
 
 

Delft University of Technology

Memristive Device Based Circuits for Computation-in-Memory Architectures

Lebdeh, Muath Abu; Reinsalu, Uljana; Du Nguyen, Hoang Anh; Wong, Stephan; Hamdioui, Said

DOI
10.1109/ISCAS.2019.8702542
Publication date
2019
Document Version
Accepted author manuscript
Published in
2019 IEEE International Symposium on Circuits and Systems (ISCAS)

Citation (APA)
Lebdeh, M. A., Reinsalu, U., Du Nguyen, H. A., Wong, S., & Hamdioui, S. (2019). Memristive Device Based
Circuits for Computation-in-Memory Architectures. In 2019 IEEE International Symposium on Circuits and
Systems (ISCAS) (pp. 1-5). Article 8702542 IEEE. https://doi.org/10.1109/ISCAS.2019.8702542

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ISCAS.2019.8702542
https://doi.org/10.1109/ISCAS.2019.8702542


Memristive Device Based Circuits for
Computation-in-Memory Architectures

Muath Abu Lebdeh*, Uljana Reinsalu=, Hoang Anh Du Nguyen*, Stephan Wong* and Said Hamdioui*

*Computer Engineering Lab, Delft University of Technology, Delft, The Netherlands
=Department of Computer Engineering, Tallinn University of Technology, Tallinn, Estonia

Email: {m.f.m.abulebdeh,h.a.dunguyen,j.s.s.m.wong,s.hamdioui}@tudelft.nl uljana@ati.ttu.ee

Abstract—Emerging computing applications (such as big-data
and Internet-of-things) are extremely demanding in terms of
storage, energy and computational efficiency, while todays ar-
chitectures and device technologies are facing major challenges
making them incapable to meet these demands. Computation-
in-Memory (CIM) architecture based on memristive devices is
one of the alternative computing architectures being explored
to address these limitations. Enabling such architectures relies
on the development of efficient memristive circuits being able to
perform logic and arithmetic operations within the non-volatile
memory core. This paper addresses memristive circuit designs for
CIM architectures. It gives a complete overview of all designs,
both for logic as well as arithmetic operations, and presents the
most popular designs in details. In addition, it analyzes and clas-
sifies them, shows how they result in different CIM flavours and
how these architectures distinguish themselves from traditional
ones. The paper also presents different potential applications that
could significantly benefit from CIM architectures, based on their
kernel that could be accelerated.

I. INTRODUCTION

The modern-day data explosion is triggered by many fac-
tors and applications; e.g., content creation by consumers,
genomics, Internet-of-things, (video) surveillance, and au-
tonomous driving cars. This results in a certain pervasiveness
of (large amounts of) data surrounding us in our daily lives,
which needs processing to extract meaningful information to
enhance our lives. The data ubiquity directly contradicts the
large-scale utilization of a von Neumann architecture as it
would require the continuous transportation of data towards
and from central processing units. In particular, high energy
consumption, limited bandwidth, guaranteed response times
are obstacles that prove to be increasingly difficult to overcome
[1], [2]. On a smaller scale (between CPUs and memory),
we are talking about the memory, ILP, and power walls [1].
Consequently, researchers have been looking at computation-
in-memory (CIM) architectures based on memristive devices
[3]–[6] as a possible solution to the aforementioned problems.
The CIM approach keeps data at the location of creation or
consumption, and avoids any unnecessary transfer of data. Fur-
thermore, all needed processing is ”brought” to and performed
at the data location, i.e., the memory or storage. Enabling
such architecture requires the design of memristive based

This research is supported by EC Horizon 2020 Research and Innovation
through MNEMOSENE project under Grant 780215.

circuits being able to perform both logic as well as arithmetic
operations in an efficient manner within the memory core.

