debriefing.

The experimental task consisted of a simplified fire manage-
ment task. It was therefore not preferred to use participants with
knowledge of fire management. Instead, we recruited naïve par-
ticipants who would learn to execute a stressful task, related to fire
management.
al feedback in the middle (2), and predictions of error chance feedback on the right
ast task allocation error-chance feedback.



Fig. 3. Screenshot of the experimental task. When a fire occurred (1 and 2), information needed to be gathered by clicking on one of the questions (3). The answers would
lead to a specific action (4) that needed to be taken in order to extinguish the fire.

Table 1
Parameter values used to create different scenarios.

Urgent fires Regular fires

High Low High Low

Time pressure 30–50 s 90–120 s
Information uncertainty 4 s 2 s 4 s 2 s
Consequences 8 lives 4 lives 6 lives 2 lives

I. Cohen et al. / Int. J. Human-Computer Studies 91 (2016) 1–124
2.1.2. Experimental task
Since the COPE model was validated with data collected on a

Naval ship simulator (Cohen et al., 2015), a task with a similar
context but lower in realism was used for this experiment. During
this task, participants saw the layout of a ship on a computer screen
as shown in Fig. 3. In previous experiments, this task was used to
induce cognitive stress in the participants (Schreuder and Mioch,
2011). Fig. 3 shows numbers corresponding to the following aspects
of the task; on the ship, two types of fires would occur: regular fires
(1), represented by a white icon, as well as urgent fires (2), repre-
sented by a red icon. A normal fire had a timer that indicated how
much time there was for extinguishing the fire. Urgent fires did not
have a visible timer and burned down faster than normal fires,
which meant that urgent fires had to be handled as quickly as
possible. To create extra stress, urgent fires were accompanied by an
alarm lasting 0.442 s of five equal pulses (0.05 s sound 0.05 s
silence). Every pulse was a sum of sines of 520, 110 and 1458 Hz.
When a normal fire had 15 s left, participants were warned by a
different alarm lasting 8.19 s. This alarm consisted of 8 consecutive
equal monotone pulses decreasing in amplitude and consisting of
different frequencies. The signals resemble the standard British
frequency Herz and pattern described by Nilsson (2014). The par-
ticipants needed to collect information about the situation that
could be used to determine how to extinguish the fire. This was
done by selecting the fire icon followed by selecting a question (3).
The answers (yes or no) would appear next to the questions.

A decision tree (Fig. 1 in the appendix) that was handed out to the
participants showed the same questions. With the help of the deci-
sion tree, participants followed the questions and answers and would
end at specific actions (4) that are needed to extinguish the current
fire. There were four different decision trees. After four scenarios a
new decision tree was used to prevent that the task could be exe-
cuted automatically. The different decision trees had slightly different
questions but the structure of the tree remained the same.

When a fire was selected the consequences of the fire were
shown in the form of the number of (virtual) lives at stake (5). This
was expected to increase the perceived stress. If a fire was extin-
guished, all these lives were saved. When a fire was not extin-
guished, all lives at stake were lost. When the workload became
too high, the participant could ask for assistance (7). If the assis-
tance option was selected for a particular fire, it disappeared from
the screen and could not be used for the next 30 s. This action
resulted in loss of lives to prevent participants to ask assistance for
all fires. Furthermore, the assistant was not able to handle urgent
fires. Some fires also required medical assistance, and the parti-
cipant needed to notify the sickbay (6).
2.1.3. Experimental scenarios
During the experiment, scenarios were played which consisted

of several fire extinguishing tasks. Scenarios were generated using
a scenario generator that was given a set of three parameter
values. These parameters were time pressure, information uncer-
tainty and consequences of the decisions. The parameters could be
either high or low as indicated by Table 1.

Two types of fires (regular and urgent) could occur. The con-
sequence parameter indicated how many lives were at stake and
had two values (high and low). High consequences during urgent
fires meant that there were eight lives at stake and for regular fires
six lives were at stake. For low consequences there were two and
four lives at stake for respectively regular and urgent fires. For
time pressure, there was also a distinction between regular and
urgent fires. Time pressure for regular fires was 90þseconds and
for urgent fires the fire needed to be extinguished within 30–50 s.
Information uncertainty indicated how long it would take for
information to be available. For this parameter, no distinction was
made between regular and urgent fires.

The combination of all three parameter settings resulted in
eight scenarios. In this experiment, participants experienced every
parameter setting twice. In other words, they experienced 16
scenarios with 8 parameter settings. The order of scenarios was
randomized for each participant. Each scenario lasted for about
3 min each, during which participants had to fight all fires that
appeared.
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2.1.4. Measurements
The COPE variables of appraisal, perceived task demand and

arousal were measured for every scenario. The following subsec-
tions explain the COPE variables that were measured in this
experiment to determine the predictive model parameters. To
determine which scenario was stressful enough to provoke stress
in the participants, perceived stress was also measured.