Many memristive based circuits have been proposed in the
last decade to enable the implementation of some primitive
functions. Most of this work addressed logic bitwise operations
such as NAND, AND, OR, NOR and XOR [7]–[12]. Recent
work has focused more on some (limited) arithmetic opera-
tions such as vector-matrix multiplication [13]–[15], addition
[16]–[19] and multiplication [16], [20], [21]. In addition, there
is some limited work aiming at reviewing and analyzing
such circuits from different perspectives. Maan et al. [22]
focused on the memristive threshold logic circuits and their
different implementations. Vourkas et al. [23] presented a
general overview of the memristive logic circuits. Reuben et
al. [24] discussed a framework for the stateful logic circuits,
which are suitable for enabling CIM architectures. Zidan et
al. [25] overviewed the potential of memristive devices in
embedded memory design, biologically inspired computing,
and CIM circuits. Ielmini et al. [26] discussed the emerging
resistive devices to implement digital and analog CIM circuits.
Although all this work tries to analyze the memristive circuit
designs from different perspectives, none of them is able to
extract the impact of these designs on CIM architecture and
the potential applications they could enable. Inspecting these
circuit designs reveals that they are not ”generic” designs; i.e.,
they impose constrains on the kind of the CIM architecture
they support. For example, Scouting logic [12] requires both
inputs (operands) to be stored and aligned in the crossbar
memory, whereas the vector-matrix multiplication [13] re-
quires the matrix to be stored in the memory array and the
vector to be provided via the the memory port. Understanding
such constrains and their impact on the CIM architecture is
the key towards defining both the details of the architecture
and the applications that could be targeted.

This paper presents an overview of the memristive cir-
cuit designs (for executing primitive logic and arithmetic
operations), classifies them to present the different types of
CIM architectures they enable, and discusses some potential
applications that could benefit (depending on the available
kernels and their designs).

The rest of the paper is organized as follows. Section II
classifies the CIM architectures based on the location where
the memristive-based circuit design of a kernel (primitive



Computation-in-Memory
(CIM)

CIM-A CIM-P

- Output is produced in array
- Output representation: resistive

- Output is produced in periphery
- Output representation: voltage

Inputs Representation Inputs Representation

resistive
CIM-Ar

hybrid
CIM-Ah

resistive
CIM-Pr

hybrid
CIM-Ph

- Snider [7]
- IMPLY [8]
- MAGIC [9]
- FBL [10]

- Resistive
Accumulator [18]
- Majority Logic
[27]

- Pinatubo [11]
- MPIM [28]
- Scouting [12]
- STT-CiM [29]
- HielM [30]

- Vector-Matrix
Mult. [13], [15],
[31]
- Vector-Matrix-
Matrix Mult. [32]

Fig. 1: CIM Classification

function) produces its results; either in the memory Array
(CIM-A) or in the Peripheral circuit of the memory (CIM-
P). Section III discusses CIM-A class and reveals the details
of two popular designs. Section IV presents the same, but then
for CIM-P class. Section V shows the available kernels, their
CIM architectures and the applications they could make use
of. Finally, section VI concludes the paper.

II. CLASSIFICATION

Computation-in-memory (CIM) aims at integrating process-
ing within the memory itself; i.e., the computation takes place
within the memory core. In addition, it aims at using the non-
volatile memristive device technology (e.g., Resistive RAM),
as it has practically no leakage and its nature enables both
storage and computing capabilities.

As it is known, any memory core (including memristive
memory cores) consists of a memory array and its peripheral
circuits. Each memrsitive circuit design (aiming at imple-
menting any logic or arithmetic operation in memory core)
produces the computing result either within the array or within
the periphery. Hence, depending on where the result of the
computation is produced, the CIM architecture can be divided
into two classes as shown in Figure 1.

• CIM-Array (CIM-A): the computing result is produced
within the memory array. Hence, the output should be
stored in a memristive device in the array in form of a
resistance state.

• CIM-Periphery (CIM-P): the computing result is pro-
duced within the peripheral circuitry. Given the fact that
memory periphery is based on CMOS technology, the
nature of the produced output is voltage.

The memristive circuit designs that enable CIM architecture
(by implementing logic and arithmetic operations) are confined
to hold at least one of its inputs (operands) in the array. In
other words, the operator being executed within the memory
needs to have all operands stored in the array (hence their logic
values are resistive) or only part of the operands is stored in
the array and the other part is received via the memory port(s)
(hence their logic values are hybrid, i.e., resistive and voltage).
This results into four sub-classes as shown in Figure 1: CIM-
Ar, CIM-Ah, CIM-Pr and CIM-Ph; the additional letters ’r’

Fig. 2: IMPLY gate

and ’h’ denote the nature of the inputs (operands), namely
resistive and hybrid, respectively. The figure maps the existing
memristive circuit designs into the classification. In the next
section, some of these designs will be discussed as examples.

III. MEMRISTIVE CIRCUIT DESIGN FOR CIM-A
ARCHITECTURE

CIM-A architecture uses the memristive CIM-Ar and CIM-
Ah circuit designs to perform primitive logic (e.g., NOR)
and arithmetic (e.g., addition) operations. The existing CIM-
Ar circuit designs include Snider logic [7], implication logic
[8], memristor aided logic (MAGIC) [9], and fast boolean
logic (FBL) [10]. These designs implement primitively bitwise
logic operations such as material implication, NOR, and NOT
functions. On the other hand, the existing CIM-Ah circuit
designs include majority logic [27] and resistive accumula-
tor (nanoscale abacus) [18]. These two designs implement
primitively logic operations such as majority function, and
arithmetic operations such as addition.

The following subsections discuss two popular design ex-
amples in details: implication logic [8] as an example of
CIM-Ar design, and majority logic [27] as an example of
CIM-Ah design. Snider, MAGIC and FBL are quite similar
to implication logic, while the resistive accumulator is similar
to majority logic.

A. Implication Logic (CIM-Ar design example)

The implication logic (IMPLY) design executes the ma-
terial implication as a universal logic function. An example
of IMPLY gate is shown in Fig. 2, where the memristive
devices P and Q present the operands. The design requires
Ron<<RG<<Roff (Ron is the low Ohmic state and presents
logic 1, and Roff is the high Ohmic state of the memristive
device and presents logic 0). In this design, the device Q
acts also as an output. Assuming that the devices P and Q
are already programmed, the execution of IMPLY is done by
applying two control voltages Vwh and Vw as shown in Fig. 2;
note that the design requires Vw > Vth > Vwh, where Vth is
the threshold voltage switching of the device. The magnitude
of Vw across a device is sufficient to switch the state of the
device from Roff to Ron, whereas Vw−Vwh is not sufficient
enough to switch the device state. Hence, after execution,
and depending on the values of P and Q, the state of Q



Fig. 3: Majority logic gate

may or may not switch. E.g., if P=Q=0, the state of Q will
switch from Roff to Ron. Therefore, this logic design is input
destructive. More complex logic functions can be implemented
by cascading IMPLY sequentially.

B. Majority Logic (CIM-Ah design example)

The majority logic design executes the majority logic func-
tion. An example of such gate is shown in Fig. 3; the circuit
has two voltage inputs (P and Q), and one resistive input Z
that acts also as an output. Assuming that the device Z is
already programmed, the execution of the function is done by
applying the voltages VwP and VwQ to the top and bottom
electrodes of the memristive device, respectively, as shown in
Fig. 3. Depending on the state of the device Z and the applied
voltages, the device may or may not switch. E.g., if initially
Z=0 (Roff ), and we apply VwP>Vth and VwQ = 0, then
Z will switch to Ron. Therefore, this operation is destructive
for input Z. This majority gate can be used to implement
other CIM-Ah logic functions, such as OR and AND, by fixing
one of the voltage inputs (P or Q) to a specific logic value.
Other than the majority logic design, the resistive accumulator
is another CIM-Ah circuit that utilizes multiple resistance
storage of some memristive devices to implement addition
(accumulation) operation primitively [4], [18].

C. Common Aspects

In summary, the existing memristive circuit designs that
enable CIM-A architecture share the following aspects:

• Provide maximum level of parallelism within the mem-
ory, as execution is independent from sense amplifiers.

• Allow cascading of operations without being fed back to
the array.

• Affect the memory endurance, as execution requires
changing the state of the memristive devices.

• Require large drivers for computing, as execution requires
high voltages to be applied to the memory array (high
power consumption).

• Require redesigning the memory array to support comput-
ing, as the conventional optimized structure of memory
array (including bitlines, wordlines and memory cells)
may not allow for correct computation-in-memory oper-
ations.