2.1.4.1. Appraisal (2 and 3). For measuring the appraisal that was
experienced by the participants, a single 10-point scale was used.
The question “I experienced the task as…” was answered from
“threatening” (1) to “challenging” (10).

2.1.4.2. Perceived task demand (4). After finishing a scenario, the
perceived task demand was measured using the Level-of-
Information Processing (LIP) scale from the Cognitive Task Load
model (Neerincx, 2003). This model consists of two other levels:
Time Occupied (TO) and Task Set Switches (TSS). However, the
experimental tasks were constructed in a way that the variables
highly correlated, and the TO and TSS measures were incorporated
in the experimental tasks (number of fires during one scenario and
time pressure). In other words, the diagonal from low to high load
was investigated, so that one demand indicator seemed to fulfil.
The TO and TSS levels were measured as well, and used to select
scenarios as described in Section 2.2.2.

2.1.4.3. Emotional state: Arousal (5 and 6). Electrocardiograph
(ECG) was recorded with the Zephyr HxM. This is an unobtrusive
device attached to a belt, generally used during sport. Participants
placed the belt under their clothing on their chest and it sent ECG
data via Bluetooth to a laptop. Heart rate (HR) in beats per minute
and heart rate variability (HRV) with root-mean-square-succes-
sive-differences (RMSSD) were calculated every 10 s to assess
arousal (Hjortskov et al., 2004; Krantz et al., 2004).

2.1.4.4. Performance (7 and 8). Two types of performance were
measured: performance score and errors made. The performance
score was related to the number of lives saved and fires extinguished.
Table 2 shows the scoring method. Instead of providing participants
with a number of points scored, it was called ‘number of lives saved’,
to create a more tangible goal of the task. Another measure for per-
formance was the number of errors made during a task. The design of
the task allowed four types of errors to occur: communication errors,
planning errors, speed errors and task allocation errors. For some fires,
participants needed to notify the sickbay. When this action was for-
gotten or not performed, or when participants did not ask the right
number of questions before selecting an action, a communication
error occurred and one life was lost. Incorrectly asking for assistance
would result in a task-allocation error. When there was an urgent fire
but participants handled the regular fire first, a planning error was
registered. When participants needed more than 1.25 times the
average time to handle fires in a similar situation, a speed-error was
registered. The average time to handle fires was calculated after the
Table 2
Performance scoring scheme for different actions.

Action Low consequence fire High consequence fire

Asking for help correctly �1 �1
Asking for help incorrectly �All lives at stake �All lives at stake
Notify sickbay when needed 0 0
Forget to notify sickbay Lives saves or lost �1 Lives saved or lost �1
Extinguish a regular fire þ2 þ2
Extinguish an urgent fire þ4 þ6
Burn down a regular fire �2 �3
Burn down an urgent fire �4 �6
first experiment. Note that in this experiment participants did not
receive immediate feedback about their errors or performance.

2.1.4.5. Perceived stress. Every scenario was rated by the partici-
pants on its stressfulness and difficulty. Perceived stress was
measured with one direct question: “How stressful was this sce-
nario”. It was answered on a single 5-point scale ranging from not
stressful (1), to very stressful (5). Per task, the participants filled in
the Cognitive Task Load (CTL) questionnaire from Neerincx (2003).
The ‘Level of Information Procession’, ‘Time Occupied’ and the
‘Task Set Switches’ were rated on a 5-point scale for every task.

2.1.5. Procedure
At arrival, the participants were asked to put on the heart rate

monitor. The participants then read the experimental and task
instructions while the experimenters checked if the heart rate
monitor was working. Questions about the instructions could be
asked before a tutorial trial was started with a printed version of the
first decision tree. This tutorial showed the participants how to
perform the task. When the task was understood, the experimental
trials started. After every single scenario, participants filled in the
questionnaires for the appraisal and task demand. After every four
scenarios the decision tree was changed for another tree that had
slightly different questions. Multiple decision trees were created to
prevent participants from automatically selecting the order of the
questions without reading them. A questionnaire with demographic
information was filled in at the end of the experiment. This experi-
ment lasted between 90 and 120 min.
2.2. Results

Data from this experiment was used to select the most stressful
scenarios. These scenarios were used in the second experiment.
The predictive functions were created based upon COPE variable
data from these scenarios.

2.2.1. Data preparation
For every scenario, heart rate data, heart rate variability data

and the questionnaire data were collected. Arousal data was col-
lected every 10 s. Since the scenarios lasted approximately 3 min,
this led to a list of about 18 data points per scenario. The appraisal
and task demand values per scenario were the average values
given by the participants in experiment 1.