Fig. 4: Scouting logic gates

IV. MEMRISTIVE CIRCUIT DESIGN FOR CIM-P
ARCHITECTURE

The CIM-P architecture uses the memristive CIM-Pr and
CIM-Ph circuit designs to perform primitive logic (e.g., OR)
and arithmetic (e.g., vector-matrix multiplication) operations.
The existing CIM-Pr circuit designs include Pinatubo [11],
MPIM [28], Scouting [12], STT-CiM [29], and HielM [30].
These designs implement primitive logic operations such as
OR, AND and XOR functions. On the other hand, the ex-
isting CIM-Ph circuit designs execute logic and arithmetic
operations; including vector-matrix multiplication [13]–[15],
[31] and vector-matrix-matrix multiplication [32].

The following subsections discuss two design examples in
details: scouting logic [12] as an example of CIM-Pr design,
and vector-matrix multiplication [15] as an example of CIM-
Ph design. Pinatubo, MPIM, STT-CiM and Hielm are similar
to scouting logic. Similarly, the other existing CIM-Ph designs
(including designs described in [13], [31], [32]) are quite
similar to the discussed example.

A. Scouting Logic (CIM-Pr design example)

Scouting logic design executes bit-wise OR, AND and XOR
logic functions. The concept of scouting logic is shown in
Fig. 4, where devices M1 and M2 represent the resistive
operands. The output is produced as voltage by the sense
amplifier. The execution of scouting logic operations is based
on reading multiple rows simultaneously, and activating the
appropriate reference current of the desired bitwise operation.
The value of the reference current depends on the executed
operation as shown in Fig. 4. The reference current of OR
function must be selected between 2Vr

ROFF
and Vr

RON
(where Vr

is the read voltage), whereas the reference current of the AND
function must be selected between Vr

RON
and 2Vr

RON
[12]. The

XOR function requires two reference currents. The design of
scouting logic is based on read operations; hence, it does not
destruct input data (states) neither impact the endurance.

B. Vector-Matrix Multiplication (CIM-Ph design)

The vector-matrix multiplication design described in [15] is
implemented using 1T1R (1 transistor and 1 resistive device)
array as shown in Fig. 5; the inputs consist of the binary vector
a=[a1, a2, a3] provided via the wordlines of the array, and the
binary matrix B=[bij ] stored in the array. Each bit line will
provide one element of the output vector. In this design, the



Fig. 5: Vector-Matrix multiplication in 1T1R array

multiplication is performed as AND function, and the addition
as OR function. The execution starts by precharging the
bitlines of the array, and then applying the vector elements to
the wordlines. A precharged bitline will discharge (resulting in
logic 1) only if at least one low ohmic path is created as a result
of applying the vector elements; see Fig. 5. E.g., BL1 will
result in output 1 if a1=1 and b11=1 (low ohmic state). As it is
based on the read operations, this design does not destruct the
state of the matrix elements, neither reduce their endurance.
More complex designs of vector-matrix multiplication (e.g.,
Dot Product Engine [13], and ISAAC [14]) utilizes analog
circuits in the periphery (e.g., ADC and DAC) to perform
arithmetic multiplications and additions using ohm’s law and
kirchhoff’s current law, respectively.

C. Common Aspects

The existing memristive circuit designs that enable CIM-P
architecture share the following aspects:

• Do not affect the memory endurance, as execution does
not change the states of the memristive devices.

• Require small drivers, as execution requires low voltages
to be applied to the memory array (low power consump-
tion).

• Provide limited parallelism within the memory, as execu-
tion is dependent on the sense amplifiers. In the extreme
case, each column may have a sense amplifier, resulting
in a maximum parallelism at the cost area of overhead.

• Limit cascading of operations without feeding (or writ-
ing) the intermediate results back to the memory array,
as the output is produced in the periphery.

• Entail less impact on the structure of memory array, as
their designs focus on modifying the peripheral circuits
to realize logic or arithmetic operations.

V. POTENTIAL APPLICATIONS

The CIM architecture has a great potential to improve
the overall performance and power consumption of at least
some of emerging applications. Table I shows the different
kernels (primitive operations) that can be implemented us-
ing memristive devices, the class of CIM architecture they
enable, and some potential applications which make use of
such kernels; hence, they could be accelerated. The kernels
include bitwise operations (e.g., OR, XOR, and implication
material functions) and arithmetic operations (e.g., addition,
multiplication and vector-matrix multiplication operations).

TABLE I: Examples of potential applications

Kernels
(operations) CIM Applications

OR Ar, Ah
Pr database (bitmap indices, bitWeaving) [33]

AND
Ar, Ah

Pr
database (bitmap indices, bitWeaving),
hyper-dimentional computing, language
recognition, biosignal processing [34]

Ph

XOR
Ar

Pr

database (bitmap indices, bitWeaving),
encryption, hyper-dimentional computing:

language recognition, biosignal processing,
k-mean clustering [35]

Ph CAM [36]
IMPLY,
Majority Ar, Ah

Addition
Ar
Ah temporal correlation, factorization [4]
Pr

Multiplication Ar
Ph

Vector-
Matrix
Multip.

Ph

automata processor, image and signal
processing, feature extraction, filtering,
neural networks, pattern recognition,

convolutional neural networks, recurrent
neural networks, compressed sampling,
image compression [14], [15], [37]–[41]

Vector-
Matrix-
Matrix
multip.

Ph transitive closure [42]

Note that a kernel may be implemented with different designs
resulting in different CIM architectures. For example, OR logic
function can be implemented using IMPLY, Majority logic,
or Scouting logic, resulting in CIM-Ar, CIM-Ah and CIM-
Pr, respectively. Note also that this is not applicable to all
kernels, at least as of today. The third column of the table
shows different applications that could make use of of the
corresponding kernel/architecture. For example, the temporal
correlation utilizes the addition kernel implemented in CIM-
Ah architecture [4]; the one-time-pad cryptography encryption
is accelerated using the XOR kernel implemented in CIM-Pr
architecture [33]; the convolutional neural networks can be im-
plemented more efficiently using vector-matrix multiplication
in CIM-Ph architecture [14].

It is worth noting that most of the applications found in the
literature investigate the potential of vector-matrix multiplica-
tion kernel in CIM-Ph architecture to boost the efficiency of
computation. In addition, and as Table I clearly shows, it is not
clear yet which applications could make use of some kernels
and its associated architectures, as it is the case for OR kernel
in CIM-Ar and CIM-Ah architectures (first row in the table).

VI. CONCLUSION

This paper has shown the importance of understanding and
analyzing the nature of each memristive device based circuit
design for logic or arithmetic operations. It does not allow only
for selection of the right computation-in-memory architectures,
but also for definition of the right applications that could
significantly benefit from them.



REFERENCES

[1] D. A. Patterson, “Future of computer architecture,” in Berkeley EECS
Annual Research Symposium (BEARS), College of Engineering, UC
Berkeley, US, 2006.

[2] S. Hamdioui, S. Kvatinsky, G. Cauwenberghs, L. Xie, N. Wald, S. Joshi,
H. M. Elsayed, H. Corporaal, and K. Bertels, “Memristor for computing:
Myth or reality?” in Design, Automation & Test in Europe (DATE)
Conference, 2017, pp. 722–731.

[3] S. Hamdioui, L. Xie, H. A. D. Nguyen, M. Taouil, K. Bertels, H. Corpo-
raal, H. Jiao, F. Catthoor, D. Wouters, L. Eike et al., “Memristor based
computation-in-memory architecture for data-intensive applications,” in
Design, Automation & Test in Europe (DATE) Conference, 2015, pp.
1718–1725.

[4] A. Sebastian, T. Tuma, N. Papandreou, M. Le Gallo, L. Kull, T. Parnell,
and E. Eleftheriou, “Temporal correlation detection using computational
phase-change memory,” Nature Communications, vol. 8, no. 1, p. 1115,
2017.

[5] H. A. Du Nguyen, J. Yu, L. Xie, M. Taouil, S. Hamdioui, and D. Fey,
“Memristive devices for computing: Beyond cmos and beyond von
neumann,” in IFIP/IEEE International Conference on Very Large Scale
Integration (VLSI-SoC), 2017, pp. 1–10.

[6] D. Ielmini and H.-S. P. Wong, “In-memory computing with resistive
switching devices,” Nature Electronics, vol. 1, no. 6, p. 333, 2018.

[7] G. Snider, “Computing with hysteretic resistor crossbars,” Applied
Physics A, vol. 80, no. 6, pp. 1165–1172, 2005.