2.2.2. Scenario selection
Every scenario was rated on perceived stress and the measures

of CTL. The three CTL levels and the perceived stress score were
used to determine the overall stressfulness of the scenarios. The
median score was calculated for these variables for every scenario.
Data of the scenarios with the same parameters were then com-
bined by averaging the median scores. These average scores were
used to rank the scenarios on 4 levels. Scenario 6 (*) had the highest
scores on CTL, but did not score high on perceived stress. Partici-
pants had saved fewer lives in scenario 6 than in other scenarios
which led to believe that scenario 6 might have been too difficult
and participants gave up, which can explain feeling less stress and
the decrease in performance. Therefore, scenario 6 was not selected
for experiment 2. Scenarios that were selected were 8, 2, 4 and
5 since they scored high on perceived stress and on the CTL levels.
These scenarios were attached to their equivalent scenario (16, 10,
12 and 15) to create new scenarios for experiment 2. Every pair
created 2 new scenarios for the second experiment. For example;
scenarios 8þ16 and scenarios 16þ8 were two new scenarios.



Table 3
Predictive performance model. The model consists of 5 variables.

Variables Coefficient Std. Error t p

Intercept �0.028 0.081 �0.35 0.727
Arousal: HR �0.003 0.001 �2.86 0.004
Arousal: HRV 0.013 0.003 3.95 o0.001
Appraisal: challenge 0.033 0.009 3.54 o0.001
Appraisal: threat 0.009 0.006 1.57 0.116
Perceived task demand 0.048 0.008 6.36 o0.001

Table 4
Logistic regression model that predicts the chance an error would be made. Errors
are weighted with 25:75.

Coefficient Std. Error t p

Intercept 3.233 0.461 7.02 o0.001
Arousal: HR �0.005 0.004 �1.27 0.204
Arousal: HRV �0.045 0.009 �5.18 o0.001
Appraisal: challenge 0.215 0.034 6.27 o0.001
Appraisal: threat 0.016 0.019 0.88 0.378
Perceived task demand �0.191 0.029 �6.70 o0.001

Table 5
Logistic regression model to prediction communication and task allocation errorsa.

Error type Coefficient Std. Error t p

Communication errors
Intercept 9.384 1.783 5.26 o0.001
Arousal: HR �0.026 0.009 �3.01 0.003
Arousal: HRV �0.093 0.011 �8.82 o0.001
Appraisal: challenge �0.451 0.057 �7.90 o0.001
Appraisal: threat �0.192 0.031 �6.11 o0.001
Perceived task demand �0.389 0.053 �7.35 o0.001

Task allocation errors
Intercept 1.626 0.912 1.78 0.075
Arousal: HR 0.000 0.004 0.08 0.938
Arousal: HRV 0.725 0.269 2.70 0.007
Appraisal: challenge 0.609 0.043 14.04 o0.001
Appraisal: threat 0.124 0.023 5.45 o0.001
Perceived task demand �0.098 0.035 �2.77 0.006

a These errors are weighted with 15:85.
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2.2.3. Predictive models
Due to technical problems, performance data of one participant

was lost which meant that none of the data of this participant could
be used for the calibration. Thus the COPE-FB Systemwas calibrated
using data of 8 participants of which 2 were male. Four Generalized
Linear Mixed Models (GLMM) were created in SPSS 20.0. One model
predicted performance using a linear model and three models
predicted different errors using a binary logistic regression model.
No planning and errors concerning the speed of the task execution
were found in the dataset. Specific models could therefore, only be
made for communication and task allocation errors. The fixed fac-
tors consisted of the COPE variables: HR, HRV, challenge, threat and
perceived task demand. A participant-factor was included as a
random factor to control for participant variation. The random
effect covariance type was set to Variance Component.

2.2.3.1. Predictive Performance model. A GLMM shows that the fixed
factors could explain the performance, (F(5,24.44)¼24.23, po0.05)
with a weak Spearman rho correlation of r¼0.12 between observed
and predicted performance. The individual variance did not differ
from the standard intercept (varintercept¼0.092, Std. Error¼0.109,
Z¼0.844, p¼0.399), indicating that on average the participants did
not differ in their performance. Examining the coefficients in Table 3
shows that a decrease in heart rate and an increase in heart rate
variability coincided with an increase in standardized performance.
Additionally, an increase in challenge and perceived task demand
coincided with an increase in the standardized performance.

2.2.3.2. Predictive Error models. Before predictive models could be
made for the error variables, the underrepresentation of errors
compared to no-errors in the dataset needed to be corrected. The
error variables are binomial (0¼no error and 1¼error) and the
observed ratio of all errors was skewed towards 0. The total error
ratio was 888:30 (29.6:1), for communication errors this was
904:14 (64.57:1) and for task allocation it was 902:16 (56.38:1). By
weighting the data, the ratios were stretched towards a 10:1 ratio.
This ratio was chosen since it still showed a favour for ‘no errors’.
The total error cases were weighted with the ratio of 25:75. For the
communication and task allocation errors a ratio of 15:85 was
used. After applying these weightings, the new ratios were 9.87:1,
11.39:1 and 9.95:1 for the total errors, communication errors and
task allocations, respectively. The predictive models were based on
the weighted dataset.