[8] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and
R. S. Williams, “memristive switches enable stateful logic operations
via material implication,” Nature, vol. 464, no. 7290, p. 873, 2010.

[9] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman,
A. Kolodny, and U. C. Weiser, “Magic - memristor-aided logic,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 11,
pp. 895–899, 2014.

[10] L. Xie, H. A. Du Nguyen, M. Taouil, S. Hamdioui, and K. Bertels, “Fast
boolean logic mapped on memristor crossbar,” in IEEE International
Conference on Computer Design (ICCD), 2015, pp. 335–342.

[11] S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie, “Pinatubo: A
processing-in-memory architecture for bulk bitwise operations in emerg-
ing non-volatile memories,” in ACM/EDAC/IEEE Design Automation
Conference (DAC), 2016, pp. 1–6.

[12] L. Xie, H. Du Nguyen, J. Yu, A. Kaichouhi, M. Taouil, M. AlFailakawi,
and S. Hamdioui, “Scouting logic: A novel memristor-based logic design
for resistive computing,” in IEEE Computer Society Annual Symposium
on VLSI (ISVLSI), 2017, pp. 176–181.

[13] M. Hu, H. Li, Q. Wu, and G. S. Rose, “Hardware realization of bsb
recall function using memristor crossbar arrays,” in ACM/EDAC/IEEE
Design Automation Conference (DAC), 2012, pp. 498–503.

[14] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Stra-
chan, M. Hu, R. S. Williams, and V. Srikumar, “Isaac: A convolutional
neural network accelerator with in-situ analog arithmetic in crossbars,”
ACM SIGARCH Computer Architecture News, vol. 44, no. 3, pp. 14–26,
2016.

[15] J. Yu, H. A. Du Nguyen, L. Xie, M. Taouil, and S. Hamdioui, “Mem-
ristive devices for computation-in-memory,” in Design, Automation &
Test in Europe (DATE) Conference, 2018, pp. 1646–1651.

[16] D. Fujiki, S. Mahlke, and R. Das, “In-memory data parallel processor,”
in ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), 2018, pp. 1–14.

[17] N. Talati, S. Gupta, P. Mane, and S. Kvatinsky, “Logic design within
memristive memories using memristor-aided logic (magic),” IEEE
Transactions on Nanotechnology, vol. 15, no. 4, pp. 635–650, 2016.

[18] S. R. Ovshinsky and B. Pashmakov, “Innovation providing new multiple
functions in phase-change materials to achieve cognitive computing,”
MRS Online Proceedings Library Archive, vol. 803, 2003.

[19] H. A. Du Nguyen, L. Xie, M. Taouil, R. Nane, S. Hamdioui, and K. Ber-
tels, “Computation-in-memory based parallel adder,” in IEEE/ACM
International Symposium on Nanoscale Architectures (NANOARCH),
2015, pp. 57–62.

[20] A. Haj-Ali, R. Ben-Hur, N. Wald, R. Ronen, and S. Kvatinsky, “Imaging-
in-memory algorithms for image processing,” IEEE Transactions on
Circuits and Systems I: Regular Papers, no. 99, pp. 1–14, 2018.

[21] A. Haron, J. Yu, R. Nane, M. Taouil, S. Hamdioui, and K. Ber-
tels, “Parallel matrix multiplication on memristor-based computation-in-

memory architecture,” in International Conference on High Performance
Computing & Simulation (HPCS), 2016, pp. 759–766.

[22] A. K. Maan, D. A. Jayadevi, and A. P. James, “A survey of memristive
threshold logic circuits,” IEEE transactions on neural networks and
learning systems, vol. 28, no. 8, pp. 1734–1746, 2017.

[23] I. Vourkas and G. C. Sirakoulis, “Emerging memristor-based logic circuit
design approaches: A review,” IEEE Circuits and Systems Magazine,
vol. 16, no. 3, pp. 15–30, 2016.

[24] J. Reuben, R. Ben-Hur, N. Wald, N. Talati, A. H. Ali, P.-E. Gaillardon,
and S. Kvatinsky, “Memristive logic: A framework for evaluation
and comparison,” in International Symposium on Power and Timing
Modeling, Optimization and Simulation (PATMOS), 2017, pp. 1–8.

[25] M. A. Zidan, J. P. Strachan, and W. D. Lu, “The future of electronics
based on memristive systems,” Nature Electronics, vol. 1, no. 1, p. 22,
2018.

[26] D. Ielmini and H.-S. P. Wong, “In-memory computing with resistive
switching devices,” Nature Electronics, vol. 1, no. 6, p. 333, 2018.

[27] P. E. Gaillardon, L. Amarú, A. Siemon, E. Linn, R. Waser, A. Chattopad-
hyay, and G. De Micheli, “The programmable logic-in-memory (plim)
computer,” in Design, Automation & Test in Europe (DATE) Conference,
2016, pp. 427–432.

[28] M. Imani, Y. Kim, and T. Rosing, “Mpim: Multi-purpose in-memory
processing using configurable resistive memory,” in Asia and South
Pacific Design Automation Conference (ASP-DAC), 2017, pp. 757–763.

[29] S. Jain, A. Ranjan, K. Roy, and A. Raghunathan, “Computing in memory
with spin-transfer torque magnetic ram,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, no. 3, pp. 470–483, 2018.

[30] F. Parveen, Z. He, S. Angizi, and D. Fan, “Hielm: Highly flexible in-
memory computing using stt mram,” in Asia and South Pacific Design
Automation Conference (ASP-DAC), 2018, pp. 361–366.

[31] A. Velasquez and S. K. Jha, “Parallel boolean matrix multiplication
in linear time using rectifying memristors,” in IEEE International
Symposium on Circuits and Systems (ISCAS), 2016, pp. 1874–1877.

[32] A. Velasquez and S. K. Jha, “Computation of boolean matrix chain
products in 3d reram,” in IEEE International Symposium on Circuits
and Systems (ISCAS), 2017, pp. 1–4.

[33] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim,
M. A. Kozuch, O. Mutlu, P. B. Gibbons, and T. C. Mowry, “Ambit: In-
memory accelerator for bulk bitwise operations using commodity dram
technology,” in IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), 2017, pp. 273–287.

[34] A. Rahimi, P. Kanerva, J. d. R. Milln, and J. M. Rabaey, “Hyperdi-
mensional computing for noninvasive brain-computer interfaces: Blind
and one-shot classification of eeg error-related potentials,” International
Conference on Bio-inspired Information and Communications Technolo-
gies, 2017.

[35] Y. K. Rupesh, P. Behnam, G. R. Pandla, M. Miryala, and M. Nazm
Bojnordi, “Accelerating k-medians clustering using a novel 4t-4r rram
cell,” IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems, vol. 26, no. 12, pp. 2709–2722, Dec 2018.

[36] W. Chen, X. Yang, and F. Z. Wang, “Memristor content addressable
memory,” in IEEE/ACM International Symposium on Nanoscale Archi-
tectures (NANOARCH), 2014, pp. 83–87.

[37] M. Nourazar, V. Rashtchi, F. Merrikh-Bayat, and A. Azarpeyvand, “To-
wards memristor-based approximate accelerator: application to complex-
valued fir filter bank,” Analog Integrated Circuits and Signal Processing,
vol. 96, no. 3, pp. 577–588, Sep 2018.

[38] Y. Long, T. Na, and S. Mukhopadhyay, “Reram-based processing-in-
memory architecture for recurrent neural network acceleration,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 26,
no. 12, pp. 2781–2794, Dec 2018.

[39] F. Qian, Y. Gong, G. Huang, M. Anwar, and L. Wang, “Exploiting
memristors for compressive sampling of sensory signals,” IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 12,
pp. 2737–2748, Dec 2018.

[40] Y. Halawani, B. Mohammad, M. Al-Qutayri, and S. F. Al-Sarawi,
“Memristor-based hardware accelerator for image compression,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 26,
no. 12, pp. 2749–2758, Dec 2018.

[41] S. Hamdioui, A. Sebstian, and S. Pande et al., “Applications of
computation-in-memory architectures based on memristive devices,” in
Design, Automation & Test in Europe (DATE) Conference, 2019, inpress.

[42] A. Velasquez and S. Jha, “Brief announcement: Parallel transitive closure
within 3d crosspoint memory,” 2018, pp. 95–98.