The predictive model for the total error category is shown in
Table 4 and is able to predict errors based on HRV, challenge and
level-of-information processing F(5, 24.44)¼17.46, po0.05. A ROC
curve for this model provided an Area Under the Curve (AUC) of
0.725. The individual variance did not differ from the standard
intercept (varintercept¼0.451, Std. Error¼0.526, Z¼0.858,
p¼0.391), indicating that on average the participants did not differ
in their performance.

Predictions for communication and task allocation errors can be
made out of the models shown in Table 5. Communication errors
could be predicted out of all the variables (F(5, 14.744)¼52.566,
po0.05). A ROC curve for this model provided an AUC of 0.790. The
individual variance did not differ from the standard intercept
(varintercept¼8.80, Std. Error¼11.555, Z¼0.761, p¼0.447), indicating
that on average the participants did not differ in their performance.

Task allocation errors could be predicted out of HRV, challenge,
threat and level-of-information processing (F(5, 14.884)¼51.78,
po0.05). A ROC curve for this model provided an AUC of 0.67. The
individual variance again did not differ from the standard intercept
(varintercept¼2.474, Std. Error¼3.367, Z¼0.735, p¼0.463), indicating
that on average the participants did not differ in their performance.

2.3. Discussion

The first experiment resulted in a set of 8 stressful scenarios
that will be used in the next experiment. Based on data from these
scenarios, four significant models were created that predicted
performance, communication errors, task allocation errors and
total number of errors out of the variables of the COPE-model.

The sample size of this experiment is relatively small, which limits
the statistical power of the analyses. Some aspects of the parameter
settings are also open for discussion. For example, the error models
were based on a weighted dataset. The weightings changed the error
ratios to 1:10 error, no-error ratio. Whether the ratios chosen in this
experiment were satisfying depends on the interpretation of the
consequences of misses and false positives in the error prediction.
Since the feedback system will be used in training settings the con-
sequences of false positives and missing errors are not severe.

Another discussion point is the 10 s interval in which the phy-
siological measures were measured. This window was chosen
because the feedback would be used in tasks that last approximately
3 min. If feedback changed every minute, only three moments of
feedback will occur. Therefore, it seemed appropriate to set the
predictions, and therefore the dataset, to 10 s to increase the amount
of feedback moments.
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For the next experiment, these models were implemented into
the COPE feedback system. This system used input variables and
the predictive models to calculate performance and chances on
specific errors that were shown to the user this time.
3. Experiment 2 Feedback test

The second experiment focussed on the impact of different
feedback types on performances. The usability of the feedback
system was also investigated. The experiment was setup as a
within-subjects design. Participants were provided with or with-
out physiological feedback, performance prediction feedback, or
error-chance prediction feedback. Using a full-factorial design
(2�2�2), participants were exposed to eight different feedback
conditions. Again, the experiment was approved by the ethics
committee of TNO Soesterberg and Delft University of Technology.

3.1. Methods

3.1.1. Participants
A total of 29 participants were recruited from a participant

database at TNO, a research institute in the Netherlands. People
who had participated in the previous experiment were excluded.
Participants were between 18 and 34 years old, with an average age
of 25.5 (SD¼4.67) years. Data to calculate the median age was,
unfortunately, lost. Fifteen participants were male and all partici-
pants were naive with respect to the purpose of the experiment.
They were compensated with 25 euros plus travel expenses. A
bonus of 20 euros was awarded to the participant with the highest
performance score on the experimental task.

3.1.2. Task
The same fire extinguisher task was used as in the first

experiment. The participants were confronted with the eight
scenarios selected in the first experiment. While the scenarios
were being performed, the participants received eight different
immediate feedback combinations via the COPE-feedback system.

3.1.3. Using the COPE-FB system
The models used by the COPE-FB system need five real-time input

values to calculate the performance predictions and error-chance
predictions. Heart rate and heart rate variability were measured
real-time with the Zephyr HxM. Appraisal (challenge or threat) and
task demand were rated per task in experiment 1. To use the COPE
feedback system, the experimenter had to set-up the system. First,
files were selected containing regression models and scenario variable
values. Next, the heart rate device was connected via Bluetooth so the
system could use the input signal. The experimenter then selected
which parts of the feedback would be shown to the participant. When
the system was running, the experimenter would select which sce-
nario was performed. By selecting a scenario, the appraisal and task
demand values for that scenario were sent from the scenario file to the
regression models. As a last step, the experimenter could set the time
interval for new feedback calculations. The models output was used as
the feedback. The feedback was updated every 10 s.

The trainee screen only showed the output of the predictive
models divided over three panels with bar graphs as shown in
Fig. 2. On the left, the performance prediction was shown in one bar
graph. In the middle, a bar graph showed the trainee's current heart
rate. On the right, a section of predicted error chances were shown.
By default, four bar graphs were shown. Above these graphs, the
legend showed which graph corresponds to which error.

The first experiment in this paper explained that there was no
data for planning and speed errors and therefore, no predictions
about these errors could be made. The bar graphs in the feedback
screen for those two errors remained therefore static on 5 (as
shown in Fig. 2). If these graphs would be set to 0, participants
might have thought that they were not making these errors. The
participants were told that these errors would not be predicted.

3.1.4. Measurements
3.1.4.1. Performance and errors. There were two measures for per-
formance: the total score for a task, and the number of errors
made. The scoring table and error categorization were the same as
in the first experiment.

3.1.4.2. Usability. After every scenario and different combination of
feedback, participants were asked to judge the usability of the feed-
back by filling in the System Usability Scale (SUS). The SUS consisted of
10 items about the systems usability that were answered on a 5-point
scale (Brooke, 1996). SUS scores have a range from 0 to 100. Next to
the SUS, participants were asked to choose one of the feedback types
as the most pleasant and one as the least pleasant type of feedback
when the experiment was over. They were also asked to indicate why
they chose those types in an open question format.

3.1.4.3. Other measures. Fig. 4 shows a participant in the experi-
mental setting. Note that she is wearing more sensors than just the
Zephyr HxM heart rate belt. For another experiment, facial movement
was measured using electromyography (EMG). Data from these sen-
sors did not enter the analyses of this paper. These sensors influenced
all the participants the same manner throughout the eight conditions.

3.1.5. Procedure
At arrival, the participants put on the Zephyr HxM, read instruc-

tions and signed a consent form. The instructions consisted of an
explanation of the task and the feedback system. A tutorial was
started to practice the task and learn about all the options of the ship
simulator. Next, the feedback screen was turned on simultaneously
with the data-recording session of the COPE-FB system, and the first
scenario was started. The eight different feedback conditions were
counterbalanced (see table in the appendix for counterbalance
order). The scenarios were all executed by the participants in the
same order. After finishing each scenario, participants filled in the
questionnaire about the scenario and the COPE-feedback system.
After every four scenarios, the decision-tree was exchanged for
another decision tree. A total of eight scenarios were performed.
After the experimental task, demographic information was collected
and the participants chose their most favourite and least favourite
type or combination of feedback.

3.1.6. Data preparation and analyses
Heart rate scores deviating more than 2.5 SDs from the mean

were considered outliers and were removed from the data file. One
participant had more than 25% of the heart rate data discarded and
this person was therefore excluded from all analyses. The usability
analysis was therefore also based on a sample of 28 participants, of
which 14 were male. For the performance analysis, the data of
another three participants was discarded. During their experimental
sessions technical issues with the COPE-FB system resulted in
incorrect performance and error scores. This analysis was therefore
based on a sample of 25 participants, of which 14 were male.

A relative performance score was used in the analyses. This
score was calculated by dividing the ‘lives saved in a condition’, by
the ‘total number of lives that could have been saved in that
condition’. The descriptive statistics for the performance scores
and the relative performances scores are shown in Table 6. There
were two types of specific errors measured during the tasks:
communication and task allocation errors. The distributions of the
three error variables resemble a Poisson distribution.



Fig. 4. Photograph of the experimental setup. In the foreground, a laptop shows the
trainer part of COPE-FB system. In the background a participant views the ship simu-
lation on the left display and the trainee part of COPE-FB system on the right display.

Table 6
Descriptive statistics for the (relative) performance scores.

Performance scores Relative performance scores

Minimum �30 �0.94
Median 8.50 0.27
Mean 6.64 0.21
Maximum 32 1

Table 7
Likelihood ratio test for models fitting the performance scores. Testing if adding
factors will improve the fit compared to the H0 model.

Model df Log likelihood ratio χ2 df p

1. H0 model 3 �82.72
2. 1þmain effects 6 �82.01 1.43 3 0.699
3. 2þ2way interactions 9 �81.03 3.39 6 0.759
4. 3þ3way interaction 10 �79.23 6.99 7 0.431
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The statistical analyses were executed in R studio. The effect of
the different feedback conditions were examined using a linear
mixed-effect model (LMER) function on the performance and SUS
data, and a generalized linear mixed-effect model (GLMER) with
the Poisson family function for error data. LMER fits linear-mixed
effect models to data whereas GLMER fits generalized linear
mixed-effect models to datasets. The ordinal preference data was
analysed using an exact multinomial and exact binomial tests from
the EMT package in R.

3.2. Results

The analysis focuses on differences in performance scores,
number of errors, and perceived usability scores for all the feedback
conditions. The first hypothesis states that immediate feedback in
general results in an increase of performance and perceived level of
usability. The second hypothesis states that the three separate
feedback types increase performance and perceived level of
usability. The third hypothesis states that an additional positive
effect can be found on top of the effect for the separate feedback
types on performance and perceived level of usability. The pre-
sentation of the results follows the order of the hypotheses.

3.2.1. Performance
Twomodels with performance as a dependent variable were created:

a null model with no fixed factors, including only a random intercept
factor for participants, and an alternative model that added a fixed two
level factor (feedback, no-feedback) to the null model. A likelihood ratio
test found that the model fit of the alternative-model was an improve-
ment over themodel fit of the null model (χ2(1)¼5.38, p¼0.02). Relative
performance scores when no feedback was provided (M¼0.07,
SD¼0.49) were lower than the relative performance scores when feed-
back (M¼0.23, SD¼0.40) was provided (t(198)¼2.32, p¼0.021).

Next, the feedback factor was split into the different feedback
types. Three extra models were created that contained either
(2) only the main effects of heart rate, performance predictions and
error chance predictions, (3) the main effects and the 2-way inter-
actions, and (4) the main effects, 2-way and 3-way interactions for
three types of feedback. As Table 7 shows, adding the three main
factors and interaction factors did not improve the model fit com-
pared to the null model. In other words, no significant effect was
found for the main effects or the interaction effects.

3.2.2. Errors
The first step of the error analysis was again to test whether

feedback in general resulted in any error reduction. Again a null
model and an alternative model with fixed two-level factor
(feedback, no-feedback) were created. The fit of the null model did
not improve when a feedback factor was added for the commu-
nication errors as shown in Table 8.

Next, the feedback factor was split into the separate feedback
types and combinations as was done with the performance score
analysis. Again, these models did not improve model fit compared
to the null model as shows in Table 8.

3.2.3. Usability
The usability of the different feedback conditions of the COPE-

feedback system were measured with the System Usability Scale
and with a rating scale on which feedback was most pleasant and
which one was least pleasant.

3.2.3.1. SUS scores. As with the performance and error analysis, the
first step was to analyse the effect of feedback in general. Two
models were again created to fit the SUS scores, a null-model and
an alternative model including feedback as two-level factor. A
likelihood ratio analysis found that the model fit of the alternative
model was no improvement over the model fit of the null model
(χ2(1)¼2.66, p¼0.10).

The second analysis step examined whether individual types of
feedback or their interactions affected SUS scores. Four models
were created which all significantly improved the fit compared to
the null model (Table 9).

The fourth model, including main effects, 2-way interaction
effects and 3-way interaction effects is analysed and presented in
Table 10. The SUS score without HR feedback (M¼51, SD¼14) was



Table 8
Likelihood ratio test for models fitting the communication, task allocation and total
error variable. Testing if adding effects would improve fit compare to the H0 model.

Error type df Log likelihood ratio χ2 df p

Communication error
1. H0 model 2 �208.33
2. 1þmain effects 5 �205.79 5.0746 3 0.1664
3. 2þ2way interactions 8 �204.69 2.2051 6 0.2958
4. 3þ3way interaction 9 �202.63 4.1163 7 0.1223
Task allocation error

1. H0 model 2 �243.04
2. 1þmain effects 5 �242.86 0.3470 3 0.9510
3. 2þ2way interactions 8 �241.38 3.3245 6 0.7672
4. 3þ3way interaction 9 �241.27 3.5368 7 0.8313
Total error

1. H0 model 2 �208.33
2. 1þmain effects 5 �205.79 5.0746 3 0.1664
3. 2þ2way interactions 8 �204.69 7.2797 6 0.2958
4. 3þ3way interaction 9 �202.63 11.396 7 0.1223

Table 9
Likelihood ratio test for models fitting the SUS variable. Testing if adding effects will
improve the H0 model.

Model df Log likelihood ratio χ2 df p

1. H0 model 3 �897.69
2. 1þmain effects 6 �892.90 9.58 3 0.022*

3. 2þ2way interactions 9 �886.80 21.77 6 0.002**

4. 3þ3way interaction 10 �886.28 22.82 7 0.002**

* po0.05.
** po0.01.

Table 10
Effects of feedback types on SUS scores; Model 4 including the main effects, 2-way
interactions and 3-way interaction.

Effects df Sum of squares F p

HR 1 1017.89 7.75 0.006**

Performance 1 4.72 0.04 0.850
Error 1 307.62 2.34 0.128
HR�performance 1 26.81 0.20 0.652
HR� error 1 1265.88 9.64 0.002**

Performance� error 1 307.62 2.34 0.128
HR�performance� error 1 132.84 1.01 0.316

** po0.01.
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significantly lower (t(111)¼�10.77, po0.05) then the SUS score
when HR feedback was provided (M¼55, SD¼16). This main effect
is illustrated in Fig. 5a.

Table 10 also shows a significant two-way interaction effect
between HR and Error feedback. Multivariate simple effect tests
were conducted to examine the interaction effect. When no
error feedback was provided, SUS score was higher (F(1, 27)¼
14.43, p¼0.001) in conditions with heart rate feedback (M¼59,
SD¼2.93) than in conditions without this feedback (M¼50,
SD¼2.48). However, when error feedback was provided, no
significant (F(1, 27)¼0.07, p¼0.797) difference was found
between conditions with (M¼51, SD¼2.57) or without (M¼52,
SD¼2.60) heart rate feedback. A similar analysis for heart rate
feedback levels was also done. When no heart rate feedback was
provided, no significant (F(1, 27)¼0.61, p¼0.443) difference was
found between conditions with or without error feedback.
However, when heart rate feedback was provided, SUS score
was lower (F(1, 27)¼7.16, p¼0.013) in conditions with error
feedback than without error feedback. Therefore, as Fig. 5a
shows, adding error feedback to heart rate feedback lowered the
perceived usability.

3.2.3.2. Preferences rating. The participants rated which feedback
type they thought was most pleasant and which the least pleasant,
and gave a reasoning behind their choice. Fig. 6 shows how often a
feedback condition was chosen as most or least pleasant.

With exact multinomial and exact binomial tests, it was tested
if the ratings were distributed fairly over all conditions, or if they
showed a preference. If there was no preference the chances for
every feedback condition would be equal to 1/8.

The data showed a significant preference for one of the feed-
back types for both the most pleasant rating (n¼28, expected
probability¼0.125, po0.001) and least pleasant rating (n¼28,
expected probability¼0.125, p¼0.003). The condition without
feedback was rated most pleasant by 41.38% of the participants.
The other 58.62% choose a type of feedback as most pleasant. An
exact binomial test shows that the distribution of most pleasant
ratings of feedback versus no-feedback, does not show a pre-
ference (n¼28, expected probability 0.125:0.875, p¼0.345).

For the least pleasant ratings, both the ‘no feedback’ and ‘all
feedback’ conditions scored the highest score of 25.57%. This dis-
tribution differs from a random probability distribution (n¼28,
expected probability 0.125:0.125:0.75, po0.001).

The participants’ reasons underlying their preferences were
mainly practical ones (Table 2 in the appendix). The feedback was
distracting them (n¼6) or they did not have time to watch the
feedback screen (n¼3). Explanations concerning the applicability
of the feedback stated that participants did not understand the
feedback (n¼2) or they thought they received too much infor-
mation (n¼2). Surprisingly, reasons for the participants to report
feedback as pleasant contradicted the reasons to dislike feedback.
Participants rated feedback as useful (n¼5), and participants
reported that they knew what to do when receiving a certain type
of feedback (n¼5). Two participants stated that they understood
the feedback and four participants even explained that they would
change strategy when certain feedback was given.

3.3. Discussion

Support for the first hypothesis was only found in the perfor-
mance scores. The results showed that the performance scores
increased when feedback was presented to the participants.
However, no support was found for this hypothesis concerning the
number of errors or the SUS scores. Support for the second
hypothesis was only found in the analysis of the SUS scores. The
SUS score for physiological feedback was higher compared to
conditions where physiological feedback was not provided.
Instead of support for the third hypothesis that a combination of
feedback makes a positive contribution, the findings provided
grounds to, at least partly, reject this hypothesis with regard to
perceived usability. Adding error-chance feedback to physiological
feedback reduced the perceived usability when comparing it with
a situation where only physiological feedback was provided.
However, when it came to the effect on performance the findings
were inconclusive on this point.

Feedback did increase the performance scores, but this effect
could not be found when separate feedback types were examined.
This could be due to the relative small sample size and conse-
quently limited statistical power.

There are some limitations that should be considered when the
results of this study are interpreted. One limitation concerns the
explanation of the COPE feedback system to the participants. A
written explanation was given to the participants. A more in-depth
tutorial or a training session with the COPE feedback system might
increase the participants’ understanding of the system and the
different feedback types.



Fig. 5. (a) The main effect of physiological feedback. Average SUS score for the feedback system with and without physiological feedback with error bars showing the
standard error. (b) The interaction effect of physiological� error feedback. Average SUS scores for feedback with and without physiological and error feedback with error bars
showing the standard error. When error feedback is added, the main effect for physiological feedback diminishes.
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Fig. 6. Bar graphs show how often participants selected a specific feedback condition
as most pleasant and as least pleasant. HR¼heart rate/physiological feedback,
Perf¼predicted performance feedback, Error¼predicted error-chance feedback.
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Another limitation in the experimental design was that the
COPE-FB system was designed to predict four types of errors
(communication, planning, speed and task allocation errors).
These errors originated from a previous study where a more nat-
uralistic task was performed in a more complex virtual environ-
ment (Cohen et al., 2015). The computer task in this study was
derived from a task that did not naturally evoke these errors. We
did enrich the task in order for these errors to occur but they
might have been forced upon the task. Participants in the first
experiment only made two types of errors. This meant that only
two of the four errors could be predicted which meant an
incomplete use of the feedback system.
4. General discussion

This paper described an evaluation of the newly created COPE
FeedBack system (COPE-FB system). This feedback system is based
on the idea of cognitive tools providing immediate biofeedback,
performance feedback and more detailed error-chance feedback
(Bouchard et al., 2012; Prinsloo et al., 2013; Gonzalez, 2005; Lerch
and Harter, 2001) to decrease negative effects of stress on per-
formances. The first experiment successfully created stressful tasks
and established parameters for predictive models. For the second
experiment, the predictive models were implemented into the
feedback system to provide participants with eight different
combinations of three types of feedback. The statistical analyses
showed that providing participants with immediate feedback
resulted in an improvement of performance scores. However, no
interaction effects of the different types of feedback were found on
performances. Analysing the main and interaction effects of the
different types of feedback showed an increase of System Usability
Scale (SUS) score for physiological feedback over no physiological
feedback. But it also showed that this improvement disappeared
when adding error chance feedback to the error-physiological
feedback. Overall, the usability data showed that there are good
opportunities for this type of feedback to be accepted and pro-
cessed for performance enhancement.

To establish such enhancement, the feedback needs substantial
improvements. The current version of the COPE-FB system shows
consistency in the design of the different types of feedback
(Horsky et al., 2012), to rule out design effects between the feed-
back types. Different designs might be easier and faster to inter-
pret. The lay-out could be designed in a way that an upward
direction of the bar graphs always indicates a positive value.
Currently, an increase of the error-chance bar graphs is negative,
while an increase of the performance bar graph is positive.
Another suggestion is to differentiate the feedback types by using
different designs instead of colour schemes to make it easier for
colour-blind users to differentiate between the error graphs. Par-
ticipants also indicated that seeing different types of feedback can
be too distracting. By implementing the system in a handheld
device and, for example, adding a tactile warning signal when
expected performance decreases to a certain threshold, the users
do not have to constantly keep track of the feedback. In such a
design using extra auditory signals should be avoided. Using
alarms for both the fire-task and the feedback system could create
confusion and additional cognitive load for distinguishing the
source and cause of the auditory signals. The affordance (Greeno,
1994) of a tactile warning by handheld device would therefore be
more effective. Another suggestion is to provide users with a more
in-depth tutorial session to increase the understanding of the
provided feedback. This will also increase trust in the system
which is necessary in order for it to work effectively (Grootjen
et al., 2006).

A limitation of this study is that the virtual task that was used
lacks realism. Although the scenarios were tested on their per-
ceived stress levels and Cognitive Task Load levels, it was not
tested whether the virtual environment provoked risk perception
(Kinateder et al., 2014). Although some studies question the need
for training in high fidelity simulators (Beaubien and Baker, 2004;
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Toups et al., 2011), others say that more realistic VR environments
tend to increase the realism of the human behaviour shown in the
environment (Slater et al., 2009). The results from this study might
therefore not be generalizable to more realistic VR training
environments. Another limitation of the design of the experi-
mental task is that the parameter values (Table 1) and performing
scores (Table 2) were arbitrarily chosen by the experimenters. The
values were not tested on their realism and might therefore affect
the applicability of the results to more realistic VR tasks. The lack
of a realistic fire management task led to the selection of partici-
pants that had no experience in fire management. This also affects
the generalizability of the results to participants that might have
more experience in such tasks. Future versions of the feedback
system should therefore be tested in a more realistic setting with
professionals familiar in these settings, to fully investigate whe-
ther this system helps to improve performances in such situations.
Furthermore, participants’ individual characteristics might influ-
ence their responses to feedback. This has not been investigated in
this study but might be useful to investigate in future research
about this type of feedback systems.
Fig. A1. Decision-tree for the fire-task. Participants had to follow the order of these que
action to extinguish the fire. There are 4 decision-trees that were swapped after 4 scen

Table A1
Orders of experimental conditions. The scenario order did not change during the exper

Pf:Er Control ER HR:Pf
Control Pf HR:Pf HR
HR:Pf Pf:Er HR Control
HR:Er HR:Pf:Er Pf Pf:Er
Er HR:Er Pf:Er HR:Pf:Er
Pf HR:Pf HR:Pf:Er Er
HR Er Control HR:Er
HR:Pf:Er HR HR:Er Pf

HR¼heart rate feedback, Pf¼performance prediction feedback, Er¼error-chance predic
The results of this study are promising. Performance was
improved when feedback was provided and physiological feedback
was preferred by the users. Further improvements might be
necessary to make the COPE-FB system effective in real opera-
tional settings.
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See Appendix Fig. A1, Tables A1 and A2.
stions from top to bottom. Following the correct answers results in the appropriate
arios. This prevented the participants from performing the task automatically.

iment.

HR HR:Er Pf HR:Pf:Er
HR:Er Pf:Er HR:Pf:Er Er
HR:Pf:Er Pf Er HR:Er
Control Er HR HR:Pf
Pf HR:Pf Control HR
Pf:Er HR HR:Er Control
HR:Pf HR:Pf:Er Pf:Er Pf
Er Control HR:Pf Pf:Er

tion feedback.



Table A2
Participants’ reasons to rate a feedback combination as either most or least
pleasant.

Least pleasant n Most pleasant n

No time to watch the screen 3 Useful information 5
Too much distraction 6 I understand this 2
I don’t understand it 2 This is useful 2
Too much information 2 I know what to do with it 5
No added value 1 I changed strategy with this feedback 4
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